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1. Introduction. Let (M, g) be a simply connected compact Riemannian man-
ifold of dimension n = 3 with smooth strictly convex boundary OM. Let Ay be the
positive Laplace-Beltrami operator on (M, g). For V € C§°(M) and A > 0, we consider
the Dirichlet problem

W (Ay+V =A%) u=0in M,
u=f at OM.

Suppose that A? is not an eigenvalue of A, + V. Let u be the unique C°° (M) solution
for f € C*°(0OM). We consider the Dirichlet-to-Neumann map A defined by

3
(2) Af=du=lgl> > g (Ou)v;,

i,5=1

where v is the unit outward normal to M. The problem we study is the determination
of V from A for a large but fixed A. Our main result is the following theorem.

THEOREM 1.1. Let (M, g) be a simply connected compact Riemannian manifold of
dimension three with smooth boundary OM which is strictly convex. Assume that the
sectional curvatures are nonpositive. Let V,V € C§°(M) be two potentials which are
supported away from OM, and let A, A be the corresponding Dirichlet-to-Neumann
map for (1). Suppose that X is sufficiently large (depending on V,V ) and \* is not an
eigenvalue for (1) for both V and V. Then A=A implies V=V

We remark that one can find some conditions on the potential stated in
Remark 10.1 so that Theorem 1.1 holds for A large depending on those conditions.
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THE CALDERON PROBLEM FOR HIGH FIXED FREQUENCY 4085

It is also possible to obtain a Holder type stability estimate for those potentials. Fi-
nally, our analysis leads to an approximate reconstruction method for high frequencies
by inverting a geodesic ray transform on (M, g); see the end of section 10.

When A =0 the problem we study is related to the anisotropic Calderén problem.
In fact the Calderén problem in the isotropic case can be reduced to studying an
inverse boundary problem for the Schrodinger equation at zero energy. It is well
known that in dimension three or larger the anisotropic Calderén problem can be
reduced to studying the Dirichlet-to-Neumann (DtN) map for the Laplace—Beltrami
operator of a Riemannian metric uniquely determined by the conductivity; see [12].
The case we are considering here corresponds to determining a metric in the same
conformal class. For the Euclidean metric the problem we are considering here at
any fixed energy was solved in dimension three or larger by Sylvester and Uhlmann
[21] and in two dimensions by Bukhgeim [1]. For the anisotropic case on conformally
transversally anisotropic manifolds this problem was solved under some conditions on
the transversal manifold; see [2], [3]. In two dimensions using Bukhgeim’s method the
problem was solved on Riemann surfaces in [6]. The problem of recovering the metric
itself has only been solved in dimensions three or larger in the real-analytic category;
see [11] and [10]. We plan to consider the problem of recovering the Riemannian
metric at large fixed frequency in a subsequent article. For further references and a
review of Calderdn’s problem, see [24].

We will outline the proof of Theorem 1.1 in section 2, but we want to point out
that some assumptions in the statement of the theorem are made to simplify the
analysis in order to give a clear demonstration of our method. They can potentially
be removed. First, the parametrix construction we use in the proof is simpler in
dimension three with the nonpositive curvature assumptions, but it can be done for
higher dimensions (and even without the curvature assumptions). Second, we will use
stability estimates for geodesic ray transforms on (M, g) which are simple to state with
the nonpositive sectional curvature assumptions. It is known that such estimates hold
under weaker curvature conditions or foliation conditions; see [17] and [25]. Third,
we assumed that V,V are supported away from OM to save us from some technical
discussions related to the singularities of the distance function. Also, it should be
possible to relax the regularity of potential to finite smoothness. Finally, our results
have been stated for the DtN map A, but similar arguments would probably hold
for the set of Cauchy data defined as {(f,h) € C®(OM) x C>®(OM) : there is v €
C>=(M) such that (A, +V —A2)v=01in M and v|on = f,d,v|om = h}.

2. The strategy. Since we consider high frequencies, we can assume A\ >> 0
and take h =1/\ as a semiclassical parameter. We consider the semiclassical problem

3) R*(Ay+V)u—oc*u=0in M,
u=f at OM

for h € (0,1]. Here, we allow o in a compact set of C\0, but o will be fixed in
later arguments. We will use Green’s representation formula which connects A to the
fundamental solution of the equation in (3).

Since (M, g) has nonpositive sectional curvature and M is simply connected, with-
out loss of generality we take M as a subset of R®. Let R (0, h) be the fundamental
solution such that

(4) (R*(A, +V) —®)R(0,h) =1d in R®.
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Here, we can extend V to be zero outside M so V is a C§° potential on R®. The
construction of the fundamental solution is known; see, e.g., [18]. In particular, for
fixed h,o and modulo a smoothing operator, R (o, k) is a pseudodifferential operator
of order —2 on R?.

Next, we follow the argument in [22, page 80]. Let u be a C*° solution of (3) on
M. Let xas be the characteristic function for M in R®. Then we have in the sense of
distribution

3
o Ou 8XM
— ij
Ag(XMU)—XJVIAgU—I—Qi;:lg 927 D2 +ulgX .
Thus,
2 Ou Ox
2 2 012 E: ij M 9
h (A9+V)(XMM)_U XMu—2h ijZIQJ(?Zi 929 + uh (AQXM).

Using the fundamental solution R (o, h), we obtain for z € M that

ij ou Oxm
0zt 077

3
(5) xmu=2h*R (0, h) Z g + R (0, h)(u(h*Ayxar))-

ij=1

Following the calculation in [22, page 80], we get that

6)  u(z)=—h? R (2,70, h)@(z’)dz' + h2/ u(z’)agR(z,z’,cr, h)dz'.
v

oM ov oM
In this work, we will use the same notation A for both the operator A: &'(M) — D' (M)
and its Schwartz kernel. Formula (6) holds in the interior of M. But we will use this
formula for z € M which will be justified in_section 4. B
Now suppose we have two potentials V,V on M. Let A, A be the corresponding
DtN maps. Let R,R be the corresponding fundamental solutions. For (z,2) €
OM x OM away from z = z', we use (6) to get

OR (2,7 ,0,h) — O, R (2,2 ,0,h)

7 ~ ~
0 = R(z, 2", 0,h)A(Z",2)d2" — R(z, 2", 0,h)A(2",2")d2".

aM oM
The justification of the formula will be given in Remark 4.4 after we establish some
properties of the fundamental solution. Our proof is based on the investigation of this
formula. We list the key steps and describe the structure of the paper.
Step 1: We construct an approximation of the kernel of R (o, h) with an explicit
leading order term as h — 0. This is done in sections 3 and 4. Roughly speaking,
R (o,h) =G(o,h) + O(h™1) and we have

R(o,h) —=R(0,h) =G (0,h) = G(0,h) + Fparas
where Fpqrq denotes the error term. Here, G is of the form
(8) h2e 8 (2,2 )T A2, ), 2,2 €M,

where A is smooth and r denotes the distance function on M. Because there are no
conjugate points on M, the distance function is smooth on M x M away from the
diagonal {(z,2') e M x M :z=2"}.
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Step 2: We show that the leading order term in GKO, h) —G(o,h) as h — 0 is a
weighted geodesic ray transform of the difference W =V — V| denoted by XYW, so

g(d, h) - Q(a, h) = XwW+~Eead,17

where Fieqq,1 denotes the error term. This is obtained from some perturbation ar-
gument in section 5 and a stationary phase argument by considering the oscillatory
behavior in (8) done in section 6. The error term comes from the application of
stationary phase argument. It is smaller in terms of h, but involves higher order
derivatives of W.

Step 3: For XYW we have some stability estimates in Theorem 6.1. After careful
estimates of the error terms which is done in section 7 and semiclassical analysis of
the DtN map in sections 8 and 9, we derive that

9) WLz ar) < ChIW ez (arys

where C' is a generic constant. Here, for u € C™(M), we denote the seminorm
[ulem(ary = SUPLens Dojaj<m [0%ul. For given V,V, there exists a constant Cy such
that [W|c2ary < C1l[W | z2(ar)- We thus obtain that W = 0 for h sufficiently small
(depending on V, ‘N/) This is done in section 10.

3. The semiclassical parametrix. Consider the semiclassical operator P =
h?(A, + V) — 02 on R® where V € C§°(R?). Denote the resolvent by

R(o,h) = (h*(Ay+ V) —0o?)"t

We follow the discussion in [14, page 24] to construct an approximation of R (o, h).
In polar coordinates (r,0) based at a point 2’ € M, the metric

g=dr*+ H(r,0,df),

where H is a smooth 1-parameter family of metrics on S2. This is the Gauss lemma,;
see [5, page 91]. The Laplacian in this coordinate reads

DNg=—02 = Ad, + Ay, A=lg|720,(|g]7),

where | g|% is the volume element and Ay is the positive Laplacian on S? with respect
to H(r,0,df). As r — 0, we have

912 (r,0) = r*(L+ % g1(r,0)),
where g; is smooth at r = 0; see [5, page 144]. Thus
Ay=—02—(2/r +71A(r,0))0, + Ay

in which A(r,0) is smooth up to r=0.
Now we look for an approximation of the resolvent whose Schwartz kernel is of
the form

G(ovh,z,2) = F D (72U (2,2) + 17U (2,2)).
We formally compute that

(h2(Ag + V) = 0*)G(0,h) = e 7" (2iah ™| 7/49, (|9 Uo)

(10)
+2i0|g| "4 0: (|9 *ty) + (Ag + V) Uo + h(Ag + V) Uy ).
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First, the O(h~1) terms have to vanish and this gives
91740, (lg|* Uo) =0, r>0.

Notice that |g|2 is the density factor on M x M so |g|*/4 is indeed the half-density
factor and the above equation is the Lie derivative of the principal symbols; see [14].
We obtain that

1
Uy = —|g|~ /%
0 47T|9|

Near r =0, we get

1
Uy = E(r*1 +rB),

where B is smooth in 7,6 up to r =0. This implies that
P R |
Aguoch(z,z)—FEAr +EA9(TB)'

So we removed the singularities at the diagonal to the leading order. This only
happens in dimension three.
Next, the O(hY) terms in (10) have to vanish and we obtain

2ia)g| 400 (g *th) + (Mg + V) Uy =0, 7>0,
Uy =0at r=0.

So we get

1 _ T
== i ol [ o8+ V)t
10 0

In particular, |g|'/* is smooth up to 7 =0 and vanishes at 7 = 0. Thus the integrand

in U, is smooth at r =0. This implies that ¢/, is smooth up to r =0.
Consider the remainder term. We have
(W2(Ay + V) —02)G(a,h) =8(2,2") + he 5" (A, + V) Uy
=Id+h&(o,h).

We observe that the remainder term £ has a 1/r type singularity at » = 0. Thus, in
this approach, we removed the semiclassical error to order h but in the classical sense,
we only removed the leading order singularity at r =0.

We are done with the construction and we summarize the result. Hereafter, we
use r(z,2') for the distance function on (M, g), where z,2’ € M.

PROPOSITION 3.1. For h € (0,1],0 € C\0O, there exist operators G(o,h) and E(o, h)
such that

(R*(Ay + V) —0%)G (0,h) =1d +h&(o, h),
where the Schwartz kernel

G(o,h,z,2)= e_i%r(z’z/)(h_zuo(z, Y+ hT U (2,2))

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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with
1 1 T
U= —g| " U=—— —1/4/ (A, + V)Upds,
0=-lolm % Uh=—5——g] ; 917 (Ag + V) Uods
and
E(o by 2,2 ) = e T (A + VU (2, 7).

Remark 3.2. For higher dimensions n > 4, a similar but more involved construc-
tion was also done in [14] for small metric perturbations of hyperbolic spaces, and
it was further developed in [16] for nontrapping asymptotically hyperbolic manifolds.
For our purpose, the asymptotic behavior near infinity does not matter. The con-
struction in [14] and [16] away from infinity does not rely on the hyperbolic structure
and can be modified to obtain a parametrix for simply connected manifolds.

4. The resolvent kernel and estimates. Hereafter, we fix o € C\0. We will
drop o in the notation and write, e.g., R(h) = R(0,h). We consider the resolvent
R (h) and use the parametrix to find the resolvent kernel. The construction and
estimate for the Green’s function are known for elliptic problems in general; see, for
example, [18, Chapter VI, section 4]. Here, the point is the dependency on h.

We start from

(11) (W*(Ay + V) —0?)G(h) =1d+hE(h).
Using the resolvent R (h) in (11), we get

G(h) =R (h)Id+RE(R)).
We first have the following lemma.

LEMMA 4.1. Let 0 € C\0 and Imo <0. There is hg > 0 such that for 0 <h < hg,
the operator Id+h&(h) is invertible on L*(M).

Proof. We recall that
rAy =102 — (2+12A(r,0))0, + Ay

is a second order differential operator with smooth coefficients up to r =0. From the
formula of £(z, 7', h) in Proposition 3.1, we see that r(z, 2’)E(z,2’, h) is smooth up to
r=0. We use Schur’s lemma to estimate the L? norm of £(h). First, we have

1 1 1
/ E(h,2,2)|d2' <C— | ———d' <O,
M |0| M T(sz) ‘O’|
where the constant C' depends on M but not on h,o. Here, we use Imo < 0. Using
Schur’s lemma, we get
IRE (B)|| L2 (ary—L2(ar) < Chlo| 1.

Then we can find hg > 0 such that for h < hglo|™!, we have Ch|o|~! < 1 and thus
Id +h&(h) is invertible on L?(M). |

The proof implies that for A < hg, the inverse can be written as a Neumman
series. We write

R (h)=G(h)(1d+h€E(h) ™" =G(h) — G(MAE (h) + -+

(12) =G(h)+ F(h), where F(h)= Zg(h)(—hé'(h))j.

Jj=1
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Next we find the Schwartz kernel of F(h). We start with some estimates of the terms
in the parametrix.

LEMMA 4.2. There exists C > 0 depending on g,|V|coy such that for fized
o € C\0 and Imo <0, we have

(1) |r(2,2")G(h, 2, 2")|comx ) < Ch™2,

(2) \TQ(z,z’)ayg(h,z,z’)|CO(MxM) <Ch™3,

(3) [r(z,2")E(h, 2, 2")|comxary < C.

Proof. This is straightforward. For (1), the expression of G is
G(h,2,2)=e T (W 2Uy(2,2") + W UL (2, 7).

From the expression of Uy,U;, we know that rly,rUd; are both smooth up to r = 0.
Therefore, we get that

Ir(2,2)G (2,2',h)| < Ch™2 + Ch~to| ™}

for some constant dependent only on g, |V|co(ar). For (2), we have

8,6 (2,2' h) = —i%@ur(z, Ne T (2 Uy + B )
+ e‘i%’zl)a,,(h”uo +h7Uy).
Therefore,
[7%(2,2))0,G (2,2 ,h)| < Clo|h™3 + Ch™2 4+ Ch~|o| 1.
The proof of (3) follows from the same argument. 0

LEMMA 4.3. Let 0 € C\0O and Imo < 0. There exist hog >0, C >0 depending on
9,|V|comy and o such that for h < hg, we have

(1) |r(2, ") F(hy 2, 2" )| co(arxary < CRT,

(2) |r*(z,2")0,F(h,z, 2")|co(mx ) < Ch=2.

Proof. We estimate the Schwartz kernel of hYG(h)E7(h),j > 1. The kernel can be
written as

R G (h)E? (R)(zo, zj) = I / G (h,20,21)E(h, 21, 22)E(h, 29, 23)

M XM x---x M
--'5(h,2j,1,2j)d22 . "defl,

where zg, z; € M. Since r(z,2')E(h, z,2') are smooth up to r =0, we can estimate

) ) o . 1 1
hG(h)EI (R ,z2i)| < CIR? _3/ G (h, zo,
| ( ) ( )(ZO ZJ)' |0‘ M><M><~--><M| ( o Zl)|7"(21,22)7"(z2»23)
1

L N S
7(zj-1,25) !

The kernel is integrable. Moreover, we observe that

1 1 1 1 1 1
/M ) r ) S r(m)c/M ) ) Y =y

where C' only depends on (M, g). So we get
W1 (2,2)G (R)E (h)(2,2")] < (Coh/|o]) Ch™*

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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for some Cy > 0. For h/|o| <1, we can sum the terms from j =1 and get

Coh/|o _ 1 -
[r(z,2")F(h,2z,2")|coarsary < 1_000/}|L/||0C'h 2<ch oY,
where we used h/|o| < 1/2. The derivative estimate is similar. 0

Remark 4.4. Now we justify the formula (6) for z € OM. First of all, the first
term on the right of (6) is continuous at 9M because the kernel R (z,2’,0,h) is locally
integrable. For the last term in (6), we notice that the kernel 9, R (z,2’,0,h) is not
locally integrable, but the kernel is only singular at z = z’. We will stay away from
the diagonal as follows. For any p € OM, let x;, be a compactly supported smooth
cut-off function supported near p. For any f € C°°(OM), we consider Dirichlet data
fxp- Then the last term is smooth when we consider z outside of support of x,,. This
means that if we stay away from the diagonal, all the terms in (6) can be extended
continuously to M. Then we derive (7) by taking f to be test functions on O M.

5. The perturbation argument. Let V,‘7 be two potentials on (M,g). Let
R (h),R (h) be the corresponding resolvent of h*(A, + V) — 0%, h*(A,+ V) — 0. We
are interested in the difference R (h) — R (h). Let W =V — V. From the resolvent
formula, we get

R(h) —R(h) =R (h)W*WR(h)
so that
(13) R (h) =R (h)(Id+h>WR (h))~".
Here, because W is compactly supported in M, the invertibility of Id +h?W R (h) on
L?(M) follows from the analytic Fredholm theory; see pages 19-20 of [13]. If we apply
h2(A,+ V) — o2 to (13), we get

(h3(Ag + V) —a®)R(h) = Ad+h>WR(h))~".

Then it follows from the structure of R in section 4 that (Id+h2WR (h))~! has an

integrable kernel and the L! norm of the kernel is bounded as h — 0.
Now we describe the approximation of (7) that we use later. From (13), we write

R(h) — R(h) = =R (W)hW2WR(R) + Fres,
where
(14) Fres = R(WWPWR(h)R*WR (h)(Id+h*WR (h)) ™ .

Here, F,..s accounts for the error in the potential perturbation. We use the parametrix
R (h)=Go+ G1 + F to get
—h2R(MWR () = Fiead + Fparas
(15) Fieaa = —Goh*W Gy,
Fpara = —Goh*W (G1 + F) — (G1 + F)R*WGo — (G1 + F)R*W (G1 + F).
The term Feqq is what we use to get a geodesic ray transform of W. The term Fpqrq

accounts for the error in parametrix construction. To summarize, we get

(16) R(Z7Z/7h) _R(Z>Zl7h) :]:lead +]:para +]:res-

In the next section, we analyze Fjcqq. Then we estimate Fpora, Fres-
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6. Geodesic ray transform. By the assumption that (M,g) has nonpositive
sectional curvatures, we know that for every z,2’ € OM,z # z', there is a unique
distance minimizing geodesic v, .- between them. Let r(z, 2’) be the distance between
z,2' € M. Let 7, .(s) : [0,7(2,2")] = M be the unit speed geodesic from z to z’. It
satisfies the geodesic equation

v"yz,z’(s)ﬁ/zazl (S) = 07
Vet (0) =2, Az20(0) = o1 (2,2").

For z,2' € 9M, we consider the geodesic ray transform on scalar functions

r(z,2")
(17) ()= [ (o)

Note that we parametrize the geodesics using z, 2’ € 9M. Usually, the geodesic trans-
form is parametrized by using inward pointing unit tangent bundle at OM,

QM ={(2,8) eTM|z€dM,—(&,v) >0,[¢|,=1};

see, for example, [17]. For (M,g) that we consider, there are no conjugate points.
There is a diffeomorphism between (z,2') € OIM x OM away from the diagonal z = 2’
and (z,&) € Q_M away from £ =0 via § = 0,r(z,2’). For our purpose, the function f in
(17) is supported away from 9M; thus it suffices to consider geodesics corresponding to
(2,2") € OM x OM away from the diagonal. For this reason, we can use ¥ = 9M x OM
with a measure which away from the diagonal is the one induced from Q2_ M. We use
% as the set for parametrizing geodesics.
Later, we shall consider a weighted geodesic ray transform

r(z,2")
(13) XV f(2, ) = / Wz, 2,7 2 (5)f (e, (5) s,

where W is a smooth nonvanishing function on M x M x M. In particular, we can
find Cy,C5 > 0 such that C; < |W|co < C3 on M. We need an invertibility result.

THEOREM 6.1. Let (M,g) be a simply connected compact Riemannian manifold
with strictly convex boundary OM and nonpositive sectional curvatures. Suppose f €
L?(M) and f is supported away from OM. Then f is uniquely determined by the ray
transform X f and the stability estimate holds:

[fl2a) < CIXY fllm ),
where C' is a constant independent of f.

Proof. First, X" is injective. This follows from Remark 4.3 of [25] that the
weighted X-ray transform is locally invertible and that the foliation condition is sat-
isfied because of the nonpositive curvature assumption. Next, we use the argument
in section 7 of [20]. For nonvanishing weight, a similar calculation shows that the
normal operator N’ = X*¥*X"¥ is an elliptic pseudodifferential operator of order —1.
Together with the injectivity, we get the estimate.

(19) 1fllz2ary < CIN fll e oy -

Note that we assumed f is supported away from M. This is why we can take the H'!
space on M. Finally, we can use a simple estimate that X*>* : H' — H' is bounded
to finish the proof. O
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Now we analyze Fieqq. With Go(h,z,2') = (4mh)=2e~ 10/ g ()| ~1/4 we
have

]:lead = h2 go(h)Wgo(h)
— (47‘&')_4h_2/ e_iar(z’zl)/h|g|_l/4(z,ZI)W(ZI)B_iUT(z,’ZN)/h|g|_1/4(2/,Z”)dZ/
M

_ (47‘1’)74h72/ 67i%(r(z’21)+r(21’zu))|g|71/4(27Zl)|g|71/4(zl,Z”)W(Z’)dZ/.
M

At this point, we will apply a stationary phase argument for a nonhomogeneous phase
function

D(z,2,2")=r(2,2)+r(,2"), 2 eM,
and we consider z,z” € 9M. To find critical points, we see from
0. ®(2,2',2")=0m(2,2") + 0ur(2,2") =0

that 0,7(z,2") = —0,r(2’,2"). This happens if and only if 2’ is on 7, ,~, the unique
distance minimizing geodesic between z,z’. To see the rank of the Hessian 9% ®,
it is helpful to look at the Carleson-Sjolin condition in the estimates of oscillatory
integrals; see [15, 19].

Consider an oscillatory integral of the form

Sf@)= [ N aay) 1wy

where a € C§°(R" x R™). For our problem, ¢(z,y) = r(x,y) which is smooth away
from x = y. The real valued smooth function ¢ satisfies the Carleson—Sj6lin condition
in this case if V¢, V¢ never vanish and

(20) rank¢;'y =n-—1,

and condition that there is a neighborhood U of supp a so that the immersed hy-
persurfaces X, = {¢" (x0,y) : (zo,y) € U} have everywhere nonvanishing Gaussian
curvature. If ¢ =r(z,y), then

Sae =9 EER™: Y gM(w0)¢&k =1

Jik=1
The curvature condition implies that
82
21 rank [ ——— ’179):n—1,
(21) (55 @0

where 40 € S" ! are the directions for which V, (¢.,6) = 0. In fact, 6 is orthogonal to
Y., at & For the distance function r on (M, g), the Carleson—Sjolin condition holds.
Let z,2” € 9M and let 2’ € K a compact set of M. We observe that

0 ®(2,2',2")=0ur(2,2") + 0ur(2,2") = 0ur(2,2") — (2", 2)).
We let z,2"” € M be points on a neighborhood of 2z’ such that

0.r(z,2")=0.m(2,2"), O.r(2",2")=0.r(Z",7).
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These are unit tangent vectors. Actually, if we let 7, ./(s) be the geodesic with
V2,2 (0) = 2/, %;.,(0) = 0,1(2,2'), then we can take Z =+, ./(so) for some sy small.
We can find z” similarly on v, ./(s). Now we find that

2
0%0(2,2,2") = 0. (0.7 (Z,2") — 0.r(Z', 7)) = W@J(E, 2)(Ez-72")
for z,Z" close to 2/ and |z — 2| small. Then the Carleson—Sjolin condition tells
us that the Hessian has rank n — 1 = 2. Now one can choose local coordinates
z=(z,y),z € R,y = (y1,y2) € R? such that the rank in (21) in y variable is 2. We
can perform the method of stationary phase in y variable and obtain the asymptotic
expansion of the oscillatory integral using h/|o| as the small parameter.
We recall the standard stationary phase expansion; see [4, Proposition 1.2.4]. Let
Q be a nonnegative and symmetric matrix on R? depending continuously on parameter
a € R™. Then

/eit<Q(a)y,y>/2g(y7a’ t)dy ~ <2t7r) | det Q(a)‘q/zemsgncg(a)/z;

>

k=0

| —

| (i<Q(a)_lay’ 8y>/2)kg(07 a, t)t_k

o

for t — oo uniformly in a. Applying this result, we get

h

) . r(z,2")
]:lead(zazﬂ) =h72et =N <0'> /0 |g|_1/4(zv'72,2”(s))|g|_1/4('YZ,Z” (s),z”)

. J<Za z//a’7z,z”(s))W<'7z,z"<5>)d8 + ]:lead,h

where J is a nonvanishing function independent of W which comes from the Hessian
of @ and change of variables. Note that the first term on the right side can be written
as h_lei”(z’z”)/h/\,’wW(z, z"), where XYW is a weighted geodesic ray transform with
nonvanishing weight WW. For the remainder term, we have

A
|}'zead,1|ce(aanM)<C<U> h =2 W ez (ar),
(22)

h _
| Fread,1|cromxony < C (0) h=2 W e (any-

Finally, we need the 9, derivative and we find that
(23)
00 Fiead = h8,Go(h)WGo(h)
= Ch_zayr(z, z”)ewr(z’zw)/th(W) +Ch™2 geiw(z’z”)/hawl’w(W) +0vFlead,1

where 0, Feqa,1 satisfy (22) as well.
7. Estimates of the remainder terms. First, we consider Fpq,q and 0, Fpara-

LEMMA 7.1. Let 0 € C\O with Imz < 0. For h < hg small depending on g and
|V|c2(my, the Schwartz kernel for z,2" € OM satisfies

(1) ‘r(zaZl)fpara(h‘vz7ZI)‘CO(BMX(’)M) < C|W|CO(M)7

(2) ‘TQ(ZazI)aV]:paTa(hvZaz/)|co(3M><6M) < Ch_l‘W|CO(M)-
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Proof. We recall that
Fpara =—Goh*W(G1 + F) — (G1 + F)R*W Gy — (G1 + F)R*W (G, + F).

For terms GoWG; and GiW Gy, we can apply the stationary phase argument as in
section 6 to get the conclusion. For Goh?W . F and Gih?W F, one can estimate the
integral directly as F = O(h™1!) instead of O(h™?). ]

Next, we consider Fres, Oy Fres-

LEMMA 7.2. Let 0 € C\O with Imz < 0. For h < hg small depending on
9,|V|c2(ary, the Schwartz kernel for z,2" € OM satisfies
(1) ‘T(zvZI)}—T&S(hvZaZ/)|CO(8M><BM) < C|W%o M)
(2) ‘TZ(Zazl)au]:res(haZaZl)|CO(8M><8M) <Ch~ |W|%0(Nj)
Proof. We start with the formula
Fres = R(WPPWR(h)R*WR (h)(Id +h*WR (h)) ™"

We will study the kernel of F.cs1 =R (h)R2WR (h)h*WR (h) because we know that
the Schwartz kernel of (Id +h2W TR (h))~! is integrable and the L! norm is bounded
in h as h — 0. We use that R =G + F and see that the Schwartz kernel is of the form

i

Fres 1( ///) Ch~ / e—i%r(z,z')h2W(Zl)e—i%r(z',z”)h2W(Z//)e—z r(z",2""")
’ MxM
A 27 Z/7 Z”7Z/I/
. ( )dz/dzl/7
r(z',2")
where z € OM and 2/,2"”,2"" € M and the amplitude A is smooth. We would like
to apply the stationary phase argument, but the distance function is not smooth at
the diagonal. Let’s consider the phase function ®(z,2’,2") =r(z,2’) + r(z,2") with
integration in 2’ € M. Here, z € OM,z" € M. Since W is supported away from M,
we just need to consider when 2z’ is close to z”. For fixed z"” € M, we let B.(z") be
the ball of radius € centered at 2z’ and we split the integral (for fixed 2", z"):
,,4(2,/7 Z”)

/ efi%r(z,z')hQW(z/)efz r(z’,2"
M
_ / e—z’%r(z,z’)h2W(Z/>e—i%r(z’,z”) . A(Za Z/, Z”, ZW) ds
M\Be(z”) T(Z/,ZH)

+ / e—i%r(z,z/)hQW(zl)e—z r(z',2") | A(Za Z/, ZN7 ZN/)
B (Z//)

! 1 "
). A(sz Y252 )dZ/

dz =T Is.
r(2,2") i 1+

For integral I, we can apply stationary phase argument as before to conclude that
|Il(z 2")| < Ch3|W|co. For I, we change the integral to polar coordinate 2z’ =
2" 4 pw,p € (0,¢),w €S, and get

I, = / / —ifr 2 W) B2 (2 4 pw)e R
Sl

= / / e R EShO) 2P (1 4 sha)e T Az, 2 + shw, 2", 2" ) shhdsdw,
st

A(Z,Z” +pw,z”,z’”)
p

p*dpdw

where we changed variables s = p/h in the second line. Thus |I2(z,2”)| < Ch*|W|co.
To summarize, we get

s

]:7“6871(272/”) — Ch—B/ €_i%r(z’z//)_,40(z,Z”)h2W(ZN>€_Z r(z'",2"") A(z,z'72/’,z”')dz/',
M
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where |Ap|co < C|W/|co and is smooth in z,z”. Now we can apply the stationary
phase argument again to get

| Fres,1 (22" co@onrxonry < CIW [Goary-
Similarly, we get
100 Fres,1 (22" co@onrxanry < Ch™H W Go ary-

This completes the proof of the lemma. ]

8. The semiclassical DtIN map. In this section, we look for the dependency
of the DtN map on h. For the classical Calderén problem, it is known (see, for ex-
ample, [12]) that the DtN map is a pseudodifferential operator of order 1 on dM.
The approach there is to decompose the elliptic operators in boundary normal coor-
dinates. The method implicitly relies on standard elliptic regularity results which can
be studied in this approach; see [23]. For the semiclassical problem, we re-examine the
approach and pay attention to the dependency on h. We carry out the construction
for dimensions n > 2 as the argument is the same.

We recall the decomposition of A, from [12, section 2]. We consider the Laplace—

Beltrami operator A, in boundary normal coordinates (x1,...,2,) in which M =
{z, =0}, and we denote 2’ = (x1,...,2,—1). The metric is of the form
n—1
g= Z gapdrodrs + (dx,)?.
a,B=1

We recall that
n L L
Ag=— ) 6720,,(029"0s)),
ij=1

where § = |det g;;|. We write D,,, = —i0,, . In boundary normal coordinates, we have

Ay=D2 +iE(z)D,, +Q(z,Dy),

where
1 n—1
B)==3 3 4" (@), 905(),
a,B=1
n—1 n—1 1
Q@ De)= 3 g*"Da,Duy =i ) (2g°‘ﬁ<x>a% log6<x>+a%gaﬁ>) Doy
a,B=1 a,B=1

see [12, page 1101]. It is proved in [12, Proposition 1.1] that there exists a pseudodif-
ferential operator A(x, D,/) of order 1 in =’ depending smoothly on z,, such that

Ag=(D,, +iE(z) —iA(x,Dy))(Dy, +iA(z,Dy)) + B,
where B denotes a smoothing operator. Now we consider the problem

(Ay +V)u—Nu=0.
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We use the decomposition to get
(Dy, +iE(z) —iA(z, D)) (Dy, +iA(x, Dy))u+ Bu — N u=0.
Dividing by A\? and setting h=1/), we get
(hD,, +ihE(x) —ihA(x, Dy))(hDg, + ihA(x, Dy ))u+ (h*B — 1)u = 0.
Now we convert the elliptic problem to a system

(hDy,, +ihA(x,Dy))u=v,

24) (hD,,, +ihE(x) —ihA(x, Dy ))v + (h2B — 1)u=0.

The boundary condition w = f at M is converted to u = f at x, = 0. Notice that
hA(z,D, ) is a semiclassical pseudodifferential operator of order 1. Later, we will
denote it by A(x,hD,) to signify the semiclassical nature.

Let’s see what we need to do to find the DtN map. We let U(x,,h) be a semi-
classical parametrix such that

(hDy, +iA(z,hD;))U(zp,h) =0 mod O(h*) for z, >0,
U(0,h)=1d.

Then we can write using Duhamel’s principle
Tn
(25) W@y, ") =U(x,, h) f(z") + / Uz, —s,h)v(s,2")ds
0

modulo an O(h™) term. To find v, we consider the backward heat equation from
t=T>0. Let W(x, —T,h) be the parametrix of

(hD,, +ihE —iA(x,hDy))W (2, — T,h) =0 mod O(h™), z,<T,
W(0,h) =1d.

We can write
T
(26) v(zp,2") =W (x, —T,h)v(T,z") — / W (zy, — s,h)(h*B + 1)u(s,z")ds

modulo a O(h*) term. The important property of the parametrix we need to establish
(in section 9) is that for ¢ >0, U(t,h) and W (—t, h) are smoothing operators of order
h®°. Suppose this is done. We know a priori that the solution u to the Dirichlet
problem is smooth and the H' norm is of order h~2, which can be seen from the
variational form. Using (24), we see that v(T,z’) is smooth and the L? norm is of
order h~. We conclude from (26) that v is smooth and is of order h*® for z,, € [0,T).
Finally, we can use (25) to conclude that u(z,,,z") is smooth for z,, € [0,T). Also, the
second term on the right-hand side of (25) is of order h* for x,, € [0,T). Now we can
derive the DtN map from the first equation of (24) as

D, u=h"YiA(x,hDy)u=h"tA(x,hDy)f at x, =0
up to an O(h*) smooth term.

Using this description of the DtN map, we will prove that the following proposition
holds.
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PROPOSITION 8.1. Let (M,g) be as in Theorem 1.1 except that the dimension of
M isn >2. Consider the semiclassical Dirichlet problem

R*(Ay+V)—u=0in M,
u=f at OM.

For the DIN map A defined in (2), the Schwartz kernel A(z,2"),z,2" € OM, is such
that |z — 2'|A(2,2") is continuous in z,z’ and bounded for h small. Here, |-| denotes
the Euclidean norm.

The key in this approach is to construct a parametrix of the semiclassical heat
equations (24) which we study next.

9. Parametrix of semiclassical heat equations. We briefly review the ba-
sics of semiclassical quantization from [26]. For h € [0,1), consider a(h,z,§) €
C>=([0,1); S™(R};RE)). Here, S™(R™;R"™) is the standard symbol class, which is
the set of C* functions on R} x Ry satisfying

D2 D a(h, z,€)| < Cap(€)™ 7!

for all a, 8 € N". The estimate is uniform on a compact set of R. When the context is
clear, we also abbreviate the notation as S™. The semiclassical operator with symbol
a is defined as

A(x,hD)u(ﬂc):Oph(a)u(x)z(%rh)_”/" We=y)&/hg (b, x, €)u(y)dydE.

Here, we only use the standard quantization. The semiclassical principal symbol is
O'h)m(A) = a‘h:() esm.

For h€[0,1),t> 0,2/, € R"™*, we consider symbols a(h,t,z’,&) € C>([0,1); x
[O,oo);Sm(RZTI,Rgfl)). We assume that

a(h,t, 2’ &) Zhajtx,f a; € C=([0,1); S™).

Moreover, the semiclassical principal symbol ag is elliptic, namely
lag(t,z',&")| > ~|€'|™ for v >0 and all (¢,2").

Let A(t,a’,hD) be the semiclassical quantization of a(h,t,z’,£’). We consider semi-
classical heat equations

(hDy 4+ A(t, 2’ ,hDy))u=0 for t >0,2' € R"™ 1

27 u=f, t=0.

The argument below follows closely section 1.1 of Chapter III of [23]. We aim to find
a semiclassical parametrix of the form

U(t,a',hDy) = W Uj(t,2',hDy),
=0

where Uj are semiclassical quantizations of u;(t,z’,£’) € S™™, that is,

(28) U;(t) f(z') = (2xh)~ (D) / e = (42! &) fy')dE dy'
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We write z = (¢,2’) € R" below. Formally, we have
(th+A(a; hDy)U (z, hDyr)
(29) _ Z B KU, (2, hDy) + S b A, hD YUy (2, hD,).
§=0

Let Cj(x,hDy ) = A(x,hDy)Uj(x,hDy ) be the composition. We use semiclassical
calculus for standard quantization to conclude that C; are semiclassical pseudodiffer-
ential operators with full symbols

hk
b €)=Y 1 (Der, D) (0l € g 1y =ar = + OB

k=0

as h — 0. Here, ¢; € C*([0,1),;5°). See Theorems 4.14 and 4.18 of [26]. Using
the asymptotic expansion of a(z,¢), we find that the symbol expansion of A(x,hD,)
U(x,hDyr) is 3272 h'd;(t, 2, &), where

,_x

J k
d;j(t,a',€) ZZT, (Der, Dy N (a—1( ;& Yuj (Y s 1)) yr=ar =g -

k=01=0

Using this formula, we get from (29) that

(hDy 4+ A(x, hDy ))U (2, hDy) = (2ch)~ (=Y

(30) -ihj/ @ =1V (s (t ! €) + dy (1,2, €'))dE

Rn—l

From the order A’/ terms, we get equations
(31) hatuj(tax/,gl) + aO(taxlvgl)uj (taxlagl) + ej (ta xlagl) =0 V] Z 07
where eg =0 and for j > 1 we have

(t € 75 ) (tuml7§I) - ao(taxl751)uj(t7$/a§/)

ik
1 - l i /A
=> > 71 @Ders Dy)) (an—i(2", €)uj—w(y'sn'))ly =t =¢-

Notice that the term e; involves ug, k < j. So we will solve these equations iteratively.
Equation (31) comes with initial conditions. At ¢t =0, we get

Uo(0,2",hD,)=1d, Uj(t,2',hDy) =0, j>1.
This implies that
(32) Uo(O,JZ,,f,):l, uj(oaxlvé./) :0’ .] Z 1.

To solve (31) with (32), we look for solutions of the form

(33) uj(t, ', &) = (2mi)~* / epZt/hkj(t,x’,f’,z)dz
Bt
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where p = (¢/)™, z € C is a complex parameter, and v is a contour so that the
integrand is holomorphic in a neighborhood of ~y for ¢, 2’ in a compact set. Plugging
this into (31), we obtain

omi) ! | eP* M Lk dz =0,
( j
Y

£k}j = kaij + thk‘j + aok‘j +€;.

Now hD;k; has an additional h. So we should look at the asymptotics in (30). After
rearrangement, we get from the order h? term the equations

Z]{o = pzko + aok‘o,
E]{j = ka'J + aokj + Ej + Dtkj—h j Z 1

We aim to solve k; from ij = p. Then we justify that the choices solve (31) and

(32).
First, we recall that ag € S™ is elliptic. Thus p~lag € S° is also elliptic and we
see that for ¢’ € R":l, z — p~lag is nonzero for Imz < 0. Let E(2) = (z — p~tag) L.

For j =0, we solve Lko = p to get kg = E(z). For j > 1, we get
kj = *E(Z)pil[Dtkj_l + 6]'].

1

It follows from the argument on page 137 of [23] that k; are smooth in (¢,z) and
valued in §™ and m; < —jmin(1,m). This finishes the construction. Finally, we
prove the regularizing properties of the parametrix.

LEMMA 9.1. The operators U,(t) with u; defined in (33) are smoothing operators
and belong to O(h*™) fort > 0.

Proof. We look at
u;(t, 2’ &) = (27ri)_1/epZt/hkj(t,x’,fl,z)dz

.
in which k; € C*°([0,00); S™). We estimate

050,07 by (1,2, €)| < C gy 1oL,
Also, we estimate
07 g e /M < C(t/h) "N (1+1¢/)7N.

Putting the estimate together, we obtain that the operators Uj(t) are indeed smooth-
ing operators and of h*. ]

Now we apply the construction to the two heat equations in (24) to conclude that
U(t,h),W(—t,h) are smoothing operators of order h> for ¢ > 0. We can finish the
proof of Proposition 8.1.

Proof of Proposition 8.1. For the DtN map A, we know that modulo a smooth
O(h*) term, the Schwartz kernel is

A(x'ay'):h_l(%z‘h)_(n—l)/ei(w’—y’)f//ha(x’,él»h)df/
:h_1(2m')_”_1/e"(’”'—y')'g/a(m’,hﬁ/,h)dfl-

Because a is a symbol of order 1, the Schwartz kernel has a singularity like |2’ —y
and |z’ —y'|A(2',y") is bounded in h. O

’
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10. Proof of Theorem 1.1. Let’s consider two potentials V, V on M, with A, A

the corresponding DtN maps. Suppose A = A. We use (7)
8,R(z,2,h) —8,R(z,2,h) = R(z, 2", h)A(Z",2")dz"
oM

— R(z,2" h)A(Z",2")dz"
oM

and (16)

R(Z,Z/,h) - R(Z7Z/, h) = Flead + ]:para + Fres

and the estimates of the remainder terms to finish the proof.
We start from the left-hand side of (7). Using the results in section 6, we get
(34) 6,,7%(2, 2 h) — 0, R (2,2 ,h) = Ch™20,r(z, z”)ei”(z"z”)/h/\,’wW(z, 2"
+h 7179, X W (2,2) + Oy Ficad,s + O Fres + OuFpara:

For the right-hand side of (7), we write it as
R(z, 2", h)A(Z",2")dz" — R(z,2" h)A(Z",2")dz"
oM oM

(35) - /a (R ) = R (e WA )"

+ R(z,2" h)(A(Z",2") — A(2",2"))dz".
oM

Since A = /N\, we only need to consider the first term. But we remark that one can
derive a stability estimate from the second term, although we do not pursue it here.
We have

/?(ﬁwﬁﬂmh%*R@Jﬂoﬁﬁxwﬂﬂﬂf
oM

(36) _ / h*1ei(ﬂ"(z,z”)/h/')C-wVV(Z7 Z”)K(Z”, Zl)dZH
oM

+/(hm@w+hw%HﬂmwﬂW%&M5
OM

Now we can use the estimate of R —R and the kernel estimate of A in Proposition 8.1.
Also, we will use the stability estimate of X* in Theorem 6.1. From (34) and (36),
we get

||‘XVLUI/V||L2 < C'h2(h_1||61/‘XVLUVV||L2 + |au-7:lead,1 + au-}—res + allfpara|C0)

(37) ; 2
+Ch|X W|CO + Ch |]:lead,1 +-Fres +-Fpara|CU~

The estimates of these terms are done in Lemmas 7.1 and 7.2 and (22). Also, we used
that the boundary OM is strictly convex and that we only consider z,z’ € 9M and
away from z =z’ in (7), so the absolute value of the 9,7 term in (34) is bounded from
below. By the continuity of X*: H' — H' we get from (37) that

(38) IW | L2(ar) < ChIW | 201y + CRIW |20 (0py < CRIW |2 (ar

if |W|CO(M) < Cy.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/08/25 to 170.140.142.252 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4102 GUNTHER UHLMANN AND YIRAN WANG

To finish the proof of Theorem 1.1, we use |W|c2(ary < C1||W /|| p2(ary for some Cy
(depending on V, V). Then we conclude that |W/| 2y < Ch||W{L2(ar). So for h
sufficiently small (depending on V| V'), we get W =0 and complete the proof. O

Remark 10.1. Let K be a compact set of M. For Cy,C; > 0, we define
39) w = {W S Cgo(M) ssupp W C K, |W|C2(M) <y, |W|02(M) < Cl||W||L2(M)}~

For potentials V, V such that V-V € W , it follows from the proof of Theorem 1.1 that
such potentials are uniquely determined by their DtN map for a sufficiently small h
which only depends on Cy, C;. Actually, one can obtain Holder type stability estimates
by examining the last term in (35). This agrees with the phenomena of increased
stability for high frequency Schrodinger operators on R™. See the recent work [8]
and the references therein. We remark that the last inequality in (39) resembles the
so-called inverse inequality in numerical methods; see, for example, [9, section 6.2].

Remark 10.2. Our proof leads to an approximate reconstruction method. From
(34), we get that

w (17 _ Ch? " N/ "ol "
x (V—V)_W/Rn(z,z R)A(",2) — A", 2))d=" + O(h),

where the function W in X" and the constant can be found explicitly from the proof.
Note that they only depend on the background manifold (M, g). Thus, to reconstruct
a potential V' from A, we can choose a reference potential V =0 with corresponding
A which can be computed for the manifold (M, g). Therefore, for h sufficiently small,
we can find V approximately by inverting the geodesic ray transform.
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