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1. Introduction

Let Z and N be the integers and nonnegative integengspectivelylf n € N. then we will be
interested in two intervals of integersamely

[n] =4,2,..n, and (n) = {-A, n+1,..n-1,n}.
Ifn € Z and q is a variable then we let

1 —
[n]q = qun;

[nlg! = hlgln — 1g- - g,
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[n]q” = ’ﬂq[n - z]q[n - 4]q' T,

where the double factorial ends ft], or [2], depending on whether n is odd or even, respectively.
Note that if n < 0 then[n],! = h]g!! =1 because both are the empty product since starting at a
negative number and subtracting one cannot end at a positive dlode also that if n> 0 then

[nlg=1+q+q¢*+ - - - 4L
We will often drop the subscript g in such notation if there can be no confusion about wheher
denotes the polynomial or the set.

1.1. Classical g-Stirling numbers

The purpose of the present work is to give a comprehensive treatment of the Stirling numbers
in type B and their g-analogues. We begin by defining the various classical Stirling numbers in type
A and their g-analogues recursivelach recursion in this paper will always have@N and k€ Z
with the same boundary condition when = 0. We start with the Stirling numbers of the second
kind, which arise more frequently in the context of g-analogues.

Definition 1.1. The (type A) Stirling numbers of the second kind are S(n, k) forn € Nandk € Z
defined by the initial condition S(&) = @« (Kronecker delta) and for > 1,

S(n k) =S(h—1,k—1)+ kS(n— 1, k). (1)

It is well known that S(n k) is the number of partitions of the sdb] into k non-empty subsets
called blocks. These partitions are in bijection with subspaces of dimensiek in the intersection
lattice of the type A-; Coxeter group.

We will be primarily interested in g-analogues of Stirling numbers. There are in fact two standard
g-analogues of the Stirling numbers of the second kinghich differ by a g-shift.We will call the
(type A) g-Stirling numbers of the second kind the polynomials S [n, k] in the variable g obtained by
replacing (1) with

Sln k] =S[n = 1,k —1] + k]sn — 1,]. )
Sometimes $, k] :q(;)S[n, k] is also encounteredwhich replaces (1) with
Sn, k] =¢*"*Sin — 1,k — 1] + k|S[n — 1, k. 3)

Some of the work related to g-Stirling numbers concerns the following ordered analogue.

Definition 1.2.The (type A) ordered qg-Stirling numbers of the second kind are
S’[n, k] = kl'sn, k], (4)
and S[n, k] = k]'S(n, k].

When g = 1, $°(n, k) counts the number of ordered set partitions of[n] with k blocks.
We now recall the Stirling numbers of the first kind and their g-analogue.

Definition 1.3.The (signless,type A) Stirling numbers of the first kind are c(n , k) forneNand ke Z
defined by the initial condition c(k) = @« and forn>1,

c(n,k) =cn—1,k—1)+ (n — 1)c(n — 1, k). (5)
Their signed counterparts are

s(n, k) = (—1)"¥c(n, k). (6)
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Combinatorially, c(pk) counts the number of elements in the symmetric group of permutations
of [n] which have k cycles in their disjoint cycle decomposition.The (signless, type A) g-Stirling
numbers of the first kind are the polynomials c[n, k] obtained by replacing (5) with

cln, k] =cln—1,k—1] + b —1]c[n — 1, k]. (7)

Their signed counterparts ardsm, k] =(—1)""*c[n, k].

Stirling numbers of both kinds have been extensively studied in combinatorics and have inter-
esting applications in algebra and geometrgee the texts of Sagan [54] or Stanley [57] for more
information.We next review the literature on g-Stirling numbers.

1.2. Existing g-Stirling literature

The g-analogues above have been frequently studi&specially those of the second kinkh the
history which follows,we will sometimes make no distinction between the two different variants
of the §n, k]. The second kind g-Stirlings first appeared in the work of Carlitz on abelian fields [14]
and g-Bernoulli polynomials [15]. Then Gould [29] studied g-Stirling numbers of the first and second
kinds, defining them in terms of elementary and complete homogeneous symmetric polynomials.
The g-Stirling numbers of the first kind also appeared in the work of Gessel [28] on a g-analogue
of the exponential formula. B

By weighting the blocks of a partition, Garsia [25] was the first to show that S[n, k] can be
considered as the generating function for a statistic on set partitions, and Rawlings [45] generalized
this approachMilne [42] showed that restricted growth functions (which are equinumerous with
set partitions) could be used to give two statisticene for each version of $1, k], both of which
are similar to the inversion statistic on permutatiol$éachs and White [63] built on Milne's work,
giving two more inversion-like statistics on restricted growth functions with the same distribution.
There is also an analogue of the major index for these Stirling numbers as shown by Sagan [51].

Ehrenborg and Readdy [23]interpreted the 9n, k] in terms of juggling sequences and then
Ehrenborg [22] used this interpretation to evaluate various determinants whose entries are these
polynomials.Other work on g-Stirling numbers of the second kind has been done by Garsia and
Remmel [26] and by Leroux [39].

In fact, in Carlitz’s originalpaper,the sum in [14,(11)] which arises in the context of Stirling
numbers is actually fo?$n, k], and he has to divide off certain factors to get the quantity in which
he is interestedZeng and Zhang [68] used analytic means to prove a formula relating the §]
and a g-analogue of the g-Eulerian number&ee [19] for a recent type B extensiod connection
between the ordered polynomials and ordered set partitions was obtained by Steingrimsson in a
2001 preprint which was finally published in 2020 [5Fhere he gave eight statistics analogous to
the ones of Wachs and White. He also made a number of conjectures and posed an open problem (to
find a combinatorial proof of Zeng and Zhang'’s identity) which spurred a number of other authors
to work on ordered set partitions [33,35,37,38,49,68¢e Ishikawa Kasraoui,and Zeng [34] for a
survey.

Haglund, Rhoades,and Shimozono [31]showed that there is a connection between ordered
set partitions,generalized coinvariant algebraand the Delta Conjecture (see the recent proof of
the rise version [17])In related work,Zabrocki [66] conjectured that the tri-graded Hilbert series
of the type A superdiagonalcoinvariant algebra has coefficients which are the’B, k]. Swanson
and Wallach [62] made a corresponding conjecture in typeTiis led them to conjecture that an
alternating sum involving these ordered Stirling numbers equals one. We prove this as Theorem 5.5.
Furthermore, Chan-Rhoades [16] have defined generalized coinvariant algebras for wreath products
Z, S, whose Hilbert series whenr = 2 in fact coincide with our %[n, k] up to a reversal; see
Remark 6.17.

1.3. Stirling numbers in type B and their g-analogues

The Stirling numbers in type B have appeared sporadically in the literature over the last several
decadesThey can be defined as follows.
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Definition 1.4.The type B Stirling numbers of the second kind are defined by replacing (1) with

Ss(n, k) = Sn—1,k—1)+ (2k+ 1)S(n — 1, k), (8)
using the initial conditions 0, k) = @ «. The ordered version of &n, k) is

S3(n, k) = (2KNSs(n, k). (9)
The (signless) type B Stirling numbers of the first kind are defined by replacing (5) with

cg(n, k) =cgln — 1,k — 1)+ (2n— 1)as(n — 1, k), (10)

using the initial conditions g(0, k) = @«, with the signed version being
sa(n, k) = (—=1)"“ca(n, k). (11)

The reason for calling these “‘type B’ is becauseghek$ and s(n, k) are the Whitney numbers
of the second and first kind for the intersection lattickg, of the hyperplane arrangement of the
Coxeter group B, as follows from the work of Zaslavsky [673ee also Section 3.3.

The Ss(n, k) appear implicitly in the work of Dowling [21] on certain lattices andas already
mentioned,in that of Zaslavsky [67] concerning signed graphse $(n, k) were defined explicitly
by Dolgachev and Lunts when studying representations &eyl groups [20] and Reiner [48] in
his work on noncrossing partitions for classicalreflection groups. An analogue of the sg(n, k)
appears implicitly in a formula of Shephard and Todd [56] for the characteristic polynomial of the
intersection lattice of an arbitrary finite complex reflection grougNeither the ss(n, k), nor their
g-analogue defined belowhave been explicitly defined elsewhere to our knowled§ee Section 3
for combinatorial interpretations ofghn, k) and cs(n, k) involving signed set partitions and signed
permutations.

Our primary interest lies in the following g-analogues of the preceding type B Stirling numbers.

Definition 1.5.The type B g-Stirling numbers of the second kind are defined by replacing (1) with

Sn, k] =S[n— 1,k — 1] + Rk+ 1]S[n — 1, k], (12)
using the initial conditions §0, k] = @x. The ordered version of #n, ] is

Sin, k] = Rk]!'Sg[n, K]. (13)
The (signless) type B Stirling numbers of the first kind are defined by replacing (5) with

cgln, k] =cgln —1,k—1] + Bn— 1]cg[n — 1, k], (14)

using the initial conditions &0, k) = @§«, with the signed version being
sa[n, k] =(=1)"cg[n, k]. (15)

As far as we know, the S[n, k] have only appeared once before (in their ordered form) in the
previously cited paper of Swanson and WalladlWe will have more to say about this in Sections 5
and 6. As we were preparing this articlewe became aware that Bagndzarber,and Komatsu [7]
were also studying type B analogues of the Stirling numbers. Their primary tool is the use of signed
analogues of restricted growth functions (RGFs) as opposed to working with signed partitions and
permutations as we do herdnterestingly their type B analogue of the s(rk) differs significantly.

They also use a statistic on RGFs forgn, k] which, when translated into the language of signed
partitions,is different from ours although the two can be related by a simple bijectidrhey also
consider a variant where the elements of the interval] appear in different blocks or cycles for
some fixed r.The overlapping results between our two papers are Theorem 2.1(b) andavell
as Theorem 4.1(a).

The rest of the paper is organized as follows. In Section 2, we give analogues of classic identities
expressing &n, k] and g[n, k] in terms of changes of basis and symmetric polynomials. In Section 3,
we give combinatorial interpretations of S[n, k] and cg[n, k] using inversion and major index
statistics on signed set partitions and signed permutationis Section 4, we give g-analogues of
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classic ordinary and exponentiaStirling number generating function identitiesn Section 5, we
prove certain alternating sum identitiesnswering the conjecture in [62] in the affirmativeSee
Theorem 5.5 and Theorem 5.9In Section 6, we summarize developments in super coinvariant
algebras and give conjectural Artin-style bases whose Hilbert series naturally give riseYa,]
and $[n, k] with our inversion-style statistics. In Section 7, we conclude with a section of comments
and many questions and open problems.

We wish to thank the anonymous referees for their careful reading, useful suggestionsand
helpful references.

2. Symmetric polynomials

Certain properties of the Stirling numbers follow from the fact that they can be expressed in
terms of elementary and complete homogeneous symmetric polynomialle will derive some
of them, including their ordinary generating functionsn this section.Further information about
symmetric polynomials can be found in the books of Macdonald [8B&gan [53]pr Stanley [58].

2.1. Ordinary generating functions

Let x= X1, . . X, be a set of commuting variableBenote the degree k elementary symmetric
polynomial by ec(n) = ex(x1, . . X,) and the degree k complete homogeneous symmetric polynomial
by hg(n) = hi(x1, . . Xp). Foralln>1:

ex(n) = e(n — 1)+ x,e1(n — 1) (16)
and
he(n) = he(n — 1) + xphi_1(n). (17)

Let t be a variable. The following generating functions are well known and easy to prove directly
from the definitions above:

o . I1

E\(t):= e(mMts = (1+ x;t) (18)
k=0 i=1

and

z . 1 1

Hp(t):= he(n)t" = . (19)

X ]._X,'lL

k>0 i=1

The next result is a type B analogue of various well-known facts in type A.

Theorem 2.1.L.etn €N andk € Z.

@ce[n k] =ew((1], Bl . . .2n[-1]).
(®) Sgln. k| =hy (1], B]. . . .2kl 1)
©) <« 4= OCB[n Kjtk = (¢t + [1])( ; [3))- - ¢t + [2n—1]).

(@ n=k SB[n’ k]tn = (1—[1]e )(1-[3]t }+ (1—[2k+ 1]t )"

Proof. Parts (a) and (b) follow easily by comparing the recursions for the symmetric polynomials
with those for the Stirlings and using inductionParts (c) and (d) are obtained by combining the
first two parts with the generating functions (18) and (19).

2.2. Falling factorials

We will need a result about symmetric polynomials which, while not difficult to prove, we have
not been able to find in the literature. Given a variable t amd\cthe corresponding (type A) falling

5
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factorial is
the=t(t—1)(t—2) - ¢t —k+ 1).

It is well known that for the type A Stirling numbers we have

by
t" = S(n, k)t Yy . (20)
k=0
To generalize this identity to symmetric polynomials in a set of variablelek,
V= (t —x)(t —Xx2) - - €t — X).

Theorem 2.2.Forn €N,

»
=" hpilk+ 1) ¥y,
k=0

Proof. Induct on n, where the base case is easy to verif{or the induction step we use Eq(17)
and p%!‘I off a factor from thze falling factorial to get
hp_i(k+ 1)t ¢ = hn—k(k) (t = x )t V&1 + Xir 1hn—k—1(k+ 1) t ¥
k k k
2 2
=t hp(K Y = Xdhak(k) VE_;
k k

bX
+ Xchn (k) t ¥4
k

z
=t hp-n-klk+ 1)ty

k

=t-t"1

completing the proof.

Clearly equation (20) follows from the previous theorem by setting¥ —1for1<i <n+ 1.
More generally define the (type A) g-falling factorial to be

=t (t— LD — RD- - ¢t — k—1]).

Setting x = [ —1] in the previous theorem gives the following well known result known as Carlitz’
identity [15]; see also [24, (3.14)] and the references therein. Our proof using Theorem 2.2 provides
a uniform approach in types A and B.

Corollary 2.3.Forn €N

DY
t" = Snkl(t; 4 .
k=0
Now define the type B g-falling factorial to be
(t; )= (t — At — B - - ¢t — Rk—1]).
Setting x = i — 1] for 1 <i < k+ 1 immediately gives an analogous type B result.

Corollary 2.4.Forn €N

X B
t" = Sln, KkJ(t; q) ¥y,
k=0
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2.3. Inverse matrices

For our mat|52< identity, we need a new result about symmetric polynomials. Given a generating
functionf(t)= ., a,t" we define the coefficient extraction function to be

[t"]F ()= a,.

A special case of the following can be found in the book of Sturmfels [®d,2].

Theorem 2.5.\We have (
2 —-1)\e n=m
(~1Pesmpp(my = enbmer ) = m,

<
at b=N By (Xnse 1, - - Xm) n=m.,

Proof. From the generating functions in (18) and (19) we obtain

(—1Fealmhp(m) = E"]E(—)Hm(t)

a+b=N

. (1—xat ) (1=t ) - (1 —Xpt)
(L — Xt )(1— Xt )« (1 — Xpt )’

Ifn > m then we are finding the coefficient oft in (1 — Xpe 1t )(1— Xmsot )+ - €1 — X,t) which
is the desired signed elementary symmetric polynomiie case n< m is similar.

Define two infinite matrices with rows and columns indexed by@&N and k € N, respectively,
by

E= [—1) " enr(mM]nk=o
and
H = hp-ilk+ 1)]nk=o0-
Note that both E and H are lower uni-triangulatet / be theN X N identity matrix.

Theorem 2.6. We have

EH=1

Proof. Since E and H are both lower uni-triangulasp is their productTherefore we only need to
evaluate the eniry (EH) when n > k. But

(EHhk = (=1 eqi(mhi_(k + 1)
i=0

which is the sum in the previous theorem with N= n — kand m = k + 1. So we are in the first
case and the sum equals<1)"*e,_x(X+2, . . X,) = 0 since there are only n— k — 1 variables in
the elementary symmetric polynomial.

Specialization of x= i — 1] in the previous theorem immediately gives the following result.

Corollary 2.7/ ss = [s8[n, k]| k=0 and Sg = [S[n, k] nk=0 thensgSs = 1. O

Note that setting x = i — 1 in the previous theorem gives the welknown result thatsS= 1/
where s = [s(n, k)]nx=0 and S = [S(n, k)]n=o. The g-analogue of this classical type A convolution
identify is [24,Thm.3.16].

Remark 2.8We emphasize that the identity in Theorem 2.6 involves different numbers of variables
changes in different entries of the matricehis is in contrast to the classical’EH = | "identity
involving symmetric functions (see [4Qh.1, (2.6)]).

7
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Remark 2.9. Alternatively,we may use Theorem 2.2 to interpret Theorem 2.6 in terms ofthe
transition matrices between the monomialbasis {t" : n € Z.o} and {t ¥& k € Z.,} over
Qlx1, X2, . ).

3. Combinatorial interpretations

We will now give combinatorial interpretations of thegn, k] and c[n, k] (and hence also the
case g = 1) in terms of certain statistics on signed partitions and permutationsspectivelyThe
lattice of signed partitions ordered by refinement is isomorphic to the intersection lajtfoe the
hyperplane arrangement of the Coxeter groyp We will rederive the fact thaf, k) and $(n, k)
are the Whitney numbers of the first and second kindespectivelyfor L g,, as well as proving a
new result expressing the Mébius function afg, in terms signed permutations.

3.1. Signed partitions

Definition 3.1.Let Sbeasetand = 5, . . S/ be a set partition of Sso the § are nonempty
subsets whose disjoint union in SNe call the $blocks and writep =S,/ . . g F S,removing the
set braces from the;%hemselves.

Definition 3.2. A signed or type B partition is a partition of the set(n) of the form
0 =S/S/S/ . S
satisfying

l.0eSandifie § then—i € §, and
2.fori > 1wehave § = S5,

where —S = {-s : s€ §]. Call the blocks & and $;_1 paired. We write p gz {(n) and let $({n), k)
denote the set of all type B partitions @f) with 2k + 1 blocks.The block § is sometimes referred
to as the zero block as in [48].

For readability,we will sometimes use an overline to represent a negative sign and group the
paired blocks together separated by a forward slashhile vertical slashes separate pairfinally,
set braces and commas may be removed.

Example 3.370 illustrate,an element of §((7), 2) is
o =0113366| 4/4 | 257/257.

Note that we may write the elements of any block in any ordemverse the order of any pair,
and rearrange the pairs amongst themselves without changing the type B partition.
Let|S| = §| : s€ S}, sothat|S,;| = -1] fori = 1.Foralliwe let

m; = min|S].
We will always write signed partitions in standard form which means that

1. my; € S, for alli, and
2.0=mg<my <myg< - - My

Example 3.4.The standard form of our example type B partition above is
o =0113366|257/257 | 4/4

withmg=0,m; =m, =2,and m; = my4 = 4.
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Definition 3.5. An inversion of p g (n) written in standard form is a pair (s5) satisfying

1l.se€ § forsomei< j, and
2.s=m,.

Let Invp be set of inversions op and invp =# Invp where the hash tag denotes cardinality.

While we have not specified the order of elements within each block, this does not affect which
pairs form inversionsNote that the second condition implies that any s causing an inversion must
be positive.Note also that in this condition it is not actually possible for s= m; because of the
partition being in standard form.However, we include it because when considering ordered set
partitions equality will be possible and such cases will need to be counted.

Example 3.6.Continuing our examplewe see that Invo consists of the following pairs

(3,5), (3, %), (6,5), (6, ), (6, ), (6, Sy),
(5, %), (5, %), (5, %), (7, $5), (7, &)

so that invp =11.

The $[n, k] count signed partitions by inversionhe next theorem is a type B analogue of the
result of Milne [42] cited in the introduction for[®, k]. See also Section 6.2 for a strongly related
interpretation involving the Hilbert series of a conjectural monomial basis.

Theorem 3.7. We have

sk = = v
pESB((N), k)

Proof. We proceed by induction on n where the base case is triviggiven p € S((n), k) we can
remove n and—n to obtain a new partitiono .

If n (and thus—n) is in a singleton block thep € S5({n — 1), k — 1) and there is only one way
to constructp from p'. Furthermore,n this case the standardization condition forceg.§ = {-n}
and S = ) in p. It follows that iny =invp'. So, by induction, such contribute §[n—1, k — 1]
to the sum.

If n (and thus —n) is in a block with other elements, then p € S((n — 1), k). The possible
o giving rise to a fixed p are obtained by inserting n in one of the 2k+ 1 blocks of p". And if
nis put in block S; then this adds inversions ofthe form (n, §) for all j > i. Furthermore the
placement of—n, wherever it is forced by that of moes not contribute any inversionSo invp =
2k—i+ invp where 0< i < 2k. Thus the contribution of thegeis [2k+ 1]S[n — 1, k] and we are
done.

Definition 3.8.The descent set of p €S((n), k) is the multiset
Desp = {I™,2"%, . . (2k)'*})

where n; is the number of elements of;S; which are greater than m Define the major index of p
to be

majo =1-ny+ 2-ny+ - -+ Rk- Ny

Note that this convention differs from the one for descents in a permutation in the symmetric
group since i is the index of the block containing the smaller integer.This could be fixed by
renumbering the blockshut then the conventions above fop $vould become less natural.

Example 3.9./n our perennial exampledescents are caused by the 3 and the 6 ip,$he 5in 5,
and the 7 in $. Hence Degp = (12,21, 3% }and majo =1-2+2-1+3-1=7.

9
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Just as with permutations in the symmetric groupy and maj have the same distribution over
signed partitions.

Theorem 3.10.We have

SOUE S
PESB((N), k)

Proof. The proof is similar to the previous one and is hence omitted.

It is possible to give a combinatorial proof of Eq. (20) by showing that whent is a positive
integer both sides count the set of functions fjn] = [t]. We will now give a combinatorial proof
of Corollary 2.4 when g= 1 using similar ideas.

Definition 3.11.A type B function is any function f : @) = (p) satisfying
f(—=i)y= (@) (21)

forall i € (). The kernel of f is the partition ker f of (n) whose blocks are the nonempty fibers
f=L(j) forj € p).

In particular, a type B function satisfies f (0)= 0, and if f (i) = 0, then f(—i) = 0. Hence the
definition of a type B function ensures that keid a type B partition.
Define the type B falling factorial to be

t48=(t; )= (t — 1)(t — 3)- - € — 2k + 1).

The next result is the special case g 1 of Corollary 2.4.But here we give a combinatorial proof
rather than relying on symmetric functions. We note that this result with essentially the same proof
below was also given in a paper of Bagno and Garber [6Jf we include it for completeness.

Theorem %12.’:0”7 €N,

"= Ssn, k)t
k

Proof. Since this is a polynomial identityit suffices show that it holds when t is an odd positive
integer,say t = 2p+ 1. We claim that in this case both sides of the identity count the number of
type B functions f: 1) = {p).

On the one handwe can determine fby first choosing f (1). . f(n),in which casef 1), . . .,
f (—n) are determined by (21)And we know f (0) = 0. Since #p) =t ,there aret ways to choose
each of the necessary valuef@r a total count of f.

Alternatively,we can construct fby first picking a type B partitiop = S/S1/. . . S of (n) to
be ker fand then injectively mapping the blocks@fnto (p). Since 0 S, we must have f (§ = 0.
This leaves t— 1 choices for f (8. Now f (3) is determined by (21). There remainst3 choices for
f(S), and so forth.

3.2. Signed permutations

We now turn to the Stirling numbers of the first kind. A permutation of a finite set S is a bijection
. S S.Asusual,r can be factored into cycles c= (a1, &, . . ax) where m(a) = aj1 with
subscripts taken modulo Ket(n) = @) \ 0.

Definition 3.13.A signed or type B permutation is a permutation s of (n)  satisfying
(=) = —ali) (22)
forallie f).
10
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This condition implies that any cycle ¢ of is of one of two types.

1.1fc = (a;, @, . . a) does not contain both jand —i for any i € @) then & also contains
—C =(-a;, @, . . . Ak We say that c and—c are paired.
2. If ¢ contains both i and—i for some i € ©1) then ¢ must have the form

c=(ay,a, .. a8 1, G2, ... Ak
We call such a cycle unpaired.

Finally,let cB(<n>', k) be the set of all B permutations with 2k paired cycles.

Remark 3.14. It is difficult to find ¢ s((n), k) in the literature. They appear to be very briefly
mentioned in [18, Rem. 2.5], without proofs. Their enumerations appear in [43, A028338, A039757].
We use the same conventions when writing signed cycle decomposition as for partitissiag
bars instead of negative signs and keeping paired cycles closer together than others.
Example 3.15/n the permutation
7 =(1,3,1,3) (4)(4) (25,7)(25,7) (6,6)

the four cycles (4)(4), (2,5, 7), and (2 5, 7) are paired while the cycles (13, 1, 3) and (6 6) are
not. Since there are k= 2 cycle pairs,t €cg((7), 2).

We will use the absolute value and minimum notation for permutations exactly as we did for
partitions.Our standard form for a B, permutationt = c;¢,. . ¢, will be to list the cycles so that
the minima m = min |¢;| satisfy

1.m <m, < ... Hy,
2. ifm; = mj,, then—m; €c; and mjiy 1 € Cis 1,
3. each ¢ is listed with its =m; last, with unpaired cycles ending ir-m;.

Putting our example permutation is standard form gives
7 =(3,1,3,1) (57,2)57,2) (4)(4) (66).
Definition 3.16.Given . € cB(<n>', k) in standard form,we let w = wiws,. . . Jd¢be the word
obtained by removing the parentheses fram Define the set of inversions of & to be
Inve = {i,j) : i<jand w > |wl)
with corresponding inversion number

inve = # Invr .

Example 3.17For our running example permutationye have

w=3,1,3,1,57,2,57,24,4,6,6.

Hence Invr is the set of pairs
(1, 2),(1,4),(1,7), (1, 10), (5,7), (5,10), (5, 11), (5, 12),
(9, 10), (9, 11), (9, 12), (9, 13), (9, 14)

and invr = 13.

Theorem 3.1 8.Wezhave
celn, k] = qm.
zecg((n)’ k)
11
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Proof. As usual,we induct on n and only give details for the induction stefake s € cs((n), k)
and remove n and—n to form x.

If n and —n were both fixed points,then 7 e cs((n — 1>', k — 1). Furthermore,standard form
forces the last two cycles of to be (—n)(n) so that invr = inv . Thus permutations in this case
give a contribution of gln — 1, k — 1] to the sum.

The other possibility is that n andn are both in cycles of length at least two. If these cycles are
paired,then they remain paired cycles after these elements are removEdoth elements are in
the same unpaired cycle themven if that cycle contains no other elementson removalz” still
has the same number of paired cycleo in either caser € cg((n — 1), k).

Now consider all the ways:n can be inserted in a given in this case. Note that the position of
n determines the position of-n, and that—n can never cause any inversion®ne possibility is to
adjoin the cycle (p —n) to 7 which must be at the right end to be in standard forNow n causes
no inversions either so inw = inv . The other possibility is that n is inserted just beforend in
the same cycle as, any of the 2r2 elements ofr . (One must use the space before since using the
space after a final element in a cycle would make the result nonstandard.) If this element is the ith
from the right then invz =i + invz where 1 <i < 2n — 2. It follows that the total contribution
of this case is

@+ g+ - " Y)cgln— 1, k] = 2n— 1]cgln — 1, ]
which finishes the proof.

Letting g= 1 in the previous theorem gives the following result.
Corollary 3.19. The number of B, permutations with 2k paired cycles is ¢ g(n, k).
3.3. The lattice of signed partitions
We now connect the 8(n, k) and s(n, k) with the intersection lattice for the Coxeter group.B

Definition 3.20.Let P be a finite poset (partially orderqd set) with a unique minimal elemeft
Call P ranked if, for every x € P ,all maximal chains fron0 to x have the same lengthThis length
is called the rank of x and denoted rk xThe kth rank of P is

RK(P, k) = k€P : rkx=k|
with corresponding Whitney number of the second kind
W (P, k) = # Rk(PK).
The (one variable) Mobius function of P is the function & :P » Z defined recursively by
> HUX)= @,
x<y

This is a far-reaching generalization of the Mébius function in number the®ge [54] or [57] for
more detailsThe %/hitney numbers of the first kind for P are

w(P, k) = H(X).

XERK(P.)
If P has a unique maximal element then we will use the notation

u(P)= ui).

Definition 3.21.For any finite set S we denote byTs the lattice of all set partitions of S ordered
by refinement so thatp < dif every block ofp is contained in some block af. Let /15, denote the
subposet oflT,; obtained by restricting the partial order to the type B partitiohge call Iz, the
B, partition lattice.

12
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The Coxeter group B has reflecting hyperplanes;x= 0 and x; = +x; wherei,j € [n] and x;
is the ith coordinate functionThe corresponding intersection lattice,L g,, is the set of all subspaces
which are intersections of these hyperplanes ordered by reverse inclusigaslavsky [67] showed
that these subspaces are in bijective correspondence with certain signed graphs which are clearly
in bijection with signed set partitions ofn). It easily follows that. 5, and [T, are isomorphic.

It will be useful to connect type B partitions and permutationGiven a signed permutationr,
its underlying signed set partition is  p obtained by replacing every paired cycle by its underlying
subset,and taking the union of the sets underlying alpaired cycles together with 0} to be the
zero block.The reader can verify that our recurring example and p satisfy this relation We let
B(p) be the set of type B permutations with underlying set partitipnThe first and third parts of
the next result also follow from [67].

Theorem 3.22.Fix n € N and let y be the Mdbius function of Ilg,.

(@) For 0 <k <n, we have W (IIg,, k) = Ss(n, n — k).
W) If p =S/S/S/. . . Sy € S((n), k) then

1
#Blp) = (#S - 21! (#S - 1)
i=1

= (=1 u(p).

(¢) For 0 < k < nwe have w(Ilg,, k) = sg(n,n — k).

Proof. To prove (a),f p is covered byo in I1g,, then there are two possibilitieOne is that there
were two pairs of blocks $;-1, S and $;-1, S; in p which were replaced in o by a pair whose
component blocks are unions of one block from each of the given pair§he other is that a pair
Si-1, S was absorbed into the zero block.Note that in either case,the total number of blocks
decreases by two in passing fronp to o. Using this fact,the desired result now follows from an
easy induction on k.

For the first equality in (b),note that,fori > 1, the number of ways to turn §; into a cycle is
(#9; — 1)I. And once a cycle is put on §, the cycle on $;_; is fixed.So, letting #§ = 2m+ 1, it
suffices to show that the number of ways to decompogd 0] into unpaired cycles is (2m- 1)!.
But the count we seek is the number of signed permutatiofy®ofwhich have no paired cycles. By
Corollary 3.19 and Theorem 2.1(a) withmg 1, thisisg(m, 0) = e,(1,3, . . 2m—1) = (2m— 1)\

We now prove (c) and the second equality in (b) simultaneously by induction on krom the
description of the covering relations in part (a) we see that the inte[’ﬁalp] in Ilg, is isomorphic
to a product of posetayith one poset for §and one for each pairs 1, S for1 <i <k.Fori>1,
the partitions contained in § form the latticelIs,. Once a partitiono of Sy is chosen,then $;
must be partitioned so that each block is the negative of some blockoofFor the zero blockthe
partitions contained in §contribute the latticd g, . Thus we have the isomorphism

A

[0, p]= Mg, X M5, X [T, X - - - Hs,
and,sinceu(P X Q )= P u(Q),

1
1) = Ullg,) uls,). (23)
i=1
It is well known that(I1s) = (—1)*S"1(#S— 1)!. And we can assume by induction that for sr n
we haveu(IIg,) = (—1)"(2m — 1)!!. Plugging these values into (23) proves the second equality in
(b) as long asp < 1. Furthermore from the proof of (a),the p at rank k of I1g, are exactly those
signed partitions ofn) with 2(n — k) + 1 blocks.It follows that forp < 1,the sum of thex values
of these partitions is exactly—(l)kcB(n, n — k) = sg(n, n — k).

13
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To handle the case = 1, we use the definition ofw and the previous paragraph to give

R z z
#1)y= —  wulp)= —  sgln,n—k).

p<i k<n

On the other handplugging ing= 1 andt = -1 to Theorem 2.1(c) and multiplying both sides by
(—1)" gives

SB(n, k) =0.
k=0
Comparing the last two displayed equations and using Theorem 2.1(a) wheng l1andk = 0
yields

(1) = s5(n, 0) = (=1)"en(1, 3, . . 29— 1) = (-1)"(2n — 1)!!

which finishes this case and the proof.

4. Exponential and g-exponential generating functions

We now derive exponential and g-exponential generating functions for the Stirling numbers and
g-Stirling numbers of types A and B. We give combinatorial proofs for the former using the theory of
species. See the book of Bergeron, Labelle, and Leroux [11] or [54, Chapter 4] for more information.
For the latter,we use the theory of g-difference equationg&xistence and uniqueness of solutions
of linear g-difference equations with constantcoefficients is given explicitly in [3, Thm. 2.11].

A general existence and uniqueness resulffor g-difference equations is given in [3, Thm. 2.1].
Basic properties of g-derivatives such as their definition and the g-product rule are summarized in
[3,81.3].

4.1. Exponential generating functions

Type A version of the following identities are well known; see ¢43,826.8(ii)],[43,A008275],
and [43, A008277]. The type B analogues are as follows. For (b), see [61, Thm. 4], which is equivalent
to (a), which also appears in [43, A0O39755]. Suter’s argument for (b) which uses generating function
manipulationswhereas our proof of (a) is direct and species-theorettarts (c) and (d) are stated
(without proof) in [43,A028338]though effectively using Theorem 2.1(c) as a definition.

Theorem 4.1.

(@) n=0 S(n, k));—n' = ﬁex\gleb( _ 1);('
(b) k,n=0 SS(n’ k)[kﬂ =€ (sz’l). )
k

n!
1
—_—— e
k! {—2)( Io)g 1-2x
1+t

© = peoCeln, k)% =

(@ 7 poCaln, S = o

Proof. We will only prove (a) and (c) since then (b) and (d) follow by summing on k.

For (a) note there is a bijection between type B partitiongs . . $x and ordered pairs of the
form (To, S/S/. . . ) where T is the (possibly empty) set of positive integers in . This is
because the other elements of §re —S ¥ {0} and $;_; = —Sy; for all .

By the conventions for the ;, its smallest element is positive and the others can be signed
arbitrarily. Consider the specig&ssuch thatS(L) is all sets obtained from a set of nonempty integers
L by arbitrarily signing every element of L except the smallest. The number of such ¥etsvisth

14
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corresponding exponential generating function

2”*1{ = E(eZX - 1)
n! 2
n=1
So, by the Product Rule for exponential generating functions [54, Theorem 4.4.2(b)], the exponential
generating function for ordered k-tuples of such sets?s<(&)</2. We must divide by!ko remove
the order.For Ty, we use the specied (L) = [L} which has exponential generating functiohsince
#T (L) = 1 for all L.Now using the Product Rule again completes the proof of (a).
To prove (c),consider a type B permutatiorr and its underlying partitiorp. As in part (a),we
can reconstructp from a pair (T, $/S/. . . $). To recover the possibler associated withp we
must sign all but the smallest element of § and then put a cycle on these elementayhere the
latter can be done in (r- 1)! ways if #$; = n. This gives the exponential generating function
(n— 122X = 12 @ log ¥
n 2 n 1—-2x

n=1 nx>1

On the other handjf #T, = n then the elements in ¥ (—Ty) need to be turned into unpaired
cycles. By Theorem 2.1(a), this can be dones(n,d) = (2n— 1)!! ways which gives an exponential
generating function of

hX hX
(2n — 1)!!X—n = (—=1/2)4, (—2)”)£ = (—2x)" = 417
n! n! n 1-—2x

n=0 n=0 n=0

Using the Product Rule and dividing by ko remove the order finishes the proof.
4.2. g-exponential generating functions

For our g-exponential generating functionwe will need the g-binomial coefficients

n [n]!

k7 [k'[n— k]

the g-exponential function

— X
exp,(x) = - ik
the g-logarithm
—logy(1—x) = z [XHT]
n=1

as well as the g-derivative

Dyf () = P (‘z(x) 4

See [3,81.3] for a summary of g-calculus.

We now find the g-exponential generating functions for the ordered versions ofhe Stirling
numbers of the second kindWe kindly thank an anonymous referee for pointing out [2Mifere a
version of the first formula below appears as Thm. 3.26, which is further attributed to lecture notes
of Cigler.

Theorem 4.2We have :
X" ki
S[n, k]n— = (—1)kflq(k2) II( expy([i]x), (24)

15
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and
> X » iti
Ln, Ktk — = g . expy([i]x).
ko [nlt _, Q+t)g+ t) (g + 1)
Proof. To simplify the proof of the first equalityet
b P> X"
E = k|— = k| kK| —-.
o= Sk =" ks ko
n=0 n=0
From the recursion (2) we get that
S[n k] = k[(S'[n =1, k—1] +S[n — 1,k]) (25)
for n = 1. Combining this with the g-derivative
DX" = h]x"!
implies that
DgEic = K](Ec + Ec-1) (26)

for all k € Z with Ex = 0 for k < 0. This equation and induction on k give

(Dg— () E=0.
i=0
Since Dy exp,([i]x) = []] exp,([i]x), the theory of linearconstant-coefficient g-difference equations
now implies that

X K
E = ¢ expyllilx) (27)
i=0

for certain ¢ which are constant with respect to Hence it suffices to show that

_ (—l)k"'q(k?)[ k ]

k

G = —F . (28)
’ qls) I
Substituting (27) into (26) and using the linear independenceefp,([i]x)}ien gives
—lk
CI.k: - [ ] Clk_l
qlk —i]
for 0 <i < k — 1 which, after iterationresults in
(-1« ;
k _ i
¢ = W k—i G- (29)
Comparing this with 828) ?nc)zl usi(ng the identity
ik — i) + k—i k i (30)
ik —i = — ,
2 2 2

we see that we will be done if we can show/c= q‘(é) fori > 0. Let us rewrite this as £ = q‘(s)
and induct on k.Since g(0) = @, we see from (27) thatg =1= q’(tz)) and,fork > 1,

16
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This equation determines/cin terms of the ¢ fori < k. The latter are known to have the desired
form by EQ.(29) and inductionSo it suffices to prove that

R VS SR SR

1o Gk (z) i ] () —o i

i) y

= 7 (caygl

qé) i=0

But this last sum is seen to be zero by substitutingt —1 into the g-Binomial Theorem
Mmoo ]
(1+ ¢t)= q(z) < (31)

i=0 i=0
For the second equality in the statement of the theorame, multiply (24) by ¥ and sum to get

X'7 2) k2 4[ ]

Kisin ke = ™ il e
n,k=0 %0 : ( 2 (_l)kii [ ) ] )
_ K .
= w k = " expy([i]x)
i=0 =i
» jpi
= qt expy,([i]x)

i—o (1+t)g+t) - ¢gd+t)

where the second equality uses Eq. (30), and the third is a form of the Negative g-Binomial Theorem
as in Exercise 8(b) from Chapter 3 of [54] substitutirgfor t and 1 /q for g.

The proof of the next result is similar to the one just givesm, it is omitted.

Theorem 4.3.Ve have

) 12 | k]
n’k = (—1)k_’ Zﬂ(?) . e ([2i+ 1 ),
. ‘%[ ][n]' qkz o q i - qu[ 1 ]X
and
3 X" > q2i+1ti
kX _ i
n,kzo%’ HOTR = v @ o - @ere o SRR 10

Proof. Omitted.

For the g-Stirling numbers of the first kind we will need to use a version of the chain rule.
Unfortunately, no such analogue exists for Dy(g (f)).But Gessel [28] defined a g-analogue of
composition which does obey a g-chain rul&iven an g-exponential generating function f (x) with
f (0) = 1, define its kth symbolic power recursively by 9 =1 and

DM = K]fl—Up,f.

)2
Note that ¥/ = X, so that when g = 1 we have fi/ = f* fork > 0.Giveng = ., g.x"/ n]!,
Gessel then defines a g-analogue of functional composition to be

z flnl
olf] = 9 oIl

n=0
Again,when g = 1 we have df] =g (f)Gessel’s g-analogue of the chain rule states that
Dy(glf]) = (Deg If]Dgf . (32)
17
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The first result of the next theorem was also obtained by Johnson [(Z612)].

Theorem 4.4. We have

> X (—logy(1 — x))
cln, k]f' = (Zlogy(1 =)™ ‘ X)) ,
T 0
and
2 X
c[n, k]t"—' = exp,[—tlog,(1 — x)].
n,k=0 [n]
z . . . .
Proof. Let G = — _,c[n, k|x"/ n]!. The usual manipulations and the recursion (7) give the
g-difference equation
Gi—1
D, =
aC 1—x

fork € Z with Cx = 0 fork < 0. The formula for G now follows from a simple induction on k
using the definition of symbolic powerThe bivariate generating function is a consequence of the
definition of g-composition.

Unfortunately, for thegfn, k] we were only able to derive a differential equation for the desired
g-exponential generating functiomVe will have more to say about this in Section 7.4.

5. Ordered analogues and identities

In this section we will prove alternating sum identities as wellas divisibility results for the
ordered g-Stirling numbers of the second kind@he former will prove two conjectures of Swanson
and Wallach [62].0ur main tools will be the use of sign-reversing involutionslhese results and
their demonstrations are new even in type A sas in the previous sectionthe type B proofs will
only be sketched.

5.1. Alternating sums

We first need a combinatorialinterpretation for the $[n, k]. These polynomials count ordered
set partitions of [n] into k blocks which are sequences of nonempty setsw = (§/S,/. . . &) such
that¥;§ = |]. Note the use of parentheses to denote a sequence rather than a family of Eeés.
set of these sequences is denoted§n], k). We define the inversion statistic exactly the same as
for unordered signed partitions using Definition 3l&tting

Invw = (s,S) : s€S forsomei< jands> min S} (33)

and invw =# Invw. Using a similar proof to that of Theorem 3.@ne can show the following.

Theorem 5.1.Forn, k = 0 we have

so[n’ k] - qinvm. 0
weSP([n), k)

Definition 5.2. We now define the maps which will make up our involution in type AGiven an
ordered partitionw =(§/S,/. . . &), suppose M= max § where i is fixed.Say thatw is splittable
at M if #S; = 2.In that case the splitting map g, is defined by
an(@) =(S/. . . -1/ M}/S = M}/Sia/ .. ).
18
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We define w to be mergeable at M if

1.5 = M}, and
2. M > max &1.

If these conditions hold then one can apply the merging mapy where

Un(®) =(S/ . .9-1/SY Se1/Se2/e o ).

Example 5.3.The ordered set partitionv =(246/8/35/1/7) is splittable for M= 6 and 5,and
os(w) = (6/24/8/35/1/7).

On the other handw is only mergeable for M= 8 and
Hs(w) = (246/358/1/7).

Note that if w is splittable at M, then gy (w) is mergeable at M anduy gy (w) = @ The same
statement holds with the roles ofy, and «y reversed.Merge and split maps have been useful in
a number of areasncluding the computation of antipodes in Hopf algebras as shown by Benedetti
and Sagan [10]We can now define the involution we will use for our first alternating sum.

Definition 5.4. Define @ : v, S°([n], k) & v S°([n], k) as follows. Given w € S°([n], k), find the
largest M (if any) such that is either splittable or mergeable at # max $. Note that, because of
the restriction on #Sor these two operationsit cannot be bothLet

!o;v,(a)) if wis splittable at M,
@lw) = “u(w) if @is mergeable at M,
w if no such M exists.

We see thatg is an involution because of the remarks at the end of the last paragraph and the fact
that the largest splittable or mergeable M is preserved by splitting or merging at this value.

Theorem 5.5.Forn > 0, we have

(—q)"*s°[n, k] =1.
k=0

Proof. Define the sign ofw €S°([n], k) to be
sgnw =(—1)""*. (34)

The involutiong is sign-reversing on partitions which are not fixed since bobh and v change
the number of blocks ofv by 1.
By Theorem 5.1we can write

» s »
(—q)"*S[n, k] = (sgnw)q"*+"ve, (35)

k=0 WEYS°([n], k)

We claim that the terms fow and @(w) in Eq. (35) will cancel each other since splitting adds one
inversion and one block whereas merging removes one inversion and one blerkce n— k + inv
is preserved byp.

To see that the claim holds whemnappliesay, note that since M is not the minimum of its block
all the inversions ofw will still be inversions ofp(w). Furthermore,if M = max $then splitting off
M will cause a new inversion (M S — W}).Thus invp(w) = invw +1.Sinceg is an involution,it
also follows that inwp(w) = invw —1.

To complete the proofit suffices to show thatay = (1, 2, . . n),is a fixed point of ¢ and the
only one since its contribution to (35) is Tlearly ay is fixed since it has no blocks of size at least
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2 and its block maxima are in increasing order. Conversely,isfa fixed point, then it can have no
blocks of size 2 since then one could apgly Sowis a sequence of singleton blocks with increasing
elements since otherwisg/y could be appliedThe sequenceaw is the only ordered partition with
these two propertiesThis finishes the proof. O

To prove the type B analogue ofthe previous theorem,we proceed in a similar manner. An
ordered signed partition of (n) is a sequencer =(S/S/S,/. . . $x) satisfying conditions (1) and (2)
in Definition 3.2 .Note that no assumption is made about standard forfhe set of such partitions
with 2k + 1 blocks is denoted &(n), k).

The definition of inversion in Definition 3.5 remains unchangeBlt now it is possible to have
an inversion where s= m; if m; € §_; and —m; € §. Arguments similar to the proof of Theorem 3.7
give the following result.

Theorem 5.6. For n, k > 0 we have

Sg[n’ k] - qinvw’ O
we%((n,\,k)

Definition 5.7.The splitting and merging maps have two cases in type B. Consider =(S/. . . %)
and M > 0 which is in a block with at least two elementd.¥ = max $;_; for some i,then gy (w)

is the ordered signed partition formed by removing M arid from their blocks and adding a block
pair —M/M immediately to the left of what remains 0§;S;. If M = max $; for some i, thenay, (w)

is obtained by removing M and-M from their blocks (which will be the same if+ 0) and adding
a block pair M/— M immediately to the right of the remains of,§

Now suppose that M is in a singleton blockwhich implies that the same is true of-M. If the
block pairis $;-1/S; = -M/M and M > max|Sy 1| then add M to S+ 1 and —M to Sy, to form
(o). If the block pair is S;_1/S; = M/~MandM > max|S,_;| then uy(w) is obtained by
adding M to $;—, and —M to the same block if 2i— 2 = 0 or to the block to its left otherwise.

Example 5.8tere are examples of splitting (the forward arrows) and merging (the reverse arrows)
to illustrate all of the possible cases.

(41014 23/23) €501 | 4/4 | 23/23),
(54045| 236/236 | 1/1) €=%(54045|23/23 | 6/6 | 1/1),
(54045 236/236 | 1/1) ¢=%(54045| 6/6 | 23/23 | 1/1).

The map ¢ : ¥, S§((n), k) = ¥, S((n), k) is defined exactly as in Definition 5.4 for the type A
case,merely substituting the signed splitting and merging mafs.in the previous caset is easy
to see thatg is an involution.

Theorem 5.9. Forn = 0 we have

(@) *gn. k] =1. O
k=0

Proof. A sign is assigned taw e$(<n>, k) using (34) againNow the proof continues in much the
same manner as that of Theorem 5.5 using the previous theorem in place of Theorem 5.1 and with
unique fixed pointay = (0,1, 1,2,2, . . n,n).

Note that Theorems 5.5 and 5.9 can be given algebraic proofs by settingt = 1 and then
substituting x = —g[i — 1] orx; = —g[2i — 1], respectivelyjn Theorem 2.2.
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5.2. Divisibility

The following two results are about divisibility in the ring  Z[g]. They are analogues of
Theorems 5.5 and 5.9 for larger powers ofg. Algebraically,the results here follow immediately
from the corresponding ones in the previous subsection by using the fact that

¢ = ¢ (mod ¢ — q)

form = landn > k. We will also show how they can be proved combinatorially using the
sign-reversing involutions already developed.

Theorem 5.10.Form > 1 and n = 0 we have

2
(_1)n—kqm(n—k)50[n’ k] =1 (modd' —q).

k=0

Proof. Let o be the sum under consideratiofhen clearlyo has constant term 1 so thad —1 is
divisible by g.We must also show that it is divisible byt — 1.
By Theorem 5.1we can write

o= (Sgnw)dn(nfkh invew
WwEYS°([n], k)

where the sign is given by (34). Recall that=(1, 2, . . n),is the only fixed point of the involution
@ on S°([n], k) and that its contribution to the previous sum is 1. So we need only modify the
demonstration of Theorem 5.5 by showing thédy non-fixed pointsw €S°([n], k) of ¢, the sum of
the contributions ofw and ¢(w) is divisible by §"~* — 1.

We will just give details whenp appliesy. But theng(w) has k— 1 blocks and, as in the proof
of Theorem 5.5,inv@(w) = invw —1. So, up to sign, the contribution of these two ordered set
partitions is

qm(n—k)+invw _ q.m(n—k+ 1)+invaw—1 — (1 _ C/n—l)qm(n—k)+invw
as desired. O

The type B analogue of the previous result is obtained by modifying the proof of Theorem 5.9.
Since this is similar the modification of the demonstration of Theorem Wwé,omit the details.

Theorem 5.11.Forn = 0 we have

(=1 *qm0g[n, k] =1 (modd' —q). O
k=0

6. Coinvariant algebras

In this section we will propose analogues of the Artin basis for certain super coinvariant algebras
in types A and BIf these sets can be shown to be basében it will follow that the corresponding
bigraded Hilbert series can be expressed in terms of ordered g-Stirling numbeBince our bases
are new even in type Awe will deal with that case first and then move on to type B.

6.1. Type A coinvariants

Consider the kth power sum symmetric polynomial

pe(n) =X+ X+ - - K

n
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IN

Fig.1. The diagram ofa =(0, 1, 2, 1, 3) contained in the staircase (@, 2, 3, 4).

Definition 6.1.The type A coinvariant algebra is the finite-dimensional commutative algebra
. Qlxy, .. X
" (pln) ¢ ke )
where Q is the rational numbersThis algebra is graded by degree and we let JRdenote the dth

graded piece. We will not make a distinction in our notation between a polynom@[xn . . x,)
and its representative in R

There is a standard basis for, RWe will use it as a model for our bases in the super coinvariant
algebras we consider.

Definition 6.2.The Artin basis for R, is
An = Tlxrznz"xr:nZOSm/Si—lforiEh]},

The next result follows immediately from the fact thatis a basis for R See [62, §5] for further
history and details.

Theorem 6.3.7he coinvariant algebra R, has Hilbert series
Hilb(Ry; @) := — dim(R)g ¢ = p]!. O
d=0

There is an alternative description ofi , in terms of compositions which will be useful in the
sequel A weakzomposition of d with n parts is a sequence of nonnegative integere =(cq, . . . 5)
where |a| := ;& = d. The diagram of « consists of n columns lying on the same line withg;
boxes in column i for i€ p]. See the diagram on the left in Fig.for an exampleWe will also use
the partial order on compositions with n parts given by< fAf ¢ < fforalli € h], equivalently,
if the diagram ofa is contained in the diagram gf. This relation is also illustrated in Fid.. Every
compositiona =(cq, . . . 5) &ilas an associated monomial

X = X‘flxgz- . X
of degree d= | o The Artin basis can be described as
Ap= b a=<(0,1,..n~1).

We call (0,1, . . n;— 1) the staircase.

There is a third description oA, involving permutations in the symmetric group,. As usual,
an inversion of a permutationz = m . . .mwritten in one-line notation is a pair (jj) withi < j
andm; > m. Let

invir =#j : (i,j) is an inversion ofr |.
The inversion composition of w €S, is

1or) = (invy (), invy(), . . invp()).
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Clearly I(r) < (0,1, . . n~1).In fact,it is well-known and easy to prove that the map
I1:Sp= {a: a<(0,1,..n-1)
is a bijection.lt follows that

An= " mes,).

6.2. Type A super coinvariants

We now turn our attention to super coinvariant algebras.Let 6, . . ., I anticommuting
variables so that
44 = -
for alli,j € p]. Note that because of anticommutivity we have

foralli € [n]. We also assume that thef} and x, commute with each otherDefine the kth super
power sum polynomial to be

sp(n) = X[ 6 + X6+ - - - K56,

Definition 6.4.The type A super coinvariant algebra is the finite-dimensional algebra
— Q[XI) : Xﬂ» 65 M fb] 6
(pi(n), sp-1(n) : ke h])’

This algebra is bi-graded where we let (§8 denote the graded piece with monomials which are
of degree d is the x’s and degree e in th#s.

Zabrocki[66] has conjectured a description for the tri-graded Frobenius characteristic tifie
super-diagonalcoinvariant algebra ofS , involving two sets of commuting and one set ofanti-
commuting variablesSpecialized to SR, it becomes the following which explains our interest in
this algebra.

Conjecture 6.5./e ha\f‘ 5
Hilb(SRy; g, t ) := dim(SR)ge ¢°t* = S°[n, k]t"¥.

d,e>0 k=0

Remark 6.6.After this article was submittedRhoades and Wilson [50] announced a proof of the
Hilbert series formula in Conjecture 6.5, in part using refinements of arguments from [62]. Attempts
to extend the approach to the basis belowpnjecture 6.8have so far proven unsuccessful.

We will now propose an analogue of the Artin basis for SR,. Note that by (36), nonzero 6
monomials must contain at most one copy of eadh. So such monomials are indexed by subsets
T < p] and we let

G = 6,6, -0
whereT= {t; <t, < - - <]. Letting
[a,b] = g a+1, .. b}

fora, b € Z, we will only need TS [2, n] for our proposed basis. Given such a subset we define the
o-sequence of T ,a(T ),to be the composition constructed recursively by letting(T )= 0 and, for
i€ R, n],
_ 0 ifieT,
The diagram of an example af(7T ) will be found in Fig2.
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e(T) = (1, 1, 2, 1)

T— {2, 4, 6, 7, 9}

Fig.2. The compositionse(T ) ande(T) whenn=9and T = {2,4,6,7, 9}.

Definition 6.7. The super Artin set for SR, is
SA,= K6 : TS R,nlanda < T ).

A different description of this set was independently discovered by a group of mathematicians
associated with the Fields Institute including Nantel BergerShu Xiao Li,John MachachekRobin
Sulzgriber,and Mike Zabrocki [65].

Conjecture 6.8.7he setSA , is a basis for SR,.

This conjecture has been verified using Macaulay?2 [30] fat 6. While the classical Artin basis
is the standard monomiabasis for any monomialorder withx; > x; > - - -> x, (see [62,§5]),
calculations by the Fields Institute group have shown that under reasonable assumptions the same
cannot be true ofSA .

It will be convenient to think ofa(T ) as an elongated version of the staircaBer examplethe
composition in Fig.2 is the staircase (0 1, 2, 3) stretched out by adding a column of length Oa
column of length 1, two columns of length 2, and a column of length 3. Formally, supgoRe ]
with #T = n — k. We then define the associated expansion compositione(T ) = (e1(T) . . . k(Te))
where

g(T)=#ieT : q(T)=j—1}.
Returning to our examplewe have e(T )= (1, 1, 2, 1) corresponding to the bold line segments in
the diagram fora(T ).Note that| T ) =n — k.

Proposition 6.9.Conjecture 6.8 implies Conjecture 6.5.

Proof. Assume thatSA , is a basis for SR For fixed TS 2, n] with #T = n — k, the description of
the expansion compositiore(T )= (€1, 6, . . .«) ghows that the monomials inSA , whose theta
component isfr contribute

[1]a*1[2]@*t. - k[o+D = K[1]9[2]2- - K]%

to the g-grading in Hilb(SR; g, t ).Summing over all such T gives a contribution of
(KIthn—i([2], 2], . . kD)= S°[n, k].

Since 6 has degree 7 for these T the proof is complete. [

There is also a way to express the elements oA , by using inversions in type A ordered set
partitionsw =(S/S,/. . ). of [n], for which we write @ |=n]. Given s€ h] we define

invsw =#5 : (s §) €lnva) (37)
where Invw is defined by (33)From this we get the inversion composition
nw) = (inv, @, inva @, . . iny, w). (38)
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We also need the set
Tw) =€ h] :tesforsomeiandt> m (39)

where m; = min |§|. Note that the absolute value is not needed here since all elements pfage
positive. Also, it is impossible ford T ). But this description will permit us to use the exactly the
same definition in type B where the absolute value is needed a&d ) is possible. For example,
if o =(5/5/%) = (25/136/4) then inw, w = 1 because of §, invs w = 2 because of $ and &,
invg w =1 because of § and invs w = 0 for all other values of sso thatn(w) = (0,1, 0, 0, 2, 1).
Furthermore,T @) = (3, 5, 6/.

Proposition 6.10/Ve have
SAp = &'7(01)9”0) T |:n|]},

Proof. It suffices to define a weight-preserving bijection from the pairs (T, g appearing in
Definition 6.7 to thew |= #]. Given (T, d we construct w inductively as follows.We start with

w =(1) and insert the numbers,3, . . njn order according to the following rules when it comes
to inserting k.

1. If k € T then put k in the existing block ofv so that exactlyox new inversions result.
2. If k € T then make k a new block ofw so that exactlyo, new inversions result.

It is routine to verify that this is a well defined map and to describe its inverse, so those details are
left to the reader.

Example 6.11.The reader will note how the preceding proof mirrors the standard combinatorial
demorftration that

g™ = fg]t.
7€Sh
To illustrate the construction in the proof of this result, suppose thatn = 5, T = {3, 5}, and
a =(0,1,0,2,1). The sequence of ordered partitions constructed is
(1), (2/1), (2/13), (4/2/13), (4/25/13).

For examplewhen 4 is inserted into (213),then,since 4€ T ,it will appear as a singleton block.
Sinceay = 2, it must be the first block to cause two inversiorSimilarly,when 5 is insertedthen
5 € T forces this element into one of the existing block#. 5 is to cause one new inversion then
it must be in the second block from the righfThe a-sequence of T is simply the sequence of the
maximal number of inversions one could possibly cause at each step.

Our inv statistic, or equivalently Steingrimsson’s ros [59]geffectively numbers the possible
insertion positions ““from right to leftstarting at 0.0ne may get equidistributed variations on the
inv statistic by changing this numbering scheme. Using the left-to-right order yields Steingrimsson’s
los [59],0r equivalently (in the unordered case) Cai-Readdy’s wgt [13] which is Wachs-White’s Is
up to a g-shift [63].

6.3. Type B super coinvariants
We now consider coinvariant algebras in type B.

Definition 6.12. The type B coinvariant algebra is the finite-dimensional, graded,commutative
algebra

_ Qlx1, . . Xa)
(p2ln) : ke p)’
The analogue of the Artin basis in this context is as follows.

RB,
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Fig.3. The double staircase (13, 5, 7).

Definition 6.13.The type B Artin basis for RB, is
Bh= K* : a<(L3,..25-1).
We call the composition (13, . . 2p — 1) the double staircase and it is displayed in Fig.3 for

n = 4. Again,the Artin basis trivializes the computation of the Hilbert series.

Theorem 6.14.7he coinvariant algebra RB,, has Hilbert series
Hilb(RB,; @) = Rn]!!. O
Swanson and Wallach [62] considered the type B super coinvariant algebra where one adds

anticommuting variableg,, . . ., which again commute with thes.

Definition 6.15.The type B super coinvariant algebra is the finite-dimensional,bigraded,algebra
Qx1, . . Xn)

(pak(n), spy-1(n) : ke h])’

As for the super coinvariant algebra in typet#he Hilbert series is only conjectural.

SRB, =

Conjecture 6.16 ([62])VZV9 have

Hilb(SRB;q.t)=  Sa[n, k]t" X
k=0

Remark 6.17. Haglund-Rhoades-Shimozono [31] defined ‘‘generalized coinvariant algelftas’’
extending the type A coinvariant algebrdheir main result and easy cases of the Delta Theorem
give

revg Hilb(Ry «; ) = S°[n, K].
Here rey, reverses the coefficients of a polynomial with non-zero constant term. Chan-Rhoades [16]
further generalized the construction in [31]by producing generalized coinvariantalgebras Fg,:

associated to the wreath productZ, S, (ther is suppressed in their notation),including type
B whenr = 2.

Proposition 6.18WVe have revy Hilb(R’); q) = S3[n, kl.
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T = {1, 3, 4, 6, 9}

Fig.4. The compositions(T) andg(T) whenn=9and T = [1,3,4,6,9).

Proof. After accounting for g-reversal§16,Cor.4.11] gives

s )
rev,Hilb(R2: @) =~ o (2l K e !Seln — 2, K
z=0

One may check directhyif laboriously,that the right-hand side satisfies the ordered version of the
recurrence (12) and its initial conditions[]

We have a set of elements of SRBhich, if they form a basis, will verify the previous conjecture.
To define the analogue of the~sequencejt will be convenient to use the notatiorny(S) which is
1 if the statements is true, or 0 if it is false.Let the B-sequence of TS [n] to be the composition
defined recursively by5:(T )= 1€ T) and

BT)= BuTH x(igT)+ xli—1€T)

fori € R, n]. Fig.4 contains an example.

Definition 6.19. The super Artin set for SRB, is
SAB, = kG : TS planda < gT}.

We conjecture thatSAB is, in fact,a basis.

Conjecture 6.20.7he setSAB j is a basis for SRB,.

Similar to type A, the compositightiT ) can be considered as an expansion of the double staircase.
Let T € |p] with #T = n — k. The type B expansion composition is ¢(T )= (¢o(T) . . . x(T)) where

g(T)=#ieT : B(T)=2j.

Fig. 4 also lists the expansion composition for the given n and TSo ¢(T ) is just the number of
columns of (T ) of height 2jlt is not hard to see that removing all the even height columns from
B(T ) leaves a copy of the double staircase31. . 2k — 1) and thus|@T ) =n — k.

Proposition 6.21onjecture 6.20 implies Conjecture 6.16.
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Proof. Suppose TS |n] with #T = n — k. The discussion ofp(T )= (¢u, . . . ¥) fust given shows
that the monomials irBAB , whose theta component i§- have a factor of2k]!! from the columns
corresponding to the double staircasand a factor of[1]%0[3]71 - - -2k + 1]% from the column of
even lengthSumming over all such T gives a contribution of

[2k]Mh,_([1], B], . . .2k} 1]) = S[n, k).
to the g-grading.Now the fact thatér has degree 7 for these T completes the proof.[]

For the description ofSAB in terms of ordered set partitionsv we will use the same notation
as in type A. This will cause no confusion because itwill be clear from context whether the
necessary functions are being applied to a partition which is type A or typ&&write w |=n{ if
o =(8/S/S/. . ) is an ordered set partition ofn). The definitions (37)(38),and (39) carry over
to type B without changefor examplejf we havew =(011|4/4 | 23/23) thenn(w) = (0,0, 1, 3)
and T ) = {1, 3}.

Proposition 6.22)Ve have
SAB, = "6 : © |=nf).

Proof.As in type A, it suffices to define a weight-preserving bijection from the paisal@pearing
in Definition 6.19 to the |=n). Given (T 9 we constructw by starting withw =(0) and inserting
the numbersx1, #2, . . . pin order according to the following ruledlote that the position of k
forces the position of—k so that either both are in the zero block ork is in the block paired to
the one containing k.

1. If k € T then put k in the existing block ofw so that exactlyox new inversions result(The
forced insertion of—k will not cause any new inversions in this case.)

2. If k € T then make k and —k a new pair of blocks of w so that exactlya, new inversions
result.

As before,details that this map is well defined and invertible are straightforward and so omitted.
Example 6.23.5uppose thatn= 3,7 = (2,3}, and a = (0, 1, 2). We start with @ = (0). Since

1 ¢ T ,we must add 1 and 1 as separate block#And ¢z = 0 means that no inversions are to be
created so that now

o =(0]|1/1).

We have 2 € T so it must be placed in a block with other elementslt must createa, = 1 new
inversion.This forces 2 into the block with 1 and also 2 into the block with 1 resulting in

o =(0|12/12).

Finally,3 € T so T will go into one of the existing blockslt must createas = 2 inversions and so
must reside in the zero blocKt follows that 3 is also in § and we finally have

o =(033]|12/12).
7. Comments and open questions
In this section we collect various comments and open questions raised by the present work.
7.1. Complex reflection groups

If G is any complex reflection group, then one can define Stirling numbers of the first and second
kind for G using the Whitney numbers of the first and second kind, respectively, for G’s intersection
lattice analogous to Theorem 3.22 in type B. It follows from the work of Shephard and Todd [56] that
the Stirling numbers of the first kind can be expressed as elementary symmetric polynomials in the
coexponents of GFor the Stirling numbers of the second kindhe situation is more complicated
and this approach is explored in [55].
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7.2. Major index for signed permutations and super coinvariant bases

We showed in Definition 3.2 thatgn, k] can be viewed as the generating function for both an
inversion and a major index statistic on signed partitions. By contrast, only an inversion generating
function was given for cg[n, k] in Theorem 3.18. It would be interesting to find a major index
analogue for permutations in type B.

In another direction,the Artin basis in type A has a well-known ‘“major index analogue’the
Garsia-Stanton basis

I |
L Xﬂ(l)’ . X_,T(,') . O ESjJ .
i€Des(t)

See [27].Adin-Brenti-Roichman [1] gave a type B analogue of the Garsia-Stanton basis using the
flag-major index of Adin-Roichman [2]. It would be interesting to give conjectured super coinvariant
extensions of these bases in types A and B.

7.3. Coxeter group statistics

In this paper we have concentrated on using an inversion-like statistic for the g-Stirling numbers.
But there are many statistics related to Coxeter groups which might have interesting interpretations
in this contextFor examplespne could consider reflection lengthpsolute lengthor left-to-right
minima. Drew Armstrong’s memoir [4]provides a good exposition ofthese ideas.See also the
papers of Athanasiadis and Kallipolit[5], Barnard and Reading [8]Reading [46],and Regev and
Roichman [47].

7.4. g-Difference equations

The generating function

)2
Cc= c[n, k]tki

[n]!

in Theorem 4.4 satisfies the first-order linear g-difference equation

D,C © _ 0 (40)
q 1-x ( [ )
where C(0,t) = 1. The classicalsolution of y’ + p(x)y = Ogivenbyy = exp —  p(x)dx
generalizes to g-difference equatipnqusing Gﬂassel's g-composition and g-chain riiegoarticular,
ifDgY + P(x)Y = 0,thenY = exp — P (x) gx , where we have used the g-antiderivativédirom
(40),C = exp[—tlog,(1 — x)].
Now consider

n,k=0

X"
= ca[n, kjtk —.

[n]!

Using manipulations similar to those in the proofof Theorem 4.4,0ne may show Cz obeys the
following second-order linear g-difference equation.

n,k=0

Lemma 7.1.We have
XqP(1— q)DiGs + (1 —q(1+ q)x)D,Gs — (1+ 1)Cs = 0 (41)

where Cg(0,t )= 1.

1+t Y2

When g = 1, this becomes a first order differential equation with solutios k)¢
an alternate proof of Theorem 4.1(d).

, giving
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We are unaware of techniques which allow us to solve general second-order linear g-differential
equations in terms of well-known operations. However, we may rewrite (41) as a first order
equation using the g-pre-composition operator Q (F (x)¥ F (gx):

DyCs — qxDy(1+ Q)G — (1+ t)Cg = 0.

If we replace Q with g (i.e. post-multiply by g rather than pre-multiply by g), we may solve
the resulting g-differential equation using the methods of the previous paragraptnich may be
considered as a “‘first approximationf Gz. More explicitly,we have

(1—-q(l+ q)x)D,Gs — (1+ t)Gz = 0

where [ ]
1+t

Gs = exp, “dar o logy[1 — g(1+ g)x]

When g = 1, we again recover Theorem 4.1(d)Since a wide variety of specialfunctions satisfy
second order linear differential equatiorsglving (41) in a recognizable way would be interesting.

7.5. Sign-reversing involutions

In Section 5.1 we gave combinatorial proofs of the alternating sums involving $[n, k] and
S3[n, k] using sign-reversing involutiondVe also showed how these equations were special cases
of the symmetric function function identity in Theorem 2.3%yhere that result was demonstrated
by algebraic manipulationCan Theorem 2.2 itself be proved by sign-reversing involution?

7.6. Log concavity
Partially orderR[x] by letting f (x)< g (x) if g (%)~ f (x) € R*[x] where R* is the nonnegative
reals.A sequence of polynomials dfx) k=0 = fo(x). f1(x). f2(x) - -is said to be x-log-concave if
fe(x)’ = fe—1(3¢) e+ 1(x)
for all k > 0. Call the sequence strongly x-log-concave if
fi(x)fi(%) = fe—1(x)f+ 1(x)

forall/ = k > 0. Clearly strong x-log concavity implies x-log concavitipe converse is not true in
general,although it is well known that it does hold if the polynomials are all positive constalnts.
the case of a sequence of constantge say that it is just log-concave.

The following is a corollary of Theorem 2.6 in [52].

Theorem 7.2. If the sequence X 1, X2, X3, . . IS strongly x-log-concave then so are the following
sequences

(ex(nn=o and  (hi(n))n=o
where k is fixed, as well as

(ex—j(n+ j))j=0 and (e—j(n+ j))j=o0
where both k and n are fixed. [

All the definitions in the previous paragraph apply when there is a single variabldigis easy
to see that the sequencél],, R]q, Blg, - - is strongly g-log-concaveSo any subsequence will be
as well. Combining this factthe previous theoremand parts (a) and (b) of Theorem 2.1 give the
following result.

Corollary 7.3For fixed n, the sequences (§[n, k])k=0 and (cs[n, k|)k=o are strongly g-log-concave. [
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A condition that is implied by log concavity for positive integer sequences &, a;, . . ap is
unimodality which means that there is some index m such that
G=<ar=<...a&=aps1= " .

So, one may ask if the sequences of coefficients of the polynorfriald Sg[n, k], c[n, k], or g[n, k]
are unimodal or even log-concave for each particular choicekofUsing a brute-force computation
for n, k < 50, we have the following conjecture.

Conjecture 7.450r each n, k, the coefficients of Sn, k| and c[n, k| are log-concave and positive, hence
unimodal.

In type B, the coefficients are not necessarily even unimod@he first counterexamples are as
follows:
S[6, 4] =15+ 24q+ 34¢f + 384 + 434" + 42 + 43¢ + 38 + 354
+ 260° + 20q'° + 144" + 10¢'%2 + 6¢ + 4¢'* + 2¢%° + 'O
cs[7,5] =21+ 36g+ 51¢ + 60¢° + 704" + 74 + 79¢ + 784 + 794
+ 749 + 71q"° + 62¢"* + 5642 + 44¢"3 + 35¢"* + 264" + 20q'°
+ 14¢"7 + 10g'% + 6¢'° + 4¢°° + 271 + ¢*2
A sequence g, ai, a, . .is parity-unimodal if a ¢, @, a4, . .and &, as, as, . .are each unimodal.
See the article of Billey Konvalinka,and Swanson [12§9] for additional instances of this notion.

Inspired by this definition,we say that such a sequence is parity log-concave if &), a,, a4, . . and
ai, as, as, . .are each log-concave and similarly for parity unimodal.

Conjecture 7.5.For each n , k, the coefficients of Sg[n, k] and c g[n, k] are parity log-concave and
positive, hence parity unimodal.

Another common property of a sequenceaa;, ay, . . a, is that it is symmetric meaning that
ax = a,_x for all k € p]. From the examples abovat is clear that the Stirling polynomials do not
have symmetric coefficients, but there is a related condition that they seem to enjoy. A sequence is
bottom heavy if ax = a,_, for k < n/2. See the article of McConvill&§aganand Smyth [41] as well
as the references therein for more about the bottom heavy condition.

Conjecture 7.6[0r each n, k, the coefficients of S[n, k|, c[n, k], Ss[n, k], and cg[n, k] are all bottom
heavy.

Both of the previous conjectures have been verified by computer, fon50. A property which
implies both bottom heaviness and unimodality is being bottom interlacing which means that

< <ap1<ar = ... &np

where || is the floor function. Again, see [41] for more information about this property. The
coefficients of [, k], §n, k], as[n, k], and §[n, k] are not in general bottom interlacing. For example,
94,3] =3+ 2g+ ¢?

does not have this property.
7.7. Asymptotics

A sequence of real-valued random variabl&s, X,, . .is asymptotically normal if the sequence
of standardized random variables’, X, . . converges in distribution to the standard normal
distributionN (0, 1). More explicitly,this means that for all t€ R,

Xy — o
limp 24 ¢ = x/?exp(—xz/Z)dx
JT

n->ow ();7 —w
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In order for X;* to be well-defined,we must assumeX; does not have the degenerate distribution
with variance 0 supported at a single poinfhis is only a minor inconveniencesince degenerate
distributions are normal with variance 0 and are ““morally” if not technically asymptotically normal.

We say tha§a sequence of non-zero polynomials(8), P.(q), . . with non-negative real coeffi-
cients (q) = ., an(k)g~ is asymptotically normal if the sequence of random variables defined
by P[X, = k] =a,(k)/P,(1) is asymptotically normalnformally, plotting the list of coefficients of
Pn(q) for large n must give a bell-shaped curvé&ee e.g[12,82.4,84.1] for further discussion and
an example. 5 3

The polynomials pn(q) =~ ,.oc(n, k)d and Pa(q) = ., S(n k)g* were shown to be
asymptotically normalby Bender [9] and by Harper [32], respectively.lt is natural to ask for
asymptotic estimates ofhe coefficients ofg-Stirling numbers analogous to these classic results,
which we have been unable to find in the existing literature. We content ourselves with the
following simple case whose proof is an easy application of Bender’s well-known result involving
bivariate generating functions.

Theorem 7.7. FiXxk € Z.. The coefficients of S[n, k] when k > 2, and of Sg[n, k] whenk > 1 are
asymptotically normalasn -» oo .

Proof. As we saw in Section 2.1the generating functions are

hX xk

nzoS[n’ K= (1— Lhod— Rlx)- - €1 - k)
and
> XX
nz0 S = T maa - B @ ek 0

Each is of the form g(xq)/P (xq) where

1. P (xq) is a polynomial in x with coefficients continuous in g,

2. P(x1) has a simpleroot atr = 1/korr = 1/(2k+ 1) with all other roots having larger
absolute value,

3. g(x, g) = X is entire,and

4.g(rb1)+ 0.

The distributions are non-degenerate for n large whenxk 2 in type A and when k> 1 in type B.
The result follows from [9Ex. 3.1,p.95] (which inadvertently neglects the/= 0 condition). [J

A direct analogue of§Theorem 7.7 for thezq—StirIing numbers ofthe first kind would require
explicit expressions for~ ., cln, k]x"/n! or — . cg[n, k]x"/n!, which we do not have.In a com-
plementary direction, the distributions of the coefficients [of, 8 — k], S[n, n — k], c[n,n — k], and
cgln, n—k] for fixed k as m o appear to be non-norgal, e.g. wher=k]l the limitigg standardized
distribution in each case is the triangle with density (2 — x)/9 for — 2 <x<2 2.

Based on computational data, the coefficients of the g-Stirling numbers of both kinds and in both
types all appear to be ‘“generically asymptotically norm@Hhé following conjecture is one way to
make this intuition precise.

Conjecture 7.8.5Uppose n k = oo insuch a way that k /n > « forsome 0 < a < 1. Then the
coefficients of S[n, k], Sg[n, k], c[n, k], and cg[n, k| are all asymptotically normal.

More strongly, the coefficients ofrs k], Sg[n, k|, c[n, k], cg[n, k] appear to tend towards a “‘limit
shape’’. See Fig. 5 for an example wifh,%]. Note that the slices for fixed k appear to be parabolic
near their maximum,consistent with asymptotic normalityat least for k not close to O orn. It
would be interesting to find the limit shape precisely in each case. It would also be very interesting
to develop tools for proving limit shapes of the coefficients arising from recursions similar to (2),
perhaps by exploiting their g-difference equations.
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Fig.5. Plots of log(q)/Sin, k]) as a function of k and j for n = 25 and n = 100.

7.8. Graded Euler characteristics

By {62],the alternating sumi ( )
X
(=1 kg""N[n, k] —1 and (=1 *qmrNgn, k] -1
k=0 k=0
are conjecturally graded Euler characteristics of chain complexes obtained by applying generalized
exterior derivatives to super coinvariant algebras in types A and&pectivelyWhen m = 1, the
complexes in question use classical exterior differentiation and are an algebraic analogue of the de
Rham complexOne of the main results of [62] shows that the complex is exact in this casad
correspondingly the n= 1 alternating sums are 0.
The following specific alternating sum appears to exhibit significant structure.

Conje(:ture 7.97he polynomial )

(=1 PSn, k] -1 (42)
k=0
is palindromic ignoring signs, with the same number of positive and negative coefficients, and where the
lower-degree half of nonzero coefficients are positive and the rest are negative.
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Table 1
The n =7 and n = 8 cases of (42) and the 8th and 9th rows of [43A050176].
oo =1V * PR n, k] —1 (n+ 1)st row of A050176
—6¢" — 14¢ — 140" + 14¢ + 14¢ + 6g+ 1 1,6,14,14,14,14,6,1
~7¢f —20q — 28 — 14¢ + 144 + 28¢ + 20¢? + 7q+ 1 1,7,20, 28 14,28,20,7,1

The coefficients of (42) in fact appear to be slight variations on [44050176].See Table 1 for
examples.
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