Cluster-based Partial Dense Retrieval
Fused with Sparse Text Retrieval

Yingrui Yang
Department of Computer Science,
University of California
Santa Barbara, California, USA

Yifan Qiao
Department of Computer Science,
University of California
Santa Barbara, California, USA

ABSTRACT

Previous work has demonstrated the potential to combine docu-
ment rankings from dense and sparse retrievers for higher relevance
effectiveness. This paper proposes a cluster-based partial dense re-
trieval scheme guided by sparse retrieval results to optimize fusion
between dense and sparse retrieval at a low space and CPU-time
cost while retaining a competitive relevance. This scheme exploits
the overlap of sparse retrieval results and document embedding
clusters, and judiciously selects a limited number of clusters to prob-
abilistically guarantee the inclusion of top sparse results. This paper
provides an evaluation of this scheme on its in-domain and zero-
shot retrieval performance for the MS MARCO and BEIR datasets.

CCS CONCEPTS

« Information systems — Combination, fusion and federated
search.

KEYWORDS
Space and time efficient search, dense retrieval, sparse retrieval.

ACM Reference Format:

Yingrui Yang, Parker Carlson, Shanxiu He, Yifan Qiao, and Tao Yang. 2024.
Cluster-based Partial Dense Retrieval Fused with Sparse Text Retrieval. In
Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR °24), July 14-18, 2024, Washing-
ton, DC, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3626772.3657972

1 INTRODUCTION AND RELATED WORK

Recent studies have found that combining sparse and dense retrieval
scores can further boost retrieval relevance [15, 18, 19], suggesting
that two categories of retrievers capture different types of relevant
signals. There exists a resource requirement imbalance between
the computing platforms to run these two retrievers: 1) Sparse re-
trieval, utilizing a compact inverted index, operates efficiently on a
low-cost CPU server, especially with the recent retriever efficiency

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SIGIR °24, July 14-18, 2024, Washington, DC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0431-4/24/07.
https://doi.org/10.1145/3626772.3657972

Parker Carlson
Department of Computer Science,
University of California
Santa Barbara, California, USA

Shanxiu He
Department of Computer Science,
University of California
Santa Barbara, California, USA

Tao Yang
Department of Computer Science,
University of California
Santa Barbara, California, USA

optimization for learned representations [7, 8, 16, 17, 19, 24, 25,
27, 28, 31, 32, 34]; 2) Dense retrieval requires GPU support due to
the time-consuming nature of similarity calculation in scanning
through a large dataset. The increase in the data size and/or embed-
ding dimensionality, particularly in large language models [1, 37]
(e.g. from 768 to 12,288), demands substantially more memory and
computing time. For example, RepLLaMA retrieval [22], based on
LLaMA-2 [37], requires 145GB storage space for 8.8M MARCO pas-
sage embeddings. In general, dense retrieval is a resource-intensive
bottleneck in the fusion of dense and sparse retrieval systems. Run-
ning two retrievers independently on a search platform and use
naive interpolation may overlook potential opportunities.

This paper focuses on reducing the resource requirements of the
above fusion through improved partial dense retrieval, to produce
competitive ranking results at a low space and CPU time cost. Pre-
vious work has explored two categories of partial dense retrieval
within a portion of the corpus. The first category employs unsu-
pervised clustering to group documents offline [12], followed by
the online selection of top clusters using query-centroid distances.
Such a method is termed as Inverted File Index (IVF) cluster search.
As shown in Section 3, there can be a significant relevance drop
using limited IVF cluster search. The other category takes a graph
navigation approach such as HNSW [26], GAR [23] and LADR [14].
They start from an initial seed or a ranked sparse result list and
select a subset of embeddings based on document-to-document
similarity-based proximity links.

In addition to partial dense retrieval, quantization methods [39,
41, 42] such as PQ and OPQ are orthogonal strategies employed
for memory and computing cost reduction in above approaches.
However, they come with a tradeoff in relevance effectiveness, as
observed in [39]. For example, Section 3 shows up-to 20% drops of
MRR@10 in MS MACRO passage dense retrieval using OPQ with
RetroMAE [40]. For applications with a stringent relevance require-
ment, utilizing uncompressed dense embeddings is still preferred,
even though they may not fit into memory.

We opt to take the cluster-based approach for partial dense re-
trieval instead of graph navigation, inspired by two observations: 1)
Maintaining a document-to-document proximity graph is expensive
for a large corpus. For instance, in LADR [14], sustaining the prox-
imity graph for 8.8M passages in the MS MARCO dataset takes an
extra 4.3GB memory space, in contrast to the original 27GB dense

https://doi.org/10.1145/3626772.3657972
https://doi.org/10.1145/3626772.3657972
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626772.3657972
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626772.3657972&domain=pdf&date_stamp=2024-07-11

SIGIR ’24, July 14-18, 2024, Washington, DC, USA

embeddings and <1GB index after quantization. 2) Embedding vec-
tors of a large dataset and their proximity graph, especially with
high-dimensional vectors, may exceed memory capacity and re-
quire dynamic access to disk storage. There are optimization studies
on graph-based nearest neighbor search through disk data [10, 11].
Nevertheless, random access of embeddings and/or graph nodes,
as necessitated by document-level proximity graph navigation, can
incur substantial fine-grained I/O overhead. In contrast, the cluster-
based approach, which captures similar documents within each
statistically-formed group, enables faster block-level I/O.

Previous studies on IVF cluster in-memory or on-disk search [3,
12] have not considered the fusion with sparse retrieval, and its
partial dense retrieval is purely guided by query-centroid similarity.
There exists an opportunity to exploit result relationship between
sparse and dense retrievers to enhance relevance effectiveness and
efficiency. To this end, we propose a Cluster-based partial Dense
retrieval scheme Fused with Sparse retrieval (CDFS for short).

2 PROPOSED CDFS SCHEME

Problem definition. Given query g and a collection of D text
documents: {d,-}g 1» retrieval obtains the top k relevant documents
based on the similarity between the representation vectors of g
and {di}?= 1~ Sparse retrieval uses the dot product of their lexi-
cal representation vectors as the similarity function: L(q) - L(d;)
where L(.) is a vector of weighted term tokens for a document or a
query [5, 8, 19, 27, 33]. Its implementation uses an inverted index
for efficient search. Dense retrieval with a single vector represen-
tation computes the following rank score R(q) - R(d;) where R(.) is
a dense representation vector of a fixed size [13]. Following the
work of [9, 15, 18], linear interpolation is used to ensemble dense
and sparse retrieval scores. The fused rank score of document d;
for query q is: AL(q) - L(d;) + (1 — A)R(q) - R(d;), where A is a coef-
ficient between 0 and 1, and the sparse and dense rank scores are
normalized. Two design considerations in CDFS are:

o Re-ranking of top sparse retrieval results and their similar
documents. Re-ranking of top sparse results is a simple strat-
egy to guarantee the inclusion of these top results. However, as
pointed out in the previous work [14, 23], re-ranking does not im-
prove recall. We extend this idea to select the clusters that include
top sparse results. Thus, both top sparse results and documents
closely similar to the top results are evaluated by CDFS.
Exploiting membership distribution of top sparse retrieval
results. Given the cluster information of dense representations,
we examine the membership of sparse retrieval results in these
clusters in a weighted manner, so that clusters that contain mul-
tiple top sparse results have a higher priority to be evaluated.
This weighted scheme allows CDEFS to identify more diverse
candidates similar to top sparse results to improve the recall.

During offline processing, documents are clustered using k-
means following the standard practice [12, 21]. For collections with
a large number of high-dimension embeddings, which may not
fit into memory, we employ a k-means variant called bisecting k-
means [35] to recursively divide a large cluster into smaller clusters.

The online query processing flow of the proposed CDFS scheme
during retrieval is shown in Figure 1. Initially, sparse retrieval
produces top-k results. Then, CDFS conducts the following steps

2328

Yingrui Yang, Parker Carlson, Shanxiu He, Yifan Qiao, & Tao Yang

& Query

Sparse retrieval

Top-k sparse retrieval results

—)

_ : Membership
Cluster selection with distribution
direct and probabilistic
guarantees o :

ool liio
: : B Dens.e. embeddi.ti{.;
Pa?rtlal dense re?rleval fused clusters
with sparse retrieval

Figure 1: Flow of CDFS for selective retrieval fusion

to select a subset of clusters as Gy and fuse. Three parameters used

are a, f3, and y, satisfying « < yand f < y.

(1) Assign a priority score W(C;) to each embedding cluster C;
using the weighted overlap of top k sparse results with C;:

SparseScore(d;)

W(C) = , log(RankS(d;) + 1)

d;eCinTopS(k

1)

where SparseScore(d;) is the sparse rank score of document d,
TopS(k) is the set of top-k sparse retrieval results, and RankS(d;)
is the rank position of document d; in TopS(k).

(2) Include any cluster C; in the targeted set Gy, if
e C; contains any top-ak sparse result,

o or W(Ci) > Opy.
Threshold © gy is determined below. It guarantees top-fk sparse
results are included with approximate probability 1 — €.

(3) To limit the size of Set Gy, we further trim it by first keeping
clusters of G which contain top-max(e,)k sparse results, and
then retaining additional top-weighted clusters under formula
W(C;) as long as |G| < yk.

Compared to direct top-ak guarantee, the above probabilistic
guarantee using overlap-weighted W(C;) identifies clusters with
more diverse results. This is because a cluster that hosts multiple top
sparse results may gain a higher priority score W(C;), compared to
a cluster that hosts one top sparse result, even though its weighting
is scaled by its rank position.

Complexity. The time complexity of partial dense retrieval in
CDFS is O(yk = C « Dim). Here, C is the average cluster size and Dim
is the embedding dimensionality. Our evaluation with k = 1000
uses y = 0.06 for BM25 and 0.03 for SPLADE. Extra space overhead
is O(D) for mapping D documents to their cluster IDs, which is
negligible compared to the dense embedding space cost.

Threshold for a probabilistic gunarantee. We compute thresh-
old ® gy by estimating the minimum score of a cluster that approxi-
mately includes top-fk sparse result based on order statistics [38].
As discussed in [30, 38], order statistics asymptotically follow a
normal distribution. As sparse retrieval search is conducted on the
whole document corpus, this asymptotic property can be applied
to its top k-th result for each query, assuming it is an independent
and identically distributed random variable. Let Sy be the k-th
rank score by sparse retrieval for a query, and based on the order
statistics, S(x) converges in distribution to a normal distribution:

d
Sty = Nlpe, o).

A sample of queries can be used to compute the unbiased estimator
of yi. and 0']%. The steps for threshold ® gy, estimation are as follows.

Cluster-based Partial Dense Retrieval
Fused with Sparse Text Retrieval

(1) Given m sampled queries processed using sparse retrieval, for
each position k, under the assumption of normality, we derive
an unbiased estimation of the mean and variance of this normal
distribution:

1 [Zq(S.q — Hi)?
Hie = — Zq:s(k),qs G =\
where q is one of the m sampled queries and Sy 4 is the k-th
rank score for query gq.
(2) As the S converges in distribution to a normal distribution,

lim Pr(5% .

m—oo

Sipy —
MSZe):e, and €=
o

1 IZe
k V27‘[—00
Thus given €, one can find Z, following a standard statistical
solution to the second equation expression above.
Notice that S) > ¢ with at least probability 1 — €, where
Ok = Hi + Zeoy. We can estimate ¢y with ‘f;k = [l + Z¢ 0.
From Formula (1), we compute the lower bound of W(C;) when
it contains at least one top-fk document. Namely,

—
&)
=

Ppk
W(Ci) > lOg(ﬁTl)

We will use Ogy. = % as the threshold to add the clus-

ters to Ogy, which satisfy W(C;) > ©py for Step (2) of cluster
selection discussed earlier.

For example, in the case of SPLADE, the estimated mean is piy =
0.69 and standard deviation oy = 0.18 for rank position Sk = 10.
With probability 1 — € = 0.95, a random query will have its top-
10 score above ¢19 = 0.72. Then, ©19 = 0.30. After setting W(C;)
threshold to be 0.30 , the inclusion of a top-10 sparse result in each
selected cluster will have a probability of 0.95.

3 EVALUATIONS

Datasets and measures. Our evaluation uses the MS MARCO
dataset with 8.8 million passages for full passage ranking [2, 4]. The
test query sets are the Dev set with 6980 queries and TREC deep
learning (DL) 2019/2020 tracks with 43 and 54 queries each. For
Dev, we report mean reciprocal rank at 10 (MRR@10) and recall at
1000 (R@1k). For DL19 and DL20 sets, we report NDCG@10. We
report average NDCG@10 for the thirteen BEIR datasets [36].

Models and parameters. Retriever implementation is extended
from PISA [29], FAISS, and LADR [14] in C++ and Python. For
sparse and dense model interpolation, we use min-max normaliza-
tion to rescale the top results per query. The interpolation weights
are 0.05 and 0.95 for sparse and dense scores respectively when
fused with BM25. For a learned sparse representation, they are 0.5
and 0.5, respectively. To report the mean single-query latency and 99
percentile latency in milliseconds, we run test queries multiple times
for MS MARCO Dev set using a single thread on on an Intel i7-1260P
CPU server with 64GB memory and PCle SSD. The related code will
be in https://github.com/yingrui-yang/dense_sparse_fusion. For
sparse retrieval, our evaluation reported in this paper mainly uses
a version of SPLADE [6, 7] with efficiency optimization [28, 31, 32].
Its index space is 3.7GB with CPU latency 18.5ms. Use of CDFS
with other sparse retrievers [19, 34?] has similar findings.

2329

SIGIR ’24, July 14-18, 2024, Washington, DC, USA

For dense retrieval, we adopt two recently published dense mod-
els RetroMAE [40] based on BERT and RepLLaMA [22] based on
LLaMA-2 [37]. We use their checkpoints from Huggingface to gen-
erate document and query embeddings and use k-means from the
FAISS library [12] to derive 60,000 and 66,489 dense embedding
clusters respectively for 8.8M MS MARCO passages. On average
the cluster size is 145 and 133 documents for the two models. For
the BEIR datasets, we set the desired cluster size to be 133 for each
dataset and vary the number of clusters accordingly. The Retro-
MAE embedding set takes 27GB of space with a flax index in FAISS
with dimension 768 per vector. RepLLaMA embeddings have a di-
mensionality of 4096 per vector and take 145GB space on disk. We
assume they are fetched dynamically on-demand during retrieval.
RetroMAE-2 [20] is not used because its checkpoint is not released.

For the MS MARCO Dev set, the result of a method is marked
with tag T when statistically significant drop is observed compared
to our method tagged with A at 95% confidence level.

MSMARCO Dev DL19 DL20 | #Docs Latency Space
MRR R@1k NDCG NDCG | visited Total(ms) GB
Full dense retrieval fused with SPLADE. Uncompressed flat index

SPLADE (S) | 0.396 0.980 0.732 0.721 8.8M 18.5 3.7
RepLLaMA (RL) | 0.412 0.994 0.743 0.725 8.8M - 145
S +RL | 0.426 0.994 0.763 0.741 8.8M - 149
RetroMAE (RM) | 0.416 0.988 0.720 0.703 8.8M 1602.2 27.2
S+RM | 0.425 0.988 0.740 0.731 8.8M 1620.7 30.9

CDFS vs. IVF for RepLLaMA (RL) under OPQ quantization
RL | 0.384" 0.990 0.719 0.707 8.8M 666.0 2.4
S+RL | 0417 0.991 0.760 0.747 8.8M 678.5 6.1
RL/VF | 03657 09157 0710 0.694 3K 97.0 25
S+ RL/IVF | 03937 0.989 0.736 0.717 3K 115.5 6.2
RL/CDFS | 03877 09807 0730 0.716 3K 52.2 2.5
A S + RL/CDFS | 0.419 0.988 0.760 0.753 3K 71.0 6.2

CDFS vs. IVF for RetroMAE (RM) under OPQ quantization
RM | 0.398" 0.984 0.701 0.702 8.8M 566.1 15
S+RM | 0416 0.988 0.737 0.732 8.8M 584.6 5.2
RM/IVF | 0.308" 07587 0558 0.581 8K 20.1 15
S+RM/IVF | 0.3497 0.985 0.619 0.691 8K 38.6 5.2
RM/CDFS | 03957 09777 0702 0.681 4K 20.2 15
A S + RM/CDFS | 0415 0.986 0.740 0.730 4K 38.7 5.2

Table 1: In-memory cluster-based fusion with SPLADE

In-memory cluster-based partial dense retrieval fused with
SPLADE. Table 1 compares CDFS and cluster-based partial dense
retrieval baselines fused with SPLADE sparse retrieval under quan-
tization. Here we assume the memory is constrained and data is
compressed for in-memory dense retrieval computation. OPQ quan-
tization in FAISS is configured with the number of codebooks as
m =256 for RepLLaMA and m =128 for RetroMAE. IVF uses the same
percentage of documents as CDFS for a fair comparison. Columns
“Latency” and “Space” are the average single-query time and in-
memory space cost of dense retrieval for MS MARCO Dev set. The
top portion of this table lists the performance of stand-alone models
and their fusion under full dense retrieval without compression.

The takeaway from Table 1 is that 1) CDFS delivers a relevance
fairly close to full dense retrieval fused with sparse results under
the same quantization setting while CDFS only searches about 3,000
out of 8.8M documents and is much faster. 2) The fusion with partial
RepLLaMA dense retrieval under IVF and OPQ selecting about the
same number of documents as CDFS can be fast in 115.5ms but the
relevance is 7.6% worse in MRR@10 than CDFS which takes 71ms.
The fusion with partial RetroMAE under IVF and OPQ is 15.9%
worse in MRR@10 than CDFS while both spend around 38.6ms.

SIGIR ’24, July 14-18, 2024, Washington, DC, USA

Data location | Rerank | LADR* | DiskANN | SPANN | CDFS
Embeddings | Disk Disk Disk/mem | Disk Disk
Graph | - Mem Disk - -
Relevance #Doc | Dense latency (ms) | Breakdown (ms)
MRR R@1k MRT P99 Worst 1/0 Comp.
SPLADE (S) + RepLLaMA
Rerank | 0.425 0.980 1000 298.7 377.6 402.5 | 294.1 4.6
LADR'pq | 0420 09797 1107 | 127.6 3773 4452 | 1158 118
LADR*gefault | 0420 0989 8522 | 894.8 2469.7 3430.1 | 837.9 56.5
A S+CDFS | 0.425 0.988 2829 45.9 112.9 - 41.8 4.1
SPLADE (S) + RetroMAE
Rerank | 0.422 0.980 1000 14.1 108.3 423.17 133 0.9
LADR™ g, | 0.422 0.982 1107 18.4 137.3 503.6 14.5 3.8
LADR*gefauit | 0425 0988 8522 | 713 3442 38767 | 454 25.9
DiskANN | 0.4027 0.977 - 280.0 314.9 - | 265.1 14.9
S+DiskANN | 0.4157 0.985 - 280.0 3149 - | 265.1 14.9
SPANN | 0.1677 0753 - 145.2 135.1 - - 10.1
S+SPANN | 0.3987 0.981 - 145.2 135.1 - - 10.1
A S+CDFS | 0.424 0.987 4427 10.4 31.0 - 6.0 4.4

Table 2: Dense retrieval and fusion with on-disk embeddings.
The time listed is only for dense retrieval.

CDEFS vs. nearest-neighbor search and re-ranking baselines
with in-memory or on-disk data. Table 2 assesses CDFS when
MS MARCO passages data is hosted on SSD disk. The top portion
of Table 2 specifies the data location of configured baselines. The
reranking method simply fetches top-k embeddings from the disk
for a fusion. LADR is designed for in-memory search [14], and we ex-
tend it as LADR* for on-disk search by accessing embeddings from
the disk while assuming the memory can host a proximity graph.
We test two configurations of LADR?, its default setting with 128
neighbors, exploration depth of 50, and 200 seed documents, as well
as a fast configuration selected to have a similar CPU time as our
method for RetroMAE. LADR*,; uses 128 neighbors, exploration
depth 20, and 20 seed documents. DiskANN [11] assumes the graph
and uncompressed embeddings are on disk while its memory hosts
compressed embeddings for quick guidance. SPANN [3] searches
disk data in a cluster-based manner following query-centroid dis-
tances. Both DiskANN and SPANN are designed to search from
scratch, and we simply fuse their outcome with SPLADE results.
We only present the results for RetroMAE because the officially re-
leased code for Disk ANN and SPANN cannot build the RepLLaMA
index in our machine due to memory limit. HNSW [26] is not in-
cluded because its in-memory relevance is similar to Disk ANN. The
latency time reported is in milliseconds. The column “4Doc” is the
number of documents fetched to perform dense retrieval.

Reranking does well in MRR@10 and has a slightly lower re-
call@1000. But it takes 298.7ms in RepLLaMA-based fusion, dom-
inated by random 1,000 I/O operations to fetch embeddings. In
comparison, CDEFS issues 17 IO operations on average per query
to fetch clusters. We find that each I/O operation has about 0.3ms
startup cost as queuing and other software overhead in our tested
PClIe SSD. Thus, more fine-grained operations in reranking yields
more overhead, while CDFS, which fetches clusters of consecutive
embeddings, utilizes block I/O that incurs less access overhead with
fewer 1/O operations issued. For the same reason, CDFS can ac-
complish similar and higher relevance compared to LADR* and
DiskANN while having much less I/O cost. CDFS also outperforms
SPANN as it only exploits query-centroid distances for selection.

Noted that our setting stores embeddings in similarity-based
clusters on disk, thus random embedding-level access in rerank-
ing and LADR* still benefits from spatial locality in clustered data

2330

Yingrui Yang, Parker Carlson, Shanxiu He, Yifan Qiao, & Tao Yang

because top results tend to be similar. That explains why 99t per-

centile latency of re-ranking and LADR* is much slower when
spatial locality is less available or not exploitable. When embedding
vectors become longer from RetroMAE to RepLLaMA, clustered
data locality becomes less beneficial, which explains why the ratio
from 99t percentile latency over the mean latency drops from 7.7x
to 1.27x. The column “Worst” lists the estimated worst-case latency

when documents are not clustered on the disk.

Stand-alone models SPLADE+RepLLaMA | SPLADE+RetroMAE

NDCG@10 SPLADE RepLLaMA RetroMAE Full Rerank CDFS | Full Rerank CDFS
Avg. 0.500 0.551 0.482 | 0.561 0.545 0.554 | 0.520 0.483 0.517
- SPLADE - 10.2% -3.6% | 12.2% 9.0% 10.8% | 4.0% -3.5% 3.5%

Table 3: Zero-shot retrieval performance on 13 BEIR datasets

BEIR. Table 3 lists average NDCG@10 on 13 BEIR datasets
including DBPedia, FIQA, NQ, HotpotQA, NFCorpus, T-COVID,
Touche, ArguAna, C-Fever, Fever, Quora, Scidocs, and SciFact. CDFS
works effectively with RepLLaMA and RetroMAE after SPLADE.

Parameters MRR@10 R@1K #Clu. | MRR@10 R@1K #Clu
(a, B), y=0.06 RepLlama+BM25 RetroMAE+BM25
(0.05,0) 0.410 0.967 20.9 0.408 0.955 20.9
(0,0.02) 0.410 0.972 28.2 0.412 0.967 27.2
(0,0.05) 0.413 0.976 53.9 0.414 0.971 44.0
(0.05,0.02) 0.412 0.973 34.5 0.414 0.969 30.2
(a, p), y=0.03 RepLlama+SPLADE RetroMAE+SPLADE
(0.01,0) 0.420 0.983 4.2 0.408 0.980 4.2
(0.02,0) 0.423 0.985 7.1 0.415 0.981 7.2
(0,0.01) 0.425 0.988 16.2 0.423 0.987 14.8
(0.02,0.01) 0.425 0.988 16.8 0.424 0.987 15.5

Table 4: Varying « and f for direct and prob. guarantees

Parameter sensitivity. Table 4 illustrates the impact of using a
few values of @ and f§ parameters in controlling probabilistic and
direct inclusion guarantees in CDFS. This table is for MS MARCO
passage Dev set under four different sparse and uncompressed
dense pairs with retrieval depth k = 1000. Column “#Clu” means the
number of embedding clusters selected. The default y value is 0.03
for SPLADE and 0.06 for BM25 sparse retrieval. The result shows
that (a, £)=(0.02,0.01) is a well-balanced choice for SPLADE, and
(0.05,0.02) for BM25, and the probabilistic guarantee adds diverse
results to improve recall.

4 CONCLUDING REMARKS

The contribution of this paper is to demonstrate and evaluate how
lightweight, cluster-based partial dense retrieval can achieve com-
petitive relevance and short CPU latency without relying on a
proximity graph. CDFS assumes that sparse retrieval runs first and
judiciously selects a subset of document embeddings to conduct
limited fusion. Our design prioritizes the dense search in document
clusters based on a mixture of probabilistic and direct inclusion of
top sparse results to quickly narrow the scope of searching relevant
documents. When dense embeddings do not fit into memory, CDFS
loads selected clusters from the disk storage in a block I/O manner,
which is much faster than SPANN and graph navigation methods
with finer-grained I/O such as DiskANN and an extension of LADR.

Acknowledgments. We thank Wentai Xie and anonymous refer-
ees for their help and valuable comments. This work was supported
in part by NSF IIS-2225942 and ACCESS program. Any opinions,
findings, or conclusions expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

Cluster-based Partial Dense Retrieval
Fused with Sparse Text Retrieval

REFERENCES

(1]

&

=
A=A

(11

[12]

[13]

[14

[15

=
&

(17

[18]

[19]

[20]

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877-1901.

Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, Li Deng, and Bhaskar Mitra. 2016. MS
MARCO: A Human Generated MAchine Reading COmprehension Dataset. NIPS
(2016).

Qi Chen, Bing Zhao, Haidong Wang, Minggin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In Advances in Neural Information
Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(Eds.).

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and
Ellen M. Voorhees. 2020. Overview of the TREC 2020 Deep Learning Track.
ArXiv abs/2102.07662 (2020).

Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First
Stage Passage Retrieval. SIGIR (2020).

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural IR
Models More Effective. Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval (2022).

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. SIGIR (2021).
Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match
in Information Retrieval with Contextualized Inverted List. NAACL (2021).
Luyu Gao, Zhuyun Dai, Zhen Fan, and J. Callan. 2021. Complementing Lexical
Retrieval with Semantic Residual Embedding. ECIR abs/2004.13969 (2021).
Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premku-
mar Srinivasan, Amit Singh, and Harsha Vardhan Simhadri. 2023. Filtered-
DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with
Filters. In Proceedings of the ACM Web Conference 2023 (Austin, TX, USA) (WWW
’23). ACM, New York, NY, USA, 3406-3416.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate Billion-point
Nearest Neighbor Search on a Single Node. In Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.

V. Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Yu Wu, Sergey
Edunov, Danqi Chen, and Wen tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. EMNLP’2020 ArXiv abs/2010.08191 (2020).
Hrishikesh Kulkarni, Sean MacAvaney, Nazli Goharian, and Ophir Frieder. 2023.
Lexically-Accelerated Dense Retrieval. In Proc. of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Taipei,
Taiwan) (SIGIR °23). Association for Computing Machinery, New York, NY, USA,
152-162.

Saar Kuzi, Mingyang Zhang, Cheng Li, Michael Bendersky, and Marc Najork. 2020.
Leveraging semantic and lexical matching to improve the recall of document
retrieval systems: A hybrid approach. arXiv preprint arXiv:2010.01195 (2020).
Carlos Lassance and Stéphane Clinchant. 2022. An Efficiency Study for SPLADE
Models. SIGIR (2022).

Carlos Lassance, Simon Lupart, Hervé Déjean, Stéphane Clinchant, and Nicola
Tonellotto. 2023. A Static Pruning Study on Sparse Neural Retrievers. In Proc.
of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Taipei, Taiwan) (SIGIR °23). Association for Computing
Machinery, New York, NY, USA, 1771-1775.

Hang Li, Shuai Wang, Shengyao Zhuang, Ahmed Mourad, Xueguang Ma, Jimmy
Lin, and G. Zuccon. 2022. To Interpolate or not to Interpolate: PRF, Dense and
Sparse Retrievers. SIGIR (2022).

Jimmy J. Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL,
and a Conceptual Framework for Information Retrieval Techniques. ArXiv
abs/2106.14807 (2021).

Zheng Liu, Shitao Xiao, Yingxia Shao, and Zhao Cao. 2023. RetroMAE-2: Duplex
Masked Auto-Encoder For Pre-Training Retrieval-Oriented Language Models.
In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, Toronto, Canada,
2635-2648.

2331

[21]

[22

(23]

[24]

[25

[26

[27

[28

™
20,

[30

(31]

(32]

[33

[35

[36

(37]

[38

[39

[40

[41

[42

SIGIR ’24, July 14-18, 2024, Washington, DC, USA

S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory 28, 2 (1982), 129-137. https://doi.org/10.1109/TIT.1982.1056489
Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2023. Fine-
Tuning LLaMA for Multi-Stage Text Retrieval. arXiv:2310.08319 [cs.IR]

Sean MacAvaney, Nicola Tonellotto, and Craig Macdonald. 2022. Adaptive Re-
Ranking with a Corpus Graph. In Proc. of the 31st ACM International Conference
on Information & Knowledge Management (Atlanta, GA, USA) (CIKM °22). Associ-
ation for Computing Machinery, New York, NY, USA, 1491-1500.

Joel Mackenzie, Antonio Mallia, Alistair Moffat, and Matthias Petri. 2022. Ac-
celerating Learned Sparse Indexes Via Term Impact Decomposition. In Findings
of the Association for Computational Linguistics: EMNLP 2022, Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang (Eds.). ACL, Abu Dhabi, United Arab Emirates,
2830-2842.

Joel Mackenzie, Matthias Petri, and Alistair Moffat. 2021. Anytime Ranking on
Document-Ordered Indexes. ACM Trans. Inf. Syst. 40, 1, Article 13 (sep 2021),
32 pages.

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020), 824-836.

Antonio Mallia, O. Khattab, Nicola Tonellotto, and Torsten Suel. 2021. Learning
Passage Impacts for Inverted Indexes. SIGIR (2021).

Antonio Mallia, Joel Mackenzie, Torsten Suel, and Nicola Tonellotto. 2022. Faster
learned sparse retrieval with guided traversal. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. 1901-1905.

Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant indexes and search for academia. Proceedings of the Open-Source IR
Replicability Challenge (2019).

Frederick Mosteller. 1946. On Some Useful "Inefficient" Statistics. Annals of
Mathematical Statistics 17 (1946), 377-408.

Yifan Qiao, Yingrui Yang, Shanxiu He, and Tao Yang. 2023. Representation
Sparsification with Hybrid Thresholding for Fast SPLADE-based Document
Retrieval. ACM SIGIR’23 (2023).

Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang. 2023. Optimizing Guided
Traversal for Fast Learned Sparse Retrieval. In Proceedings of the ACM Web
Conference 2023. 3375-3385.

Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3 (2009), 333-389.

Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Xiaolong Huang, Binxing Jiao,
Linjun Yang, and Daxin Jiang. 2023. LexMAE: Lexicon-Bottlenecked Pretraining
for Large-Scale Retrieval. In The Eleventh International Conference on Learning
Representations. https://openreview.net/forum?id=PfpEtB3-csK

Michael Steinbach, George Karypis, and Vipin Kumar. 2000. A comparison of
document clustering techniques. TextMining Workshop at KDD2000 (2000).
Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In NeurIPS.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
Wikipedia. 2023. Order Statistic. https://en.wikipedia.org/wiki/Order_statistic
(2023).

Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Defu Lian, Yeyun Gong, Qi
Chen, Fan Yang, Hao Sun, Yingxia Shao, Denvy Deng, Qi Zhang, and Xing Xie.
2022. Distill-VQ: Learning Retrieval Oriented Vector Quantization By Distilling
Knowledge from Dense Embeddings. SIGIR (2022).

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 2022. RetroMAE: Pre-
training Retrieval-oriented Transformers via Masked Auto-Encoder. EMNLP
(2022).

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Jointly Optimizing Query Encoder and Product Quantization to Improve
Retrieval Performance. CIKM (2021).

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2022. Learning Discrete Representations via Constrained Clustering for Effective
and Efficient Dense Retrieval. In Proc. of Fifteenth ACM International Conference
on Web Search and Data Mining (WSDM °22). 1328-1336.

https://doi.org/10.1109/TIT.1982.1056489
https://arxiv.org/abs/2310.08319
https://openreview.net/forum?id=PfpEtB3-csK
https://arxiv.org/abs/2307.09288

	Abstract
	1 Introduction and Related Work
	2 Proposed CDFS Scheme
	3 Evaluations
	4 Concluding Remarks
	References

