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ABSTRACT
Previous work has demonstrated the potential to combine docu-
ment rankings from dense and sparse retrievers for higher relevance
e!ectiveness. This paper proposes a cluster-based partial dense re-
trieval scheme guided by sparse retrieval results to optimize fusion
between dense and sparse retrieval at a low space and CPU-time
cost while retaining a competitive relevance. This scheme exploits
the overlap of sparse retrieval results and document embedding
clusters, and judiciously selects a limited number of clusters to prob-
abilistically guarantee the inclusion of top sparse results. This paper
provides an evaluation of this scheme on its in-domain and zero-
shot retrieval performance for the MS MARCO and BEIR datasets.
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1 INTRODUCTION AND RELATEDWORK
Recent studies have found that combining sparse and dense retrieval
scores can further boost retrieval relevance [15, 18, 19], suggesting
that two categories of retrievers capture di!erent types of relevant
signals. There exists a resource requirement imbalance between
the computing platforms to run these two retrievers: 1) Sparse re-
trieval, utilizing a compact inverted index, operates e"ciently on a
low-cost CPU server, especially with the recent retriever e"ciency
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optimization for learned representations [7, 8, 16, 17, 19, 24, 25,
27, 28, 31, 32, 34]; 2) Dense retrieval requires GPU support due to
the time-consuming nature of similarity calculation in scanning
through a large dataset. The increase in the data size and/or embed-
ding dimensionality, particularly in large language models [1, 37]
(e.g. from 768 to 12,288), demands substantially more memory and
computing time. For example, RepLLaMA retrieval [22], based on
LLaMA-2 [37], requires 145GB storage space for 8.8M MARCO pas-
sage embeddings. In general, dense retrieval is a resource-intensive
bottleneck in the fusion of dense and sparse retrieval systems. Run-
ning two retrievers independently on a search platform and use
naive interpolation may overlook potential opportunities.

This paper focuses on reducing the resource requirements of the
above fusion through improved partial dense retrieval, to produce
competitive ranking results at a low space and CPU time cost. Pre-
vious work has explored two categories of partial dense retrieval
within a portion of the corpus. The #rst category employs unsu-
pervised clustering to group documents o$ine [12], followed by
the online selection of top clusters using query-centroid distances.
Such a method is termed as Inverted File Index (IVF) cluster search.
As shown in Section 3, there can be a signi#cant relevance drop
using limited IVF cluster search. The other category takes a graph
navigation approach such as HNSW [26], GAR [23] and LADR [14].
They start from an initial seed or a ranked sparse result list and
select a subset of embeddings based on document-to-document
similarity-based proximity links.

In addition to partial dense retrieval, quantization methods [39,
41, 42] such as PQ and OPQ are orthogonal strategies employed
for memory and computing cost reduction in above approaches.
However, they come with a tradeo! in relevance e!ectiveness, as
observed in [39]. For example, Section 3 shows up-to 20% drops of
MRR@10 in MS MACRO passage dense retrieval using OPQ with
RetroMAE [40]. For applications with a stringent relevance require-
ment, utilizing uncompressed dense embeddings is still preferred,
even though they may not #t into memory.

We opt to take the cluster-based approach for partial dense re-
trieval instead of graph navigation, inspired by two observations: 1)
Maintaining a document-to-document proximity graph is expensive
for a large corpus. For instance, in LADR [14], sustaining the prox-
imity graph for 8.8M passages in the MS MARCO dataset takes an
extra 4.3GB memory space, in contrast to the original 27GB dense
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embeddings and <1GB index after quantization. 2) Embedding vec-
tors of a large dataset and their proximity graph, especially with
high-dimensional vectors, may exceed memory capacity and re-
quire dynamic access to disk storage. There are optimization studies
on graph-based nearest neighbor search through disk data [10, 11].
Nevertheless, random access of embeddings and/or graph nodes,
as necessitated by document-level proximity graph navigation, can
incur substantial #ne-grained I/O overhead. In contrast, the cluster-
based approach, which captures similar documents within each
statistically-formed group, enables faster block-level I/O.

Previous studies on IVF cluster in-memory or on-disk search [3,
12] have not considered the fusion with sparse retrieval, and its
partial dense retrieval is purely guided by query-centroid similarity.
There exists an opportunity to exploit result relationship between
sparse and dense retrievers to enhance relevance e!ectiveness and
e"ciency. To this end, we propose a Cluster-based partial Dense
retrieval scheme Fused with Sparse retrieval (CDFS for short).

2 PROPOSED CDFS SCHEME
Problem de!nition. Given query 𝐿 and a collection of 𝑀 text
documents: {𝑁𝐿 }𝑀𝐿=1, retrieval obtains the top 𝑂 relevant documents
based on the similarity between the representation vectors of 𝐿
and {𝑁𝐿 }𝑀𝐿=1. Sparse retrieval uses the dot product of their lexi-
cal representation vectors as the similarity function: 𝑃(𝐿) · 𝑃(𝑁𝐿 )
where 𝑃(.) is a vector of weighted term tokens for a document or a
query [5, 8, 19, 27, 33]. Its implementation uses an inverted index
for e"cient search. Dense retrieval with a single vector represen-
tation computes the following rank score 𝑄(𝐿) · 𝑄(𝑁𝐿 ) where 𝑄(.) is
a dense representation vector of a #xed size [13]. Following the
work of [9, 15, 18], linear interpolation is used to ensemble dense
and sparse retrieval scores. The fused rank score of document 𝑁𝐿
for query 𝐿 is: 𝑅𝑃(𝐿) · 𝑃(𝑁𝐿 ) + (1 ↑ 𝑅)𝑄(𝐿) · 𝑄(𝑁𝐿 ), where 𝑅 is a coef-
#cient between 0 and 1, and the sparse and dense rank scores are
normalized. Two design considerations in CDFS are:
• Re-ranking of top sparse retrieval results and their similar
documents. Re-ranking of top sparse results is a simple strat-
egy to guarantee the inclusion of these top results. However, as
pointed out in the previous work [14, 23], re-ranking does not im-
prove recall. We extend this idea to select the clusters that include
top sparse results. Thus, both top sparse results and documents
closely similar to the top results are evaluated by CDFS.

• Exploiting membership distribution of top sparse retrieval
results. Given the cluster information of dense representations,
we examine the membership of sparse retrieval results in these
clusters in a weighted manner, so that clusters that contain mul-
tiple top sparse results have a higher priority to be evaluated.
This weighted scheme allows CDFS to identify more diverse
candidates similar to top sparse results to improve the recall.
During o$ine processing, documents are clustered using k-

means following the standard practice [12, 21]. For collections with
a large number of high-dimension embeddings, which may not
#t into memory, we employ a k-means variant called bisecting k-
means [35] to recursively divide a large cluster into smaller clusters.

The online query processing %ow of the proposed CDFS scheme
during retrieval is shown in Figure 1. Initially, sparse retrieval
produces top-𝑂 results. Then, CDFS conducts the following steps

Sparse retrieval 
Query

Partial dense retrieval fused 
with sparse retrieval

…

Top-k sparse retrieval results  

Membership 
distribution 

Dense embedding 
clusters

Cluster selection with 
direct and probabilistic 
guarantees

Figure 1: Flow of CDFS for selective retrieval fusion

to select a subset of clusters as𝑆𝑁 and fuse. Three parameters used
are 𝑇 , 𝑈 , and 𝑉 , satisfying 𝑇 ↓ 𝑉 and 𝑈 ↓ 𝑉 .
(1) Assign a priority score𝑊 (𝑋𝐿 ) to each embedding cluster 𝑋𝐿

using the weighted overlap of top 𝑂 sparse results with 𝑋𝐿 :

𝑊 (𝑋𝐿 ) =
∑

𝑂 𝐿 ↔𝑃𝑀↗𝑄𝑅𝑆𝑇(𝑁)

𝑌𝑍𝑎𝑏𝑐𝑑𝑌𝑒𝑓𝑏𝑑(𝑁 𝑈 )
log(𝑄𝑎𝑔𝑂𝑌(𝑁 𝑈 ) + 1)

(1)

where 𝑌𝑍𝑎𝑏𝑐𝑑𝑌𝑒𝑓𝑏𝑑(𝑁 𝑈 ) is the sparse rank score of document 𝑁 𝑈 ,
𝑕𝑓𝑍𝑌(𝑂) is the set of top-𝑂 sparse retrieval results, and𝑄𝑎𝑔𝑂𝑌(𝑁 𝑈 )
is the rank position of document 𝑁 𝑈 in 𝑕𝑓𝑍𝑌(𝑂).

(2) Include any cluster 𝑋𝐿 in the targeted set 𝑆𝑁 if
• 𝑋𝐿 contains any top-𝑇𝑂 sparse result,
• or𝑊 (𝑋𝐿 ) ↘ !𝑉𝑁 .
Threshold!𝑉𝑁 is determined below. It guarantees top-𝑈𝑂 sparse
results are included with approximate probability 1 ↑ 𝑖 .

(3) To limit the size of Set 𝑆𝑁 , we further trim it by #rst keeping
clusters of𝑆𝑁 which contain top-max(𝑇, 𝑈)𝑂 sparse results, and
then retaining additional top-weighted clusters under formula
𝑊 (𝑋𝐿 ) as long as |𝑆𝑁 |↓ 𝑉𝑂 .
Compared to direct top-𝑇𝑂 guarantee, the above probabilistic

guarantee using overlap-weighted𝑊 (𝑋𝐿 ) identi#es clusters with
more diverse results. This is because a cluster that hosts multiple top
sparse results may gain a higher priority score𝑊 (𝑋𝐿 ), compared to
a cluster that hosts one top sparse result, even though its weighting
is scaled by its rank position.

Complexity. The time complexity of partial dense retrieval in
CDFS is𝑗(𝑉𝑂 ≃𝑋 ≃𝑀𝑘𝑙). Here,𝑋 is the average cluster size and𝑀𝑘𝑙
is the embedding dimensionality. Our evaluation with 𝑂 = 1000
uses 𝑉 = 0.06 for BM25 and 0.03 for SPLADE. Extra space overhead
is 𝑗(𝑀) for mapping 𝑀 documents to their cluster IDs, which is
negligible compared to the dense embedding space cost.

Threshold for a probabilistic guarantee. We compute thresh-
old !𝑉𝑁 by estimating the minimum score of a cluster that approxi-
mately includes top-𝑈𝑂 sparse result based on order statistics [38].
As discussed in [30, 38], order statistics asymptotically follow a
normal distribution. As sparse retrieval search is conducted on the
whole document corpus, this asymptotic property can be applied
to its top 𝑂-th result for each query, assuming it is an independent
and identically distributed random variable. Let 𝑌(𝑁) be the 𝑂-th
rank score by sparse retrieval for a query, and based on the order
statistics, 𝑌(𝑁) converges in distribution to a normal distribution:

𝑌(𝑁)
𝑂↑→ 𝑚 (𝑛𝑁 ,𝑜2𝑁 ).

A sample of queries can be used to compute the unbiased estimator
of 𝑛𝑁 and 𝑜2𝑁 . The steps for threshold !𝑉𝑁 estimation are as follows.
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(1) Given𝑙 sampled queries processed using sparse retrieval, for
each position 𝑂 , under the assumption of normality, we derive
an unbiased estimation of the mean and variance of this normal
distribution:

𝑛𝑁 =
1
𝑙

∑
𝑊

𝑌(𝑁),𝑊, 𝑜𝑁 =

√∑
𝑊 (𝑌(𝑁),𝑊 ↑ 𝑛𝑁 )2

𝑙
,

where 𝐿 is one of the𝑙 sampled queries and 𝑌(𝑁),𝑊 is the 𝑂-th
rank score for query 𝐿.

(2) As the 𝑌(𝑁) converges in distribution to a normal distribution,

lim
𝑋→⇐ 𝑝𝑏 (

𝑌(𝑁) ↑ 𝑛𝑁
𝑜𝑁

↓ 𝑞𝑌 ) = 𝑖, and 𝑖 =
1⇒
2𝑟

∫𝑍𝑁

↑⇐
𝑑0.5𝑎

2
𝑁𝑠 .

Thus given 𝑖 , one can #nd 𝑞𝑌 following a standard statistical
solution to the second equation expression above.
Notice that 𝑌(𝑁) ↘ 𝑡𝑁 with at least probability 1 ↑ 𝑖 , where
𝑡𝑁 = 𝑛𝑁 + 𝑞𝑌𝑜𝑁 . We can estimate 𝑡𝑁 with 𝑡𝑁 = 𝑛𝑁 + 𝑞𝑌𝑜𝑁 .

(3) From Formula (1), we compute the lower bound of𝑊 (𝑋𝐿 ) when
it contains at least one top-𝑈𝑂 document. Namely,

𝑊 (𝑋𝐿 ) ↘
𝑡𝑉𝑁

𝑢𝑓𝑣(𝑈𝑂 + 1)
.

We will use !𝑉𝑁 = ”̂𝑂𝑃

𝑏𝑅𝑐(𝑉𝑁+1) as the threshold to add the clus-
ters to 𝑗𝑉𝑁 , which satisfy𝑊 (𝑋𝐿 ) ↘ !𝑉𝑁 for Step (2) of cluster
selection discussed earlier.

For example, in the case of SPLADE, the estimated mean is ˆ𝑛𝑉𝑁 =
0.69 and standard deviation ˆ𝑜𝑉𝑁 = 0.18 for rank position 𝑈𝑂 = 10.
With probability 1 ↑ 𝑖 = 0.95, a random query will have its top-
10 score above 𝑡10 = 0.72. Then, !10 = 0.30. After setting𝑊 (𝑋𝐿 )
threshold to be 0.30 , the inclusion of a top-10 sparse result in each
selected cluster will have a probability of 0.95.

3 EVALUATIONS
Datasets and measures. Our evaluation uses the MS MARCO
dataset with 8.8 million passages for full passage ranking [2, 4]. The
test query sets are the Dev set with 6980 queries and TREC deep
learning (DL) 2019/2020 tracks with 43 and 54 queries each. For
Dev, we report mean reciprocal rank at 10 (MRR@10) and recall at
1000 (R@1k). For DL19 and DL20 sets, we report NDCG@10. We
report average NDCG@10 for the thirteen BEIR datasets [36].

Models and parameters. Retriever implementation is extended
from PISA [29], FAISS, and LADR [14] in C++ and Python. For
sparse and dense model interpolation, we use min-max normaliza-
tion to rescale the top results per query. The interpolation weights
are 0.05 and 0.95 for sparse and dense scores respectively when
fused with BM25. For a learned sparse representation, they are 0.5
and 0.5, respectively. To report themean single-query latency and 99
percentile latency inmilliseconds, we run test queriesmultiple times
forMSMARCODev set using a single thread on on an Intel i7-1260P
CPU server with 64GB memory and PCIe SSD. The related code will
be in https://github.com/yingrui-yang/dense_sparse_fusion. For
sparse retrieval, our evaluation reported in this paper mainly uses
a version of SPLADE [6, 7] with e"ciency optimization [28, 31, 32].
Its index space is 3.7GB with CPU latency 18.5ms. Use of CDFS
with other sparse retrievers [19, 34? ] has similar #ndings.

For dense retrieval, we adopt two recently published dense mod-
els RetroMAE [40] based on BERT and RepLLaMA [22] based on
LLaMA-2 [37]. We use their checkpoints from Huggingface to gen-
erate document and query embeddings and use k-means from the
FAISS library [12] to derive 60,000 and 66,489 dense embedding
clusters respectively for 8.8M MS MARCO passages. On average
the cluster size is 145 and 133 documents for the two models. For
the BEIR datasets, we set the desired cluster size to be 133 for each
dataset and vary the number of clusters accordingly. The Retro-
MAE embedding set takes 27GB of space with a %ax index in FAISS
with dimension 768 per vector. RepLLaMA embeddings have a di-
mensionality of 4096 per vector and take 145GB space on disk. We
assume they are fetched dynamically on-demand during retrieval.
RetroMAE-2 [20] is not used because its checkpoint is not released.

For the MS MARCO Dev set, the result of a method is marked
with tag † when statistically signi#cant drop is observed compared
to our method tagged with ↭ at 95% con#dence level.

MSMARCO Dev DL19 DL20 #Docs Latency Space
MRR R@1k NDCG NDCG visited Total(ms) GB

Full dense retrieval fused with SPLADE. Uncompressed "at index
SPLADE (S) 0.396 0.980 0.732 0.721 8.8M 18.5 3.7

RepLLaMA (RL) 0.412 0.994 0.743 0.725 8.8M – 145
S + RL 0.426 0.994 0.763 0.741 8.8M – 149

RetroMAE (RM) 0.416 0.988 0.720 0.703 8.8M 1602.2 27.2
S + RM 0.425 0.988 0.740 0.731 8.8M 1620.7 30.9
CDFS vs. IVF for RepLLaMA (RL) under OPQ quantization

RL 0.384† 0.990 0.719 0.707 8.8M 666.0 2.4
S + RL 0.417 0.991 0.760 0.747 8.8M 678.5 6.1
RL/IVF 0.365† 0.915† 0.710 0.694 3K 97.0 2.5

S + RL/IVF 0.393† 0.989 0.736 0.717 3K 115.5 6.2
RL/CDFS 0.387 † 0.980 † 0.730 0.716 3K 52.2 2.5

↭ S + RL/CDFS 0.419 0.988 0.760 0.753 3K 71.0 6.2
CDFS vs. IVF for RetroMAE (RM) under OPQ quantization

RM 0.398† 0.984 0.701 0.702 8.8M 566.1 1.5
S + RM 0.416 0.988 0.737 0.732 8.8M 584.6 5.2
RM/IVF 0.308† 0.758† 0.558 0.581 8K 20.1 1.5

S + RM/IVF 0.349† 0.985 0.619 0.691 8K 38.6 5.2
RM/CDFS 0.395† 0.977† 0.702 0.681 4K 20.2 1.5

↭ S + RM/CDFS 0.415 0.986 0.740 0.730 4K 38.7 5.2

Table 1: In-memory cluster-based fusion with SPLADE

In-memory cluster-based partial dense retrieval fusedwith
SPLADE. Table 1 compares CDFS and cluster-based partial dense
retrieval baselines fused with SPLADE sparse retrieval under quan-
tization. Here we assume the memory is constrained and data is
compressed for in-memory dense retrieval computation. OPQ quan-
tization in FAISS is con#gured with the number of codebooks as
𝑙 =256 for RepLLaMA and𝑙 =128 for RetroMAE. IVF uses the same
percentage of documents as CDFS for a fair comparison. Columns
“Latency” and “Space” are the average single-query time and in-
memory space cost of dense retrieval for MS MARCO Dev set. The
top portion of this table lists the performance of stand-alone models
and their fusion under full dense retrieval without compression.

The takeaway from Table 1 is that 1) CDFS delivers a relevance
fairly close to full dense retrieval fused with sparse results under
the same quantization setting while CDFS only searches about 3,000
out of 8.8M documents and is much faster. 2) The fusion with partial
RepLLaMA dense retrieval under IVF and OPQ selecting about the
same number of documents as CDFS can be fast in 115.5ms but the
relevance is 7.6% worse in MRR@10 than CDFS which takes 71ms.
The fusion with partial RetroMAE under IVF and OPQ is 15.9%
worse in MRR@10 than CDFS while both spend around 38.6ms.
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Data location Rerank LADR* DiskANN SPANN CDFS
Embeddings Disk Disk Disk/mem Disk Disk

Graph – Mem Disk – –

Relevance #Doc Dense latency (ms) Breakdown (ms)
MRR R@1k MRT P99 Worst I/O Comp.

SPLADE (S) + RepLLaMA
Rerank 0.425 0.980 1000 298.7 377.6 402.5 294.1 4.6

LADR*fast 0.420 0.979† 1107 127.6 377.3 445.2 115.8 11.8
LADR*default 0.420 0.989 8522 894.8 2469.7 3430.1 837.9 56.5
↭ S+CDFS 0.425 0.988 2829 45.9 112.9 – 41.8 4.1

SPLADE (S) + RetroMAE
Rerank 0.422 0.980 1000 14.1 108.3 423.17 13.3 0.9

LADR*fast 0.422 0.982 1107 18.4 137.3 503.6 14.5 3.8
LADR*default 0.425 0.988 8522 71.3 344.2 3876.7 45.4 25.9

DiskANN 0.402† 0.977 – 280.0 314.9 – 265.1 14.9
S+DiskANN 0.415† 0.985 – 280.0 314.9 – 265.1 14.9

SPANN 0.167† 0.753 – 145.2 135.1 – – 10.1
S+SPANN 0.398† 0.981 – 145.2 135.1 – – 10.1
↭ S+CDFS 0.424 0.987 4427 10.4 31.0 – 6.0 4.4

Table 2: Dense retrieval and fusion with on-disk embeddings.
The time listed is only for dense retrieval.

CDFS vs. nearest-neighbor search and re-ranking baselines
with in-memory or on-disk data. Table 2 assesses CDFS when
MS MARCO passages data is hosted on SSD disk. The top portion
of Table 2 speci#es the data location of con#gured baselines. The
reranking method simply fetches top-𝑂 embeddings from the disk
for a fusion. LADR is designed for in-memory search [14], andwe ex-
tend it as LADR* for on-disk search by accessing embeddings from
the disk while assuming the memory can host a proximity graph.
We test two con#gurations of LADR*, its default setting with 128
neighbors, exploration depth of 50, and 200 seed documents, as well
as a fast con#guration selected to have a similar CPU time as our
method for RetroMAE. LADR*fast uses 128 neighbors, exploration
depth 20, and 20 seed documents. DiskANN [11] assumes the graph
and uncompressed embeddings are on disk while its memory hosts
compressed embeddings for quick guidance. SPANN [3] searches
disk data in a cluster-based manner following query-centroid dis-
tances. Both DiskANN and SPANN are designed to search from
scratch, and we simply fuse their outcome with SPLADE results.
We only present the results for RetroMAE because the o"cially re-
leased code for DiskANN and SPANN cannot build the RepLLaMA
index in our machine due to memory limit. HNSW [26] is not in-
cluded because its in-memory relevance is similar to DiskANN. The
latency time reported is in milliseconds. The column “#Doc” is the
number of documents fetched to perform dense retrieval.

Reranking does well in MRR@10 and has a slightly lower re-
call@1000. But it takes 298.7ms in RepLLaMA-based fusion, dom-
inated by random 1,000 I/O operations to fetch embeddings. In
comparison, CDFS issues 17 IO operations on average per query
to fetch clusters. We #nd that each I/O operation has about 0.3ms
startup cost as queuing and other software overhead in our tested
PCIe SSD. Thus, more #ne-grained operations in reranking yields
more overhead, while CDFS, which fetches clusters of consecutive
embeddings, utilizes block I/O that incurs less access overhead with
fewer I/O operations issued. For the same reason, CDFS can ac-
complish similar and higher relevance compared to LADR* and
DiskANN while having much less I/O cost. CDFS also outperforms
SPANN as it only exploits query-centroid distances for selection.

Noted that our setting stores embeddings in similarity-based
clusters on disk, thus random embedding-level access in rerank-
ing and LADR* still bene#ts from spatial locality in clustered data

because top results tend to be similar. That explains why 99th per-
centile latency of re-ranking and LADR* is much slower when
spatial locality is less available or not exploitable. When embedding
vectors become longer from RetroMAE to RepLLaMA, clustered
data locality becomes less bene#cial, which explains why the ratio
from 99th percentile latency over the mean latency drops from 7.7x
to 1.27x. The column “Worst” lists the estimated worst-case latency
when documents are not clustered on the disk.

Stand-alone models SPLADE+RepLLaMA SPLADE+RetroMAE
NDCG@10 SPLADE RepLLaMA RetroMAE Full Rerank CDFS Full Rerank CDFS

Avg. 0.500 0.551 0.482 0.561 0.545 0.554 0.520 0.483 0.517
- SPLADE – 10.2% -3.6% 12.2% 9.0% 10.8% 4.0% -3.5% 3.5%

Table 3: Zero-shot retrieval performance on 13 BEIR datasets

BEIR. Table 3 lists average NDCG@10 on 13 BEIR datasets
including DBPedia, FiQA, NQ, HotpotQA, NFCorpus, T-COVID,
Touche, ArguAna, C-Fever, Fever, Quora, Scidocs, and SciFact. CDFS
works e!ectively with RepLLaMA and RetroMAE after SPLADE.

Parameters MRR@10 R@1K #Clu. MRR@10 R@1K #Clu
(𝑇, 𝑈), 𝑉=0.06 RepLlama+BM25 RetroMAE+BM25
(0.05,0) 0.410 0.967 20.9 0.408 0.955 20.9
(0,0.02) 0.410 0.972 28.2 0.412 0.967 27.2
(0,0.05) 0.413 0.976 53.9 0.414 0.971 44.0
(0.05,0.02) 0.412 0.973 34.5 0.414 0.969 30.2
(𝑇, 𝑈), 𝑉=0.03 RepLlama+SPLADE RetroMAE+SPLADE
(0.01,0) 0.420 0.983 4.2 0.408 0.980 4.2
(0.02,0) 0.423 0.985 7.1 0.415 0.981 7.2
(0,0.01) 0.425 0.988 16.2 0.423 0.987 14.8
(0.02,0.01) 0.425 0.988 16.8 0.424 0.987 15.5

Table 4: Varying 𝑇 and 𝑈 for direct and prob. guarantees
Parameter sensitivity. Table 4 illustrates the impact of using a

few values of 𝑇 and 𝑈 parameters in controlling probabilistic and
direct inclusion guarantees in CDFS. This table is for MS MARCO
passage Dev set under four di!erent sparse and uncompressed
dense pairs with retrieval depth 𝑂 = 1000. Column “#Clu” means the
number of embedding clusters selected. The default 𝑉 value is 0.03
for SPLADE and 0.06 for BM25 sparse retrieval. The result shows
that (𝑇, 𝑈)=(0.02,0.01) is a well-balanced choice for SPLADE, and
(0.05,0.02) for BM25, and the probabilistic guarantee adds diverse
results to improve recall.

4 CONCLUDING REMARKS
The contribution of this paper is to demonstrate and evaluate how
lightweight, cluster-based partial dense retrieval can achieve com-
petitive relevance and short CPU latency without relying on a
proximity graph. CDFS assumes that sparse retrieval runs #rst and
judiciously selects a subset of document embeddings to conduct
limited fusion. Our design prioritizes the dense search in document
clusters based on a mixture of probabilistic and direct inclusion of
top sparse results to quickly narrow the scope of searching relevant
documents. When dense embeddings do not #t into memory, CDFS
loads selected clusters from the disk storage in a block I/O manner,
which is much faster than SPANN and graph navigation methods
with #ner-grained I/O such as DiskANN and an extension of LADR.
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