
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Yiran Wang
4 Inverse problems in cosmological X-ray
tomography

Abstract:Weconsider the recovery of space-time structures from theCosmicMicrowave
Background (CMB) using tomography methods. On the linearization level, the problem
concerns an X-ray transform in Lorentzian geometry, called the light ray transform. We
review recent results on the mathematical properties of the transform, and their appli-
cations to the CMB inverse problem for various physical models.

Keywords: Cosmic microwave background, light ray transform, microlocal analysis,
Lorentzian geometry, integral geometry

MSC 2010: 35Q85, 35A27, 44A12

4.1 Introduction
The purpose of this paper is to review recent progresses on the inverse problemof recov-
ering spacetime structures from the Cosmic Microwave Background (CMB). The study
of CMB has a rich history in astrophysics, and there is a large literature on both theo-
retical and experimental results. Recently, the inverse problem has been explored from
the tomography point of view, which is relatively new to the field. The new perspective
has lead to many interesting results and challenging mathematical problems.

We briefly recall that CMB is the remnantmicrowave radiation from the Big Bang. It
was discovered by Penzias andWilson in 1964 and soon became amajor source of infor-
mation regarding the early universe; see Figure 4.1. Two main aspects of the CMB have
been explored. First, the CMB temperature is highly smooth and isotropic. The famous
EGS theorem [11] says that the isotropy of the CMB implies the isotropy and spatial ho-
mogeneity of the universe. Second, the CMB contain faint anisotropies, which can now
be mapped by sensitive satellite detectors such as COBE, WMAP and Planck Surveyor.
The anisotropies contain rich information regarding the early universe. More precisely,
as demonstrated in a seminar paper of Sachs and Wolfe [38] in 1966, primordial pertur-
bations produce anisotropies in the CMB. On the linearization level, the anisotropy is
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Figure 4.1: All-sky picture of the infant universe created from nine years of Wilkinson Microwave
Anisotropy Probe (WMAP) data. Picture courtesy to NASA. The image reveals 13.77 billion-year-old tem-
perature fluctuations (shown as color differences) that correspond to the seeds that grew to become the
galaxies. This image shows a temperature range of ± 200 microKelvin.

related to an integral transform of the gravitational perturbations along null geodesics
from the “surface of last scattering,” known as the (integrated) Sachs–Wolfe effect. The
integral transform is the “cosmological X-ray transform” (or the light ray transform) in
the title. The inverse problem we investigate is to recover information by “inverting”
the transform. By nature, the problem is similar to the famous Radon transform that is
widely used inmedical imaging. One can say that we are performing an X-ray CT for our
universe.

Despite the similarity, the inversion of the cosmological X-ray transform is much
more challenging than the Radon transform. In particular, the inverse problem is
severely ill-posed. Perhaps Guillemin was the first to note the issue when he encoun-
tered the transform in the study of the Lorentzian version of the Zoll problem. In his
1989 monograph [19], Guillemin phrased the issue as “no observer in spacetime can
be privy to events occurring beyond his own causal horizon.” The instability can be
understood well using techniques from microlocal analysis. We review recent results
in [30, 31, 51, 52]. The results imply what type of singularities in the gravitational pertur-
bation can be recovered. One immediate application is to find cosmic strings from the
CMB, which was one motivation of [30]. The study of cosmic strings has a long history
(see, e. g., [50]), although their existence has not been confirmed yet.

Another fascinating object that has been suggested to look for in the CMB is the grav-
itational waves generated in the early universe, called primordial gravitational waves;
see, for example, [8, 10, 25]. Unlike the gravitational waves generated from compact
binary collisions, which can be detected by LIGO nowadays, primordial gravitational
waves, quoted from [25], “will involve waves today whose wave lengths will extend all
the way up to our present cosmological horizon (the distance out to which we can cur-
rently observe in principle) and that are likely to be well beyond the reach of any direct
detectors for the foreseeable future.” Theoretical study has shown that these gravita-
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tional waves should leave indirect signatures in the CMB, known as polarizations. Is it
possible to identify these waves from the cosmological X-ray transform? The answer is
very likely to be yes, at least for scalar-type gravitational perturbations as demonstrated
in [49, 53] and [54] for the kinetic model.

There aremore to explore, andwemention a fewdevelopments thatwe are not able
to discuss in this article. For example, we mainly consider the CMB inverse problem on
the linearization level. The nonlinear problem remains open, but there are interesting
results on the much related Lorentzian scattering rigidity problem; see [12, 13, 42, 55].
Also, from a practical point of view, it makes sense to assume that CMB ismeasured near
a freely falling observer instead of on a whole Cauchy surface. The partial data inverse
problem was studied in [30] for recovering singularities. Yet another practical consid-
eration is to develop numerical algorithms for inverting the light ray transform; see [6].
The ill-posednessmakes the problemparticularly challenging. Finally,we remark that in
addition to the CMB inverse problem, the light ray transform plays an important role in
other applications; see, for example, [47] for the hyperbolic Dirichlet-to-Neumann map
problem, and [4] for the recovery of bulk geometry in the AdS/CFT correspondence.

This paper is organized as follows. In Section 4.2, we formulate three inverse prob-
lems from the physical problem. Then we describe the mathematical results in Sec-
tions 4.3–4.5. In Section 4.3, we review the microlocal results for the light ray transform.
In Section 4.4, we review results for the light ray transform under the wave equation
constraint. In Section 4.5, we consider the inverse source problem for the linear Boltz-
mann equation. Finally, we propose some open problems in Section 4.6.

4.2 The inverse problems
In this section, we formulate three inverse problems from the physical problem. We
refer to [8, 10] for the detailed physical backgrounds on CMB. Our basic setup is the
Friedman–Lemaîte–Robertson–Walker (FLRW) model for the universe:

M = (0,!) 󳀁 ⊝3, g0 = −dt2 + a2(t)dx2 (4.1)

where (t, x), t = (0,!), x = ⊝3 are coordinates. The factor a(t) is assumed to be positive
and smooth in t. It represents the rate of expansion of the universe. As we concern the
linearized problem, we assume that the actual universe is a smooth one parameter fam-
ily ofmetric perturbations gϵ = g0+ϵg1+O(ϵ2) onM. For the ease of elaboration, wewill
make a few simplifications. First, we take a(t) = 1 in g0 so g0 becomes the Minkowski
metric. In fact, the FLRWmetric in (4.1) is conformal to a metric isometric to Minkowski
and one can prescribe gϵ after the conformal transformation. Most of the results that
we discuss in this work hold for general a(t). Second, in the literature, the metric per-
turbations are often classified to scalar, vector and tensor type. We refer to [10, Section
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2.3] for a discussion of the classification. We will focus on the scalar-type perturbations
of the form

gϵ = −(1 + ϵΦ)dt2 + (1 − ϵΨ)dx2 + O󵄨ϵ2󵄩 (4.2)

whereΦ,Ψare scalar functions onM. In Section 4.6,wewill brieflydiscuss the problems
for tensor perturbations, which are mostly open.

4.2.1 The cosmological X-ray transform
Consider the measurement of CMB. Let M0 = {t0} 󳀁 ⊝3, t0 > 0 be the surface of last
scattering. This is the moment after which photons stopped interaction and started to
travel freely inM. LetM1 = {t1}󳀁⊝3, t1 > t0 be the surface where wemake observation
of the photons. Because we aremostly interested in the region betweenM0 andM1, we
will takeM = (t0, t1) 󳀁 ⊝3 from now on.

Let γϵ(τ) be a null geodesic from M0 to M1 in metric gϵ where τ = [0, τϵ], τϵ > 0.
It represents the trajectory of photons inM. The photon energies observed atM0,M1
are defined by

E0 = 󵄨 ≡γϵ(0), ⟦t󵄩gϵ , E1 = 󵄨 ≡γϵ(τϵ), ⟦t󵄩gϵ .
Here, the observer is represented by the flow of the vector field ⟦t . The CMB redshift Rϵ
is defined via 1 + Rϵ = E1/E0. It is proved in Lemma 3.2 of [30] that for ϵ > 0 sufficiently
small,

Rϵ(x, v) = 󵄨 ≡γϵ(τϵ(z, θ); z, θ), ⟦t󵄩gϵ − 1
where z = (t1, x), θ = −(1, v). Here, we parametrized null geodesics γϵ on (M, gϵ) using(x, v) = ⊝3 󳀁 ⊛2.

Nowwe proceed to find the linearization of Rϵ; see Section 7 of [30] for details. First,⟦ϵRϵ = ⟦ϵ󵄨󵄨 ≡γϵ(τϵ ; z, θ), ⟦t󵄩gϵ − 󵄨 ≡γϵ(0; z, θ), ⟦t󵄩gϵ 󵄩. (4.3)

Next, we use the geodesic equation for γϵ in the form⟦τ󵄨gϵ,ij ≡γkϵ 󵄩 = 12 (⟦jgϵ,lm) ≡γlϵ ≡γmϵ (4.4)

Hereafter, we use Einstein summation convention with indices running from 0, 1, 2, 3.
Consider g1 = ⟦ϵgϵ|ϵ=0. We find that⟦ϵ((⟦jgϵ,lm) ≡γlϵ ≡γmϵ )|ϵ=0 = (⟦jg1,lm) ≡γl0 ≡γm0
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where we used the fact that g0 is a constant metric. Thus, we get by using (4.4) and (4.3)
that

⟦ϵRϵ|ϵ=0 = 12 τ0󵄪
0
󵄨⟦tg1,lm󵄨γ0(τ)󵄩󵄩 ≡γl0(τ) ≡γm0 (τ)dτ. (4.5)

This is essentially what Sachs and Wolfe derived in [38, Equation (39)], and the term is
called the integrated Sachs–Wolfe effect. We remark that in the derivation of (4.3), we
actually assumed gϵ = g0 atM1. Otherwise, there will be another term in (4.5) called the
ordinary Sachs–Wolfe effect. The integrated Sachs–Wolfe effect can be extracted from
the CMB and other astrophysical data; see, for example, [34].

For scalar perturbations in (4.2), (4.5) becomes

⟦ϵRϵ|ϵ=0 = 12 τ0󵄪
0
󵄨⟦tΦ󵄨γ0(τ)󵄩 + ⟦tΨ󵄨γ0(τ)󵄩󵄩dτ. (4.6)

The inverse problem is to recover Φ, Ψ from (4.6). We remark that in the derivation
of (4.6), we assumed that Rϵ can be observed at the whole Cauchy surface M1. In real-
ity, we can only hope to observe CMB along the world-line of a satellite. Thus, the more
realisticmodel should be the inversion of (4.6) for null geodesic γ that intersects a neigh-
borhood of a time-like curve; see the local formulation in [30].

4.2.2 The primordial gravitational waves
For the evolution of the universe, it is reasonable to assume within Einstein’s general
relativity theory that gϵ satisfies the Einstein equations with certain source fields and
initial perturbations at M0. On the linearization level, this means that g1 satisfies the
linearized Einstein equations. The formulation of CMB in this setup has been studied in
cosmological literatures; see, for example, [8, Section 5.1] and [10]. Let Rμν, μ, ν = 0, 1, 2, 3
be the Ricci curvature tensor and R the scalar curvature on (M, g0). Let Tμν denote the
stress-energy tensor of certain source fields. The Einstein equations are

Gμν = 8πGTμν, Gμν = Rμν − 12δμνR
where G is Newton’s gravitational constant. The explicit form of the linearized Einstein
equations can be found in [37, Sections 4–6]. We consider two important examples of
the sources: the perfect fluid and the scalar field.

First, consider the perfect fluid sources. Let u be the four fluid velocity of a fluid
source. The stress-energy tensor for a perfect fluid is

Tμν = (ϵ + p)uμuν − pδμν
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see [37, Equation (5.2)], Here, ϵ is the energy density and p is the pressure of the fluid.
We assume that ϵ = ϵ0+δϵ, p = p0+δpwhere 0 denotes the quantity for the background
and δ denotes the perturbations. For fluid source, one deduces that the perturbations
Φ = Ψ. In the case of adiabatic perturbations, Φ satisfies the following equation, called
Bardeen’s equation:

Φ!! − c2sΔΦ = 0, (4.7)

where ! denotes t derivative and cs < 1 is the speed of sound; see [37, Equation (5.22)].We
remark that the equation is simplified because we only consider the Minkowski back-
ground. Also in general, the right-hand side of the equation can have a nonzero term
related to the entropy perturbations. Prescribing Cauchy data of Φ atM0, one can solve
the Cauchy problem of (4.7) to get Φ inM.

Next, let us consider the universe governed by a scalar field ϕ. The stress energy
tensor is

Tμν = #μϕ#νϕ − √ 12#αϕ#αϕ − V (ϕ)√δμν
see [37, Equation (6.2)]. Here, V is the potential function for the scalar field ϕ. The field
itself satisfies the Klein–Gordon equation +ϕ+⟦ϕV (ϕ) = 0. Now assume that ϕ = ϕ0+δϕ
where ϕ0 is the scalar field, which drives the background model and δϕ denotes the
perturbation. Again, one finds that Φ = Ψ and it satisfies the equation

Φ!! − 2󵄨ϕ!!0 /ϕ!0󵄩Φ! − ΔΦ = 0; (4.8)

see [37, Equation (6.48)]. This is a damped wave equation with wave speed c = 1.
For the above two scenarios, the inverse problem is to recover information of Φ

from the integrated Sachs–Wolfe effect

⟦ϵRϵ|ϵ=0 = τ0󵄪
0
⟦tΦ󵄨γ0(τ)󵄩dτ, (4.9)

assuming that Φ is a solution of the Cauchy problem for wave equations in (4.7) or (4.8).

4.2.3 The kinetic model
In the derivation of the previous two problems, we assumed that photons travel freely
inM. This pure transport regime serves as a goodmodel for the standard universe after
the decoupling time. Before the decoupling time, photon interactions cannot be ignored
and a kinetic model based on the Boltzmann equation is appropriate. As is well known
in cosmology literatures (e. g., [8, 10]), the linearization of the Boltzmann equation on a
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FLRW universe with respect to small metric perturbations naturally leads to a source
problem for the Boltzmann equation in which the source term is related to the metric
perturbation. We briefly discuss the derivation in [54].

Let fϵ be the photon distribution function, which is a function of z, p variableswhere
z = ⊝3+1 and p is on the mass shell Σz = {p = Tz⊝3+1 : gϵ(p, p) = 0}. We assume that fϵ
satisfies the linear Boltzmann equation; see [10, Section 4.5]. This means that along γϵ ,

d
ds fϵ󵄨γϵ(s), pϵ(s)󵄩 = C[fϵ], (4.10)

where C[f ] denotes the interaction term
C[f ] = −σ(z)f (z, p) + 󵄪 k󵄨z, θ, θ!󵄩f 󵄨z, v󵄨1, θ!󵄩󵄩dθ! (4.11)

where σ denotes absorption coefficients, k is the scattering kernel and the integration
is over {θ : v(1, θ) = Σz for v > 0}. The terms in (4.11) accounts for photon interactions in
Thomson scattering, for example. When C[fϵ] = 0, we essentially return to the model in
Section 4.2.1.

From (4.10) and (4.11), we get the equation

3↓
i=0 ⟦fϵ⟦zi (z, p)⟦γiϵ⟦s + ⟦fϵ⟦p (z, p)⟦pϵ⟦s= −σ(z)fϵ(z, p) + 󵄪 k󵄨z, θ, θ!󵄩fϵ󵄨z, v󵄨1, θ!󵄩󵄩dθ! (4.12)

Now we consider fϵ as a perturbation of some background distribution with an expan-
sion

fϵ(z, p) = f0(v) + ϵf1(z, v, θ) + O󵄨ϵ2󵄩 (4.13)

Here, f0 is the background photon distribution.Whenmodeling the CMB, it is reasonable
to assume that f0 satisfies the Planck distribution

f0(v) = 󵄨ev/T0 + 1󵄩󳀁1;
see [10, p. 149]. Here, T0 > 0 is the background temperature of the universe. Also, f1
in (4.13) is the first-order perturbation term and θ is taken over ⊛2. In particular, (1, θ) is
a future pointing light-like vector for the background Minkowski metric g0. Now we fix
v = 1 and derive⟦f1⟦t (z, θ) + 3↓

j=1 θj ⟦f1⟦zj (z, θ) + σ(z)f1(z, θ) − 󵄪⊛2 k󵄨z, θ, θ!󵄩f1󵄨z, θ!󵄩dθ!= C⇓ 12 ⟦Ψ⟦t − 12 3↓
j=1 ⟦Φ⟦zj θj[ (4.14)
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where C is a nonzero constant and σ , k are changed by a scalar factor. The right-hand
side comes from the linearization term ⟦ϵ ⟦p0ϵ⟦t |ϵ=0.

Now the CMB inverse problem is to determine Φ, Ψ from the measurement of f1 at
t = T , which is essentially an inverse source problem for the linear Boltzmann equa-
tion (4.14). Here, one can also consider the setup in Section 4.2.2 that Φ = Ψ is a solution
of the Cauchy problem of the wave equations.

4.3 Recovery of singularities
We start with the inverse problem in Section 4.2.1. More generally, let (M, g) be an n +
1, n ± 2 dimensional smooth Lorentzianmanifold. Let γ be a complete light-like (or null)
geodesic, which means that γ(s) is defined for s = ⊝ and ≡γ(s) satisfies g( ≡γ(s), ≡γ(s)) = 0.
We consider the light ray transform(Lf )(γ) = 󵄪⊝ f 󵄨γ(s)󵄩ds, f = C#0 (M) (4.15)

when the integral is well-defined. Note that even for C#0 functions, the integral may not
converge because γ may be trapped in the support of f . There are very few results on
the injectivity of L, and we will discuss them in Section 4.6. In this section, we review
results for the recovery of microlocal singularities of f from Lf .

4.3.1 The space-like singularities
To understand the microlocal structure of L, let us start from the light ray transform for
Minkowski spacetime where explicit calculations can be done. Let g be the Minkowski
metric on M = ⊝n+1, n ± 2. We parametrize null geodesics as follows: let y = M0 and
v = ⊛2 the unit sphere in ⊝3. Then a light ray from (0, y) in direction (1, v) is γ(τ) =(0, y) + τ(1, v), τ = ⊝. The set of light rays C can be identified with ⊝3 󳀁 ⊛2. The light ray
transform for scalar functions on (M, g) is defined by

L(f )(y, v) = 󵄪⊝ f (τ, y + τv)dτ, f = C#0 (M). (4.16)

See Figure 4.2. Let L⟧ be the adjoint of L. Consider the normal operator N = L⟧L. It is
computed in [31, Theorem 2.1] that

Nf (t, x) = 󵄪⊝n+1 KN 󵄨t, x, t!, x!󵄩f 󵄨t!, x!󵄩dt!dx!
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Figure 4.2: The setup of the light ray transform for the Minkowski spacetime.

where the Schwartz kernel

KN 󵄨t, x, t!, x!󵄩 = δ(t − t! − |x − x!|) + δ(t − t! + |x − x!|)|x − x!|n󳀁1 (4.17)

In particular, KN can be written as an oscillatory integral

KN 󵄨t, x, t!, x!󵄩 = 󵄪⊝n+1 ei(t󳀁t!)τ+i(x󳀁x!)%ξk(τ, ξ)dτdξ (4.18)

where

k(τ, ξ) = Cn (|ξ|2 − τ2) n󳀁32+|ξ|n󳀁2 , Cn = 2π]]]]⊛n󳀁2]]]]. (4.19)

Here, for s = ⊝, sa+,Re a > −1 denotes the distribution defined by sa+ = sa if s > 0 and
sa+ = 0 if s ∓ 0.

We see that KN is close to but not exactly a pseudodifferential operator. When prop-
erly restricted to |ξ| > |τ|, that is, the cone of space-like covectors, it is an elliptic pseu-
dodifferential operator. Here, we recall that our convention for the signature of themet-
ric g is (−,+, ⟧ ⟧ ⟧ ,+). A covector ζ = T⟧z M is called space-like if g(ζ , ζ ) > 0, time-like if
g(ζ , ζ ) < 0 and light-like if g(ζ , ζ ) = 0. The set of space-like, time-like and light-like
vectors are denoted by Γsp, Γtm and Γlt, respectively. In general relativity, space-like sin-
gularities corresponds to particles moving slower than the speed of light, and light-like
singularities corresponds to objects moving at the speed of light such as photons and
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gravitational waves. From the microlocal structure of KN , we can conclude that space-
like singularities of f can be recovered from Lf for the Minkowski space.

The picture also holds for general Lorentzian manifolds studied in [31]. For simplic-
ity, we recall the result for globally hyperbolic manifold but there is a local statement
[31, Theorem 3.1]. Also, the result can be stated for the light ray transform with weights.

Theorem 4.3.1 (Corollary 3.1 of [31]). Let (M, g) be a globally hyperbolic Lorentzianman-
ifold on which there are no conjugate points on light-like geodesics. Let K ⊂ Γsp be com-
pact. Then there is a zeroth order pseudodifferential operator χ on M such that L⟧χL
is a pseudodifferential operator of order −1 with essential support in the space-like cone.
Moreover, L⟧χL is elliptic inK and the principal symbol is homogeneous and nonnegative.

From this microlocal result, one can conclude that space-like singularities in f can
be recovered from Lf . More precisely, for f = E !(M) compactly supported distributions
onM, if WF(f ) ≐ Γsp, then q = WF(Nf ) if and only if q = WF(f ).

The proof of Theorem 4.3.1 is based on Guillemin’s double fibration approach [20].
First, we recall the microlocal structure of L. Let F be the set of all geodesics on (M, g),
and C be the set of light-like geodesics, so C ≐ F . Provided there is no conjugate points on(M, g),F is a 2n-dimensional smoothmanifold and C is a codimension one submanifold.
We view the light ray transform as an operator L : C#0 (M) ÷ C#(C). It is known that
the Schwartz kernelKL is the delta distribution supported on the point-geodesic relation
Z = {(z, γ) =M 󳀁 C : z = γ}. Therefore, L is an Fourier integral operator and the kernel
has conormal singularities to Z . The canonical relation can be described using Jacobi
fields as in the Riemmanian setting; see [52]. Using Hörmander’s notion, the Schwartz
kernel KL = I󳀁n/4(C 󳀁M; C!). Next, to analyze the microlocal structure of the normal
operator L⟧L, we look at the double fibration

C

T⟧M\0 T⟧C\0πM πC

If πC is an injective immersion, then C is said to satisfy the Bolker condition and the
composition L⟧L can be studied using Duistermaat and Guillemin’s clean FIO calculus;
see [20]. What was shown in [31] is that when ξ in C is space-like, the projection πC is
indeed injective.

4.3.2 The light-like singularities
Let us consider the microlocal picture up to light-like directions, staring from the
Minkowski spacetime. From (4.18) and (4.19), we see that the normal operator is a
pseudodifferential operator with symbols singular at the boundary of the light cone
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|ξ|2 = τ2. The Schwartz kernel is a typical example of the paired Lagrangian distribu-
tions developed in [21, 36], see also [7]. This has been noted in several works; see [40, 30],
for example.

LetX be a C#manifold of dimension n andwX be the symplectic form on T⟧X . Let
Λ0, Λ1 be conic Lagrangian submanifolds of T⟧(X 󳀁X )\0 with symplectic form π⟧1 wX +
π⟧2 wX . Here, π1, π2 : X 󳀁 X ÷ X denotes the projections to the first, second copy of X .
Suppose that Λ1 intersects Λ0 cleanly at a codimension k, 1 ∓ k ∓ 2n − 1 submanifold
Σ = Λ0 ⋇ Λ1, namely Tp(Λ0 ⋇ Λ1) = Tp(Λ0) ⋇ Tp(Λ), ×p = Σ. From [21, Proposition 2.1],
we know that all such intersecting pairs (Λ0,Λ1) are locally symplectic diffeomorphic
to each other. So, it suffices to define paired Lagrangian distributions for the following
model problem. Let ⋉X = ⊝n = ⊝k 󳀁⊝n󳀁k , 1 ∓ k ∓ n − 1, and use coordinates x = (x!, x!!),
x! = ⊝k , x!! = ⊝n󳀁k . Let ⋉Λ0 = {(x, ξ , x,−ξ) = T⟧( ⋉X 󳀁 ⋉X )\0 : ξ ⋊= 0} be the punctured
conormal bundle of Diag in T⟧( ⋉X 󳀁 ⋉X ), and⋉Λ1 = ⟦(x, ξ , y, η) = T⟧( ⋉X 󳀁 ⋉X )\0 : x!! = y!!, ξ! = η! = 0, ξ!! = η!! ⋊= 0⟧,
which is the punctured conormal bundle to {(x, y) = ⋉X 󳀁 ⋉X : x!! = y!!}. The two La-
grangians intersect cleanly at ⋉Σ = {(x, ξ , y, η) = T⟧( ⋉X 󳀁 ⋉X )\0 : x!! = y!!, ξ!! = η!!, x! =
y!, ξ! = η! = 0}, which is of codimension k. For this model pair, the paired Lagrangian
distribution Ip,l(⊝n 󳀁 ⊝n; ⋉Λ0, ⋉Λ1) consists of oscillatory integrals

u(x, y) = 󵄪 ei[(x!󳀁y!󳀁s)%η!+(x!!󳀁y!!)%η!!+s%σ]a(s, x, y, η, σ)dηdσds (4.20)

where a is a product type symbol, which is a C# function and satisfies]]]]⟦αη⟦βσ⟦θs ⟦γx⟦δy a(s, x, y, η, σ)]]]] ∓ C󵄨1 + |η|󵄩p+k/2󳀁|α|󵄨1 + |σ|󵄩l󳀁k/2󳀁|β| (4.21)

for multiindices α, β, θ, γ, δ over each compact set K of ⊝n 󳀁 ⊝n 󳀁 ⊝k . The constant C
depends on the indices and K. The set of product type symbols is denoted by Sp,l(⊝n 󳀁⊝n;⊝n;⊝k).

It is proved in Theorem 3.1 of [52] (see also [51]) that the Schwartz kernel of the
normal operator KN = I󳀁n/2,n/2󳀁1(⊝n+1 󳀁 ⊝n+1;Λ0,Λ1), in which Λ0, Λ1 are two cleanly
intersection Lagrangians defined as follows:

Λ0 = ⟦󵄨t, x, τ, ξ ; t!, x!, τ!, ξ!󵄩 = T⟧⊝n+1\0 󳀁 T⟧⊝n+1\0 :
t! = t, x! = x, τ! = −τ, ξ! = −ξ⟧, (4.22)

which is the punctured conormal bundle of the diagonal in ⊝n+1 󳀁 ⊝n+1 and
Λ1 = ⟦󵄨t, x, τ, ξ ; t!, x!, τ!, ξ!󵄩 = T⟧⊝n+1\0 󳀁 T⟧⊝n+1\0 :

x = x! + 󵄨t − t!󵄩ξ/|ξ|, τ = ±|ξ|, τ! = −τ, ξ! = −ξ⟧. (4.23)
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The proof of this result is based on the explicit form of the kernel in (4.19) and (4.18). In
particular, one can find a symplectic transformation so that (4.18) is transformed to the
model problem; see [52, Section 3].

The result has also been generalized to globally hyperbolic Lorentzian manifolds
without conjugate points.

Theorem 4.3.2 (Theorem 1.1 of [52]). Let (M, g) be a globally hyperbolic Lorentzianman-
ifold of dimension n + 1, n ± 2. Suppose (M, g) is null-geodesic complete without conju-
gate points. Consider the normal operator N = L⟧L of the light ray transform L. Then
the Schwartz kernel KN = I󳀁n/2,n/2󳀁1(M 󳀁M;Λ0,Λ1), in which Λ0, Λ1 are two cleanly in-
tersecting Lagrangians. Let Σ = Λ0 ⋇ Λ1. The principal symbols of KN on Λ0\Σ, Λ1\Σ are
nonvanishing.

As a consequence, one can derive Sobolev estimates for the light ray transform.
More precisely, L : Hs

comp(M) ÷ Hs+s0/2
loc (C) is continuous with s0 such that max(−n/2 +

1/2,−1) ∓ −s0, n ± 2; see [52, Theorem 1.2]. For the Minkowski spacetime, related esti-
mates were obtained by Greenleaf and Seeger [15].

Using the improved microlocal picture, we can say something about recovery of
light-like singularities. It is proved in [52, Theorem 1.3] that one may not be able to de-
termine light-like singularities of f using singularities of Nf under the assumptions of
Theorem 4.3.2. Related examples are known 2 + 1 dimensional Minkowski spacetime;
see [17, Section 2]. Under stronger conditions, for example, if the singularities of f are
of conormal type with principal symbols of a fixed sign, it is proved in [52, Theorem 6.2]
that the wave front set of f can be determined from Nf . Finally, we remark that conju-
gate points can cause cancellation of singularities; see the discussion in [31, Section 4]
for an example.

The proof of Theorem 4.3.2 does not use the double fibration approach, although
there are composition results for the fold-type singularities; see, for example, Greenleaf
and Uhlmann [16]. Instead, one can analyze the Schwartz kernel, as in the approach of
Stefanov and Uhlmann [44, 46] for the Riemannian geodesic ray transform. For simplic-
ity, we consider (M, g) a standard static spacetime of the form

M = ⊝ 󳀁N , g = −dt2 + h(x, dx) (4.24)

and assume that there is no conjugate points on (M, g). Here, h is a Riemannian metric
on N . In this case, light-like geodesics on (M, g) are lifts of geodesics on (N , h). More
precisely, let (x, θ) = SN so that h(θ, θ) = 1. Then we have

γx,θ(s) = exp(0,x) s(1, θ) = 󵄨s, exphx(sθ)󵄩 (4.25)

where exph denotes the exponential map on (N , h). Using (x, θ) = SN to parametrize
the light rays, the light ray transform becomes
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L(f )(x, θ) = 󵄪⊝ f 󵄨s, exphx(sθ)󵄩ds, f = C#0 (M). (4.26)

The Schwartz kernel was found in [52, Section 4].

Proposition 4.3.3. For the light ray transform (4.26) on a static spacetime (4.24) of di-
mension n + 1, n ± 2 and without conjugate points, the Schwartz kernel KN of the normal
operator N = L⟧L is

KN 󵄨t, x, t!, x!󵄩 = δ(t − t! − disth(x, x!)) + δ(t − t! + disth(x, x!))(disth(x, x!))n󳀁1 J(x, x!) (4.27)

for (t, x), (t!, x!) = M. Here, disth : N 󳀁 N ÷ [0,!) is the distance function on (N , h)
and J is a smooth nonvanishing function onN 󳀁N with J(x, x) = 1, x = N .

Here, themeasure onM is(dethdtdx, and J(x, x!) is in fact a Jacobian factor similar
to the result Proposition 1 in [44]. Proposition 4.3.3 is a generalization of (4.17). One can
analyze the microlocal structure near the intersection of t = t! ± disth(x, x!) and {t =
t!, x = x!} via Fourier transform and carry out similar analysis as in theMinkowski case.
We remark that this approach can also be used to analyze the structure of the kernel
when certain type of conjugate points are present following the idea in [46]; see [52,
Section 7]. In particular, for standard static spacetimeswith time-like conjugate points of
fold type, it was shown in [52] that the Schwartz kernel is the sumof a paired Lagrangian
distribution and a Lagrangian distribution associated with the conjugate points.

4.4 Recovery of wave equation solutions
In this section, we review the results in [49, 53] for the inverse problem in Section 4.2.2.
Below, we takeM = (0, T) 󳀁 ⊝3 and use (t, x), t = (0, T), x = ⊝3 as the local coordinates.
Let g be the Minkowski metric on M. We use M0 = {0} 󳀁 ⊝3 and M1 = {T} 󳀁 ⊝3. We
consider general wave operators of the form

P(x, t,Dx , ⟦t) = ⟦2t + c2 3↓
i=1 D2xi + P1(x, t, iDx , ⟦t) + P0(x, t) (4.28)

whereP1 is a first-order differential operatorwith real valued smooth coefficients andP0
is smooth. Here, we assume c is a constant speed. Thenwe consider the Cauchy problem

P(x, t,Dx , ⟦t)f = 0 onM
−

f = f1, ⟦tf = f2, onM0. (4.29)

The inverse problem we study is to determine the Cauchy data (f1, f2) from the light ray
data Lf where f is the solution of (4.29) and L is the light ray transform defined in (4.16).
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Wewill see that with thewave equation constraint, one can obtain better result of stable
recovery of f .

Theorem 4.4.1 (Theorem 1.1 of [49], [53]). Suppose 0 < c ∓ 1 is constant. Assume that(f1, f2) = N s def= Hs+1
comp(M0) 󳀁 Hs

comp(M0), s ± 0, and f1, f2 are supported in a compact set
K of M0. Then Lf uniquely determines f and f1, f2, which satisfy (4.29). Moreover, there
exists a C > 0 such that))))(f1, f2)))))N s ∓ C%Lf %Hs+2(C) and %f %Hs+1(M) ∓ C%Lf %Hs+2(C)
where C is the set of light rays onM.

Because of the stability estimate, we can generalize the result to include small met-
ric perturbations. We remark that for smooth metric perturbations of the Minkowski
metric, the injectivity of the light ray transform is not yet known; see Section 4.6. Let us
consider metric perturbations gδ = g + h where h is a symmetric two tensor smooth on
M, and for δ > 0 small, the seminorm %hij%C3 < δ, i, j = 0, 1, 2, 3. In this case, light rays
may not be straight lines but the light ray transform Lδ on (M, gδ) can be parametrized
similar to L. Let+gδ be the d’Alembert operator on (M, gδ). Consider the Cauchy problem+gδ f = 0 onM

−
f = f1, ⟦tf = f2, onM0. (4.30)

Then we have

Theorem 4.4.2 (Theorem 1.2 of [49]). Consider (M, gδ) described above. Assume that(f1, f2) = N s, s ± 0 and f1, f2 are supported in a compact setK ofM0. For δ ± 0 sufficiently
small, Lδf uniquely determines f and f1, f2, which satisfy (4.30). Moreover, there exists
C > 0 such that))))(f1, f2)))))N s ∓ C%Lδf %Hs+2(Cδ) and %f %Hs+1(M) ∓ C%Lδf %Hs+2(Cδ)
where Cδ is the set of light rays on (M, gδ).

Roughly speaking, the reason that we are able to get a stable determination is the
restriction of singularities of f . We have seen in Section 4.3 that time-like singularities
in f are lost after taking the light ray transform. So, we do not expect Theorem 4.4.1
and 4.4.2 to hold for c > 1. There is a fundamental difference in the treatment between
the c < 1 and c = 1 cases. The former only needs a good understanding of the normal
operator L⟧L, while the latter relies on a thorough analysis of the operator LE where E
is the fundamental solution or parametrix for the Cauchy problem. Below, we will focus
on the more difficult case of c = 1.

We will see soon that there are some technicalities related to the behavior of f at
t = 0, T . For simplicity, we replace Lf by L(χϵf ) where χϵ is a smooth cut-off function



4 Inverse problems in cosmological X-ray tomography � 153

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

supported in [0, T]. For ϵ > 0 small, let χϵ(t) be a smooth cut-off function on⊝ such that
χϵ(t) = 1 for 2ϵ < t < t1 − 2ϵ and χϵ(t) = 0 for t < ϵ and t > t1 − ϵ. In fact, by the continuity
of L, the difference of Lχ[0,T]f and Lχϵf can be made arbitrarily small in a proper sense.
Now we discuss two approaches in [49] and [53].

4.4.1 The first approach
For simplicity, we consider below the Cauchy problem for the standard wave equation.+f = 0 onM

f = f1, ⟦tf = f2, onM0. (4.31)

Using Fourier transform in the x variable, we get

u(t, x) = (2π)󳀁n 󵄪⊝n ei(x%ξ+t|ξ|) ⋈h1(ξ)dξ + (2π)󳀁n 󵄪⊝n ei(x%ξ󳀁t|ξ|) ⋈h2(ξ)dξ= E+h1 + E󳀁h2, (4.32)

where ⋈h1 = 12⇓ ⋈f1 + 1
i|ξ| ⋈f2[, ⋈h2 = 12⇓ ⋈f1 − 1

i|ξ| ⋈f2[.
Here, h1, h2 are the reparametrized Cauchy data for the Cauchy problem. Thus, E± are
represented by oscillatory integrals

E±f (t, x) = (2π)󳀁n 󵄪⊝n 󵄪⊝n ei((x󳀁y)%ξ±t|ξ|)f (y)dydξ . (4.33)

The phase functions are ϕ±(t, x, y, ξ) = (x−y) ⟧ ξ ± t|ξ| and amplitude function a(t, x, ξ) =
1. The oscillatory integral representation also works for (4.28) but more generally, the
parametrix of Cauchy problem can be constructed as Fourier integral operators; see [9].

We consider the composition LχϵE±. Let φ be a smooth function on ⊛2, and Iφ be the
integration operator on C#(⊝3 󳀁 ⊛2) defined by

Iφf (y) = 󵄪⊛2 φ(v)f (y, v)dv.
Then we consider the composition K± = Iφ ∘ L ∘ χϵE± as an operator from C#(M0) to
C#(M0). A key result is [49, Proposition 7.1],which says thatK± = Ψ󳀁1(M0) are pseudod-
ifferential operators of order −1 with complete symbol k±(ξ), ξ = ⊝3\0 and the principal
symbols are given by
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k+,󳀁1(ξ) = 2πicϵ|ξ|󳀁1φ󵄨−ξ/|ξ|󵄩, k󳀁,󳀁1(ξ) = −2πicϵ|ξ|󳀁1φ󵄨ξ/|ξ|󵄩,
where cϵ = t1󵄪

0
t󳀁1χϵ(t)dt

Note that K± are elliptic and we can use them to solve for h1, h2 up to smooth terms.
More precisely, we write

Lχϵf = LχϵE+h1 + LχϵE󳀁h2.
Applying Iφ, we get

IφLχϵf = IφLχϵE+h1 + IφLχϵE󳀁h2 = Kφ,+h1 + Kφ,󳀁h2
where we added φ to the notation of K± to emphasize the dependency. Then one can
show that by varying φ, one can construct parametrices A1, A2 such that

A1Lχϵf = h1 + R1h1 + R!1h2, A2Lχϵf = h2 + R2h1 + R!2h2
where Ri,R!i , i = 1, 2 are smoothing operators. In particular, we have the estimate%h1%Hs(⊝3) + %h2%Hs(⊝3) ∓ %A1Lχϵf %Hs+1(⊝3) + %A2Lχϵf %Hs(⊝3)+ Cρ󵄨%h1%Hs󳀁ρ(⊝3) + %h2%Hs󳀁ρ(⊝3)󵄩
Nowwe can use a known argument (see, e. g., [43]) to remove the last term with the fact
that L is injective on compactly supported functions.

Finally, we discuss what needs to be changed when the smooth cut-off function χϵ
is replaced by the characteristic function χ[0,T] of the interval [0, T] in ⊝. In this case,
the operators K± contain additional Fourier integral operators (FIO). For example, we
can write K+ = K0+ + Kϵ+ + Kt1+ where K0+ = Ψ󳀁1(⊝3), and Kϵ+ = I󳀁2(⊝3,⊝3; Cϵ), Kt1+ =
I󳀁2(⊝3,⊝3; Ct1 ) are FIOs of order −2. Here, for α = ⊝ we have

Cα = ⟦(y, η, z, ζ ) = T⟧⊝3\0 󳀁 T⟧⊝3\0 : y = z + 2αξ/|ξ|, ξ = η⟧;
see [49] for details. Note that Cα is a graph of a canonical transformation. Thus, standard
FIO estimates (see [22, Section 25.3]) indicate that the additional FIOs are more regular,
and the above argument can work through with some modifications.

4.4.2 The second approach
Consider the operator LχϵE. It is natural to apply the “backprojection” and consider the
normal operator E⟧L⟧LχϵE. It turns out that the composition is not good as it stands. In
fact, the issue is related to the microlocal structure of the normal operator N = L⟧L. We



4 Inverse problems in cosmological X-ray tomography � 155

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

have seen that the Schwartz kernel ofN is a paired Lagrangian distribution. By judicious
use of the kernel on one of the Lagrangians, we show that the composition E⟧NE can
be slightly modified to behave well within the clean FIO calculus of Duistermaat and
Guillemin, yielding a pseudodifferential operator onM0.

We start the general microlocal construction of parametrix E. A linear differential
operator P : C#(⊝n+1) ÷ C#(⊝n+1) of second order is called normally hyperbolic if
the principal symbol P(z, ζ ) ≐ σ(P)(z, ζ ) = g⟧(ζ , ζ ), (z, ζ ) = T⟧M , see [3, p. 33]. Note
that P in (4.29) is exactly the normally hyperbolic operator on (⊝n+1, g). The operator is
strictly hyperbolic of multiplicity one with respect to the Cauchy hypersurfaces Mt ={t} 󳀁 ⊝n, t = ⊝; see [9, Definition 5.1.1]. This means that all bicharacteristic curves of P
are transversal toMt and for (z̄, ̄ζ ) = T⟧Mt\0, P(z̄, ζ ) = 0, ζ |T −zM = ̄ζ has exactly one
solution. For the Cauchy problem (4.29), we use Duistermaat–Hörmander’s parametrix
construction; see, for example, [9]. Let ρ0 be the restriction operator ρ0 : C#(N ) ÷
C#(M), which is in fact an FIO. We consider the canonical relation Cwv defined by

Cwv = ⟦(w, ι, z̄, ̄ζ ) = T⟧N \0 󳀁 T⟧M\0 : (w, ι) is on the bicharacteristic
strip through some (z̄, ζ ) such that ̄ζ = ζ |T −zM and P(z̄, ζ ) = 0⟧ (4.34)

It follows from [9, Theorem 5.1.2] that there exists E1 = I󳀁1/4(N ,M; Cwv), E2 = I󳀁5/4(N ,
M; Cwv) such that

P(z,D)Ek = C#(N ), k = 1, 2
ρ0E1 − Id = C#(M), ρ0E2 = C#(M)
ρ0DtE1 = C#(M), ρ0DtE2 − Id = C#(M) (4.35)

Now we can represent the solution of (4.29) as u = E1f1 + E2f2 modulo a smooth term.
To analyze E⟧NχϵE where E = E1, E2, first we choose a smooth cut-off function χ =

C#0 (⊝) with supp χ ⊂ (T , T !), χ ± 0 and not vanishing identically. Then we consider the
composition E⟧χL⟧LχϵE. Because χ ⟧ χϵ = 0, we know that χNχϵ = I󳀁n/2(⊝n+1,⊝n+1;Λ1).
Note that the role of χ is to keep the kernel of N away from the diagonal Λ0 where the
principal symbol is singular.

Next, we can show that Λ1 intersects Λ = C!wv cleanly with excess one so the compo-
sition χNχϵE is a FIO in I⟧(N ,M; Cwv) as a result of Duistermaat–Guillemin’s clean FIO
calculus with the order & to be determined. Roughy speaking, the reason that the clean
calculus works is that both Lagrangians Λ1 and Λ are the flow out of the same Hamilto-
nian. Finally, we can compose the operator with E⟧ by using clean FIO calculus again to
conclude that E⟧χNχϵE = Ψ⟧(M). In fact, we can show that the operator is elliptic. Now
one can construct parametrices for the operator and continue with the argument in the
first approach.
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4.5 The inverse source problem
In this section, we consider the inverse problem in Section 4.2.3. Mathematically, we con-
sider the inverse source problem for the linear Boltzmann equation (or non-stationary
transport equation) onM = (0, T) 󳀁 ⊝3, T > 0:⟦tu(t, x, θ) + θ ⟧ #xu(t, x, θ) + σ(t, x, θ)u(t, x, θ)= 󵄪⊛2 k󵄨t, x, θ, θ!󵄩u󵄨t, x, θ!󵄩dθ! + f (t, x), (4.36)

where t = (0, T), x = ⊝3, θ = ⊛2. Here, σ is the absorption coefficient, k is the scattering
kernel and f is the source term. We consider the zero initial condition

u(0, x, θ) = 0. (4.37)

The inverse problemwe study is to determine the source term f from the measurement
of u at t = T > 0,

u(T , x, θ) = uT (x, θ). (4.38)

The inverse problem for (4.36) and its stationary version has a rich history; see [24,
Section 7.4]. Both the determination of σ , k and the source term f have been investigated.
In particular, there are lots of interest due to its application in optical imaging; see, for
example, review papers [1, 40]. Most of thework concern the inverse problem for the so-
called albedo operator, which involves many boundary measurements. For the source
problem, we have the boundary measurement for a single source and there are fewer
results; see [26, 32, 45]. We remark that recently, the inverse problem for the nonlinear
Boltzmann-type equations has drawn a lot of attention; see, for instance, [2, 27–29]. The
results are interesting because one can use the nonlinear effect to help resolving some
difficulties in the linear problem.

In [54], two results on the stable determination of the source term in (4.36) are ob-
tained. Let ϕ be the characteristic function of Γsp. We define ϕ(D) to be a Fourier mul-
tiplier ϕ(D)f = F󳀁1(ϕF f ), f = L2(⊝4) where F , F󳀁1 denote the Fourier and inverse
Fourier transform in t, x variables. We set V = (0, T)󳀁Ωwhere Ω is a relatively compact
set of ⊝3. The first result is the following.
Theorem 4.5.1 (Theorem 1.1 of [54]). Let σ = C6 be independent of the x and θ variable.
There exists an open dense subset U of C60(V 󳀁 ⊛2 󳀁 ⊛2) such that the following is true.
Consider the source problem (4.36) and (4.37) with k = U and f = H2

comp(V). Then f is
uniquely determined by uT in (4.38). Moreover, we have the following stability estimate:))))ϕ(D)f ))))H2(M) ∓ C%uT%H5/2(⊝3=⊛2) (4.39)

for some C > 0 depending on σ, k.
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The second result is the stable determination of f from uT assuming that f is a solu-
tion of the wave equation. The setup is relevant for the inverse problem in Section 4.2.3
and shows that determination of scalar type metric perturbations from the linearized
CMB is possible with the presence of kinetic effects.

Theorem 4.5.2 (Theorem 1.2 of [54]). Let f be the solution of (4.28) on M with Cauchy
data f1 = H2(M0), f2 = H1(M0) supported in a compact set X ofM0 such that f is sup-
ported in V . Suppose that the coefficients Aj(z) in (4.28) are real valued smooth functions.
Let u be the solution of (4.36), (4.37) with source χ0f .

Then there exists an open dense set U of C#0 (V 󳀁 ⊛2) 󳀁 C60(V 󳀁 ⊛2 󳀁 ⊛2) such that for
any (σ, k) = U , f1, f2 is uniquely determined by uT and there exists C > 0 such that%f %H2(M) ∓ C))))(f1, f2)))))H2(⊝3)=H1(⊝3) ∓ C%uT%H5/2(⊝3=⊛2) (4.40)

We remark that the stability estimates suggest that the results can be generalized
via perturbation arguments to other scenarios such as small metric perturbations of the
Minkowski spacetime as in [49], small perturbations of σ for Theorem 4.5.2 and possibly
nonlinear perturbations in the Boltzmann equation.

4.5.1 The integral geometry approach
To prove the two theorems, themain idea in [54] is to consider the source problem as the
time-dependent version of the inverse source problem studied in Stefanov andUhlmann
[45]. In particular, one treats themap f ÷ uT as a perturbation of the light ray transform
on the Minkowski spacetime. The difficulty is that, unlike the geodesic ray transform in
the Riemmanian setting, the normal operator of the light ray transform is not an elliptic
pseudodifferential operator, as we already saw in Section 4.3. Thus, the key is to restore
the ellipticity by using either ϕ(D) or the parametrix of the Cauchy problem. Below we
briefly describe the proof of Theorem 4.5.1.

We start with the expression of uT . Let

T0 = ⟦t + θ ⟧ #x , T1 = T0 + σ, T = T1 − K (4.41)

where σ is regarded as the multiplication operator and K is the integral operator
in (4.36). For k = 0, the equation T1u = f with u = 0 at t = 0 can be solved explic-
itly. For θ = ⊛n󳀁1, t > 0, x = ⊝n, consider u(t, x, θ) = u(t, x + tθ), which satisfies

d
dt u(t, x + tθ) + σ(t, x + tθ)u(t, x + tθ) = f (t, x + tθ) (4.42)

An integrating factor is E(t, x, θ) = e󵄨t0 σ(s,x+sθ)ds. We solve (4.42) that
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u(t, x + tθ) = t󵄪
0
e󳀁󵄨ts σ( ≡s,x+ ≡sθ)d ≡sf (s, x + sθ)ds

Thus, we can write T󳀁11 as

T󳀁11 f (t, x, θ) = t󵄪
0
κ(t, x, s, θ)f (s, x + sθ)ds,

with κ(t, x, s, θ) = e󳀁󵄨ts σ( ≡s,x+ ≡sθ)d ≡s (4.43)

Next, for Tu = (T1 − K)u = f , we apply T󳀁11 and get (Id−T󳀁11 K)u = T󳀁11 f . It takes some
effort to show that Id−T󳀁11 K is invertible for suitable k so

u = 󵄨Id−T󳀁11 K󵄩󳀁1T󳀁11 f = T󳀁11 󵄨Id−KT󳀁11 󵄩󳀁1f (4.44)

Now we set Xf = u|t=T . We can use (4.44) to obtain a representation for X . In particular,
let ρT be the restriction operator to t = T . Then

X = ρTT󳀁11 󵄨Id−KT󳀁11 󵄩󳀁1 (4.45)

We observe that ρTT󳀁11 = Lκ is a light ray transform with weight:

Lκf (x, θ) = T󵄪
0
κ(T , x, s, θ)f (s, x + sθ)ds

where κ is defined in (4.43). Of course, when σ = k = 0, we see that Xf is exactly the
light ray transform on theMinkowski spacetime. For analytic weight, a support theorem
and injectivity result for the transform was obtained in [40]. For smooth weights, the
microlocal structure of the normal operator was studied in [30] and [54]. These results
are needed for proving Theorem 4.5.2.

For Theorem 4.5.1, we assume σ(z) = σ(t) only depends on the t variable. Then we
have

Xf = T󵄪
0
κ(s)f (s, x + sθ)ds = L(κf ) where κ(s) = e󳀁󵄨Ts σ( ≡s)d ≡s (4.46)

In this case, it suffices to look at the light ray transform L. Now we can write uT = Xf
with X = Lκ + E where E is some operator. To “invert” X , we apply L⟧ to X to get L⟧X =
L⟧Lκ + L⟧E. The idea is to show that N = L⟧L is invertible in a proper sense and L⟧E is
compact. Then one can resort to Fredholm theory.

It is known that L is injective on C#0 functions. However, when acting on say
Schwartz functions, L has a nontrivial kernel consisting of functions whose Fourier
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transform is supported in Γtm; see, for instance, [23]. It is easy to see that ϕ(D) :
Hs(⊝3+1) ÷ Hs(⊝3+1), s = ⊝ is bounded. Also, ϕ2(D) = ϕ(D) so ϕ(D) is a projection
onHs(⊝3+1). We denote the range of ϕ(D) onHs(⊝3+1) byHs, which is a closed subspace
of Hs(⊝3+1), hence a Hilbert space. For n = 3, we see from (4.18) and (4.19) that

k(τ, ξ) = 4π2ϕ(τ, ξ)|ξ| (4.47)

It follows from (4.18) that Nf = Nϕ(D)f . Let Q be defined by a Fourier multiplier
F (Qf )(τ, ξ) = q(τ, ξ) ⋈f (τ, ξ) where

q(τ, ξ) = 󵄨4π2󵄩󳀁1ϕ(τ, ξ)|ξ|󳀁1 (4.48)

We observe that N is invertible on H
s. Using these constructions, one can derive from

Xf = Lϕ(D)κf + Eϕ(D)κf that
Qϕ(D)L⟧Xf = ϕ(D)κf + Qϕ(D)L⟧Eϕ(D)κf (4.49)

Regarding the right-hand side of (4.49) as acting on functions inH
s, it finally takes some

effort to show that Qκϕ(D)L⟧E : H2 ÷ H
2 is compact to complete the argument.

The approach gives the stability estimate))))ϕ(D)κf ))))H2(M) ∓ C%Xf %H5/2(C)
If Xf = 0, we get ϕ(D)κf = 0. By taking Fourier transform, we see that F (κf )(ζ ) = 0 for
ζ = Γsp. But κf is compactly supported so F (κf )(ζ ) is analytic in ζ . We conclude that
κf = 0 so f = 0. This proves the uniqueness.
4.5.2 Further discussions on stability
In the literature, there are interesting work on stability of the radiative transport equa-
tions based on the method of Carleman estimates; see [26, 32]. Here, we want to review
the results from the integral geometry perspective. Usually the problems are formulated
using boundary measurements. Consider (4.36) onM = (0, T) 󳀁 Ω and assume that f is
compactly supported inM. Let u be the solution of (4.36). We consider boundary mea-
surements u|[0,T]=⟦Ω and study the inverse problem of determining f from u[0,T]=⟦Ω.

We recall the following simplified result from [32]. Let Ω be a bounded domain of⊝n, n ± 2with theC1 boundary ⟦Ω. LetV ⊂ ⊝n be a bounded subdomain or ameasurable
subset of {v = ⊝n : |v| = 1}. Also, we assume that k(x, v, v!) = σs(x, v)p(x, v, v!), where
σs = L#(Ω 󳀁 V ) and p = L#(Ω 󳀁 V 󳀁 V ) and p > 0.
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Theorem 4.5.3 (Theorem 1.3 of [32]). We consider⟦tu + v ⟧ #u + σtu − 󵄪
V
k󵄨x, v, v!󵄩u󵄨x, v!, t󵄩dv!= f (x, v)F(x, v, t), x = Ω, v = V , 0 < t < T ,

u(x, v, 0) = 0, x = Ω, v = V . (4.50)

We assume

k = L#(Ω 󳀁 V 󳀁 V ), F , ⟦tF = L2󵄨0, T ; L#(Ω 󳀁 V )󵄩, σt , σs = L#(Ω 󳀁 V ),
and u = U . For an arbitrarily fixed constant a0 > 0, we further assume

F(x, v, 0) > a0, almost all (x, v) = Ω 󳀁 V
and

T > maxx+Ω(γ ⟧ x) −minx+Ω(γ ⟧ x)minv+V (γ ⟧ v)
There exists a constant C > 0, which depends on %σt%L⟦(Ω=V ), %k%L⟦(Ω=V=V ) and%F%H1(0,T ;L⟦(Ω=V )) such that

%f %L2(Ω=V ) ∓ C{ T󵄪
0
󵄪⟦Ω 󵄪V ]]]](v ⟧ ν)]]]]⟦tu|2dvdSdt}

1
2

for all f = L2(Ω 󳀁 V ).
Actually, this is the key result in [32] from which the determination of σt , σs can

be derived; see [32, Theorem 1.1 and 1.2]. Related results were obtained in [26, 33]. These
results are obtained byusing the Carleman estimate. Here,we outline another approach,
which could help understand the necessity of the condition that f is independent of t.
Below, we assume that σt , σs and f are functions of t, x variables.

First, we solve the forward problem of (4.50) using the operators in (4.41). The solu-
tion onM can still be expressed as in (4.44),

u = T󳀁11 󵄨Id−KT󳀁11 󵄩󳀁1(fF)
Let ρ be the restriction operator to t = [0, T] 󳀁 ⟦Ω. Then we set

X = ρT󳀁11 󵄨Id−KT󳀁11 󵄩󳀁1, (4.51)

so X(fF) = u|[0,T]=⟦Ω. Observe that ρT󳀁11 = Lκ is still a weighted light ray transform
provided that the support of f is sufficiently small and T is large; see Figure 4.3.
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Figure 4.3: The inverse source problem with boundary measurements.

For the moment, let us assume σs = 0 so K = 0 in (4.51). Thus, the inverse problem
is to recover f from the weighted light ray transform Lκ(f ) assuming κ > 0 inM. Here,
we can think of F as part of the weight. As we mentioned previously, the microlocal
structure of the normal operator of the weighted light ray transform was obtained in
[31, 55]. In particular, L⟧κLκ is microlocally elliptic in Γsp. Thus, if the wave front set of f is
contained in Γsp, then we can stably recover f modulo a smooth term just as explained
in Section 4.3. Note that this is the case when f is independent of t variable. Further-
more, for analytic weights, an injectivity result for the weighted light ray transformwas
obtained in [40] for functions whose support expands slower than the speed of light;
see [40, Definition] for the precise statement. These results suggest that Theorem 4.5.3
should hold for generic σt . For σs ⋊= 0, we expect that one can show compactness of the
remaining term in (4.51) in view of the argument in Section 4.5.1.

4.6 Open problems
4.6.1 The injectivity problem
It is an important question whether the light ray transform is injective on, for example,
C#0 functions. So far, there are only a few known results. For the Minkowski spacetime,
the injectivity can be seen from the Fourier slice theorem plus the analyticity of the
Fourier transform of f . Under a strictly foliation condition, Stefanov [41] obtained a sup-
port theorem for the light ray transform on analytic Lorentzian manifolds; see also [35]
for a recent development under the no conjugate point assumption. For certain static
and stationary spacetime, Feizmohammadi, Ilmavirta and Oksanen proved in [14] that
the transform is injective. For some pseudo-Riemannian manifolds, Ilmavirta [23] ob-
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tained injectivity result by using Pestov’s energy method. Because of the lack of good
stability, it is not known whether the injectivity results mentioned above still hold un-
der small C# metric perturbations.

Also, it is intriguing to consider the injectivity of the weighted light ray transform.
The only known injectivity result is for analytic weights obtained in [41]. In many ways,
the transform has similar behavior to the limited angle or local Radon transform in
dimension two. We know from the work of Boman [5] that there are weights for which
the local Radon transform is not injective. It would be interesting to find out whether
the phenomena happens for the light ray transform.

In this article, we focused on the scalar type perturbations. In fact, the tensor prob-
lem is probablymore interesting from the physical point of view. For a light-like geodesic
γ(τ), τ = ⊝ on a Lorentzian manifold (M, g), we can define the light-ray transform of a
smooth symmetric two tensor field f by

L(f )(γ) = 󵄪 n↓
i,j=0 fij󵄨γ(τ)󵄩 ≡γi(τ) ≡γj(τ)dτ

when the integral makes sense. The transform (4.15) has a nontrivial kernel. The com-
plete description of the kernel is known for the Minkowski space in [30] and some static
and stationary spacetimes in [14]. The result is wide open for general Lorentzian mani-
folds.

4.6.2 The scattering rigidity problem
We consider the possibility of determining spacetime structures by using observation
of light signals on a Cauchy surface. Let M = [0, T] 󳀁 ⊝3, T > 0 and g be a globally
hyperbolic Lorentzian metric on M such that each hypersurface Mt = {t} 󳀁 ⊝3 is a
Cauchy surface. In this case, every future pointing null geodesic γ(τ), τ = ⊝ intersects
M0,MT at one point. We thus have a well-defined scattering relation for null geodesics

S󵄨γ(0), ≡γ(0)󵄩 = 󵄨γ(τ0), ≡γ(τ0)󵄩 (4.52)

where γ(0) = M0, γ(τ0) = MT ; see Figure 4.4. It is natural to ask what information of
g can be recovered from S. Recently, there are several interesting work by Eskin [12, 13]
and Stefanov [42] on related problems; see also [48] for the similar problem for time-like
curves.

This problem can be regarded as the nonlinear version of the inverse problems in
Section 4.2. Also, the problem is related to Guillemin’s work [18, 19] on the Zollfrei defor-
mation of the compactified 2+1 dimensionalMinkowski spacetime, which in some sense
concerns the scattering relation defined from the past null infinity to the future null in-
finity. Fromanother perspective, the problem can be regarded as the Lorentzian version
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Figure 4.4: The scattering relation for light-like geodesics.

of the scattering rigidity problem for compact Riemannian manifolds with boundary;
see [39].

In [55], the author studied the problem for one parameter family of metrics near
the Minkowski metric. Roughly speaking, the author followed the approach in [43] for
the boundary rigidity problem near the Euclidean metric. The main difficulty is the in-
stability of the weighted light ray transform in the pseudolinearization identity. In view
of the result in Section 4.4, the rigidity result is promising for Einstein spacetimes. For
example, the linearized problem near Minkowski metric is closely related to the CMB
inverse problem for tensor-type metric perturbations. In addition, the metric pertur-
bation satisfies the linearized Einstein equations. We expect the light ray transform to
have good stability with a proper gauge choice.
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