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A B S T R A C T

In recent years, the assessment of airborne transmitted infection risk has been extensively per
formed using Computational Fluid Dynamics (CFD) simulations, especially in response to the 
COVID-19 pandemic. Nevertheless, the high computational demands and time-intensive nature of 
CFD simulations highlight the need for fast or real-time infection risk predictions. This capability 
is crucial for swift decision-making in dynamic environments where timely health interventions 
are critical. This paper presents a thorough analysis of airborne infection risks in classroom en
vironments based on CFD simulations to understand key factors such as ventilation strategies, air 
change rates, occupant arrangements, source locations, and particle sizes. This study also employs 
data-driven supervised learning methods—specifically, Long Short-Term Memory (LSTM) and 
Artificial Neural Networks (ANN)—to generate surrogate models for predicting airborne infection 
risk. Key findings reveal that different ventilation strategies significantly affect airborne infection 
risk, reducing it by 49 %–77 %. Moreover, the conventional Wells-Riley model was identified as 
lacking in its ability to accurately predict local infection risks. The study further challenges the 
assumption that higher air change rates are universally beneficial, considering that occupants 
seated in the back rows of a classroom experienced up to a 166 % increased risk, despite elevating 
air change rates from 1.1 h−1 to 11 h−1. These results suggest that physical distancing alone may 
be insufficient and highlight the importance of considering other factors such as occupant ar
rangements. Regarding the model performance, the ANN-based surrogate model demonstrated 
varying prediction accuracy. For inhalable particle concentration predictions for susceptible oc
cupants, R2 values ranged from 0.31 to 0.65 with CVRMSE values between 100 % and 180 %. In 
contrast, the model achieved an R2 of 0.79 and a CVRMSE of 34 % for infectors. The insights and 
methodologies from this study can inform HVAC system design and operation strategies to better 
mitigate infectious disease transmission in densely occupied indoor environments.   

1. Introduction

The COVID-19 pandemic has left enduring imprint on the annals of human history, inflicting a profound and far-reaching toll on
public health, daily life, and worldwide economy. The repercussions for public health have been manifold, including overwhelming 
healthcare facilities [1], instigating global mental health crises [2], and widening the chasm of healthcare disparities [3]. While the 
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SARS-CoV-2 can be transmitted by both direct and indirect contact, it has been notably established that the primary mode of infection 
is through airborne transmission [4]. 

One of the most frequently used approaches is to solve the transport equations and numerically model fluid flow and particle 
transport, thus enabling quantitative risk assessment. Due to the computational complexity of these equations, especially in turbulent 
flows, researchers often employ Reynolds-Averaged Navier-Stokes (RANS) equation to compromise the calculations. This approach has 
made Computational Fluid Dynamics (CFD) simulation an increasingly popular tool for studying the risk of infection, as it offers 
detailed insights into the spatial dispersion and transmission of infectious aerosols. Thanks to its inherent advantages, CFD has 
empowered researchers to investigate various indoor operating conditions and assess their impacts on infection risk, encompassing 
factors such as ventilation strategies [5,6], air change rate [7], source location [8,9], social distancing [10,11], air distribution [12,13], 
and personal protective equipment [14–16]. Nonetheless, given its substantial computational demands and time requirements, CFD 
does have limitations in examining general infection risk, especially for fast or real-time predictions [17,18]. 

In response to these challenges, machine learning-based surrogate models have been gaining significant popularity for their po
tential to reduce computational costs and improve simulation efficiency. These surrogate models serve as approximation methods to 
emulate the behavior of complex simulations in a computationally efficient manner. By leveraging detailed CFD simulation results, 
they capture the high-dimensional, nonlinear relationships between boundary conditions and their outcomes. Although generating 
data for these models can be computationally expensive and repetitive, leading to data scarcity, their high accuracy has made them a 
widely studied area [19]. For example, machine learning-based surrogate models have been developed using CFD data to predict 
velocity fields around different objects in real time [20–22], airborne pollutant dispersion on an urban scale [23,24], and wind velocity 
by wind turbine blades [25]. These studies demonstrate that surrogate models enable real-time or much faster predictions while 
significantly reducing computational demands. 

Fig. 1. Flow chart of the study.  
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In the context of indoor environments, predictions of airflow patterns and temperature distribution are commonly performed. For 
example, Quang et al. [26] trained a Deep Neural Network on indoor airflow distribution in multi-story buildings using CFD simu
lations, reducing computational time by 80 % compared to traditional CFD simulations while maintaining accuracy. Similarly, Zhou 
and Ooka [27,28] and Faulkner et al. [29] developed machine-learned surrogate models to predict indoor airflow patterns and 
temperature based on CFD data. Real-time predictions of thermal comfort have also been investigated in various settings, such as 
stadiums [30], vehicles [31], and air cabins [32]. For airborne particle transportation, Mesgarpour et al. [33] proposed a computa
tional framework for a Multi-Input Multi-Output (MIMO) AI model based on CFD results to rapidly predict droplet spread from a 
sneezing passenger in a bus. However, no attempt has yet been made to surrogate airborne infection risk that provides real-time 
infection risk prediction. 

Building on this background, our study has two primary objectives. First, we aim to perform a comprehensive analysis of infection 
risk in a classroom setting using CFD simulations. This involves investigating the impact of various parameters—including ventilation 
mode, occupant arrangement, air change rate, and distance from the infector—on each occupant’s infection risk, with the goal of 
assessing their suitability as inputs for a surrogate model. Second, based on the simulation results, we will train a machine learning 
model to develop a surrogate model capable of quickly predicting the inhalable particle concentration for each occupant. 

2. Method 

This study is organized into two sections: 1) Computational Fluid Dynamics (CFD) and 2) Artificial Intelligence (AI). Infection risks 
estimated by CFD simulations under various scenarios were used to train and test models in the AI section. Fig. 1 presents the overall 
flow of the two tasks. The flowchart detailed a methodology for integrating CFD simulations with AI to predict inhalable particle 
concentration for each occupant. It started with selecting input variables and validating the CFD model. Following the model vali
dation, CFD simulations with varied parameters were conducted, and the resulting data were preprocessed through cleaning, 
normalization, and feature extraction. The data were then split into training, validation, and testing sets. An AI model was selected and 
optimized, with performance checks ensured using metrics such as R2, RMSE, and CVRMSE. Finally, the predictions by the surrogate 
model were compared with CFD testing data that were kept separate from the training data. 

2.1. Description of geometry 

For the CFD model, the Department of Energy (DOE) reference building specifications for a secondary classroom, a space measuring 

Fig. 2. Top view of two different arrangements a) normal classroom arrangement b) debate-style arrangement.  
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9 m × 11 m x 3 m (length × width × height), were configured to replicate a standard small classroom setting accommodating seven 
sedentary occupants. It is important to note that the selected occupancy level of seven individuals was specifically chosen for this 
research to achieve two objectives: 1) to systematically investigate the effects of occupant arrangement on particle distribution, and 2) 
to simplify the problem complexity for the AI model. Simplifying the problem complexity is crucial for enhancing computational 
efficiency and ensuring that the AI model can effectively capture and analyze non-linear interactions within the classroom environ
ment. Fig. 2 illustrates two different configurations: one with mixing supply diffusers and the other with displacement supply diffusers, 
both using shared exhausts. In the mixing configuration, four 0.2 m × 0.2 m diffusers were located on the ceiling, each blocked at the 
center. These diffusers supply air at a 30-degree angle from the ceiling in four directions (east, west, north, and south), promoting 
uniform air distribution throughout space. In contrast, the displacement ventilation configuration features eight 0.5 m × 0.5 m dif
fusers situated on the lower side of each wall. This setup creates vertical temperature stratification [6]. Fig. 2a shows the first occupant 
arrangement. An instructor was located at the front of the room with six students facing the instructor, each maintaining 2-m distance 
from each adjacent occupant to delineate typical classroom setting. Fig. 2b illustrates the second arrangement with six occupants 
facing each other and one occupant at the top to emulate debate-style setting. The two arrangements were considered to capture two 
common set up of classroom as well as increasing diversity of occupant arrangements. 

2.2. Sensitivity analysis: grid and time step 

This study primarily aims to investigate the release of particulate matter from an individual identified as an infector and assess the 
subsequent exposure experienced by individuals classified as susceptible. In the simulation, the choice of mesh quality was critical to 
ensure an accurate representation of the physical phenomena being studied. In order to represent the complex human model, a 
combination of surface remeshing, polyhedral meshing, and prism layer meshing were employed. To accurately capture airflow and 
mass transfer phenomena near the occupant surfaces, grid sizes of y + value < 7 were generated. This approach adheres to the rec
ommendations by Pei and Rim. [34], which advocate for y + values below 10 to obtain reliable estimations of airflow and mass transfer 
rate adjacent to the human surface. 

To ensure the reliability of the generated computational mesh, the Grid Convergence Index (GCI) method was utilized to assess 
discretization errors [35]. Steady-state velocity measurements were obtained at a vertical distance of 0.2 m above the occupant’s head. 
These measurements were conducted for three separate mesh resolutions, designated as Grid 1 (623,416 cells), Grid 2 (417,770 cells), 
and Grid 3 (200,967 cells). Subsequently, the GCI was calculated in accordance with Eq. (1). A comprehensive list of the mesh res
olutions and their respective GCI values is presented in Table 1. Comparative analyses of the steady-state velocities across the three 
mesh resolutions are depicted in Fig. S 1 in Supplementary materials. In consideration of both computational efficiency and grid 
convergence metrics, Grid 2 was examined for use in the remaining portions of the study. 

GCI21
fine =

1.25 × e21
a

rp
21 − 1

(1)  

Where e21
a is approximate relative error of parameter interested, r is grid refinement factor, and p is apparent order of convergence. 

In CFD simulations, the choice of an optimal time step size holds great significance, particularly in situations characterized by 
unsteady conditions. The present section seeks to identify a time step size that not only ensures computational efficiency but also yields 
a converged solution. To this end, three disparate time step sizes—0.5 s, 0.1 s, and 0.01 s—were systematically evaluated. These 
simulations were conducted in the context of a conventional classroom setting equipped with mixing ventilation operating at an air 
change rate of 11.1 h−1. Table 2 presents a comparison of the integrated volume fraction of particles over 30 min for these three-time 
step sizes. When comparing the time step sizes of 0.5 s and 0.1 s, the average percentage difference amounted to 67 %. Between 0.1 s 
and 0.01 s, this difference was reduced to 11 %. Taking into account computational time and the resources required, a time step size of 
0.1 s was chosen for subsequent simulations. 

2.3. Validation of CFD model 

For the validation of the CFD model, numerical results pertaining to flow and particle distribution were compared with experi
mental results from Chen et al. [36]. A small chamber, measuring 0.8 m × 0.4 m x 0.4 m (length x width x height), was modeled using 
the Eulerian-Eulerian approach. In this framework, both the flow field and particle distribution were treated as separate continua. 
Employing the realizable k-epsilon turbulence model, the x-direction air velocity and normalized particle concentration were 
measured at various locations and compared with the numerical outcomes. 

Measurements of the x-direction velocity and normalized particle concentrations were taken at the center of the y-plane at three 
different x-positions: x = 0.2 m, x = 0.4 m, and x = 0.6 m. These specific points were chosen to provide a representative cross-sectional 
profile of the flow and particle distribution within the chamber. The experimental results at these points were juxtaposed with the 

Table 1 
Grid convergence index for normal classroom arrangement.   

Grid 1 (fine) Grid 2 (medium, examined) Grid 3 (coarse) 

Number of cells 623,416 417,770 200,967 
Air velocity at 0.2 m above occupant’s head (m/s) 0.225 0.217 0.215 
GCI (%) 0.12 1.59 –  
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corresponding numerical results obtained from the CFD model. 
The comparative analysis indicated that the numerical results closely matched the experimental data across the different locations. 

For instance, at x = 0.2 m, the numerical and experimental x-direction velocities showed an close alignment, as illustrated in Fig. 3a, 
with a Mean Squared Error (MSE) of just 0.00012, as shown in Table 3, indicating a high degree of accuracy. Similarly, at x = 0.4 m and 
x = 0.6 m (Fig. 3b and c), the MSE values were slightly higher at 0.00013 and 0.0001, respectively, but still demonstrated a strong 
correlation between the numerical and experimental results, as summarized in Table 3. 

For normalized particle concentrations, the comparison also revealed a strong agreement between the CFD model and the 
experimental data. As shown in Fig. 4 and detailed in Table 3, the MSE values for the normalized concentration at x = 0.2 m, x = 0.4 m, 
and x = 0.6 m were 0.0032, 0.0036, and 0.0013, respectively. Consequently, it is concluded that the Eulerian-Eulerian approach, 
combined with the realizable k-epsilon turbulence model, offers reasonable accuracy for particle distribution, and can be utilized for 
the remaining portions of the study. 

2.4. Building operation scenarios 

To comprehensively evaluate the risk of infection due to airborne transmission in enclosed spaces, various parameters were 
considered. These include ventilation strategy, air change rate, occupant arrangement, source location, and particle size, as delineated 
in Table 4. Numerous studies reported the significance of ventilation strategies, which encompass aspects such as airflow and dis
tribution [37,38]. A systematic review by Tsang et al. [39] indicated that most of the existing research focuses on the effects of different 
ventilation strategies, particularly within hospital settings. In a similar vein, Zhao et al. [40] identified social distancing as one of three 
dominant factors influencing airborne transmission, along with ventilation systems and environmental conditions such as humidity 
and temperature. The present study set the minimum air change rate at 1.1 h−1 according to ASHRAE Standard 62.1 and varied it up to 
10 times the minimum rate [41]. 

In addition to these factors, particle size is also crucial. A study by Miller et al. [42] highlighted its importance in different modes of 
COVID-19 transmission, including direct contact, large droplets, and aerosols. Larger droplets tend to fall quickly and travel less than 
six feet, whereas smaller, aerosolized particles can remain in the air for extended periods, as noted by the EPA. Our study specifically 
examined two particle sizes: 1 μm and 10 μm, representing particulate matter 2.5 and 10, respectively. The 1 μm particle size was 
chosen because particles smaller than 1 μm is a significant component of PM2.5 in a classroom, contributing to the overall particulate 

Table 2 
Integrated volume fraction of particle during 30 min for three different time step size comparison.   

0.01 s 0.1 s 0.5 s 

Occupant 1 9.12 × 10−10 7.77 × 10−10 8.09 × 10−10 

Occupant 2 4.28 × 10−12 4.90 × 10−12 1.13 × 10−12 

Occupant 3 6.36 × 10−12 5.81 × 10−12 1.80 × 10−12 

Occupant 4 5.50 × 10−12 4.60 × 10−12 9.56 × 10−12 

Occupant 5 2.93 × 10−12 2.74 × 10−12 5.00 × 10−12 

Occupant 6 2.10 × 10−12 1.83 × 10−12 2.42 × 10−13 

Occupant 7 4.04 × 10−12 3.50 × 10−12 6.13 × 10−13 

Average percent difference (%) – 11 67  

Fig. 3. x-direction velocity validation results at different locations, a) at x = 0.2 m, b) at x = 0.4 m, and c) at x = 0.6 m.  
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concentration [43]. Furthermore, particles emitted during typical speech often average around 1 μm in diameter, making this size 
particularly important for understanding airborne transmission dynamics [44–46]. 

To comprehensively evaluate the impact of multiple factors on the risk of airborne transmission, we designed a detailed and 
systematic study that involved varying several critical parameters. Specifically, we examined two distinct ventilation strategies, each 
with unique implications for air circulation and contaminant dispersion in occupied spaces. We also considered four different air 
change rates, ranging from minimal to highly efficient ventilation, to capture the effects of varying levels of air supply on the dilution 
and removal of airborne pathogens. Additionally, we explored two different occupant arrangements, simulating scenarios where in
dividuals are either clustered together or more evenly dispersed throughout the space. This allowed us to understand how proximity 
and spatial distribution of occupants might affect the transmission dynamics. 

Furthermore, we investigated seven different source locations, strategically placing the emission points of airborne pathogens at 
various spots within the environment to observe how the position of an infector influences the spread of contaminants. To add another 
layer of complexity, we included two particle sizes in our analysis, recognizing that different-sized particles have distinct behaviors in 
terms of settling, dispersion, and inhalation risk. 

By combining these variations, our study encompassed a total of 224 CFD simulation cases. This extensive dataset provided a 
foundation for thoroughly exploring the intricate interplay of ventilation, occupant placement, source location, and particle size in 
shaping the risk of airborne transmission in indoor environments. Through this comprehensive approach, we aimed to uncover 
nuanced insights that could inform more effective strategies for mitigating the spread of airborne pathogens. 

Table 3 
Mean Squared Errors at different locations for each parameter.  

Parameters\Locations x = 0.2 m x = 0.4 m x = 0.6 m 

X-direction air velocity 0.00012 0.00013 0.0001 
Normalized concentration 0.0032 0.0036 0.0013  

Fig. 4. Normalized concentration validation results at different locations, a) at x = 0.2 m, b) at x = 0.4 m, and c) at x = 0.6 m.  

Table 4 
Varied parameters.  

Input variables Variations 

Ventilation strategy Mixing Ventilation Displacement Ventilation 
Air change rate (h−1) 1.1 4.6 8.0 11.1 
Occupant arrangement* Normal classroom Debate-style 
Source location Occupant 1 to 7 
Particle size (μm) 1 10  
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2.5. Particle emitting dynamics and inhalation analysis 

2.5.1. Particle transport modeling 
In the present study, particles emitted from an infector are assumed to be droplet nuclei. These are small particles with diameters 

ranging from 1 to 10 μm that represent the dried or evaporated residue of droplets [47]. Netz. [48] found that 10-μm diameter droplets 
evaporate completely within 0.1 s at a relative humidity of 50 %, with smaller particles evaporating even more quickly. The study also 
indicated that the effects of droplet evaporation on flow buoyancy and mass density change can be neglected. Yang et al. [49] further 
noted that the amount of virus in the droplet is unaffected by the evaporation process. Therefore, this study assumes that the particles 
emitted from an infector are fully evaporated droplet nuclei. 

2.5.2. Particle volume fraction emission 
The volume fraction of the particle emitted is another factor to be considered, as it varies with different particle sizes that are 

emitted from the infector. Yang et al. [49] indicated that during typical speech and loud speech, the volume fraction of droplets at the 
mouth ranged from 6 × 10−9 to 1 × 10−8 respectively. For this study, the volume fraction of 1 × 10−8 was used for particles with 
diameter of 10 μm. In addition, volume fraction of 1 μm particles was used as 1 × 10−11 to equalize the number of particles emitted for 
both sizes, ensuring a precise understanding of how particle size influences the dispersion of infectious particles within an indoor 
space. This approach allowed for a direct comparison of the dispersion patterns of differently sized particles under identical emission 
conditions. Additionally, because the different particle sizes were emitted in separate scenarios, this method did not complicate the 
calculation of infection risk using the dilution-based method, which relies on concentrations at two sampling volumes: the source of 
infection (the infector) and the point of potential exposure (the susceptible). 

2.5.3. Sampling volume 
To fully replicate the inhalation of particles by individual occupants, a 1-L cubic volume was specifically positioned in close 

proximity to the nasal region (see Fig. S 2 in Supplementary materials). This cube served as a representation of the sampling volume, 
which is designed to measure the volume fraction of particles that are emitted by an infector, reflecting the typical tidal volume of a 
normally active individual [50]. 

2.5.4. Source emission and inhalability 
In the framework of the Eulerian approach, where both air and particles are treated as a continuum phase, this study focused on the 

volume fraction of infectious particles emitted. In each simulation case with duration of 30 min, a single occupant, designated as the 
“infector,” emitted particles while in the talking mode. This mode was characterized by a continuous airflow rate of 13.5 L per minute, 
as defined by Gupta et al. [51]. The remaining six occupants, vulnerable to these particles, are referred to as “susceptible individuals." 

To enhance the accuracy of assessing inhalability for these susceptible individuals, breathing mode was also taken into account, as 
characterized by the same study by Gupta et al. [51]. This approach aimed to realistically emulate a scenario where one occupant is 
talking while the rest are listening. However, it’s worth noting that some research, such as the study by Rim and Novoselac. [52], 
suggested that the breathing mode has a negligible impact on particle inhalability. To address this, a straightforward comparative test 
simulation was carried out, comparing the 20-min cumulative volume fraction of particles with and without the breathing simulation 
at air change rate of 11.1 h−1. While the breathing mode created fluctuations within sampling volumes, there was no significant 
difference in 20-min integrated exposure as shown in Table 5 with 4.93 % difference at maximum. The same comparative test at an air 
change rate of 1.1 h⁻1 was also conducted, resulting in a difference of less than 2.49 % (see Fig. S 3 and Table S 1 in Supplementary 
Materials). Therefore, the breathing mode for susceptible individuals was not considered in the current study. 

2.6. Dilution-based evaluation of airborne infection risk 

The evaluation of infection risk in this study was conducted using the dilution-based method proposed by Zhang et al. [53]. This 
approach leverages the concept of dilution of airborne contaminants and extends the Wells-Riley equation to accommodate a spatially 
non-uniform distribution of aerosols. The time-dependent infection risk based on the Wells-Riley equation is defined as Eq. (2) and the 
dilution-based method is defined as Eq. (3) 

PI =
C
S

= 1 − exp
(

−
Iqpt
Q

)

(2)  

Table 5 
20 min - Integrated volume fraction of particle under normal classroom arrangement with mixing ventilation at air change rate of 11.1 h−1 comparing with and without 
breathing mode.   

Without breathing mode (−) With breathing mode (−) Percent difference (%) 

Occupant 1 2.84E-10 2.70E-10 4.93 
Occupant 2 9.52E-13 9.39E-13 1.37 
Occupant 3 1.19E-12 1.14E-12 4.20 
Occupant 4 6.48E-13 6.40E-13 1.23 
Occupant 5 4.98E-13 5.16E-13 −3.61 
Occupant 6 1.82E-13 1.85E-13 −1.65 
Occupant 7 3.46E-13 3.46E-13 0.00  
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Where PI is the probability of infection, C is the number of infection cases, S is the number of susceptible, I is the number of infector 
individuals in the space, q is the quanta generation rate in #hr, p is the breathing rate of individuals in m3

hr , t is the exposure time in hour, 
and Q is the air change rate in m3/hr. 

PD = 1 − e−Nquantum (3)  

Where 

Nquantum =

∫ T

0
psusceptible × Cquantum(t)dt (4)  

Cquantum =
∅ × q

pinfector × D
(5)  

D =
Csource

Ctarget
(6)  

PD is the airborne infection risk at the target position during time t exposure, Nquantum is the inhaled quanta by a susceptible individual, 
Cquantum is the quantum concentration in quanta

m3 , ∅ is the penetration ratio of personal protective equipment such as mask, q is the 
quantum generation rate in quanta

s , pinfector is the breathing rate of the infector, D is dilution ratio, Csource is airborne contaminant con
centration at the source, and Ctarget is the airborne contaminant concentration at the target. 

Within the framework of this study, the “source” refers to the sampling volume of the infecting individual, whereas the “target” is 
construed as the sampling volumes for susceptible individuals. A recent study revealed that the quantum generation rates for three 
SARS-CoV-2 variants—Alpha, Delta, and Omicron—are back-calculated to be 89-165 h−1, 312–935 h−1, and 725-2345 h−1, respec
tively [54]. For the purposes of the present study, the constant quantum generation rate for the Alpha variant was assumed to be at the 
lower bound of 89 h−1. 

2.7. Machine learning based surrogate model 

The surrogate model is fundamentally designed to replicate the behavior of the CFD simulations, enabling faster predictions of 
inhalable particle concentrations at a lower computational cost. The model architecture consisted of an input layer representing the 
various physical parameters (e.g., air change rates, room geometry, and occupant locations), multiple hidden layers where nonlinear 
relationships are captured through interconnected neurons, and an output layer that provides the predicted particle concentrations. 
Key parameters of the model include the learning rate, which controls the step size during optimization and influences convergence 
efficiency; the batch size, which determines the number of training samples processed simultaneously and affects both computational 
efficiency and update stability; and the number of neurons and layers, which dictate the model’s capacity to capture complex patterns 
but require careful tuning to avoid overfitting. A normalization technique was applied to the input data to standardize the range of 
values, improving the training stability and convergence rate by ensuring that all features contribute equally to the learning process. 
The following sections will provide a detailed explanation of the supervised learning approach used, the data preprocessing steps, and 
the hyperparameter optimization process. 

To predict the 30-min period of inhalable particle number in the 1-L sampling volume located in front of each occupant’s nose, this 
study employed supervised learning. The supervised learning is widely used approach when the inputs and outputs are both available 
[55]. By letting both input and output know to be trained, the primary objective is to discern a relationship between the inputs and 
their corresponding outputs, enabling predictions for new input data. 

The CFD data, specifically the volume fraction of the particle phase for each occupant over a 30-min interval, were exported into. 
xlsx files. Each of the 224 simulation cases represented a different combination of input parameters, such as ventilation strategies and 
air change rates. The CFD output data for each simulation was combined with its corresponding input parameters into a single file, 
resulting in a total of 224 files. 

Using Python, these.xlsx files were loaded into Pandas dataframes, which organized the data into a tabular format. This structured 
data was then ready for preprocessing, including handling missing values, normalizing features, and ensuring consistency across all 
datasets. After preprocessing, the data was split into training, validation, and testing sets. This prepared the data for subsequent 
training of the AI model within the TensorFlow and scikit-learn environments, where the focus was on predicting the inhalable particle 
number concentration based on the input parameters from the CFD simulations. 

In the current study, two separate models were created and trained: the susceptible model and the infector model. Each model 
underwent a creation phase where its architecture was defined, followed by a training phase where the model learned from the training 
data. After training, each model’s performance was first evaluated using the validation set to fine-tune the model parameters and avoid 
overfitting. During training, early stopping was used to monitor the validation loss and stop training if no improvement was observed, 
thus fine-tuning the model effectively. 

Once fine-tuning was complete, the models were evaluated using the test set to ensure their accuracy and reliability. Following this 
evaluation, predictions were made using the test data. These predictions were then reshaped and underwent inverse transformations to 
revert them back to their original scale, making the results interpretable and comparable to the original data. 
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2.7.1. Input data structure 
This study introduced a range of initial parameters, as detailed in Table 4, to predict the 30-min inhalable particle concentration for 

each occupant. These parameters served as the input, while the particle concentration was the output. To enhance the model’s gen
erality, the arrangement parameter was replaced with the x and y coordinates and the facing direction of each occupant. 

Each case in this study comprised seven distinct time series datasets, representing the number of inhalable particles over a 30-min 
period for each of the seven occupants. Due to the nature of particle emission by an infector, the particle count in front of the infector 
was significantly higher, often by orders of magnitude, compared to that of a susceptible individual. This disparity posed a challenge 
for the model, which was trained using mean absolute error, as it struggled to learn effectively from the smaller numbers associated 
with susceptible occupants. To address this, the study distinctively isolates the infector data from the susceptible data. This isolated 
susceptible data was then zero-padded, ensuring that both datasets were subsequently trained separately. 

2.7.2. Model selection 
In this study, we explored the performance of two different models, Artificial Neural Networks (ANN) and Long Short-Term 

Memory (LSTM) networks, for the given research problem. ANNs, which are composed of interconnected artificial neurons, have 
the advantage of identifying nonlinear relationships [56]. On the other hand, LSTMs, a type of Recurrent Neural Networks (RNNs), are 
designed to handle contextual information with dynamic inputs. One of the key features of LSTMs is their ability to address the 
vanishing gradient problem, a common issue in traditional RNNs that leads to the loss of earlier information over time. This makes 
LSTMs particularly suitable for time series prediction tasks [57,58]. 

2.7.3. Hyperparameter optimization 
To identify the optimal hyperparameters for both the infector and susceptible models, a comprehensive evaluation was conducted 

using the determination coefficient (R2), root mean square error (RMSE), and coefficient of variation of the root mean square error 
(CVRMSE) metrics. Various combinations of hyperparameters were tested for both ANN and LSTM models. The hyperparameters and 
their variations used for optimization are summarized in Table 6. To prevent overfitting, the early stopping technique was employed 
during training. 

Table 6 outlines the varied hyperparameters and their corresponding variations, including the number of hidden layers (1, 2, 3, and 
4), number of neurons (ranging from 2 to 129 in intervals of 2), batch size (4, 8, 16, and 32), learning rate (0.01, 0.001, and 0.0001), 
training set ratio (0.6 and 0.7), and normalization techniques (StandardScaler and MinMaxScaler). 

Both models utilized ANN architectures and StandardScaler normalization technique with the infector model employing 2 hidden 
layers, 38 neurons, a batch size of 32, a learning rate of 0.001, and a training set ratio of 0.6. Similarly, the susceptible model also used 
2 hidden layers but with 76 neurons, a batch size of 8, a learning rate of 0.0001, and a training set ratio of 0.6. 

This rigorous hyperparameter tuning process ensured the models were optimized for accurate predictions while mitigating the risk 
of overfitting, thereby enhancing their reliability and performance. 

3. Results 

3.1. Effects of ventilation mode 

Fig. 5 illustrates the varying infection risks associated with different air change rates under both mixing and displacement 
ventilation systems. Notably, the risk of infection for susceptible individuals was found to be between 49 % and 77 % lower under 
displacement ventilation as compared to mixing ventilation. These findings are consistent with previous research, which has also 
demonstrated the performance of displacement ventilation in mitigating the risk of airborne transmission with both numerical and 
experiment results [59–61]. 

The Wells-Riley equation was also applied to estimate the infection risk under both mixing and displacement ventilation systems at 
various air change rates. While the equation yielded reasonable approximations under specific conditions—namely, at low air change 
rates for mixing ventilation and at high air change rates for displacement ventilation—its limitations were evident. In particular, the 
upper quartile of infection risk was found to be up to 6.45 times higher than that predicted by the traditional Wells-Riley model with 
significant range. This highlights the model’s limitations in capturing the complexities of spatial distribution in infection risk. 

3.2. Effects of airflow pattern 

As illustrated in the previous section, occupants under displacement ventilation experienced lower infection risk compared to those 
under mixing ventilation across different air change rates. To further examine the effects of airflow patterns under different ventilation 

Table 6 
Varied hyperparameters with their variations for optimization.  

Hyperparameters Variations 

Number of hidden layers 1 2 3 4 
Number of neurons 2 -129 (Interval of 2) 
Batch size 4 8 16 32 
Learning rate 0.01 0.001 0.001  
Training set ratio 0.6 0.7 
Normalization technique StandardScaler MinMaxScaler  
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strategies and air change rates, contour and streamline plots of particle volume fraction at 30 min are presented in Figs. 6 and 7. At an 
air change rate of 1.1 h⁻1, particle dispersion is primarily driven by buoyancy forces, causing particles to rise to the upper level. 
However, under mixing ventilation, as shown in Fig. 7a, the elevated particles are redistributed by airflow from the ceiling diffuser, 
resulting in a higher infection risk compared to displacement ventilation, where dispersed particles remain at the upper level and are 
effectively removed, as illustrated in the streamline. At a higher air change rate of 11.1 h⁻1, the particle dispersion pattern changes 
significantly. Under mixing ventilation, emitted particles are pushed to relatively lower levels, resulting in widespread particle 
dispersion throughout the space. In contrast, under displacement ventilation, even at the higher air change rate, buoyancy forces 
remain dominant, maintaining vertical stratification and effectively removing particles. 

3.3. Effects of air change rate 

As shown in Fig. 5, the infection risk decreases as the air change rate increases. However, many studies indicate that the air change 
rate is neither proportional to the reduction in infection risk nor does it necessarily guarantee a lower infection risk, as expressed in the 
Wells-Riley model [62–64]. Fig. 8a presents the individual infection risk at two air change rates of 1.1 h−1 and 11.1 h−1 for a normal 
classroom arrangement under mixing ventilation. The occupant indices are indicated in Fig. S 4 in Supplementary materials. With an 
air change rate of 1.1 h−1, occupants 2, 3, and 4, who are in the front row, have a higher infection risk compared to occupants 5, 6, and 
7 in the back row. However, as the air change rate increases to 11.1 h−1, while infection risks for occupants in the front row decrease 
significantly, the infection risk for occupants in the back row increases. Specifically, the infection risk increased by 88 % and 166 % for 

Fig. 5. Comparison of infection risk (%) under different air change rates (h⁻1) for both Mixing Ventilation and Displacement Ventilation. The dotted blue lines 
represent the Wells-Riley equation results. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Contour plots of the volume fraction of particles under mixing and displacement ventilation at air change rates of 1.1 h−1 and 11.1 h−1.  
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occupants 5 and 6, respectively. Fig. 8b illustrates the infection risk for occupants in the back rows across four different air change 
rates. As the air change rate increases, occupants could be at greater risk of exposure to infectious particles, possibly due to the farther 
travel distance of the particles caused by increased airflow. This finding contradicts the widely accepted view that higher ventilation 
rates consistently lead to reduced exposure. However, it aligns with specific studies. Notably, Bolashikov et al. [65,66] reported that 
while elevated air change rate (12 h−1) generally reduced average exposure, under certain conditions, it may increase exposure 
compared to that of lower ventilation rates (3 h−1 and 6 h−1). Moreover, Pantelic and Tham [67] reported that an increase in supply 
airflow rate could lead to an increase in exposure in some cases. This paradoxical effect was attributed to higher airflow rates causing 
complex airflow patterns and further dispersion of infectious particles. 

3.4. Effects of occupant arrangement 

Fig. 9 presents the percentage difference in average infection risk between the two arrangements, with the normal classroom 
arrangement serving as the reference. For mixing ventilation, the percentage difference decreases as the air change rate increases, from 
20 % greater infection risk at the ASHRAE’s minimum ventilation rate to 1 % at 11.1 air change rate compared to that in a normal 
classroom arrangement. On the other hand, under displacement ventilation, the percentage difference is about 20 % lower at 4.6 h−1 

Fig. 7. Particle trajectories emitted by an infector (occupant 1 in this case) under mixing and displacement ventilation at air change rates of 1.1 h−1 and 11.1 h−1.  

Fig. 8. Infection risk with occupant 1 as the infector under mixing ventilation for a normal classroom arrangement. (a) Individual infection risk at air change rates of 
1.1 h-1 and 11.1 h-1. (b) Infection risk of occupants 5, 6, and 7 at different air change rates. 
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and 8 h−1 compared to that in a normal classroom arrangement with no specific trend with varying air change rate. This suggests that 
with a higher ventilation rate under mixing ventilation, the effect of occupant arrangement becomes smaller. This seems reasonable, as 
mixing at higher air change rates would tend to provide a more uniform condition. In contrast, susceptible occupants under the debate- 
style arrangement tend to experience similar or lower infection risk compared to those under the normal classroom arrangement when 
using displacement ventilation. Although further research is necessary to pinpoint the reason, it’s shown that the influence of occupant 
arrangement on infection risk is significant, particularly with displacement ventilation. 

Fig. 9. Percent difference in average infection risk between the two arrangements, with normal classroom arrangement as the reference, for various ventilation 
strategies and air change rates with error bars representing one standard deviation. 

Fig. 10. Infection risk by distance from an infector at different arrangements and air change rates per hour for a) normal classroom and b) debate-style arrangements.  
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3.5. Effects of the distance from an infector 

Fig. 10 illustrates infection risk as a function of distance from an infector, across varying air change rates. The plot employs bubble 
size and color intensity to represent infection risk, with larger bubbles and darker colors indicating higher risks. The data generally 
show a trend where infection risk decreases with increasing distance from the infector, applicable to both normal classroom and 
debate-style arrangements. However, this trend isn’t always consistent; in some cases, those situated farther from the infector expe
rience higher infection risks compared to those closer. For example, Fig. 11 illustrates the infection risk when occupant 6 is the infector 
under mixing ventilation in a debate-style arrangement at an air change rate of 4.6 h−1. In this scenario, the infection risk for occupant 
4 is approximately 280 % and 87 % higher than that for occupants 2 and 3, respectively, despite occupant 4 being at the same distance 
from the infector as occupant 2 and farther away than occupant 3. Additionally, the infection risks for occupants 1 and 5 are similar, 
even though occupant 1 is about 2.5 m farther from the infector than occupant 5. It is important to note that although the diffusers are 
symmetrical, the particle dispersion within the space, as shown in Fig. 11c, is not. While the configuration could impact particle 
dispersion, the symmetry of the supply diffusers and exhausts does not necessarily result in symmetric particle dispersion. This 
asymmetry suggests that particle dispersion is more influenced by other factors affecting local airflow patterns, such as heat sources, 
air stagnation, and source location. The result regarding the impact of airflow patterns on particle dispersion aligns with a previous 
study by Yan et al. [68] which investigated a conference room with an occupant arrangement akin to the current study’s debate-style 
arrangement, under various ventilation strategies. They reported that, while it differs by supply and exhaust diffuser locations, mixing 
ventilation could lead to extensive droplet dispersion across the room, resulting in a higher infection risk for occupants farther away, 
compared to those closer. Therefore, relying solely on distance as a preventive measure may not be sufficient in certain situations, and 
other factors, such as airflow patterns, should also be considered. 

3.6. Effects of particle size 

Fig. 12 presents boxplots of infection risk distribution for two distinct particle sizes, showing that larger diameter particles lead to a 
lower infection risk. The trajectory and duration of airborne particles in enclosed spaces are significantly influenced by their size. 
Particles with a diameter of 10 μm settle much faster due to gravitational forces compared to those that are 1 μm in size. This 
accelerated descent effectively reduces their residence time in the ambient environment, thereby decreasing the likelihood of inha
lation and the associated infection risk. At the air change rate of 1.1 h−1, the percent difference between the medium of the two particle 
sizes is 18 %, but as the air change rate gets larger to 11.1 h−1, then the percent difference significantly increases to 51 %, indicating an 
amplified effects of smaller particles remaining suspended while larger particles settle. This underscores the importance of particle 
settling due to gravity which affects the airborne infection risk. 

3.7. Machine learning based surrogate model 

3.7.1. Performance of the surrogate model on the test dataset 
Fig. 13 compares the inhalable particle number over a 30-min period between the test dataset generated by CFD simulation, which 

was not used for training or validation, and its prediction by the surrogate model for both the infector and each occupant as susceptible 
individuals. Each data point represents the inhalable particle number concentration at a specific time step, and each line composed of 
dots, which are colored differently for each case, represents a case for 30-min, with the diagonal line indicating a perfect prediction. 

Table 7 presents the evaluation metrics, including the Coefficient of Variation of the Root Mean Square Error (CVRMSE) values for 
the infector and susceptible models. The surrogate model for the infector exhibited relatively better performance, achieving R2 and 
CVRMSE values of 0.79 and 34 %, respectively. This improved performance can be attributed to the infector’s constant speaking and 
particle emission, which might have simplified the model’s learning and prediction tasks. In contrast, the susceptible models 
demonstrated the ability to capture some nonlinear relationships, with R2 values ranging from 0.31 to 0.65 and CVRMSE values from 

Fig. 11. a) Individual infection risk when occupant 6 is the infector under mixing ventilation in a debate style-arrangement at an air change rate of 4.6 h−1, b) debate- 
style arrangement with the infector and occupant index annotated, and c) horizontal volume fraction of particle contour plot at mouth level (z = 1.2 m) at 30 min. 
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100 % to 181 %. 
While R2 values above 0.8 are often sought for strong predictive accuracy, values below this threshold can still offer valuable 

insights, particularly in complex environmental modeling. For instance, in a study on suspended sediment load prediction, models with 
R2 values between 0.35 and 0.74 effectively captured crucial trends such as the influence of rainfall, discharge, and stage on sediment 
transport [69]. Similarly, in PM2.5 concentration predictions, R2 values as low as 0.22 to 0.49 provided meaningful insights into 
spatial variability and key predictors like aerosol optical depth and elevation [70]. These findings highlight that even with moderate R2 

values, the models can still uncover important patterns, providing valuable guidance for further refinement and practical application. 
The R2 values observed for the surrogate model, particularly for susceptible individuals, could be influenced by several key factors. 

One significant factor is the inherent complexity of the problem, specifically the mechanisms of particle dispersion within the envi
ronment. While the current dataset is extensive, the intricate and dynamic nature of particle behavior suggests that more data may be 
necessary to adequately capture all relevant scenarios. This potential limitation might contribute to the lower R2 values (0.31–0.65) 
observed for susceptible models, as the model may struggle to generalize effectively. To address this, increasing the volume of data 
through techniques such as data augmentation could be beneficial. By expanding the dataset with additional simulated scenarios, the 
model’s ability to generalize and predict more accurately could be enhanced. 

Another factor that could contribute to the observed R2 values is the limitation of using primarily static input parameters in training 
the AI model. While the CFD simulations provide detailed data on airborne particle dispersion, including the dynamic nature of 
inhalable concentration as an output, the current model does not incorporate dynamic input factors that might be beneficial in pre
dicting infection risk. For instance, CO2 concentration distribution over time could serve as an indirect indicator of infection risk, as 
CO2 is exhaled along with aerosols that may carry SARS-CoV-2 from COVID-19-infected individuals, making it a potential proxy for 
indoor SARS-CoV-2 concentrations [71–73]. Incorporating such time-dependent variables into the AI model’s training process could 
improve its ability to capture non-linear relationships and temporal variations in particle behavior, potentially enhancing predictive 
accuracy. 

3.7.2. AI model prediction pattern 
Fig. 14 displays a scatter plot of the AI model’s predictions regarding susceptible occupants for each case. For each case, average 

and median R2 values of the six susceptible occupants are computed, illustrating the performance trend. The figure indicates that for 
the normal classroom arrangement, the susceptible AI model predictions’ median and average R2 values clustered within the −20 
range, showing a consistent performance without notable outliers. This clustering suggests that the model is adept at generalizing for 
such a normal classroom, though the performance is not exemplary. In contrast, the debate-style layout poses additional complexities, 
especially when considering displacement ventilation with average R2 drops to −120. This indicates that the AI model struggles to 
predict outcomes accurately due to the complex airflow patterns and varying exposure levels in this setup. Specifically, as shown in 
Fig. 14c and d, the model failed to effectively learn the airflow patterns under displacement ventilation, leading to lower prediction 
accuracy and more dispersed R2 values. Nonetheless, the model’s predictive capabilities for both arrangements improve with mixing 
ventilation at increased air change rates, hinting at a better grasp of scenarios with more homogeneous air distribution. While these 
observed patterns could be influenced by various factors, including the composition of the training set or adjustments in model 
hyperparameters, it’s clear that occupant arrangement emerges as a significant variable. The differing levels of prediction accuracy 
between the two arrangements underscore the need to consider occupant configuration in future enhancements of the model’s design 
and training. 

3.7.3. Time-varying inhalable particle number concentration comparison: Best and worst cases 
Fig. 15 shows the time-varying comparison of inhalable particle number concentration over 30 min for each occupant in a specific 

case. This case is the best-predicted among the test data, as indicated in the far upper right corner of Fig. 14a. It was conducted under 
mixing ventilation at 8 air change rate in a normal classroom arrangement. The model’s predictions closely aligned with the CFD 

Fig. 12. Infection risk box plot for 1.11 h−1 and 11.1 h−1 between the two particle diameters.  
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Fig. 13. Scatter plots of inhalable particle number comparing CFD data with corresponding AI model predictions for a) the infector model, and b) to h) the susceptible 
model for occupant 1 to 7. 

Table 7 
Performance evaluation for the susceptible and infector model.  

Occupant Index R2 RMSE (Particle #) CVRMSE (%) 

Susceptible Occupant 1 0.37 3821 155 
Susceptible Occupant 2 0.31 3441 162 
Susceptible Occupant 3 0.44 4330 127 
Susceptible Occupant 4 0.65 2746 108 
Susceptible Occupant 5 0.62 3788 123 
Susceptible Occupant 6 0.51 3319 100 
Susceptible Occupant 7 0.37 3005 181 
Average 0.47 3493 134 
Infector 0.79 1038927 34  
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simulation values, resulting in a maximum percent difference of 29 % in the Area Under the Curve (AUC). This low percent difference 
in the AUC provides valuable insight into the model’s performance and its ability to estimate infection risk accurately. This suggests 
that the model effectively captures the underlying patterns of emitted particle dispersion in this configuration. 

Fig. 16, on the other hand, depicts the worst prediction case, shown in the far lower portion of Fig. 14b his case involved 
displacement ventilation at a higher rate. While the surrogate model accurately predicted the inhalable particle number concentration 
for occupant 2, who was right next to the infector, occupant 3, the AI surrogate model’s predictions for other occupants deviated 
significantly from the true CFD values with percent difference in AUC up to 1147 %. This deviation is reflected in the higher percent 
difference in the AUC for each occupant, indicating increased variability in the model’s predictions. 

Overall, the comparative analysis of the best and worst prediction cases highlights the varying accuracy of the ANN-based surrogate 
model under different ventilation conditions and occupant arrangements. While the model demonstrated high accuracy for certain 
scenarios with mixing ventilation at higher rates, its performance significantly deteriorated in other configurations such as 
displacement ventilation at lower rates. These findings underscore the model’s current limitations and the necessity for further 
refinement, particularly in handling different ventilation strategies and air flow patterns. Future work should focus on expanding the 

Fig. 14. Scatter plots demonstrating the relationship between average and median R2 values from the AI model’s predictions across testing data cases in different room 
arrangements. (a) Normal classroom arrangement, (b) Debate-style setup; (c) and (d) are the respective zoomed-in views. 
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Fig. 15. Comparison of time-varying inhalable particle number concentrations over 30 min between CFD simulation and surrogate model predictions for each 
occupant in the normal classroom arrangement with mixing ventilation at 8 air change rate, with occupant 7 as the infector. The percent difference in Area Under the 
Curve (AUC) is indicated for each occupant. 

Fig. 16. Comparison of time-varying inhalable particle number concentrations over 30 min between CFD simulation and surrogate model predictions for each 
occupant in the debate-style arrangement with displacement ventilation at 4.6 air change rate, with occupant 3 as the infector. The percent difference in Area Under 
the Curve (AUC) is indicated for each occupant. 
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training dataset with more varied scenarios (e.g., using data augmentation techniques) and incorporating additional features to 
enhance the robustness and generalizability of the surrogate model. This will ultimately contribute to more reliable infection risk 
predictions in diverse indoor environments. 

3.7.4. Inference performance by the AI based surrogate model 
An out-of-range prediction using the trained model is referred to as inference. To evaluate the model’s performance on inference, 

two additional Computational Fluid Dynamics (CFD) cases were conducted. These cases had an air change rate of 13.8 h−1 under both 
mixing and displacement ventilation conditions, with occupant 1 designated as the infector in a normal classroom arrangement. 

As shown in Table 8, the model’s performance under mixing ventilation was notably accurate (see Fig. S 5 and S 6 in Supplementary 
Materials). This level of accuracy is likely due to the enhanced air mixing, which results in a more uniform distribution of infectious 
particles throughout the space. The homogeneous nature of the well-mixed environment likely facilitated easier training and improved 
prediction accuracy. 

In contrast, the model’s performance under displacement ventilation is significantly poorer. This discrepancy underscores the 
complex nature of infectious particle dispersion in displacement ventilation systems. The stratification created by displacement 
ventilation introduces additional variables and complexities that the current model may not adequately capture. 

These findings, once again, emphasize the critical role of ventilation strategies in developing and applying predictive models for 
infectious particle dispersion in indoor environments. While the model shows promise in scenarios involving mixing ventilation, its 
limitations under displacement ventilation highlight the ongoing challenges in accurately predicting airborne disease transmission 
risks across different ventilation conditions. 

4. Conclusions 

The present study offers a thorough analysis of airborne transmission in classroom settings, focusing on key factors that signifi
cantly influence infection risk, including ventilation strategies, air change rates, occupant arrangements, and source locations. We 
meticulously generated a comprehensive set of 224 CFD simulation cases to explore these variables. Furthermore, we trained data- 
driven supervised learning models—specifically Long Short-Term Memory (LSTM) networks and Artificial Neural Networks 
(ANNs)—to enable rapid prediction of airborne infection risks. The major findings are as follows:  

1) The upper quartile of infection risk was found to be up to 6.5 times greater than the predictions made by the traditional Wells-Riley 
model, highlighting a significant discrepancy. This discrepancy underscores the model’s limitations in accurately capturing the 
complex spatial distribution of infection risk. 

2) Increasing air change rates were found to reduce infection risks for occupants in the front rows of a classroom. However, unex
pectedly, these higher air change rates were associated with a significant increase in risk—up to 166 %—for occupants seated in the 
back rows. This paradox challenges the conventional belief that higher air change rates uniformly enhance safety.  

3) In the absence of control measures, displacement ventilation leads to a significant reduction in infection risk, ranging from 49 % to 
77 %, compared to mixing ventilation. 

4) Higher ventilation rates under mixing ventilation reduce the impact of occupant arrangement, while under displacement venti
lation, susceptible occupants in a debate-style arrangement experience similar or up to 30 % lower risks compared to those in a 
normal classroom. This highlights the substantial effect of occupant arrangement on infection risk, particularly with displacement 
ventilation. 

Some limitations should be noted. Although Artificial Neural Networks (ANNs) effectively modeled the relationship between 
particle distribution and infection risks under mixing ventilation, the surrogate model had limitations in fully capturing the intricate 
relationships, particularly with displacement ventilation. Future research should explore advanced data augmentation techniques and 
the integration of additional variables to enhance predictive accuracy and robustness in this context. Moreover, simulating a relatively 
small number of occupants in a classroom may not fully capture the complexity and variability of real-world environments, potentially 
affecting the generalizability of our findings. Future studies should investigate the behavior and interactions of a larger population in 
occupied spaces. Additionally, validating the model with full-scale field measurements could provide a more robust basis for assessing 
its accuracy and applicability. Incorporating dynamic inputs such as CO2 concentrations and other environmental variables would 
further help capture nuanced interactions and improve predictive accuracy. 

Table 8 
Performance evaluation on inference, comparing two different ventilation strategies.   

Mixing Displacement 

R2 CVRMSE (%) R2 CVRMSE (%) 

Occupant 2 0.75 37 −37 542 
Occupant 3 0.69 39 −53 532 
Occupant 4 0.03 68 0.94 17 
Occupant 5 0.89 25 −89 1020 
Occupant 6 0.12 86 −10 302 
Occupant 7 0.98 12 0.01 75  
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