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ABSTRACT

Knowledge distillation is useful in training a neural document rank-
ing model by employing a teacher to guide model refinement. As a
teacher may not perform well in all cases, over-calibration between
the student and teacher models can make training less effective.
This paper studies a generalized KL divergence loss in a weighted
form for refining ranking models in searching text documents, and
examines its formal properties in balancing knowledge distillation
in adaption to the relative performance of the teacher and student
models. This loss differentiates the role of positive and negative
documents for a training query, and allows a student model to take
a conservative or deviate approach in imitating the teacher’s behav-
ior when the teacher model is worse than the student model. This
paper presents a detailed theoretical analysis with experiments on
the behavior and usefulness of this generalized loss.
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1 INTRODUCTION

Large-scale search systems for text documents typically employ
multi-stage ranking in practice. The first retrieval stage extracts
top candidate documents matching a query from a large search
index with a fast and relatively efficient ranking method. The sec-
ond stage or a later stage uses a more complex machine learn-
ing algorithm to re-rank top results thoroughly. Recent sparse
retriever studies exploit learned neural representations DeepIm-
pact [29], uniCOIL [13, 24] and SPLADE (8, 10]. An alternative
method is dense retrieval which uses a dual encoder architecture
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with single-vector [34, 49], multi-vector document representations
(e.g. [18, 35]).

To boost the relevance of these models, knowledge distillation [15]
is critical during training to transfer knowledge from a powerful
teacher model through behavior imitation [12, 16, 25]. KL diver-
gence is a popular training loss for knowledge distillation in docu-
ment ranking [25, 34, 35, 43, 44].

One drawback of KL-divergence loss for document ranking is
that it does not exploit characteristics of contrastive learning in
ranking model refinement because it does not differentiate positive
and negative documents for a training query. As a result, it over-
calibrates between the student and teacher models with a tight
distribution matching in every document without prioritization
even when the teacher performs worse than the student model.
The previous work has used the weighted sum of a contrastive loss
such as log-likelihood with KL divergence as a regularization to
reduce over-fitting, and a recent BKL study [46] improves this by
regularizing KL divergence with an entropy and L1-norm loss. As
discussed in Section 4, this BKL regularization can behave incor-
rectly in three significant case regions when a teacher is better than
and is worse than a student model for a training query.

To address the aforementioned weakness, the contribution of this
paper is a generalized KL-divergence loss formula called weighted
KL divergence (WKL) with a detailed analysis of its theoretical
properties. Instead of following the regularization approach, this
generalized loss guides knowledge distillation adaptively in ranking
model refinement by differentiating the role of positive and negative
documents and prioritizing the alignment of a student model and
a teacher model for effectively separating positive and negative
documents. This paper provides a loss lower bound analysis and a
relative gradient contribution study to characterize the behavior
of WKL during model training, compared to KL divergence. Our
analysis shows that this generalized loss can dynamically assess
the relative performance of the teacher and student model in each
training query, and adaptively adjust the imitating behavior of
the student model. so that the teacher model is followed when
it performs better than the student model, and is conservatively
followed or not followed at all when this teacher performs worse
than the student model.

Our evaluation with MS MARCO passage and BEIR datasets
shows that WKL works well with three student models including
SPLADE sparse retrieval, ColBERT ranking with a multi-vector
representation [35], and a single-vector SimLM dense retriever [43].
WKL can outperform a few other loss options for refinement after
starting from the same warmup checkpoint in the evaluated models.
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2 BACKGROUND AND RELATED WORK

Problem definition. We follow the notation used in [46]. Given
query Q, document search on a collection of N text documents
(ie, D = {di}ﬁ 1 ) finds top k results with a ranking mainly based
on their query-document similarity. For training a retriever or re-
ranker, contrastive learning is widely used. Let D™ be the subset of
all positive documents, and D~ be a subset containing all negative
documents for query Q. We assume that in a training dataset, all
positive documents are ranked equally. That is true for the MS
MARCO passage dataset where there are only binary labels.
The top one probability distribution over these documents is:

exp(S(Q. ;. 0)
=N exp(S(Q,dj,0))

where © is the vector of neural parameters involved. S(Q, d;, ©)
is a scoring function that captures the semantic similarity of a
document with a query. For the simplicity of presentation when
no confusion is caused, we will not list © and Q explicitly in each
symbol below and the loss function is specified for each query Q
based on parameters © under the training documents D* and D~.
Knowledge distillation is a training methodology that guides the
refinement of a neural student model using a teacher model. Let
pi or g; denote P(d;|Q, D*, D™, 0) where p; and g; refer to the
teacher’s and student’s predictions, respectively.

To train a ranking model, the standard loss function includes
the negative log-likelihood or its variation: — 2d;e log g;. KL-
divergence defined below is a popular choice for knowledge distil-
lation as seen in recent ranking studies [34, 35, 39, 43, 50].
Z pi In &
dieDUD- qi

P(d;|Q,. DY, D7,0) =

Lgr = Y]
where p; and g; refer to the teacher and student’s top one probability
for instance d; in D* or D, respectively. KL-divergence measures
the distance between teacher’s and student’s distributions. It is
known that the lower bound of KL-divergence loss is 0 and this is
achieved when Vd;, p; = q;.

Related retrieval methods. Large-scale search systems for
text documents typically employ multi-stage ranking in practice.
The first stage retriever aims to fetch top k documents using a fast
and relatively simple method. There are two categories of retrieval
techniques in deriving a document and query representation. One
category of document retrieval is lexical sparse retrieval models,
such as BM25, which take advantage of fast inverted index imple-
mentations on CPUs. This method gains its popularity recently due
to the advancement of learned sparse representations that derive to-
ken weights from a BERT-based neural model [7, 10, 13, 24, 29, 38].

Dense retrieval is an alternative approach for first-stage search
with a dual encoder architecture (e.g. [11, 45]). Distillation is shown
to be effective for dense retrieval training and KL-divergence loss
is a popular choice in recent studies, such as RocketQAv2 [34],
SimLM [43] and RetroMAE [44], AR2 [50], and UnifiedR [39].

Re-ranking and multi-vector representations. The second
or later stage of search can employ a more complex re-ranker to
re-evaluate the top k documents fetched by an earlier stage. There
is a possibility to use a single-vector dense retrieval model for re-
ranking. As pointed out in recent studies [23, 36, 41], single-vector
dense models can struggle in handling out-of-domain datasets
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where training data is limited (including zero-shot retrieval), and
in answering entity-centric questions. As a remedy, multi-vector
representations including ColBERT and its new enhancements [22,
23, 28, 32] have been proposed to improve the model expressiveness
by capturing fine-grained token-level information.

Listwise losses. A listwise loss design that considers the impact
of relative rank positions of matched documents for a query has
been shown to be useful in learning-to-rank and aligning such a
loss with a targeted ranking metric approximately such as NDCG is
ideal [27, 42]. Since neural information retrieval typically requires
a large number of training examples to be effective, and training
data such as MS MARCO only contains few labeled positive docu-
ments and sampled negative documents on a relatively large scale,
it is more important to separate positive and negative documents
properly for a query-specific loss. This motivates our design. The
previous work has considered the relevance gain by swapping two
documents in a listwise loss, e.g. LambdaMART [1]. CL-DRD [48]
uses a listwise loss based on rank position. Weighting training
instances is studied in the focal loss for visual object classifica-
tion [26], and such a loss is not designed for knowledge distillation.
Nevertheless, our work is influenced by the above studies.

Regularization of knowledge distillation with a contrastive
loss. A key weakness of knowledge distillation with KL divergence
loss for document ranking is that a teacher model may not perform
well in all cases and adaptive deprioritization is needed. A common
approach to balance knowledge distillation is to combine the KL di-
vergence loss with a contrastive rank loss such as the log-likelihood
using a weighted sum as a regularization, defined as:

Lkit= 2, pi m2 ) > loggi ()
d;eD*UD- qi d;eD*

where In means log, and log means log,. The above loss is not
adaptive to the relative performance of a teacher model and a
student model. An improvement called BKL [46] combines the
negative entropy component of positive documents and the L1-
norm expression of negative documents for a given query to balance

knowledge distillation.

3 LOSS DESIGN AND ANALYSIS

3.1 Design considerations

Our goal of loss design optimization is to control the imitation of
the teacher’s rank scoring when refining a student model based
on each training query so that when the student mimics when the
teacher is better and it should restrain distillation or deviate when
the teacher is worse. This can be analyzed by examining the gra-
dient contribution of each document for parameter update during
SGD-based training compared to KL divergence. As illustrated in
Figure 1(a), a desired loss should follow the gradient update direc-
tion of KL divergence loss when the teacher model performs better
than the student model for a training query. When this teacher
performs worse, this targeted loss should deviate in an opposite
update direction or at least restrain the update size cautiously even
in the same update direction.

The weakness of BKL [46] is that its formula over-corrects the
behavior of KL divergence and fails to meet the above objective
in three significant case regions. As shown in Section 4, when a
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teacher’s model performs much better than a student in ranking
a negative example, BKL’s regularization formula unintentionally
lets the student model deviate from the teacher’s ranking score
in a wrong learning direction. It also fails in some cases to follow
aggressively even when the teacher model performs worse for a
positive document.

KL divergence gradient
update size & direction
_—

Downweight

Upweight

Downweight

Gradient of adaptive loss

<+ > ——

Restrain or Follow if teacher Negative
deviate if is better than documents
teacher is student model

worse

(@)

Figure 1: (a) Loss design goal: Adaptive control of student
model learning from teacher compared to the KL divergence
loss. (b) Prioritize separation of positives and negatives in
student ranking.

(b)

To meet the above expectation and goal illustrated in Figure 1(a),
and avoid the misbehavior in both BKL and KLL, our approach
described below does not take the regularization approach of BKL
and KLL. Instead we directly generalize the KL divergence loss with
an easy-to-implement weighting formula described in Section 3.2.
In generalizing the KL divergence loss, our main strategy is to ex-
plicitly prioritize the separation of positive and negative documents
for each query in student ranking through a weight adjustment by
down-weighting positive documents ranked high on the top posi-
tions, and negative documents ranked low at the bottom positions
by a student model. This is illustrated in Figure 1(b) where Y axis is
the student rank score of documents and X axis is the rank position
of documents from top to low based on their student rank score.
Positives are marked in red and negatives are marked in black.

Through a gradient contribution analysis, Section 4 analytically
reveals that the generalized KL divergence loss described below
can accomplish the goal illustrated in Figure 1(a) by adopting the
weighting strategy illustrated in Figure 1(b).

3.2 Generalized KL-Divergence

This generalized KL-divergence loss in a weighted format (WKL) is
defined as follows:

Iy ' .
Lwkr = >, (1=g)'pjln=+ 3 ()" piln &
djeD* 9 deD- qi

The weight for each divergence term p; log % corresponds to
the importance to align the student’s scoring of such a document
with the teacher’s model. For a positive document dj, the goal is to
have g; as large as possible towards 1, and thus we use (1 — ¢ J)¥
as the weight. Here y; is a fixed hyperparameter controlling the
scale of weight in the exponent. We require y; > 0. For a negative
document d;, the goal is to have g; as small as possible towards 0,
and thus we use (g;)"*' as the weight. We require either y5; > 0
for all negative documents or yz; = 0 for all negative documents.
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For two negative documents d; and dj where ¢; > q;, we require
Y2i < y2,j-

Notice that KL divergence loss is a special form of WKL when set-
ting all control parameters as zero (y1 = y2,; = 0). WKL weights the
divergence loss contribution from positive documents and negative
documents differently. We explain how the above design matches
the design consideration illustrated in Figure 1(b).

¢ Given two positive documents d; and d;, if ¢; > gq;, then (1 -
gi)" < (1 — q;)"'. Thus a low-scoring positive document is
weighted more than a high-scoring positive document. When
such a document is ranked close to negative documents, or even
below some negative documents, that results in a poor bound-
ary separation of positive and negative documents. Thus the
alignment with the teacher’s model for such a positive document
should be prioritized.

¢ Among negative documents, if g; < gj, requiring y2; < y2;
implies that (g;)'%! > (¢;)¥*/ > (q;)"*/. High-scoring negative
documents are weighted more and low-scoring negative docu-
ments have a reduced priority to follow what the teacher does.
When the score of a negative example in a student model is high
and is getting closer or exceeds some of the positive examples, the
positive and negative document regions would overlap as shown
in Figure 1(b) and then that is a high-priority case to address.

3.3 Loss minimization and its bound

The result below shows that the WKL loss has a constant lower
bound, and thus training that minimizes such a loss has a boundary
to hit. If a loss function has no lower bound, training would not
converge. Note that p; values from the teacher’s model are constant.

Theorem 1. Loss minimization. Wheny; > 1 ory; =0,

pj f
Lwkr > D, len—{— > pig* Ing;

dieD* J  dieD~
" 3)
+10 . Z gjlogq; + Z pilnp;.
g djeD* dieD~
When0 <y1 <1,
p- i 1
Lwke 2r >, piln=>— > piql” 1n61i+1y— 2 djlogy;
djeD* 9j  d,eD- 08¢ 4 cp~
+(1-y1) Z pjlnpj+ Z pilnp;.
djeD* dieD~
(4)

Proor. When y; > 1, we follow Bernoulli’s inequality (1 —
gi)" = 1-r1q;, given 0 < g; < 1.Sincelnp; < 0andIng; <0,

Lykr = >, (1—g)"'pjlnpj+ > q*pilnp;

djeD* dieD~

- > (-g)'pjlngi— > ¢*pilng
djeD* dieD~

> Z pjlnpj+ Z pilnpi

djEDJr d,‘607

- > (-ginpjlngi— >, ¢*'pilng
djeD* dieD~
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pj ;
> > pilnT = 37 pigf*'Ing;
dj€D+ qj d,’ED7

4!
+10 . Z gjlogq; + Z pilnp;.
g djeD* dieD~
When y; =0,
pj i
Lwke 2 >, piln=L - 37 ¢*pilng
d;eD* 9  dieD-
+ Z pilnpi.
dieD~

When 0 < y; < 1, we first show that (1 — x)’* > y1(1 — x) with
x € [0,1]. It is true when x = 0 and x = 1. For x € (0, 1), let function
f(x) = (1 = x)" + y1x. Then f’(x) = —=r1(1 = x)"»~1 + y; < 0. Then
f(x) is monotonically decreasing and f(x) > f(1) for x € (0,1),
which leads to (1 — x)’* > y1(1 — x). We apply this inequality for
x = q; for a positive document below.

Lykr = >, (1—q)"pjlnpj+ >, q*pilnp

djeD* dieD~
- > (-g)"pjingi— > ¢ pilng
djeD* dieD~
> Z pjlnpj+ Z pilnpi
dj€D+ di697
- > n-g)pjlngi— >, ¢*pilng
djeD* dieD~
pj i "
>r1 Z pjln—]_— Z p,-qz/z’ Inq,-+l Z gjloggq;
djeD* J dieD- 08¢ 4 D
+(1-y1) Z pjlnpj+ Z pilnp;.
djeD* dieD~
]

The first component of the right hand side in Inequalities (3)
and (4) is KL divergence for positive documents. The sum of the
first and second components on the right-hand side approaches a
constant lower bound, reached when p; = g; for all positive docu-
ments and ¢; = 0 for all negative documents. The third component
is the negative entropy of positive documents. The third component
is bounded by —Z?Y, approached when all g; values are equal for all
positive documents d;. This is shown in the theorem below.

Theorem 2. Constant-bounded loss. If y2; > 0, and when y; > 1
ory1 =0,

2y1

Lwkr > >, pil-1+Inpy)—==. )
dieD~ €
Ify2; > 0, and when 0 < y1 < 1,
2n
Lwgr = Z pi(=y1 +Inp;) - L_ ©)
di697 €
Ifysi =0, and wheny; > 1 ory; = 0,
2
Lw 2 = =t )
Ifysi =0, and when0 < y; < 1,
n
Lk 2(1-y1) > (—pj+pjlnpj)_7, ®)

djeD*

84

Yingrui Yang, Shanxiu He, and Tao Yang

Notice that p; and p; from the teacher’s model in the above
bound expressions are constants. The proof for Theorem 2 is based
on Theorem 1 and is listed in Appendix A.

Based on the components of the derived lower bound in Theo-
rem 1, minimizing WKL will minimize the original KL-divergence
loss for positive documents and maximize the entropy among them.
This lower bound minimization implies a balanced trend towards a
narrower gap between teacher’s and student’s predictions of pos-
itive documents and relatively equal student predictions among
them while preferring low scores for negative documents.

4 RELATIVE GRADIENT CONTRIBUTIONS

We analyze the impact of up-weighting and down-weighting indi-
vidual KL-divergence terms in terms of their corresponding gradient
contributions for parameter update during model refinement be-
cause gradients of the loss controls the update size to the network
weight parameters in the SGD-based training process. Let 6 be one
of parameters © used in the computation network that maps the
input features to score S(Q, d;, ®) for each document d;. defined in
Section 2. Then given Loss Ly, and A can be WKL, BKL, or others.

oL LA (i) 35(Q, d;, ©)

O g Up % 90

9qi
95(Q,d;, ®)

where Ly (i) is the relevant loss term contributed by document d;.
For KL divergence loss Lk in Equation (1), Lx7 (i) = piIn ‘%
oLgr(i) __pi

aqi qi
To understand if a loss function Ly follows the KL divergence
loss when a teacher model performs better than a student or not,
we compare the pairwise ratio of the gradient contribution from

document d; in above additive formulas for aLan(i)

—aL(;iILi @ Namely

compared to

oL (i) Lk (i) ©)
aqi aq;

The top portion of Table 1 gives the expected behavior of a
knowledge distillation loss compared to KL divergence loss when a
teacher model performs better or worse than a student. The bottom
of portion of Table 1 explains the meaning of different ranges of
g4 value on the gradient contribution of document d;. Here the
relative performance assessment of a teacher model and a student
model for a document is defined below based on the relative ratio
of teacher prediction and student prediction.

o A teach model performs better than a student model when
pi > q; if d; is a positive document when p; < g; if d; is a
negative document

o A teach model performs worse than a student model when
pi < q; if d; is a positive document, and when p; > g; if d;
is a negative document.

For Ly kr, the contribution Ly (i) from document d; is (1 —
qi)piln % for a positive document, and qi./z”'pi In % for a negative
document. It is easy to verify that
OLkr (i)

9qi

OLwkr(i) _

9qi (10
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Scenarios Expected behavior
ga > 1preferred. Atleastgq > 0

ga < 0 preferred. At most g4 < 1

Teacher is better than student

Teacher is worse

Condition | Behavior interpretation on d; contribution by Ly
ga > 1 Aggressively follow KL divergence

ga =1 Exactly follow KL divergence

0 < ga <1 | Conservatively follow

ga=0 Not follow. No contribution from d; in Ly4.

ga <0 Not follow. Deviate from d; from KL Divergence

Table 1: Expected gradient contribution behavior from docu-
ment d; in loss L4 compared to KL divergence

where
(1—gi) 1 x (qui ln% +1- qi) ifd; e DF;

y2i ifdi e D,

IWKL = .
q;"" X (l - y2iln %)

For KL divergence regularized together with the log-likelihood
(Equation (2)),

{1 + A ifd; e D

9KLL = pi

1 ifdi e D~.

Thus KLL always follows KL divergence loss even a teacher per-
forms worse than a student. BKL in [46] improves this by combining
the KL divergence with a log likelihood rank loss linearly using a
small A parameter value.

1- piiqi log(e x q;) ifd; € D*;
i CR ifdi € D
Constant e is the base of the natural logarithms.

Table 2 gives a comparison of the behavior of WKL and BKL for
the gradient contribution of an individual document d; compared
to KL divergence compared to KL divergence based on different
gwkL and gpgy value ranges and the relative ratio of teacher’s and
student’s predictions ‘% Notice that when p; > ¢;, we consider
a teacher model performs better than a student if d; € D*, and
performs worse if di € D~. When p; < g;, we consider this teacher
model performs better than a student if d; € D™, and performs
worseif d; € D*.

Table 2 lists the conditions representing three significant misbe-
havior regions, to be illustrated in Figure 2(a), in which BKL fails
to meet the expectation discussed in the top portion of Table 1.
WKL is well-behaved as shown from this table and its behavior is

formally characterized by the following theorem.

Theorem 3. When a teacher model performs better than a student
model in ranking a document for a query, gwgr > 0. When this
teacher model performs worse, gwkr < 1, and gwgr < 0 when

i

qi = max(eXp;, ﬁ)fordi € D* and when ‘% > e™i ford; € D
Proor. For d; € D™, we consider the ratio gy gy defined in

Equation (10) in two cases.

o When p; > qi, y19i ln% +1—gq; > 0. Thus gwgr > 0.

e When p; < gi,y19iIn %+1_qi < 1-g;. Thusgwky < (1-gi)"* <
1.
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When q; > e X pj, y1qiln% +1-qi < —y1qi+1-¢qi <0if
qi = ﬁ
Thus gwxr < 0 when g; > max(e X pj, ﬁ).
Ford; € D,
e When p; > qi, 1 —y2;1In % < 1. Then gwgkr < q?’i <1
When % > e#vi, 1-y2,i ln% < 0. Then gwgr < 0.

e When p; < qi, 1 —y2;i ln% > 0. Then gwgr > 0.

Positive documents Negative documents

2.0 : S
VoKL |
15{ e BKL |

[

357

3.0{vwvvyvy v
Misbehavior
region

Misbehavior
region
1.0 YYV WHIYWWYRIWRIIIWYRT 3 5 555
Teacher is bett.e‘g
2l

Gradient ratio g
-
)

. v . 05
ALE SO V¥ .
10 '-¢£.£ ® oonens 00 f : Teacher is worse
. ] .
05 e i Teacher s better _05
001 o °° i 21 Misbehavior
Teacher is ste‘ Misbehavior region | e region
0.5 -1.0,
107 100 10 107t 100 10

Teacher student ratio: pi/q; Teacher student ratio: pi/q;

(a) Relative gradient contribution ratio g of BKL and KLL

Negative documents

Positiv ment
35 (o e‘docu ents 20 Neg ‘ _
i v WKLS |
3.01 misbehavior ® WKL3 | 15{ = "% |
> 25 region 1 m WKL-1 e | Misbehavior region
2 1 1.0 |
e |
€ | 0.5 v
Q2 ]
S L °
g i 0.0 £ Weziii ¢ @ snntse
5 05 . ' |
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00{7 13 ’ region |
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—050 = -1.0
10t 10° 10t 1ot 10° 10t

Teacher student ratio: pi/q; Teacher student ratio: pi/g;

(b) Gradient contribution ratio of WKL with y; = y2;=5, 3, or 1

Figure 2: WKL vs. BKL & KLL when teacher is better or worse

To illustrate the comparison in Table 2 using an example, Fig-
ure 2(a) plots the gradient contribution ratio ggg in a blue dot and
gkLL in a purple triangle with A = 0.1. The x-axis is %
from 0.01 from 10 at Figure 2(b) plots gwxr with y; = y2;=5, 3, or
1 marked as WKL-5 (a light blue triangle), WKL-3 (a dark blue dot),
and WKL-1 (a purple square), respectively.

The rectangle red boxes marked the misbehavior regions show
that the areas where the gradient contribution ratio values do not
match the expected behavior described in the top portion of Table 1.
From Figure 2(b), gk values are outside the red misbehavior
regions, and thus WKL follows KL divergence loss if the teacher
model does better than the student, but it restrains gradient update
with a conservative size, or deviates in an opposite direction when
the teacher is worse.

From Figure 2(a), there are three significant misbehavior regions
in red into which BKL gradient ratios fall, meaning BKL fails to
meet the expectations as summarized in Table 2. There are two
misbehavior regions into which KLL falls.

For example, Figure 2(b) illustrates that for positive documents,
when the teacher performs better with % > 1,gwkL > 0orexceeds

varying

1 and WKL allows the student to follow the teacher’s parameter
update direction. When the teacher under-performs with % <1,
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Scenarios

| Behavior of WKL

Behavior of BKL

Positive document d;. p; is teacher prediction, g; is student prediction.

Teacher: better | gywgr > 0 gBKL > 0

pi > qi Conservatively or aggressively follow Conservatively or aggressively follow

Student: better | gy gL < 1 to conservatively follow or deviate | gpx varies from negative to positive

pi < qi gwkrL < 0 when ‘%i >e,qi > ﬁ to deviate | Misbehavior: ggx; > 1 aggressively follows when q; > e™!

Negative document d;

Student: better

1
gwkL < 0 when % > e’2i to deviate
1

gwkL < 1to conservatively follow or deviate

Misbehavior: When p; >> ¢;, gpxr = 1

pi > qi Otherwise 0 < gpgr < 1 to conservatively follow
Teacher: better | gywgr > 0 0 <gpgr < 1if % > ﬁ to conservatively follow
pi < qi Conservatively/aggressively follow Misbehavior: gggy < 0 if % < ﬁ to deviate

Table 2: A behavior comparison of relative gradient contributions by document d; in Ly gy and Lgxy

gwkL become close to 0 or even negative, and the student does
not learn much from the teacher or its learning deviates from the
teacher’s learning direction. In comparison from the left portion
of Figure 2(b), BKL still forces the student to follow the teacher’s
direction with ggg > 0 or even > 1 in most cases when the teacher
is worse. Thus WKL’s design corrects the misbehavior of BKL.

5 EVALUATION RESULTS

5.1 Evaluation setup for student models
We apply WKL in refining three student models during training.

e The SPLADE model [8, 10] which computes the weight score w;
of j-th token term for a sparse vector of document d as

wj = > log(1+ ReLU(H(hi)" E; + b))
ied

where document d consists of a sequence of BERT last layer’s
embeddings (h1, g, - - -, hyn). Ej is the BERT input embedding of
the j-th token and b; is a token level bias. H(.) is a linear layer
with activation and layer normalization.

e Two-stage search pipeline that combines the results of first-stage
SPLADE retrieval and the second-stage ColBERT top-k ranking
with a fusion [5, 21]. ColBERT’s scoring formula is:

maxy; ema,e)H(hi) H(h))
h; eM(Q,0)

where each document d and given query Q use a multi-vector
representation M(d, ®) and M(Q, ©) respectively, and h;, h;j are
BERT last layer’s embeddings and H(.) is one linear layer with
normalization on the output representation.

e Dense single-vector retriever SimLM [43]. It is a state-of-the-art
dual-encoder with optimized pretraining [43, 44].

WKL parameters. We have considered the following special
version of WKL, called CKL, and a preliminary evaluation with two
student models can be found in [47]. This section provides more
detailed and additional evaluation results with one extra student
model. For negative document d;, we set y2; = y1 —fi. The exponent
weight bias f; is defined as

1 1

| D d;eD* 7(j) '

Bi (11)

_ 1
= %—
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Here 7(i), 7(j) are the rank of negative document d; and positive
document dj respectively. Bias f; represents the importance of
correcting the ranking position of negative document d;, compared
against the harmonic average position of positive documents. The
above use of a rank position is motivated by the previous work
which considers the relevance gain by swapping two documents in
aranked order, e.g. LambdaMART [1] and CL-DRD [48]. The above
expression satisfies |§;|< «. Among negative documents, if g; > g,
document d; is ranked before d;. ﬁ > ”LO) Thus f; > ;. Then
Y2,i < y2,j- That meets the requirement specified in Section 3.2.

Exponent bias f; is updated based on its rank position immedi-
ately after each training iteration where g; is recomputed, which
makes the loss function non-differentiable. Thus during training,
we opt to periodically update f; using the latest student’s model per-
formance, and the priority adjustment of each negative document
is stable for a block of training iterations. This design allows f; to
be treated as a constant in the loss function. This is a reasonable
tradeoff as model refinement that addresses ranking accuracy for a
negative document takes a number of iterations and continuous f;
adjustment for such a document may not yield sufficient benefits.

Since y; and « determine the value of y;; for every document
d;, the rest of this section will use two hyperparameters y; and o
to adjust the configuration of WKL, and investigate the sensitivity
with different choices of y; and a values in model refinement.

Datasets and metrics. We use the MS MARCO datasets for full
passage ranking [2, 6]. MS MARCO contains 8.8 million passages
and 502,940 training queries with binary judgment labels for each
query. The development (Dev) query set contains 6980 test queries
while the test sets in TREC deep learning (DL) 2019 and 2020 tracks
provide 43 and 54 queries, respectively. Following the common
practice, we report mean reciprocal rank (MRR@10) for the Dev
set and NDCG@10 score for TREC DL test sets. The recall ratio at
1000 is another metric which is the percentage of relevant-labeled
results appeared in the final top-1000 results. We also use BEIR
which contains 13 publicly available datasets [41] for evaluating
the zero-shot performance of the trained models.

Our evaluation implementation uses C++ and Python. The im-
plementation of SPLADE model follows its official release [40] and
sparse retrieval code in PISA [30] with some optimization [19, 33].
We follow the SBERT library [37] to implement ColBERT. Two
teachers are used during training. For SimLM, we use the code
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and checkpoint released in the SimLM project GitHub. The cross
encoder teacher adopted for ColBERTv2 and SPLADE is MiniLM-1-6-
v2 [31] with 0.407 MRR@10 on MS MARCO Dev on top of SPLADE
retrieval. For SimLM, we use a cross encoder teacher from the re-
leased SimLM project [43] with 0.438 MRR@10. More information
on training and configurations can be found in Appendix B.

5.2 Model refinement and parameter choices

yi,« Dev MRR@10 DL19 NDCG@10 DL20 NDCG@10
SPLADE + top-1000 ColBERT re-ranking
2,0, 0.0 0.404 0.716 0.709
2.0, 0.5 0.404 0.733 0.725
2.0,1.0 0.404 0.740 0.728
3.0, 0.0 0.405 0.735 0.717
4.0, 0.0 0.408 0.740 0.734
4.0, 1.0 0.410 0.735 0.731
4.0,1.5 0.404 0.724 0.740
5.0, 0.0 0.409 0.737 0.722
5.0, 1.0 0411 0.744 0.741
5.0, 1.5 0.407 0.742 0.731
6.0, 0.0 0.410 0.750 0.724
SPLADE retrieval
2,0, 0.0 0.3993 0.7435 0.7177
3.0, 0.0 0.4008 0.7348 0.7255
4.0, 0.0 0.4006 0.7309 0.7215
5.0, 0.0 0.4007 0.7456 0.7256
5.0, 1.0 0.4013 0.7445 0.7206
5.0, 1.5 0.4008 0.7192 0.7335
6.0, 0.0 0.4003 0.7317 0.7180
SimLM retrieval
1.0,0 0.395 0.708 0.706
2.0,0 0.394 - -
3.0,0 0.393 - -
4.0,0 0.392 - -

Table 3: Student performance when varying WKL parameters

Table 3 shows the relevance performance of the three student
models refined by WKL for MS MARCO passage Dev set, TREC
DL19, and DL20 under different hyperparameter y; and « values.
The result shows that the refinement by WKL boosts the perfor-
mance of each student model with a well-balanced relevance effec-
tiveness across the tested datasets.

For the two-stage SPLADE/ColBERT pipeline, the model starting
point after warmup and before WKL refinement is 0.399 MRR for
the Dev set, and WKL boosts to 0.411 MRR. When y; is too small,
WKL behaves similarly as KL-divergence and when y; becomes too
big, the gradient will reduce quickly towards 0. Such a value is not
preferred. Thus setting with y; =5 and = 1.0 is a good choice.

For the SPLADE student model, the starting point after warm-
up allows the SPLADE retriever to reach 0.394 MRR@10. WKL
refinement further boosts to 0.401 MRR. The middle portion of
Table 3 lists the performance of SPLADE refined with WKL under
different hyperparameters y; and « values. As one can see, y1 = 5
and o = 1 perform decently well and these are our default choice.

For the dense retrieval student model, the released SimLM check-
point [3] gives 0.344 MRR@10 using the standard MS MARCO.
Applying KL divergence further boosts to 0.365 MRR, and after this
warmup, WKL delivers 0.395 MRR@10. Without this warmup, WKL
delivers 0.381. The bottom portion of Table 3 lists the performance
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of SimLM refined with WKL after KL divergence warmup under
different hyperparameter y; and « values. The result shows that
setting with y; =1 and a= 0 is a good choice for SimLM.

000 [ 0.40
I WKL
0005 | )
I KLDiv loss
wv
§ 0.004 §
5 o003 030 &
| =
3 0.002 oas M
0.001 ’
00007 0.20

10000 15000 20000 25000
Iterations

6 50‘00
Figure 3: Training loss during training

Figure 3 shows that like KL divergence, the WKL loss gradu-
ally decreases over the time as training iterates and converges for
refining the two-stage pipeline with MS MARCO passages. This
matches Theorem 2 in Section 3.3 which shows that WKL loss has
a constant lower bound to hit.

5.3 A comparison with related work

Dev DL19 DL20 BEIR(Avg)

MRR@10 NDCG@10 NDCG@10 NDCG@10

SPLADE++ [9] 0.380 0.732 - 0.507

SimLM with title anno. [43] 0.411 0.712 0.697 -
SimLM/KL w/o title anno. 0.365 0.685 0.611 -
ColBERTv2 0.397 - - 0.499

SLIM++ [22] 0.404 0.714 0.697 0.490

CITADEL [23] 0.399 0.703 0.702 0.501

ALIGNER [32] 0.403 - - 0.511
SPLADE+ColBERT/BKL [46] 0.407 0.716 0.736 0.505
SPLADE+ColBERT/WKL 0.411 0.744 0.741 0.515
SPLADE/WKL 0.401 0.745 0.7206 -
SimLM/WKL w/o title 0.395 0.708 0.706 -

Table 4: A comparison with baselines

Table 4 compares the student models in the last three rows with
the related baselines in terms of MRR@10 or NDCG@10. The result
demonstrates that the refined student models are competitive to the
state-of-the-art research. This table lists the published performance
of SPLADE++ for sparse retrieval. For multi-vector representations,
it lists dense retrievers with multi-vector representations using
ColBERTv2, CITADEL, and ALIGNER. It also lists SLIM++ [22]
which improves multi-vector representations with a sparse scheme.
For two-stage search that combines SPLADE and ColBERT, this
table lists the model performance with refinement by BKL [46] and
WKL is better than BKL on the tested datasets.

Notice that our student model for dense retriever SimLM yields
0.395 MRR, below 0.411 reported in [3] which evaluates the modified
MS MARCO dataset with title annotation. Title annotation is consid-
ered unfair in [20] since the original dataset released doesn’t utilize
title information. All experiments for WKL follow the standard ap-
proach of using the original MS MARCO without title annotation,

The column for BEIR in Table 4 lists the average NDCG@10
across 13 datasets. Table 5 gives details using the WKL-refined
two-stage pipeline. This refined model performs well compared to
the zero-shot performance of BM25 retrieval, sparse SPLADE++,
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dense SimLM, and ColBERTv2. BM25/MiniLM uses BM25 retrieval
and then re-ranks with the MiniLM cross-encoder.

Dataset | BM25 SPLADE++ | SimLM _ ColBERTv2 | BM25/miniLM WKL
Search Tasks
DBPedia | 0.313 0436 | 0351 0.446 0400  0.459
FiQA | 0.236 0.349 | 0.298 0.356 0309 0372
NQ | 0.329 0.533 0.502 0.562 0.453 0.562
HotpotQA | 0.603 0.693 0.568 0.667 0.677 0.692
NFCorpus | 0.325 0.345 | 0.318 0.338 0364  0.348
T-COVID | 0.656 0.725 | 0515 0.738 0.766  0.746
Touche-2020 | 0.367 0.242 0.292 0.263 0.314 0.316
Semantic Relatedness Tasks
ArguAna | 0315 0518 | 0.376 0.463 0473  0.578
C-FEVER | 0.213 0.237 0.171 0.176 0.239 0.231
FEVER | 0.753 0.796 0.689 0.780 0.756 0.779
Quora | 0.789 0.849 0.797 0.852 0.843 0.746
SCIDOCS | 0.158 0.161 | 0.137 0.154 0.170 0.164
SciFact | 0.665 0.710 | 0.559 0.568 0.697 0.698
Average 0.440 0.507 0.429 0.499 0.497 0.515
BM25 Diff - 15.24% | -2.60% 13.47% 12.94% 16.92%

Table 5: Zero-shot performance (average NDCG@ 10) on BEIR

Table 6 compares a few other loss options when refining the
SPLADE model. The loss options include MarginMSE loss [16] and
KLL defined in Eq. 2. “CL-DRD” is a listwise loss in CL-DRD for
curriculum learning [48]. Training for all loss options is conducted
under the same training setup in terms of negative samples, the
starting warm-up checkpoint, and the machine environment. Re-
call@1000 for these losses is near identical as 0.983 for the Dev set,
and thus it is not listed. This table marks the results with ‘™ if a
baseline result is in statistically significant degradation from WKL.
After a warmup, WKL outperforms the tested other loss options
with a smaller advantage in the Dev set while having a larger im-
provement of DL’19 and DL’20 sets. For the SPLADE and ColBERT
pipeline, WKL has a larger MRR gain for the Dev set compared to
these loss options [47].

Dev DL19 DL20

Loss option MRR@10 NDCG@10 NDCG@10
KLDiv 0.3997 0.656 0.689
MarginMSE 0.397% 0.664 0.678
KLDiv_logL 0.396" 0.669 0.672
CL-DRD 0.400 0.674 0.662
WKL 0.4013 0.7445 0.7206

Table 6: SPLADE refinement under different losses

6 CONCLUDING REMARKS

The contribution of this work is to provide a detailed analysis of
a generalized KL divergence loss (WKL) in an easy-to-implement
weighted format. Our lower bound analysis gives an insight into
the behavior characteristic of WKL during model refinement. The
relative gradient contribution study reveals that WKL follows the
gradient update direction of KL divergence loss when the teacher
model performs better than the student model for a training query.
When this teacher performs worse, WKL deviates in an opposite
update direction or restrains the update size cautiously in the same
update direction.

The evaluation shows that WKL can boost the relevance of three
student models for the tested datasets. WKL can outperform a few
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other loss options after a warmup. This warmup is necessary in
the tested cases and thus WKL is useful for model refinement after
initial training with another loss.

Our future work is to investigate the use of WKL in more ranking
models and experiments. The limitation of this work is that the
applicability of WKL is restricted to ranking applications where
binary positive and negative labels are assigned per training queries.
This considers that it is hard and costly to build a dataset at a large
scale for ranker training with multi-level labels in practice. It is
interesting to extend WKL in the future for training data with
mult-level labels.
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A PROOF OF THEOREM 2

Proor. let RHS(i) be the i-th component of in the right-hand
side of Inequality (3) or Inequality (4) in Theorem 1.

We further four cases in order to derive a lower constant bound.
Case 1) We consider the cases of y2; > 0.
e We apply a known inequality: Inx < x — 1 when x is positive

and the equality is reached when x = 1.

pj qj
>oplnte 3 o= 3 opi- Y ap
djeD* J djeD* pj djeD* djeD*

The lower bound is accomplished when p; = g; for all positive
documents. Since

Z pj+ Z pi =1and Z qj + Z qi =1,

djED* dieD~ djED+ dieD~
pj
2. pilnT== D) pit D) gi
djeD* qj dieD~  dieD-

e Based on the above derivation, when y; > 1ory; =0,

RHS()+RHS(2) =~ > pi+ >, qi— >, pig* Ingi,

di697 di627 d,'697
>- > pi+ >, pilgi—q " Ing;)
dieD~ dieD~
== 2 pi
dieD~

When 0 <y; <1,
RHS(1) +RHS(2) = yi(~ >} pi+ >, a)— >, pig* Ing;,

dieD~ dieD~ dieD~
>-y1 > pit >, pilngi—q, " Ing;)
dieD~ dieD~
>-y >, pi
dieD~

Notice that in the above derivation, Expression q; — qz./z’i Ing;
has its lower bound achieved when g; is approaching 0. When
0 < y1 < 1 Expression y1q; — qi.yz’i In g; also has its lower bound
achieved when g; is approaching 0.
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o Now we derive a lower bound for RHS(3) = log - Zd;en+ gilogqi.
Since function x log x is convex and following Jensen’s inequality
on a convex function,

2dien-qilogqi  Zgen+ qj
. ; > ( js ) log(

where s = |D"|. Let z = X4, p- ¢i- Then

Zdjel)* q])

-z Zloge

)z

> gqjlogg; = (1- 2)log(~

djeD €

Expression (1 — z) log(l_TZ) is bounded by —210# by computing
its minimum value.

Adding the above component lower bounds together. When y; > 1

ory; =0,Lwgr = RHS(1)+RHS(2)+RH(3)+RHS(4) > 2d;eD- pi(—1+

lnpi - 2%.
When 0 < y; < 1,

Lk = RHS(1) + RHS(2) + RH(3) + RHS(4) + RHS(5)

>(1-y1) D, pilnp)+ > pil-y1+Inp;) -

djeD* dieD~

Yl

Case 2) We consider the case of y2; = 0 and y; = 0. In this case,
WKL is the same as KL divergence loss. Lygr = Lgr > 0. The
lower bound is accomplished p; = g; for all positive and negative
documents d;.

Case 3) Now we consider the cases of y5; = 0, and y; > 0. There
are two subcases. Subcase 3. 1) When y;1 > 1, from Inequality (3),

LWKL > Z pj ln Z pi ll’lq,
djeD* qJ d;ieD~

Z gjlogg; + Z pilnp;
loge dicD-
Y1
O qjloggq;
logedjg;‘y
_in
2 -

Subcase 3.2) When 0 < y; < 1, from Inequality (4),
Lwkr 2r1 len—— > pilngi+ 1}/1 > gqjlogg;
djeD* 4qj d;eD™ ged-eZ)*

+(L=y) > pjlnpj+ > pilnp;
djEDJr d,'EDi
>r > pjln&+ > p,lnp’
djeD* 4 deD- qi
lo . Z gjloggj +(1=y1) > pjlnp;
g djeD*
>y1(- Z pit D, a)+( D) pi— D, )
dieD~ dieD~ dieD- dieD~
Ni-n) D pilnp;
djeD*
2y1
>1-11) 3 pi-(-y) - D a(-y) 3 pilnps
dieD~ € djeD*
1
=(1-y) 2, (—pj+pjlnpj)—%
djeD*
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[m]

B TRAINING STEPS AND CONFIGURATIONS

Training for each student model involves two steps: Step 1 is to
warm up the student model with knowledge distillation following
a fixed teacher model. Step 2 is to use the proposed WKL loss or
other loss options to refine the student retriever model and the
student re-ranker model separately. When we compare different
loss functions for the refinement, we always start from the same
model after warm-up and refine it using the same set of training
triplets and the same teacher model. In this way, we rule out the
potential influence caused by different implementation details in
performance comparison.

The cross encoder teacher adopted for ColBERTv2 and SPLADE
is MiniLM-1-6-v2 [31]. For SimLM, we use a cross encoder from the
released SimLM project [43]. Following the setting of SPLADE++,
we use co-Condenser [4] as the pretrained starting checkpoint
and adopt sentenceBERT [14] as the ranker to select hard nega-
tives. This warm-up step chooses margin-MSE [16] as a loss for
knowledge distillation for both retriever and re-ranker. To train the
retrieval model, we also add additional sparsity regularization with
coefficients 0.008 and 0.01 for a query and documents respectively,
following SPLADE++. This observation aligns with the results re-
ported in TAS-B [17]. The above warm-up step allows the SPLADE
retriever to reach 0.394 MRR@10 and the ColBERT re-ranker to
deliver 0.399 MRR@10.

In Step 2 for model refinement, we use the WKL loss for knowl-
edge distillation or another loss function to compare. We index
the corpus with a warm-up retrieval model using PISA [30]. To
speedup training, we only retrieve the top 100 documents (pas-
sages for MS MARCO) per query for re-ranking during training.
Negative sampling uses the top 20 documents per training query
after re-ranking as candidate hard negatives. During model refine-
ment, we sample negative examples from these 20 documents so
that the total number of positive and negative documents is a fixed
constant, limited by the available GPU memory. For our machine
environment, this fixed constant is 6. Namely, if there are 2 positive
documents for a query, we sample at most 4 negative documents.

In terms of training machine resources and parameters, we use
four NVIDIA V100 GPUs to warm up and refine SPLADE with
the training batch size as 128 queries and to warm up and refine
CoIBERT with a batch size of 32 queries. This training resource
usage is reasonable compared to what has been used in the pre-
vious work [17, 34, 35]. Learning rates 2e-5 and 1le-5 are used in
the warm-up step and the refinement step, respectively. We update
the exponent weight bias f; discussed above every 2000 training
batches, as more frequent update does not lead to an improve-
ment. When training the student retriever, to avoid the expensive
re-indexing time during this update, we re-evaluate the top 50 doc-
uments per training query as an approximation using the model
checkpoint saved after every 2000 batches. The above refinement
with WKL for training takes less than 20 epochs to converge.

The selected default WKL parameters are (y, a) = (5, 1) for Col-
BERT and SPLADE, and (y, @) = (1, 0) for SimLM. Section 5 examines
the choices and sensitivities of these WKL parameters for the tested
models.
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