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Abstract— Dynamic simulation of a power system involves
the solutions of many nonlinear differential-algebraic equations
that are computationally expensive. While quasi steady state
approximation methods are computationally efficient, they can-
not capture many power system phenomena such as controller-
induced instabilities. Recently, Backward Euler Method (BEM)
has been used to produce a coarser approximation of the
ground truth (obtained from Trapezoidal method) at a lower
computational effort. However, no fundamental analysis exists
in the literature for understanding the properties of BEM in
presence of saturation nonlinearity in a dynamical system. This
paper mathematically investigates the properties of BEM when
applied to a 1−dimensional and a 2− dimensional system with
saturation nonlinearity. Our analyses show that besides hyper-
stability, unlike in a linear time-invariant system, BEM can also
suffer from hyperinstability in a system with saturation. Based
on the mathematical analyses, qualitative recommendations are
presented for adaptively varying the stepsizes of BEM such
that the solution can resemble the ground truth in an averaged
sense at a significantly lower computational cost. BEM with
adaptive stepsize variation is applied to simulate (i) a single-
generator system (with saturation nonlinearity in the governor’s
dynamics) feeding a standalone load and (ii) a 6-bus system with
a synchronous generator and inverter-based resources having
saturation nonlinearity. It is shown that by adaptively varying
the stepsizes based on the presented recommendations, BEM
can produce the same end result as in the ground truth while
consuming significantly less cpu time.

I. INTRODUCTION

Simulation of power system dynamic models is necessary
to conduct several studies during offline planning and online
operations including long term voltage stability assessment
(offline), cascading failure simulation (offline) and dynamic
security assessment (online). Such simulations require the
solutions of many nonlinear differential-algebraic equations
(DAEs) that are augmented with a discrete variable z as
shown in (1)-(3).

ẋ = f(x, V, z) (1)
0 = I(x, V, z)− YN (z)V (2)
0 ≻ h(x, V, z) (3)

The variable x ∈ Rn is the state vector, V ∈ Rm represents
the vector containing the real and the imaginary components
of the bus voltages, z ∈ Zp is an implicit variable whose
entries are either 0 or 1 that indicate the status of the circuit
breakers operated by the relays, I ∈ Rm represents the real
and the imaginary components of the current injection in the
buses, YN ∈ Rm×m is the admittance matrix of the network
in its real form (i.e., separating the real and the imaginary
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parts of the equations) and h : Rn×Rm×Zp → Rq models
the constraints that define the operation of the relays.

Given the initial conditions (x0, V0, z0) ∈ Rn ×Rm × Zp

at time t = 0, the objective of dynamic simulation is to
determine x and V over a simulation period. Note that z is
an implicit variable that changes only when (3) is violated.
Hence, unless (3) is violated which otherwise can bring in
discontinuities (see [1] on handling discontinuities), dynamic
power system simulation involves finding the solutions of the
DAEs of the form (1)-(2).

DAEs of the form (1)-(2) can be solved using implicit
numerical integration methods that transform the ordinary
differential equations (ODEs) of the form (1) into algebraic
equations at each time step of the numerical simulation
and then the resulting set of nonlinear algebraic equations
is solved along with (2) at each time step using nonlinear
solvers. To this end, different implicit numerical integration
methods have been proposed in literature [2] for accurate
time domain simulation of power systems. Among these
techniques, the trapezoidal method (TM) is widely used
for accurate simulation of power system dynamic models
(referred as ‘ground truth’ in this paper). However, accurate
simulation of power system dynamic models involves a
significant computational burden, which often limits the
application of the existing numerical methods for online
studies such as dynamic security assessment (DSA) of power
systems. Due to the several possible combinations, this
massive computational effort poses an obstacle even for
offline contingency studies such as N−k contingencies when
k is relatively large. This is relevant for cascading failure
simulations where the initiating failure size k is larger than
2. The problem is further exacerbated in modern power grids
with growing inverter-based resources (IBRs) that give rise
to a significant increase in dynamic states and numerical
stiffness. This motivates the need for faster simulation of
dynamic models of power systems.

To enable long-term voltage-stability analysis and statisti-
cal analysis of cascading failure, Quasi Steady State (QSS)
approximation of the full dynamic model of a power system
has been proposed in the literature. While computationally
efficient, the limitations of QSS approximation are two-fold.
Firstly, typical AC-QSS models [3] fail to capture the voltage
threshold-based undervoltage load shedding (UVLS) relays
in practical systems [4], [5] since most of the time, the
models cannot generate an equilibrium below the voltage
threshold due to divergence. Therefore, such models may
produce completely different results from the ground truth.
Secondly, AC-QSS models cannot capture angle, frequency,
and controller-induced instabilities.

Instead of simulating a simplified model obtained by QSS
approximation of the full dynamic model that suffers from
the aforementioned limitations, producing a coarse approxi-



mation that neglects the finer details of the ground truth can
be sufficient in many applications. For example, accurate
tracking of the electromechanical oscillations may not be
of significant interest during long term voltage stability
assessment or cascading failure studies. Similarly for DSA,
typically (N − 1) contingency is studied and it suffices if
it can indicate the stability of the post-disturbance condition
and any impending relay actions after 20-30 s. In summary,
accuracy can be partially compromised in multiple applica-
tions which in turn can be exploited to obtain simulation
speedup. While less accurate than the detailed simulation of
the full dynamic model, this approach does not suffer from
the above limitations, thus outperforming the QSS method.

Backward Euler Method (BEM) is an implicit integration
method that can enable faster dynamic simulation of power
systems, thanks to its stiff decay property [6]. The stiff decay
property of BEM allows itself to ignore the oscillations in
the ground truth by adopting large time steps during the
simulation. At the same time, BEM can significantly preserve
the coarser information contained in the ground truth. As a
consequence, the advantages obtainable from the application
of BEM in dynamic simulation of power systems are two-
fold. First, it can significantly reduce the computational
burden associated with the accurate simulation of the full
dynamic model of power systems. Second, BEM can track
the response of a power system in an averaged sense which
lends itself to a variety of power system studies. Due to these
advantages, BEM has been used in [7], [8] for fast cascading
failure simulation of power system dynamic models.

However, to the best of our knowledge, no fundamental
analysis exists in literature for understanding the properties
of BEM in presence of saturation nonlinearity in a dynamical
system. Saturation nonlinearity is often observed in power
systems, for example, in dc side current limitation of IBRs
and their ac-side current control, and also in the automatic
voltage regulator (AVR), the power system stabilizer (PSS),
and the governor in synchronous generators. Hence, inves-
tigations on the application of BEM for faster simulation
of power systems in the presence of saturation nonlinearity
requires immediate attention.

The key contributions of this paper are:
• Analytical treatment is presented to analyze the proper-

ties of BEM when applied to a 1- and a 2-dimensional
dynamical system with saturation nonlinearity.

• Based upon the mathematical insights, qualitative rec-
ommendations for adapting the time steps of BEM are
presented.

• Case studies on power system dynamic models with
SGs and IBRs highlight the validity of our analysis.

II. OVERVIEW OF BEM
BEM is a one-step, implicit, first-order numerical integra-

tion method that discretizes an ODE of the form (1) to form
an algebraic equation of the form

xn+1 = xn + hf(xn+1, Vn+1) (4)

Once discretized, (4) is solved along with (5) to obtain the
solutions xn+1 and Vn+1 at time t = tn+1.

I(xn+1, Vn+1)− YNVn+1 = 0 (5)

In (4), h > 0 is the time step used to discretize (1) such that
h = tn+1 − tn ∀n ∈ Z≥0 and t0 = 0 is the starting time of

the simulation. Since z is an implicit variable, we have not
explicitly shown the dependence of f , I and YN on z in (4)
and (5) along with the rest of this paper.

A. Newton’s iterations
Determining xn+1 and Vn+1 at t = tn+1 requires solving

the nonlinear algebraic equations given by (4) and (5).
Typically, the Newton’s method is used for this purpose.
At the (k + 1)th iteration corresponding to t = tn+1, the
mismatch is calculated as

m
(k+1)
n+1 =

[
x
(k)
n+1 − xn − hf(x

(k)
n+1, V

(k)
n+1)

I(x
(k)
n+1, V

(k)
n+1)− YNV

(k)
n+1

]
(6)

where x
(0)
n+1 and V

(0)
n+1 are the initial guesses of the solutions

at t = tn+1. Then, the update vector is calculated as[
∆x

(k)
n+1

∆V
(k)
n+1

]
= −(J

(k)
n+1)

−1(m
(k+1)
n+1 ) (7)

where J
(k)
n+1 is the Jacobian matrix at the (k+1)th iteration

corresponding to t = tn+1. The solution is then updated as[
x
(k+1)
n+1

V
(k+1)
n+1

]
=

[
x
(k)
n+1

V
(k)
n+1

]
+

[
∆x

(k)
n+1

∆V
(k)
n+1

]
(8)

This process is stopped when ||m(γ)
n+1||∞ < ϵ at some

iteration γ where ϵ > 0 is the tolerance for convergence.

B. Absolute stability property
To assess the absolute stability property of BEM, the

standard approach is to consider the test equation ẋ = λx
where λ is a complex number. The absolute stability region
of BEM is the region in the complex hλ plane such that if
BEM is used to solve the test equation with hλ belonging
to this region, then |xn+1| ≤ |xn| ∀n ∈ Z≥0. By applying
(4) to the test equation, we obtain xn+1 = 1

1−hλxn. Hence,
the absolute stability region of BEM is the entire left half
of hλ plane in addition to the portion of the right half plane
that lies outside the unit circle centered at (1, 0). Since the
absolute stability region of BEM contains the entire left half
of the hλ plane, BEM is A-stable [6].

C. Stiff decay property and Hyperstability
If h → ∞, then | 1

1−hλ | → 0 and hence it can be
concluded from section II-B that |xn+1| → 0. This property
of BEM is called the stiff decay property. The stiff decay
property of BEM implies that if BEM is used with large time
steps, then BEM can ignore the oscillations in the ground
truth (if any) while converging to the equilibrium of the
system. As a consequence, if the ground truth has stable
and decaying oscillations, then BEM can converge to the
stable equilibrium. Thus, BEM can produce the same end
result as in the ground truth at a lower computational cost.
Hence, unless the stable oscillations in the ground truth are of
practical interests, BEM can be a promising method for faster
simulation of power system dynamic models represented by
DAEs of the form (1)-(2). However, if the ground truth has
unstable oscillations (i.e., when Re(λ) > 0), then stiff decay
implies that BEM converges to the unstable equilibrium.
Thus, BEM fails to capture the instability of the ground
truth when the stepsize used in the numerical simulation



exceeds a certain value. Popularly known as hyperstability,
this is a major drawback associated with BEM since it
prevents the adoption of large time steps (which is required
to obtain simulation speedup) when the ground truth has
unstable oscillations. It can be mathematically shown that
the hyperstability situation can be avoided by choosing a
stepsize that is less than hM = 2Re(λ)

|λ|2 .

III. APPLICATION OF BEM IN DYNAMICAL SYSTEMS
WITH SATURATION NONLINEARITY

A. One-dimensional system
Consider the one-dimensional system

ẋ = λc sat
(x
c

)
(9)

where x ∈ R, λ ∈ R \ {0} and c > 0. The sat(·) function is
defined as:

sat(u) :=
{

u if |u| < 1
sgn(u) if |u| ≥ 1

(10)

where sgn(x) represents the signum function. The discretiza-
tion of (9) using BEM gives

xn+1 = xn + hλc sat
(xn+1

c

)
(11)

where xn+1 is the solution obtained from BEM at t = tn+1.
Proposition III.1: The origin of (9) is globally asymptoti-
cally stable if and only if λ < 0.
Proof: Necessity: Global asymptotic stability implies local
asymptotic stability which implies λ < 0.
Sufficiency: Define V (x) = 1

2x
2 ∀x ∈ R \ 0. Then, V̇ (x) =

xẋ = λcxsat
(
x
c

)
. Clearly, if λ < 0, then V̇ (x) < 0 ∀x\{0}.

Thus, the origin of (9) is globally asymptotically stable. ■

Proposition III.2: BEM converges to the origin for all
admissible stepsizes h > 0 if λ < 0 in (9).
Proof: It is known from the existing literature on BEM [9]
that if there exists a quadratic Lyapunov function V (x) that
satisfies V̇ (x) < 0 along the trajectory of the ground truth
∀t ≥ 0, then the solution from BEM satisfies V (xn+1) <
V (xn) for all admissible stepsizes h > 0. If λ < 0,
V (x) = 1

2x
2 is a quadratic Lyapunov function of (9). ■

From Proposition III.2., it can be concluded that if xn > 0,
then xn+1 < xn for all admissible stepsizes h > 0. Further
analysis can be conducted to show that if xn > 0, then
xn+1 > 0. Thus, if xn > 0, then 0 < xn+1 < xn. Similarly,
if xn < 0, then xn < xn+1 < 0. Thus, BEM can produce a
numerical solution that is qualitatively similar to the ground
truth for all admissible stepsizes h > 0.
Proposition III.3. Assume λ > 0, 0 < hλ < 1. Then, xn >
0 =⇒ xn+1 > xn. Similarly, xn < 0 =⇒ xn+1 < xn

Proof: Suppose xn > 0. Then, xn+1 > hλc sat(xn+1/c)
(from (11)). Hence, xn+1 ̸= 0. This implies xn+1

c sat(xn+1/c)
≥

1. Now, xn+1 < 0 =⇒ 1 ≤ xn+1

c sat(xn+1/c)
< hλ =⇒ hλ >

1 which contradicts our assumption. Hence xn+1 > 0 which
further implies xn+1 > xn (from (11)). Similar reasoning
can be used to prove that xn < 0 =⇒ xn+1 < xn ■

Thus, h < 1
λ is a sufficient condition for BEM to track

the instability of the ground truth corresponding to λ > 0.
Proposition III.4. Assume λ > 0. Once BEM enters positive
saturation (i.e., xn ≥ c but xn−1 < c) or negative saturation

(i.e., xn ≤ −c but xn−1 > −c), the instability of the ground
truth can be captured by selecting h that satisfies hλ > 1
provided the solution from the last step is used to initialize
the solution at the current step, i.e., x(0)

n+1 = xn.
Proof: Assume BEM has entered positive saturation. Then,
the initial mismatch at the current step m

(1)
n+1 = −hλc

and J
(0)
n+1 = 1. Hence, x

(1)
n+1 = xn + hλc. This implies

m
(2)
n+1 = x

(1)
n+1 − xn − hλc sat(

x
(1)
n+1

c ) =⇒ m
(2)
n+1 = 0.

Thus, xn+1 = xn + hλc > xn. Similarly, if we assume that
BEM has entered negative saturation, then it can be proved
that xn+1 = xn − hλc < xn. Thus, when λ > 0, once BEM
enters the positive/negative saturation region, the solution at
any future time (and hence any h > 0 is admissible) will be
greater/less than xn, respectively, if the solution is initialized
with the solution from the last time step. As a consequence,
once BEM hits saturation, a higher value of h satisfying
hλ > 1 can be adopted to obtain simulation speedup without
failing to capture the instability of the ground truth. ■

B. Two-dimensional system
Consider the two-dimensional system

[ẋ1 ẋ2]
T
= A

[
c sat

(x1

c

)
x2

]T
(12)

where x1, x2 ∈ R, A ∈ R2×2 such that A is invertible and
c > 0. We use xn = [x1 x2]

T

n
to denote the output of BEM

at t = tn. Then, discretization of (12) using BEM gives

xn+1 = xn + hA
[
c sat

(x1

c

)
x2

]T
n+1

(13)

Proposition III.5. If BEM converges, then limn→∞ xn = 0,
where 0 represents the origin.
Proof: From (13), we can conclude that if BEM con-
verges, then limn→∞ A

[
c sat

(
x1

c

)
x2

]T
n

= 0 =⇒
limn→∞

[
c sat

(
x1

c

)
x2

]T
n
= 0 =⇒ limn→∞ xn = 0 ■

It is seen from (13) that if xn+1 is in the linear region
(i.e., if −c < (x1)n+1 < c), then xn+1 = (I − hA)−1xn

provided h ̸= 1
λ(A) where λ(A) is an eigenvalue of A.

Proposition III.6. Suppose a22 ̸= 0. Then the origin of (12)
is globally asymptotically stable if and only if A is Hurwitz
and a22 < 0 (where aij is the element in the ith row and
the jth column of A).
Proof: Necessity: Global asymptotic stability implies local
asymptotic stability =⇒ A is Hurwitz. We prove a22 < 0
by contradiction. Assume that a22 > 0. Now, construct an
initial condition x0 = [c −a21c

a22
]T . Since |A|

a22
> 0, ẋ1 > 0

and ẋ2 = 0 ∀t ≥ 0. Consequently, limt→∞ x1 = ∞, thus
contradicting global asymptotic stability. Hence a22 < 0.
Sufficiency: Given A is Hurwitz and a22 < 0, we find
a Lyapunov function V (x) to prove the global asymptotic
stability of the origin. In particular, we use the variable
gradient method. The idea is to choose g(x) such that
g(x) is the gradient of a positive definite scalar function
V (x) and V̇ (x) is negative definite. Suppose g(x) =

[α(x)x1 + β(x)x2 γ(x)x1 + δ(x)x2]
T . For g(x) to be the

gradient of a scalar function, we want ∂gi
∂xj

=
∂gj
∂xi

∀i, j ∈
{1, 2}. Hence, we must ensure

β(x)+
∂α(x)

∂x2
x1+

∂β(x)

∂x2
x2 = γ(x)+

∂γ(x)

∂x1
x1+

∂δ(x)

∂x1
x2

(14)



Since g(x) = ∇V (x), V̇ (x) = g(x)T ẋ =
(α(x)a11 + γ(x)a21)x1c sat

(
x1

c

)
+ (β(x)a12 +

δ(x)a22)x
2
2+(α(x)a12x1+β(x)a11c sat

(
x1

c

)
+γ(x)a22x1+

δ(x)a21c sat
(
x1

c

)
)x2. To cancel the cross product terms,

we choose α(x)a12x1 + β(x)a11c sat
(
x1

c

)
+ γ(x)a22x1 +

δ(x)a21c sat
(
x1

c

)
= 0 so that V̇ (x) = (α(x)a11 +

γ(x)a21)x1c sat
(
x1

c

)
+ (β(x)a12 + δ(x)a22)x

2
2. We further

choose β(x) = β = constant, γ(x) = γ = constant and
δ(x) = δ = constant so that α(x) depends only on x1. In

particular, α(x) = −γa22

a12
−

(
βa11+δa21

a12

)
c sat( x1

c )
x1

. Then,
from (14), β = γ. Now, V (x) can be obtained as

V (x) =

x1∫
0

(
−
(
γa11 + δa21

a12

)
c sat

(y1
c

)
− γa22

a12
y1

)
dy1

+

x2∫
0

(γx1 + δy2)dy2

=⇒ V (x) =
1

2
xTPx+K

x1∫
0

c sat
(y
c

)
dy (15)

where P =

[−γa22

a12
γ

γ δ

]
and K = −γa11 + δa21

a12
. We need

to choose γ and δ such that

−γa22
a12

> 0,
−γa22δ

a12
−γ2 =

−γa22
a12

(δ+
γa12
a22

) > 0, K ≥ 0

(16)
γa12 + δa22 < 0, α(x)a11 + γa21 < 0 (17)

From (16), we conclude that γ and a12 must be of same
sign (since a22 < 0). Additionally, δ > −γa12

a22
. Hence, δ > 0.

We choose δ = −γa12

a22
+ (a11+a22)|A|

a22
. Then, if a12 < 0, we

choose γ < −a11a21 such that the chosen γ and a12 are
of same sign. On the other hand, if a12 > 0, we choose
γ > −a11a21 such that the chosen γ and a12 are of same
sign. With these choice of γ and δ, it is possible to show
that (16)-(17) are satisfied. Note that V (x) in (15) is radially
unbounded, which is defined ∀x ∈ R2 if a12 ̸= 0. Hence,
if a12 = 0, the global asymptotic stability cannot be proved
using V (x) given by (15). However, if a12 = 0, then a11 < 0
(since A is Hurwitz). Hence limt→∞ x1 = 0 (see the proof
of Proposition III.1.). This further implies limt→∞ x2 = 0
(since a22 < 0). ■

It can be concluded from Proposition III.6. that unlike in
a linear time-invariant system, A being Hurwitz is necessary
but not sufficient for global asymptotic stability of origin.
Proposition III.7. BEM converges for all admissible step-
sizes h > 0 if A is Hurwitz, a22 < 0 and a12a21 ≥ 0.
Proof: Besides A being Hurwitz and a22 < 0, if a12a21 > 0,
then the variable K in (16) can be set to zero while satisfying
(16)-(17). As a consequence, V (x) becomes quadratic which
implies the convergence of BEM for all admissible stepsizes
h > 0 (see the reasoning in the proof of Proposition III.2.).
Further, if a12a21 = 0, then the proof of the convergence of
BEM for all admissible stepsizes h > 0 is trivial. ■
Proposition III.8. If x0 is in linear region, then as h → ∞,
BEM converges ∀A ∈ R2×2 and ∀ c > 0.
Proof: The mismatch at the 1st iteration corresponding

to t = t1 can be written as m
(1)
1 = x

(0)
1 − x0 −

hA
([

c sat
(
x1

c

)
x2

]T
1

)(0)

We use x0 to initialize x1 i.e.

x
(0)
1 = x0. Since x0 is in linear region, x

(0)
1 is in linear

region and hence
([

c sat
(
x1

c

)
x2

]T
1

)(0)

= x
(0)
1 = x0.

Thus m(1)
1 = −hAx0. The Jacobian at the (k+1)th iteration

corresponding to t = t1 can be written as

J
(k)
1 = I − hAG

(k)
1

where

G
(k)
1 =

 I if x(k)
1 is in linear region[

0 0
0 1

]
= Gsat if x(k)

1 is in saturation region

Since x
(0)
1 is in linear region, G

(0)
1 = I and hence

J
(0)
1 = I − hA. So, ∆x

(0)
1 = −(J

(0)
1 )−1(m

(1)
1 ) =

(J
(0)
1 )−1(hAx0) =⇒ x

(1)
1 = x0 + ∆x

(0)
1 = x0 + (I −

hA)−1(hAx0) = (I − hA)−1x0. Note that if h → ∞, then
(I − hA)−1x0 → 0 ∀A ∈ R2×2. Hence, x(1)

1 belongs to the
linear region ∀c > 0. Consequently,

[
c sat

(
x1

c

)
x2

]T
1
)(1) =

x
(1)
1 . So, m(2)

1 becomes

m
(2)
1 = x

(1)
1 − x0 − hAx

(1)
1 = (I − hA)x

(1)
1 − x0 = 0

Since m
(2)
1 = 0, BEM converges to the origin. ■

We conclude from Proposition III.8. that if x0 is in linear
region, then for a given A ∈ R2×2 and c > 0, there exists a
lower bound on h such that BEM converges when a value of
h exceeding the lower bound is used in simulation. Hence
BEM suffers from hyperstability when x0 is in linear region.
Let hL(A, c) > 0 be the minimum value of h such that ∀h ≥
hL(A, c), the set L is (I − hA)−1invariant where L is the
linear region defined by L := {(x1, x2) : −c < x1 < c, x2 ∈
R}. Then, for a given A and c > 0, selecting h ≥ hL(A, c)
ensures that BEM never enters the saturation region when x0

is in linear region. As a consequence, when x0 is in linear
region, BEM cannot capture the instability of the ground
truth (if any) if h ≥ hL(A, c). Hence, it is necessary to
choose h < hL(A, c) in order to capture the instability of
the ground truth (if any). However, when A has at least one
eigenvalue with positive real part (indicating the ground truth
is unstable), the sufficient condition to avoid hyperstability
for the system (13) is given by h < max{ 2Re(λi)

|λi|2 } where
λi is the ith eigenvalue of A ∀i ∈ {1, 2}. On the other
hand, when A is Hurwitz, it is non-trivial to determine the
sufficient condition on h required for avoiding hyperstability.
Proposition III.9. Consider the statements (a)-(d):
(a) |A|

a22
> 0

(b) |A| < 0 and a22 = 0

(c) |A|
a22

< 0
(d) |A| > 0 and a22 = 0

(i) Suppose either (a) or (b) holds. Then, BEM produces
an unstable response as h → ∞ if x0 is in saturation
region. In particular, if x0 is in positive saturation, then
limh→∞ x1 =

[
∞ −a21c

a22

]T
. Similarly, if x0 is in negative

saturation, then limh→∞ x1 =
[
−∞ a21c

a22

]T
.

(ii) Suppose x0 is in the saturation region. Then, BEM



converges as h → ∞ if and only if either (c) or (d) holds.
Proof: (i) Assume x0 is in the positive saturation region. The
mismatch at the 1st iteration corresponding to t = t1 can be

written as m
(1)
1 = x

(0)
1 − x0 − hA

([
c sat

(
x1

c

)
x2

]T
1

)(0)

We use x0 to initialize x1 i.e., x
(0)
1 = x0. Since x0 is

in the positive saturation region,
([

c sat
(
x1

c

)
x2

]T
1

)(0)

=

[c (x2)0]
T . Thus m

(1)
1 = −hA [c (x2)0]

T . Since x
(0)
1 is

in the positive saturation region, G
(0)
1 = Gsat and hence

J
(0)
1 = I − hAGsat. So, ∆x

(0)
1 = −(J

(0)
1 )−1(m

(1)
1 ) =

(J
(0)
1 )−1(hA [c (x2)0]

T
) Therefore,

x
(1)
1 = x

(0)
1 + (J

(0)
1 )−1hA [c (x2)0]

T

= x0 + (I − hAGsat)
−1hA [c (x2)0]

T

= x0 + hA(I − hGsatA)
−1 [c (x2)0]

T

= x0 + hA

[
1 0

ha21

1−ha22

1
1−ha22

] [
c

(x2)0

]
=⇒ (x1)

(1)
1 = (x1)0 + h

(
a11c+ a12

(
ha21c+ (x2)0

1− ha22

))
and (x2)

(1)
1 = (x2)0 + h

(
a21c+ a22

(
ha21c+ (x2)0

1− ha22

))
Further simplification gives (x1)

(1)
1 = (x1)0 +

h(a11c+a12(x2)0)−h2|A|c
1−ha22

and (x2)
(1)
1 = (x2)0+a21hc

1−ha22
. As

h → ∞, (x2)
(1)
1 → −a21c

a22
and (x1)

(1)
1 → ∞ (since either

(a) or (b) holds). Thus (x1)
(1)
1 > c. Hence, m(2)

1 becomes

m
(2)
1 = x

(1)
1 − x0 − hA

[
c (x2)

(1)
1

]T
= hA

([
c ha21c+(x2)0

1−ha22

]T
−
[
c (x2)

(1)
1

]T)
= 0

Since m
(2)
1 = 0 the solution obtained from BEM at t = t1

is x1 =
[
∞ −a21c

a22

]T
. Similarly, it can be shown that if x0

is in the negative saturation region, then the solution obtained
from BEM at t = t1 is x1 =

[
−∞ a21c

a22

]T
. ■

(ii) Necessity: Since BEM converges as h → ∞,
limh→∞

h(a11c+a12(x2)0)−h2|A|c
1−ha22

̸= ∞ (see proof of Propo-
sition III.9.(i)). Hence, either (c) or (d) holds.
Sufficiency: We prove this by contradiction. Suppose x0 is
in the positive saturation region. Further, assume that as
h → ∞, the system is in the positive saturation region
=⇒ c sat( (x1)1

c ) = c. Assuming (c) holds, then, from (13),
limh→∞(x1)1 = limh→∞((x1)0 + hc |A|

a22
) < 0. Hence the

system cannot be in the positive saturation region. Assuming
(d) holds, limh→∞(x1)1 = limh→∞((x1)0 + h(a11c +
a12(x2)0) + h2a12a21c) < 0. Hence the system cannot be
in the positive saturation region. Similar contradiction can
be shown if it is assumed that the system is in the negative
saturation region as h → ∞ while x0 belongs to the positive
saturation region. Hence, we conclude that as h → ∞,
the system must be in linear region =⇒ limh→∞ x1 =
limh→∞(I − hA)−1x0 = 0. Thus, BEM converges. Similar
reasoning can be used to prove the convergence of BEM if
x0 is in the negative saturation region. ■

We conclude from Proposition III.9.(i) that if x0 is in
saturation region, then for a given A ∈ R2×2 satisfying either
(a) |A|

a22
> 0 or (b) |A| < 0 and a22 = 0, there exists a lower

bound on h such that BEM produces an unstable solution
when a value of h exceeding the lower bound is used in
the simulation. This motivates the following definition of
hyperinstability.
Definition III.1. (Hyperinstability of BEM) In this paper,
hyperinstability is defined as a condition where adoption of
a stepsize higher than a certain value results in an unstable
solution from BEM, despite the ground truth being stable.
Given the definition of hyperinstability, we conclude that
if x0 is in saturation region and if either (a) |A|

a22
> 0 or

(b) |A| < 0 and a22 = 0 holds, then BEM suffers from
hyperinstability. It is worth noting from Proposition III.8. that
hyperinstability is not observed when x0 is in linear region.
Hence, application of BEM to a linear time-invariant system
does not lead to hyperinstability.

We conclude from Proposition III.9.(ii) that if x0 is in
saturation region, then for a given A ∈ R2×2 satisfying either
(c) |A|

a22
< 0 or (d) |A| > 0 and a22 = 0, there exists a

lower bound on h such that BEM converges when a value
of h exceeding the lower bound is used in the simulation.
Consequently, BEM suffers from hyperstability.

C. Discussions and practical recommendations

Based on the analyses presented in sections III-A and III-
B, the following conclusions can be drawn.

• (C1) If the ground truth of a dynamical system of the
form (9) or (12) exhibits global asymptotic convergence,
then simulating such a system using BEM with an arbi-
trarily high stepsize converges to the same equilibrium,
thus producing the same end result as in the ground
truth while requiring a lower computational effort.

• (C2) Simulation using BEM with an arbitrarily high
stepsize may lead to hyperstability (in systems of the
form (9) or (12)) or hyperinstability (in system of
the form (12)). This limits the adoption of arbitrarily
high stepsizes during simulation, especially when the
A matrix is unknown.

In the context of (C2), the objective is to determine the
maximum value of h = hM such that using h < hM does not
result in hyperstability/hyperinstability. The variable hM can
be easily estimated in some situations. For example, when
A has at least one eigenvalue with positive real part, then
using h < hM = max{ 2Re(λi)

|λi|2 } ∀i ∈ {1, 2} is sufficient
to avoid hyperstability where λi is the ith eigenvalue of
A. Similarly, analysis of (12) reveals that if |A| < 0 and
a22 > 0, then for a certain set of x0 belonging to the
positive saturation region that satisfy a11c + a12(x2)0 > 0,
the ground truth is unstable. Based on the proof of Proposi-
tion III.9.(ii), it can be concluded that in such scenarios,
using BEM with h < hM = 1

a22
is sufficient to avoid

hyperstability. However, calculating hM can be mathemat-
ically cumbersome in many situations (for example, when
A is Hurwitz). Unless hM is known, it can be challenging
for a power system planner/operator to determine whether
the convergence/divergence of the numerical solution is a
consequence of hyperstability/hyperinstability or not. Hence,



for practical purposes, we recommend using variable step
algorithms over constant step algorithms.

Recently, the authors in [10] presented a BEM-based
variable-step algorithm that adapts the stepsize based on
two user-defined parameters τ and hmax. The value of τ

controls the goodness of the initial guess x
(0)
n+1 at t = tn+1

in terms of its closeness to the final solution xn+1. On
the other hand, hmax represents the maximum value of the
stepsize that can be adopted by the algorithm. Note that
hmax need not necessarily be less than hM . Hence, the
knowledge of hM is not necessary. It has been shown in
[7] that by appropriately tuning τ and hmax, it is possible to
obtain simulation speedup while generating a solution that
resembles the ground truth in an averaged sense in many
scenarios. As a consequence, appropriate tuning of τ and
hmax may help in avoiding hyperstability or hyperinstability
in systems with saturation nonlinearities while providing
computational benefits.

However, similar to any other numerical method, appro-
priately tuning τ and hmax can be challenging. Suppose the
system operator has started the simulation by setting up a
reasonable value of τ and hmax. If the numerical solution
converges to an equilibrium, then the operator needs to test
the occurrence of hyperstability. Reference [7] presented
an approach to detect the occurrence of hyperstability in a
power system when the A matrix has at least one eigenvalue
with positive real part. In particular, a predictor–corrector
approach was proposed in [7] to address the hyperstability
issue. The predictor identifies instability based on eigende-
composition of the A matrix at the post-disturbance unstable
equilibrium obtained as a byproduct of BEM. The corrector
uses the right eigenvectors to identify the group of machines
participating in the unstable mode. This helps to apply
appropriate protection schemes as in ground truth. However,
this approach of detecting hyperstability is not applicable
when A is Hurwitz. Since the instability in the ground truth
(if any) will be typically non-oscillatory in nature when
A is Hurwitz, hyperstability can be avoided by using an
algorithm that can track the non-oscillatory instability in the
ground truth in an averaged sense. Reference [7] presented an
approach wherein, a constant stepsize h = hmin (say, 0.002
s) is adopted for a certain number of steps (say r steps)
following a power system disturbance. After the r steps,
the BEM-based variable stepsize algorithm [10] is invoked
with a reasonable choice of τ and hmax. This approach
was found in [7] to successfully capture the non-oscillatory
instability in the ground truth (if any). In a power system with
saturation nonlinearity, the probability of the ground truth
hitting the saturation is higher immediately after a power
system disturbance. As a consequence, limiting the stepsize
following a disturbance may prevent the numerical method
from producing erroneous solutions in the linear region that
may otherwise lead to hyperstability. Hence, in our rec-
ommendation, the approach of tracking the non-oscillatory
instability presented in [7] can be useful for avoiding hy-
perstability in systems with saturation nonlinearities when A
is Hurwitz. In addition, this approach may help in avoiding
hyperinstability which requires further investigation.

IV. RESULTS

The BEM-based variable stepsize algorithm (BEM-VS)
[10] is applied to (a) a system with a single synchronous

Fig. 1. (a) Single line diagram of a single SG system feeding a standalone
load PL and (b) Block diagram of the governor’s dynamics.

TABLE I
PARAMETERS OF THE SINGLE SG SYSTEM

R T c H P ∗
m ω∗ ωs

2.4 Hz/pu 2 s 0.5 5 s 0.5 pu 377 rad/s 377 rad/s

generator (SG) feeding a standalone load and (b) a 6-
bus system with a grid-forming converter (GFC), a grid-
following converter (GFLC), and a SG. The obtained results
are compared with the ground truths, which are obtained
using the TM-LTE (Local Truncation Error) based variable
stepsize algorithm [2]. The parameter tol in the TM-LTE
algorithm is set to 0.0001 for accurate reconstruction of the
ground truth in the presence of adaptive stepsize variation.
A. Single SG system feeding a standalone load

Figure 1a shows a power system with a single SG feeding
a standalone load PL via a lossless transmission line. The
SG is equipped with a governor whose dynamics is shown in
Fig. 1b. The variable R is the governor droop and P ∗

m is the
reference value of the input mechanical power. This system
is represented by two state variables: x1 = ∆ω

R (where ∆ω =
ω∗ − ω represents the deviation in the SG’s speed ω from
the reference speed ω∗, measured in electrical rad/s) and
x2 = ∆Pm (measured in pu) whose dynamics are given by
(18)-(19) ∀ t ≥ 0.

ẋ1 = − ωs

2HR
(P ∗

m + x2 − PL) (18)

ẋ2 = − 1

T
x2 +

1

T

(
c sat

(x1

c

))
(19)

The variable x2 is added to P ∗
m to obtain the actual input

power Pm. Further, throughout this section, (∆ω
R )sat :=

c sat(x1

c ). The system parameters are shown in Table I.

(a) (b)
Fig. 2. (a) Ground truths and (b) outputs from BEM-VS in Cases 1-4.

1) PL = P ∗
m ∀ t ≥ 0: In this case, the system represented

by (18)-(19) can be expressed in the form given by (12).
Specifically, the resulting A matrix has the entries a11 = 0,
a12 = − ωs

2HR , a21 = 1
T and a22 = − 1

T . Clearly, A is
Hurwitz and a22 < 0. Hence, simulation of this system
using BEM cannot lead to hyperinstability (see Proposition
III.9.(ii)). Further, note that the origin of this system is



(a) (b)
Fig. 3. (a) Ground truths and (b) outputs from BEM-VS.

globally asymptotically stable (see Proposition III.6.). The
BEM-VS algorithm with τ = 20 and hmax = 1 is applied
to simulate this system in four different cases, i.e., Cases
1-4 that correspond to four different initial conditions x0 =
[0.7 0.1]T (positive saturation region), [−0.7 0.1]T (nega-
tive saturation region), [0.4 0.1]T (positive linear region),
and [−0.4 0.1]T (negative linear region) respectively. The
obtained results along with the ground truths of Cases 1-4
are shown in Fig. 2 from t = 0 to t = 40 s.

Owing to global asymptotic stability, the ground truths of
Cases 1-4 converge to the origin as shown in Fig. 2a. In
addition, it is seen from Fig. 2b that the BEM-VS algorithm
also converges to the origin in each of the four cases. Further,
on average, BEM-VS is found to consume 38.34% of the time
consumed by TM-LTE. In conclusion, BEM-VS can not only
produce the same end result as in the ground truth but also
result in a lower computational burden.

2) PL �= P ∗
m ∀ t > 0: In this study, two different cases

are considered. In Case 1, a step increase in PL from 0.5 pu
to 1.3 pu is applied at t = 0 s followed by a step decrease
in PL from 1.3 pu to 0.2 pu at t = 2.5 s, which is again
followed by a step increase in PL from 0.2 pu to 0.6 pu at
t = 5.5 s. In Case 2, a step increase in PL from 0.5 pu to 1.3
pu is applied at t = 0 s followed by a step decrease in PL

from 1.3 pu to 0.2 pu at t = 2.5 s which is again followed
by a step increase in PL from 0.2 pu to 1.5 pu at t = 5.5
s. In each of the two Cases 1-2, the system starts from the
steady state operating point corresponding to PL = 0.5 pu
i.e., x0 = [0 0]T . BEM-VS is applied to simulate both the
cases with τ = 20 and hmax = 1. The obtained results along
with the ground truths are shown in Fig. 3.

It is seen from Fig. 3a that in Case 1, the ground
truth ((∆ω

R )sat vs t) converges to the equilibrium (where
(∆ω

R )sat = ∆Pm = 0.1 pu) after multiple hitting of the
saturation limits. Further, we see from Fig. 3b that under
the high value of hmax and τ used in our experiment,
BEM-VS struggles to accurately track the ground truth.
However, BEM-VS also converges to the same equilibrium,
thus producing the same end result as in the ground truth.
Further, BEM-VS is found to consume 25.92% of the time
consumed by TM-LTE to converge to the equilibrium.

On the other hand, it is seen from Fig. 3a that in Case
2, the ground truth ((∆ω

R )sat vs t) is unable to return to the
linear region after it hits the positive saturation limit for the
second time. Hence, this is a case of instability where the
mechanical input power to the generator is unable to match
the load PL. Further, since ∆Pm converges to the saturation
limit (= 0.5 pu), P ∗

m+∆Pm−PL converges to −0.5 pu. This

Fig. 4. A 6-bus system with a GFC, a GFLC, and a SG.

implies that eventually, the generator’s speed ω decreases
linearly with time (see (18)), thus leading to non-oscillatory
instability. We see from Fig. 3b that BEM-VS produces a
response similar to the ground truth. This implies that BEM-
VS is also able to track the non-oscillatory instability of
the ground truth in Case 2. In other words, hyperstability
is not observed in Case 2 since the system does not have
any unstable equilibrium when PL = 1.5 pu. Further, in
Case 2, BEM-VS is found to consume 28.40% of the time
taken by TM-LTE to produce the unstable trajectory of the
generator’s speed. Thus, we conclude that for the single SG
system shown in Fig. 1a, BEM-VS can reasonably track both
the stability and the non-oscillatory instability of the ground
truth even at a high value of hmax and τ , while requiring a
significantly lower computational effort.

B. 6 bus system with SG, GFC, and GFLC
Figure 4 shows a 6-bus system where a SG is connected to

bus 6, a GFC is connected to bus 4 and a GFLC is connected
to bus 5. The dynamics of this system can be represented by 7
ODEs and 1 AE [11]. In particular, this system is represented
in this paper using seven state variables: vdc, id2, xpll, ω3,
Pτg , X1 := θ1 − θ3 and X3 := θpll − θ3 along with one
algebraic variable X2 := θ2 − θ3, thus resulting in a 8-
dimensional nonlinear DAE system. The reader is referred
to [11] for more details about this system along with the
notations. The system parameters are also available in [11].
The only difference in our model comes from the real power
flows represented using the nonlinear power angle equations.

The initial steady state operating point of this system is
(Plc1)0 = 3 pu, (Plc2)0 = 2 pu, (Plg1)0 = 3.5 pu, (vdc)0 =
1 pu, (θ1)0 = −0.0506 rad, (id2)0 = 2 pu, (xpll)0 = ωs/ki
(where ωs = 377 electrical rad/s and the integral gain of the
pll ki = 2562), (θpll)0 = −0.0689 rad, (θ3)0 = −0.0873
rad, (ω3)0 = ωs, (Pτg )0 = 3 and (θ2)0 = −0.0689 rad. For
this study, two cases are considered: (i) a step increase in
Plc1 from 3 pu to 4.5 pu is applied at t = 0 s followed by a
step decrease from 4.5 pu to 3 pu at t = 2 s; and (ii) a step
increase in Plc1 from 3 pu to 4.5 pu is applied at t = 0 s
followed by a step decrease from 4.5 pu to 3 pu at t = 4 s.
The ground truth is obtained from t = 0 to t = 30 s in case
(i) as shown in Fig. 5a. However, in case (ii), the dc link
voltage of the GFC vdc collapses, due to which the ground
truth is obtained till 2.7 s only as shown in Fig. 5b. Further,
BEM-VS is applied to both case (i) and case (ii) with (a)
τ = 0.1, hmax = 1 and (b) τ = 1, hmax = 1. The obtained
results are shown in Fig. 6 and Fig. 7.

It is seen from Fig. 5a that in case (i), the ground truth
(vdc vs t) converges to the equilibrium where vdc = 1 pu.



(a) (b)
Fig. 5. Ground truths in (a) case (i) and (b) case (ii).

In particular, the dc side current of the GFC idc just hits
the saturation limit (= 4.2 pu) when the step decrease in
Plc1 is applied which prevents the collapse of vdc in this
case. We see from Fig. 6 that BEM-VS also converges to the
same equilibrium as in the ground truth. Further, BEM-VS is
found to consume 53.46% and 46.81% of the time taken by
TM-LTE to converge to the equilibrium when τ = 0.1 and 1
respectively. On the other hand, it is seen from Fig. 7a that
BEM-VS is able to capture the collapse of vdc and hence the
saturation limit hitting of idc when τ = 0.1. Additionally,
BEM-VS is found to consume 58.54% of the time taken by
TM-LTE for predicting the collapse of vdc, thus proving to be
computationally efficient even in the unstable case. However,
when τ = 1, BEM fails to capture the collapse of vdc
as shown in Fig. 7b. In particular, BEM converges to the
unstable equilibrium when τ = 1. This is because, when
τ = 1, BEM adopts larger time steps in comparison to the
setting where τ = 0.1 as shown in Fig. 8. This adoption of
larger time steps is leading to hyperstability when τ = 1.

In conclusion, even in a high-dimensional system having
saturation nonlinearity, BEM-VS can produce similar end
result as in the ground truth at a significantly lower com-
putational cost, if τ and hmax are chosen appropriately.

(a) (b)
Fig. 6. Outputs of BEM-VS in case (i) with (a) τ = 0.1 and (b) τ = 1.

V. CONCLUSION

Mathematical analysis is presented in this paper to inves-
tigate the applicability of BEM for numerical simulation of
dynamical systems with saturation nonlinearity. It is found
that BEM can suffer from both hyperstability and hyperinsta-
bility in a system with saturation nonlinearity depending on
the initial conditions. As a consequence, adaptive stepsize
variation is recommended in order to track the ground
truth in an averaged sense. A BEM-based variable stepsize
algorithm is applied to simulate the dynamics of a governor-
equipped single machine system feeding a standalone load.

(a) (b)
Fig. 7. Outputs of BEM-VS in case (ii) with (a) τ = 0.1 and (b) τ = 1.

(a) (b)
Fig. 8. (a) Adaptation of the stepsize h of the BEM-VS algorithm in case
(ii) with (a) τ = 0.1 and (b) τ = 1.

It is found that the algorithm can reasonably track the
stability and the non-oscillatory instability of the ground
truth, while consuming a significantly lower cpu time. The
algorithm is also applied to simulate the dynamics of a 6-
bus system connected to inverter based resources. It is found
that appropriate tuning of the parameters of the algorithm can
not only avoid hyperstability but also capture the dc voltage
collapse phenomenon in the 6-bus system, while consuming
a cpu time that is significantly lower in comparison to that of
the ground truth. In our future works, we will investigate the
application of BEM in a large power system with saturation
nonlinearities on multiple state variables.
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