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Accurate electron correlation energy functional: Expansion in the interaction
renormalized by the random-phase approximation
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We present an accurate local density functional for electronic-structure calculations within the density func-
tional theory (DFT). The functional is derived by analyzing the structure of the standard perturbative expansion
of the correlation energy of the interacting uniform electron gas. Then, the expansion is partially resummed
and reorganized as a self-consistent series in powers of a renormalized electron-electron interaction vertex
based on the screened frequency-momentum-dependent dielectric matrix given by the well-known random-phase
approximation. First, we demonstrate that the range of r,, where this reorganized and renormalized series
converges, contains and is significantly larger than the average range realized in real crystalline materials.
Using a combination of analytical, numerical, and stochastic integration techniques we are able to calculate
all the diagrams which have contribution up to the same leading order. We benchmarked the functional using
the QUANTUM ESPRESSO implementation of the DFT applied to the same list of materials, selected previously
by other authors, in its entirety without any modification of the list. We find that for ground-state properties in
general, such as equilibrium atomic distances and bulk moduli, the functional presented here is more accurate

than the currently available most popular one.
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I. INTRODUCTION

The density functional theory (DFT) as introduced by Ho-
henberg, Kohn, and Sham [1,2] (HKS) is broadly used to
provide insight into the electronic structure of materials. In
addition to the assumed known interaction potential formed
by the contribution to the total one-body pseudopotential
by all the screened-ionic cores, DFT requires an accurate
“exchange-correlation” potential Vy.. The V. is a functional
of the spatially varying local electronic density field n(¥)
produced by the collective presence of all of the electrons in
the interacting ground state. In fact, provided that the ground
state is not degenerate, one can show the existence of a one-
to-one correspondence between the interacting ground state
and the diagonal part of the interacting one-body density
matrix.

The important feature of this functional is its universal
nature, namely, it is the same for all materials. Therefore,
one can conceptualize the question of the electronic structure
of any given material, as a problem where the response of a
system of interacting electrons, in the presence of an external
one-body potential presented by the ions, is sought. Its univer-
sal character allows us to determine its form, in principle, and
at least its local part, by calculating it for the pure system of
interacting electrons in the presence of a uniform background
of positive charge of density equal to the spatial average of the
electronic density (the so-called jellium model).

While this approach of determining the universal density
functional by focusing our effort on the Jellium model started
more than half a century ago, the ground-state properties of
many materials still cannot be calculated with the desired
accuracy.
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Most functionals, especially the one used by most authors
[3-5], are based on an ad hoc functional form which is gen-
eral enough to reduce itself and reproduce the leading terms
of extreme r; — 0 limit of the random-phase approximation
(RPA) (a limit which is expected to be captured correctly
by the RPA), while the low-density limit (large r,) and the
intermediate regime is fitted to the quantum Monte Carlo
results [6] of the jellium model.

However, quantum Monte Carlo (QMC) simulation of
fermions is hindered by the infamous sign problem which
forces us to limit our calculations to small-size systems of the
order of a few hundred [6] or at most several hundred up to
one thousand [7,8] electrons. These system sizes are too small
to allow extrapolation to the infinite-size limit to remove the
finite-size effects to a satisfactory level of accuracy. To give
an example of the severity of the finite-size effects, for 368
electrons the occupied states of the noninteracting unpolarized
determinant used as part of the initial and guiding trial state in
diffusion Monte Carlo, do not have the form of a sphere at
all and the kinetic energy of an occupied state on the k, = 0
plane and that of the nearest unoccupied state differ by a g
fraction of the Fermi energy. Therefore, the simulated system
is far away from the actual uniform jellium metallic system
and flipping a spin in this simulated-system case costs such
a large amount of energy. What is worse is that there is no
known scaling function to use in order to extrapolate in the
infinite-size limit.

In this work, we illustrate that we should expect a reorga-
nized perturbative expansion, based on using a renormalized
RPA-screened interaction vertex, to have a wider range of
validity in the parameter r; than previously thought [9,10].
In fact, we show that the range of r;, where one should
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expect such a reorganized perturbative scheme to be conver-
gent, contains the range of r; realized in most materials. It
is worth noting that, as is well known, using an effective
Hamiltonian approach which separates the degrees of freedom
into collective (charge-density fluctuations) and elementary
excitations above the ground state (quasiparticle/quasihole)
one could achieve a very different picture of the rate of con-
vergence [11,12].

We, therefore, undertake a systematically organized per-
turbation expansion in orders classified by the number of
renormalized RPA-screened interaction lines. The correlation
energy for any value of the spin polarization and any value of
r begins with two leading families of diagrams in the RPA-
renormalized interaction. The first is the well-known series of
rings-of-bubbles-like diagrams and a series which we call the
“kite-diagram” series. To determine our functional, first, we
very accurately calculate the sum of the ring diagrams for a
very wide range of r; and as a function of spin polarization.
We also determine analytically the small r; and the large r;
singular behaviors of the sum of rings-of-bubbles diagrams.
The kite diagram using the bare-Coulomb interaction was
first estimated by Gellmann and Brueckner [10] by means
of Monte Carlo integration and was later calculated exactly
by Onsager [13]. We calculate the correction to the Kkite-
diagram family when a fully RPA-renormalized interaction
is used by first carrying out imaginary frequency integrals
analytically by appropriately choosing the integration contour
in the complex-frequency plane to avoid the branch cut of
the dielectric frequency-momentum-dependent function. This
allows the remaining 11-dimensional integral to be well be-
haved for a stochastic integration method to be effective. We
find that, in the range of r,; accessible in most materials, this
correction previously ignored is as significant as the other con-
tributions to the correlation energy of the interacting electron
fluid. The reason for this is that this series of diagrams consists
of a contribution to the exchange-correlation energy where
the effects of exchange and correlation are both profound and
cannot be disentangled.

We then use the numerical results of this calculation and
our analytical knowledge of the behavior of the various dif-
ferent terms in the small and large r, limits to determine a
functional form that fits very accurately our numerical results
as a function of ry and spin polarization.

In order to assess the accuracy of our functional relative to
the currently popular local density Perdew-Wang (PW) func-
tional [5], we modified the QUANTUM ESPRESSO package [14]
to include our functional and we carried out DFT calculations
within the local density approximation (LDA) for the same en-
tire list of crystalline materials given in Refs. [15—-17] (where
the performance of various other functionals was evaluated).
We find that our functional overall outperforms the PW func-
tional [5] in the calculation of the equilibrium lattice constants
and bulk moduli. These observables are the main indicators of
the accuracy of a functional for ground-state properties. We
have avoided comparing gaps, as the Kohn-Sham orbitals are
only auxiliary entities needed in the HKS theory, which is
purely a ground-state theory and is not meant to describe real
single-particle excitations.

The paper is organized as follows. In Sec. II the calculation
of the electron gas is described. In Sec. III our functional is

presented, while in Sec. IV it is compared with other func-
tionals. In Sec. V its performance is benchmarked. Last, in
Sec. VI we give our discussion and our concluding remarks.

II. CALCULATION OF THE CORRELATION ENERGY

In this section we describe how we obtain the ground-state
(GS) correlation energy of the homogeneous electron gas for
any value of r; and spin polarization ¢. We will assume a
density n4 of electrons with spin up and n; of electrons with
spin down with total density n = ny +n; and

nT—n¢
:—’ 1
Py 8

3\}
rs = (m) , )

with corresponding Fermi wave vector

kio = kpxy, kp = (3w%n)3, 3)

where
x(,E(l—i—a{)%, 4)

and 0 = +1, —1 for spin up and spin down, respectively.

In order to calculate the contributions to the ground-state
correlation energy we use the following general expression
for the ground-state expectation value of the bare Coulomb
interaction term, i.e., (Wo|V | W), where |Wy) is the interacting
ground state, for the electron gas of spin polarization ¢:

. iV (tdx [ d*k g

(WolV W) = ——~ /0 | @y TG, (5)
where =% = T (k, k%) and G* = G p (k, k) are the proper
self-energy and the fully interacting fermion propagator ten-
sors, respectively, under the rescaling of the coupling of the
interaction: e — Ae?, where A guarantees the interaction to
be turned on very slowly in the system. The « and g are spin
indices (with values of 1 or —1) and 7 is an infinitesimal factor
with time dimension that preserves the correct time order of
the field operators when evaluating expectation values. Both
tensors are diagonal in this system since the electron’s spin is
conserved at the vertex level in the Coulomb interaction.

A. Issues and history of the perturbative expansion

Figure 1 gives the ground-state energy correct up to
leading order in the bare Coulomb interaction. Figure 1(a)
is the Hartree-Fock approximation where the first term is
the Hartree term, which, in the case of our jellium model,
is canceled by the uniform background of positive charge.
Figure 1(b) gives the next-order correction, which is the corre-
lation energy in leading order in the bare Coulomb interaction.
The first diagram of Fig. 1(b) alone is infinite at any value of
ry because of the singular nature of the Coulomb interaction in
the infrared. The second diagram of Fig. 1(b) is zero and the
third has been first estimated by Gellmann and Brueckner [10]
by means of Monte Carlo integration and was later calculated
exactly by Onsager [13]. In the rest of this paper, we will refer
to this latter diagram as the “kite” diagram.
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FIG. 1. (a) First order in the bare Coulomb interaction. (b) Second order, i.e., the correlation energy correct up to leading order in bare

Coulomb interaction.

In order to “bypass” the problem of the infinite character
of the first diagram of Fig. 1(b), what has been done was to
replace one of the interacting lines by the renormalized inter-
action line given by the RPA sum of ring diagrams [10,18,19]
shown in Fig. 2 and this makes this renormalized diagram
finite at any finite value of r; and it diverges as In(ry) in the
rg — 0 limit.

The above series of all the correlation diagrams is the RPA,
which leads to dressing one of the interaction lines as shown in
Fig. 2. This effective interaction line introduces an emerging
regulator which endows the new diagram with a finite value at
finite r;.

Hence, a perturbation expansion in the bare Coulomb in-
teraction leads to infinities and it is necessary to renormalize
the Coulomb interaction. Therefore, the entire perturbation
expansion needs to be systematically reorganized in terms of
such a renormalized interaction.

FIG. 2. The bold interaction line represents the sum of the terms
included in the RPA and each loop [I1°(q, ¢°)] represents the spin
trace of the polarization tensor. For more details see text.

B. Summation of the ring diagrams

First, we summarize the calculation for the well-known
RPA approach [10,18,19]. The fundamental aspect of this
theory is that it renormalizes the bare Coulomb interaction by
adding together the selected terms of the perturbation expan-
sion illustrated in Fig. 2 which defines an effective interaction
with a Fourier transform given as follows:

472

A 6
q*€(q, q°) ©

Verr(q, ¢°) =

where the dielectric function €(g, ¢°) is found by calculat-
ing the spin trace of the polarization HSU,(q, q°) (bubble or
particle-hole diagram):

47 e?

q2

(g4 =1- Y N9 4", (7
{o}=%

where one spin index o is dropped in the polarization tensor
since it is diagonal, and 12 (¢, ¢°) can be calculated by a four-
dimensional integral of a product of two Green’s functions,
which the result yields an even function in frequency ¢°. The
integral expression of T12(g, ¢°) is given by

d*k 0 (1 NGO (11t
7 WGUUC +4")G, (k"),

0 0 —i
M,(q.9") = — ®)
where the w superscript is used only as a shorthand notation
for ¢* = (g, q") (not to be confused as a covariant quantity)
and the noninteracting Green’s function has the usual integral
expression that takes into consideration the energy dispersion

€1 , of the electron measured relative to the chemical potential
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FIG. 3. The self-energy within the RPA. We have not included
the Hartree term as it is canceled by the contribution of the uniform
positive background in the jellium model.

with spin o. At zero temperature we have
O — kry) n Olkps — k)

GO (k") = .
kO — Loy iy

= . 9
i - )

The calculation of the polarization tensor is similar to
the spin-unpolarized case, where the latter is solved in
Refs. [20-22]. The difference in the calculation is at the level
of rescaling the wave vector ¢ and frequency ¢° into unit-
less variables, but instead of using kr for the rescaling, we
use kr,. The result for T1%(g, ¢°) depends on the Lindhard’s
function where its real and imaginary parts can be found in
Refs. [20,21]. In the following discussion, we will involve the
expression of its analytic continuation in imaginary frequency
[see our Eq. (14)].

The self-energy Zrpa.o (k, k) within the RPA is illustrated
in Fig. 3 and when multiplied by the noninteracting Green’s
function, i.e., Gg (k, k%), as in expression given by Eq. (5),
and integrated over the external leg variables frequency (k°),
and wave vector (k) it gives the ground-state expectation
value of the interaction energy. The first term is the exchange
(Fock) diagram and only the second term contributes to the
correlation energy. Once this step is done, this yields the sum
of the ring diagrams with partial spin polarization (¢ ), which
consists of summing all of the first-order Goldstone diagrams
within the RPA, as listed in Fig. 4. The calculation of these
ring diagrams consists of carrying out a calculation of a five-
dimensional integral, one integration over the A parameter,
and the other four-dimensional integrals along the frequency
variable ¢° and the wave vector §. After performing a simple
integral along the A parameter on the integral expression of
the ring-diagram series, and by rescaling the wave vector and

Im ¢"

branch cut of €(q, q°)

)

Cy

FIG. 5. The path on the complex frequency plane chosen for the
calculation of the contribution to the ring-diagram series (see text).

frequency variables by the mapping § — k&, q° — hkiv/m,
one obtains the general expression for the contribution to the
ring-diagram series E,(r,, ¢ ) as follows:

N2
Emo=ﬁﬁwo, (10)

where the contribution to the ground-state energy per particle
in Ry, ie. €.(r,¢), is given by the following four-
dimensional integral:

3 . [
€ (ry, &) = mfd K/_oodv[lﬂ(Ed)-l- 1 —eq4l,
(11)

ﬁk,z,- v

where o = [4/(97)]'° and €; = e(kpk, =E=). We can pro-
ceed to choose a particular complex contour to map the
rescaled frequency integral along the real line into a pure
imaginary frequency integration /v in a way that does not
enclose the branch cuts that arise from the logarithmic terms
that come from the dielectric function, as seen in Fig. 5. In this
case, we use the analytic continuation of the Lindhard func-
tion where the expression is more simplified since this yields
a real function. After some simplification of the expression of
the integrand for the ring-diagram series per particle by using

FIG. 4. The sum of the series of diagrams depicted in the right-hand side of the equation in the figure is the correlation energy within RPA
and it corresponds to replacing one of the interaction lines in the first diagram of Fig. 1 with a bold interaction line which is symbolically
depicted by the diagram in the left-hand side of the equation. In this figure we labeled I1° as the spin trace of the polarization tensor.
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FIG. 6. (a) The zeroth-order diagrams to the total ground-state energy in the RPA-renormalized interaction. (b) The set of all the diagrams

contributing to the first order in the RPA-renormalized interaction.

x = v/k, we are left with an imaginary frequency integration
given by

€(rs,C) =y /ood/c i3 foodx[ln(l + 1) -], (12)
0 0

=22 O ——, i—— (13)
= Xo — 5 )

K2 ) x2(8)

where y = m;m, and the analytic continuation of the

Lindhard function is given by the following expression:

2 _ k2 41?2
g(‘]l,i‘))=1+v e 1“( :

243 K2 + 2

- 611|:tan_1 (%) + tan™! (%)}, (14)
1

where ky = ¢q; £ q% /2. We used the integral expression given
by Eq. (12) to calculate numerically the ring-diagram series
per particle €,(7,, ¢) by using integration by quadrature. As in
the ring-diagram series of the unpolarized case, €,(ry, ) also
has a In(ry) divergent part which we were able to calculate
analytically by keeping track of the integral on regions of
integration of very small g. Such calculation gives rise to the
generalized coefficient of this divergent part, given by

€(rs, §) = cr() In(ry) + co(¢), (15)

where ¢, (¢) is the coefficient of the In(ry) term given by

1 X1 X_
al)=— [(1 —In2)+ ——x —In(x)
4 2

+ %;xg ln(xa):|, (16)

where

X)) =Y %), (17)

and x,(¢) is given by Eq. (4). We will use this expression in
our functional.

C. RPA-renormalized perturbation expansion

We wish to carry out a perturbation expansion in the RPA-
renormalized Coulomb interaction as in Hedin [23]. We are
not regarding this expansion as an r; expansion. We regard it
as an expansion in powers of the renormalized interaction.

As stated earlier, our goal is to compute by a perturbative
expansion the total ground-state expectation value of the inter-
action energy, i.e., the expectation value of the bare Coulomb
interaction (as it appears in the original many-body Hamilto-
nian) in the interacting ground-state wave function, i.e.,

2
(WolV [ ¥0) = (Wol Y W), (18)
ij

i<j

where |Wy) is the interacting ground state. This was our
starting computational goal [as set originally by Eq. (5)].
This series up to the first order in the RPA-renormalized
interaction line is shown in Fig. 6. Figure 6(a) lists all the
zeroth-order terms contributing to the ground-state interac-
tion energy. The presence of the bare Coulomb interaction
line should not be confused with the first order, it is the
operator of which we compute the expectation value of, it
is not coming from the expansion of the interacting ground
state. The diagrams contributing to the ground-state interac-
tion energy (and correlation energy) to leading order in the
RPA-renormalized interaction are shown in Fig. 6(b). Notice
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FIG. 7. Comparison of the first-order contribution to the zeroth-
order contribution to the interaction energy in RPA-renormalized
interaction line.

that one bare Coulomb interaction line is unavoidable and
cannot be dressed by the RPA effective interaction. The reason
is that the interaction energy is calculated as the expectation
value in the interacting ground state of the bare Coulomb
interaction. Namely, this bare interaction line is the observ-
able to which the ground-state expectation value is computed
within perturbation theory. The other lines can be renormal-
ized because they come from the Goldstone expansion of
the ground state. Now, we note that the second diagram in
Fig. 6(b) is identically equal to zero. The reason is because
there is the product of two bare fermion propagators, a particle
of four-momentum (k, k%), and a hole propagator with the
same four-momentum.

The two zeroth-order diagrams are the familiar Hartree
(which cancels the interaction of the electron gas with the
uniform positive background) and the bare exchange terms
contributing to the total density functional. The exchange term
is a well-known contribution to the interaction energy per
particle, which in Ry is given by

4
Vo(rs, §) = =322, (19)
drar,
with x, defined by Eq. (4).

The first diagram of Fig. 6(b) is the sum of all the ring-
diagram series which was computed in the the previous
section. The third diagram, which we call “the kite diagram”
because of its shape, is calculated in the following section.

Our series expansion of the interaction energy, i.e., the
quantity which we calculate can be written as

(WolVW,) = Vo(rs, £) + Vi(rs, ©) + Va(rs, ) + -+, (20)

where V,,(r,, ¢) denotes the nth order in the RPA-renormalized
interaction. Namely, V,,(r, ¢) contains only n of such lines.
Such a series will converge fast as long as |V,(rs, ¢)| <
|V (rs, ¢)|. Using the final results of our calculation we can
provide a justification of the validity of this expansion using
the known results for n = 0 and our results for n = 1. Figure 7
provides the ratio V;(ry, ¢)/Vo(7s, ¢) for various values of the
spin-polarization parameter {. Given that this ratio is signifi-
cantly smaller than unity in the region of r, realized in most

real materials, we should expect to have a converging series of
our expansion in such region and our functional to be a good
approximation for direct application to real materials. We note
that we checked in the charge density output file of the QE
calculation and we did not find any value of density listed in
the file which corresponds to a value of r,, which lies outside
the yellow-shaded region of this figure.

Therefore, we conclude that using the screened (and, there-
fore weaker) RPA-renormalized interaction vertex should lead
to a converging perturbative expansion in the region of r; and
¢ realized in most real materials.

D. Summation of the kite-diagram series

This section will briefly explain how to obtain an inte-
gral expression for the kitelike-diagram series that contributes
to the ground-state (GS) energy of the homogeneous spin-
polarized electron gas, where more details concerning the
calculation are given in Appendix C. This term is first order in
terms of the cluster expansion, where the integral expression
of such a term is found by calculating the expectation value of
the bare Coulomb potential operator (¥,|V| W) [our calcula-
tion begins from Eq. (5)]. Therefore, the bare interaction line
represents the operator and the other line is due to the expan-
sion. Our expansion resums a selected series of diagrams illus-
trated in Fig. 2 resulting in the renormalization of the second
interaction line to become an RPA-dressed interaction line.

The calculation of the kite diagram involves computing the
diagram series illustrated in Fig. 8. As seen in this figure,
we separate the zeroth order of the expansion of the renor-
malized interaction line (first diagram) from the correction to
the kite diagram which carries a r; dependence given by the
dielectric function included in the Goldstone diagram (second
diagram). We used Eq. (5) to calculate both contributions to
the Goldstone diagram within renormalization, as explained
in Appendix C. The expression for the complete kite diagram
within renormalization is then written as

Exlny, n)) = Eyy[ny, ny ]+ AEy[ny, nyl, (21)

where the first term corresponds to the kite diagram having
two bare interaction lines which come from the leading term
of the effective Coulomb interaction that comes from the
renormalization in RPA, while the second term corresponds to
the kite-diagram correction given by the single renormalized
interaction line. Their corresponding expressions are given
below:

iv ! d*k d*q,
Edny,nl=— [ dir | ——
ke 2h/o / <2n>4/ @)

d46]2
(2m)*

X Vo(k — G — @)Vo(@)D,
(22)
AEy[ng, ny ]

v ot dYk [ d'q
= — di A —_—
2h Jo m)* (2m)*
d*qy ¥ Wo(k — g1 — @IVEGHT(g1, ¢HD
Q) &.(q1.47)

’

(23)
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FIG. 8. The kite-diagram series can be broken into two parts. The first consists of using the bare Coulomb interaction. This diagram was
first estimated by Gellmann-Brueckner by means of Monte Carlo integration and it was later calculated exactly by Onsager [13]. The second,

which is r; and ¢ dependent, is calculated in this paper.

where

D= GG+ d) + )G 4))

o=+
x GOk — q1, K — )Gk, k%), (24)

and €, (q1, q(l)) is the dielectric function given by Eq. (7) with
the interaction coupling rescaled by ¢ — Ae?.

By means of a dimensional analysis of the contribution to
the ground-state energy given by Eq. (22), it can be shown that
it is independent of r;, which implies that it is independent
of the relative spin polarization ¢. Its contribution is just a
constant independent of ry and it has the same value as in the
unpolarized case, which Onsager previously obtained and it is
given by [13]

0 Né
Eplny,n] = Zag 2 (25)
where the energy per particle is given in Ry as

In(2) 3
€9 = 3 —-§;5§(3)Q:QO4836. (26)

The correction to the kite diagram is the piece that con-
tains the ¢ and ry dependence and this Goldstone diagram
cannot be computed accurately by using the Monte Carlo
integration technique directly by using the expression given
by Eq. (23) due to the so-called “sign” problem that comes
at the level of the frequency integrals of the product of the
Green’s function. It is possible to get around this problem by
isolating the momentum and frequency associated with the

J

1 4
AEqul = / d)\,/d3q1/ d3k/ d3QQ Zfz dul
0 k<1 <1 s Y0

(G, alqy, @) tan(u), §)

renormalized interaction line and doing the integrals of the
remainder frequency variables, which the dielectric function
is independent of, by using Cauchy’s theorem. Also, as ex-
plained in Appendix C, to make the integrand more compact,
we had to rely on a sequence of transformations of the dummy
wave-vector integration variables which helped us reduce the
number of integrals to calculate numerically using the Monte
Carlo integration technique. The integral also becomes easier
to handle when applying similar transformations than we did
in the case of the ring-diagram series (check Appendix C for
more details). We chose the same complex contour path on
the complex plane (see Fig. 9) which avoids enclosing the
branch cuts of the dielectric function [24] and the poles that
come from the denominator part of the noninteracting Green’s
function, we can map the frequency integral contained in the
argument of the dielectric function along the real line into
an integral along the imaginary line. The last step is to do
a dimensional analysis, as done for the ring-diagram series
which allows us to factor out the total number of electrons
in the correction of the kite-diagram series, which allows us
to write this ground-state energy contribution in terms of an
energy-per-particle factor:

2

Ne
AExp[ny, ny] = Z—Aézb[nm nyl, (27
aop

where the energy per particle of the correction of the kite
diagram within renormalization is given by the sum of two
major contributions which are given as

— f2(1, a(qh, k) tan(u), ¢)

——— — — . (28)
lk — ¢21*(a(q1, ¢2) — a(qi, k))

! % 4 _b’ _)9_) t £ 7 _’7 q’]_ét £l
Aqﬂ:_]uﬂjﬁ%ﬂ/ fﬁ/ f@}jf(wﬁﬁmuquﬁamwcl+ﬁwldm )wW)O’ 29)
0 k<1 <1 o Jo

where

_ 3ars A

= Ton’ g ®(|‘I1+512|_1)®(|k+511|_1) (30)

Ik + G + @12 ald, ¢) + aldy, k)

(

and the term a(q, ¢>) is related with the relative differences
between the energy dispersion of the electrons:

o @+ -4
mwﬂg=—L—%——i 31)
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Im ¢¢

pole at Wi s — Wkyqy,0 + 17

N‘)mn(:h cut of e(qr,q})
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PN

Re ¢f

o i<

pole at wiiqy.0 — Wko — in

pole at Wy, +qp.0 — Wap.o — 1

Cy

Im ¢}

branch cut of ¢(q,w)

pole at wy ; — Wictqy.0 + 17

Re gf

/ ®
pole at w0 = Wy razo + 10 pole at Wiiq,.0 — Wko — i1

FIG. 9. The paths we chose to calculate the two contributions A; and A, to the kite-diagram series. Both avoid enclosing the branch cut
of the dielectric function and the single poles of the noninteracting Green'’s functions.

A last integration mapping had to be done to smooth out the
frequency integrand to get more precise numerical results for
the correction to the kite diagram Aeyy[n4, ny]. Such mapping
is what yields an expression for the integrands in terms of the
function fj » (41, v, ¢), which is defined as

x3x58(0q1, 0°2)

Aars 2.\’
X3+ 55 3,0 %0r8(021. 637)

K@vo=Y

o’

(32)

where z = iv, 6 = x, /X4, and 6, = x, /xs». The expressions
given by Eqgs. (28) and (29) are the definite expressions that
we used to do the Monte Carlo integration. The number of
sample points used was N, = 10° to reduce the statistical
uncertainty given by the stochastic method used. The data that
were obtained were later combined along with the numerical
data obtained for the ring-diagram series and Onsager’s value
€), to obtain the numerical data for the correlation energy
€.(ry, ¢) for several values of ¢ and r;. This was important
to obtain an interpolation function for the coefficients of the
expansion in ry of the correlation energy.

E. Checking our calculation

Our calculations of the ring-diagram series agree well with
Hedin’s reported results within his large error bars. However,
our results are of much higher precision as we have more

1
ewi=— [ dx / Pay / &k / P /
/o k<1 @<1 ; 0

g
2

|
du A

M,(\T(Cih a(‘fh qz)tan(u)v g) - M; (q-)lv a(Cil, ]_é) tan(”)» ;)

powerful computational resources compared to those avail-
able at the time of Hedin’s paper [23].

We have verified the results of the full-kite-diagram series
using various numerical checks discussed in this subsection.
In addition, we used analytical results obtained at certain
extreme limits to check that the results of our Monte Carlo
calculations are correct.

First, to verify our numerical results from our Monte Carlo
code, we asked another member of our research group (named
in the Acknowledgments section) to independently calculate
the full-kite diagram by using Eqgs. (28) and (29) and by
writing a different Monte Carlo code. The results agree with
ours within the Monte Carlo error.

We have also derived a different expression for the kite-
diagram series of €;,(ry, ¢) starting from the full expression
without separating the contribution of the Onsager kite (i.e.,
the r; — 0 limit) and carrying out the frequency integral by
avoiding the branch cuts from the dielectric function to obtain
the different expression in the same way as for the correction
to the full-kite-diagram series explained in Appendix C. The
new expression of the full-kite-diagram series that we found
is given by

ex(rs, £) = €3,(rs, £) + €3,(ry, ), (33)

where the expressions for €,,(rs, {) and €3, (rs, {) are given
by

—— — — . (34
|k — @2 1*(a(q1, ¢2) — a(qi, k))

! 1 MU _>a _)7 7 t £ MG _'7 _)5l_ét E)
eM:/ dk/dng/ d3k/ d3q22/2 duA T(q1, a(qg1, g2)tan(u), &) + M7 (q1, a(q, k) tan(u) ;“)’
0 k<1 ¢<1 - Jo

where A = (Lmq?)/(hars), £ was given in Eq. (30), while
the M7 (41, v, ¢) is expressed as

)CS

__ %o . 36)
X2+ 2 Y x0g(a1. 632)

Mg([ﬂ, vV, ;) =

= — = — — (35)
|k + ¢ + $:1%a(y, ¢2) + a(qh, k))

(

where z =iv and 6, = x,/x,». The numerical results that
we have obtained by using Egs. (34) and (35) agree within
the Monte Carlo error for various values of ¢ and r; with
the results obtained as explained in the previous section. We
have also used these expressions to calculate the kite-diagram
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TABLE 1. Coefficients of €, fitted to Eq. (39) in Ry. The coeffi-
cient G, for €, is close to the coefficient reported in Ref. [25]. The
fit was done for values of r; from O to 1.

C G G

€ 0.01212 —0.02083 —0.00562

series at r; = 0 and they yield Onsager’s value within the 1%
error. In addition, we have worked on a code that uses the
importance sampling algorithm with the goal of reducing our
current numerical error by using the Monte Carlo algorithm,
and it yields similar values for €;,(ry, ¢) reported in Table IX
within the error bars.

A consistency check of our analytical expressions for
€2(ry, £) is obtained by using Onsager’s value egb and both
expressions from Eqgs. (28) and (29), and calculating the lim-
its of ry, — 0 and r, — o0o. We have also done an internal
consistency check using a different expression for the full-
kite-diagram series given by Eqs. (33)—(35) for these two
limits.

Our analytical result for the correction to the full-kite di-
agram for every value of partial spin polarization ¢, obtained
from the sum of the two terms from Eqgs. (28) and (29), also
has the correct asymptote at r; — oo. In this limit, the func-
tion f7 (g, v, ¢) from Eq. (32) yields the following expression:

157200 ﬂq%(l + O'C)
Aarg

(G, 0) , (37)

where the sum over the spin variable o on this function is in-
dependent of ¢. By inserting Eq. (37) in (28) and (29), we find
that A€y 1 yields zero, while A€y, 5 is the surviving term that
yields the same expression as Onsager’s integral expression of
egb, but with the opposite sign. In the limit r; — 0o, we have
rs—> 00

Aepr ~ —e, (38)
where this limit implies that the full-kite diagram yields zero
in the limit r; — oo when Onsager’s result is added.

It is trivial to check that both corrections to the full-kite-
diagram series, at ry = 0, are also zero since both terms from
Egs. (28) and (29) have a r, global factor. The expression
from Eq. (36) is equal to x at r; = 0, which is substituted in
both expressions (34) and (35). After doing the substitution,
only the term €5, is equal to zero, while €;;, yields the
Onsager’s integral expression [13] after doing the integral
over the variable u and the sum over the spin o.

We also extracted the coefficient of r¢Inr, in the small
ry limit to the value reported analytically [25] (a value of
0.01304 Ry) as follows. We fit the full-kite-diagram Monte
Carlo data from Table IX to the following small ; expansion:

exn(rs) = €3, + CirgInry + Corg + C3r? In(ry). (39)

The results of the fit are given in Table I. Notice that the
coefficient C is in reasonable agreement with the exact value
[25]. As we will discuss in the following subsection and in
Sec. IVB that SOSEX and PW give a much different (by
about a factor of 2) value for this coefficient. We feel that this
is a strong test that our calculation of the kite-diagram series
was done correctly.

-0.05

g(ry) (Ry)

-0.15

FIG. 10. The contribution of the various terms to the correlation
energy as a function of r;.

F. Comparison of the contributions

Here we wish to compare the various contributions to the
correlation energy at the leading order of the RPA renormal-
ized interaction. Namely, the sum of the ring diagrams, the
simple contribution of the bare-kite diagram calculated by On-
sager, and the full-kite diagram as calculated here numerically.

The various levels of approximation and the relative signif-
icance of each term are demonstrated in Fig. 10 as a function
of ry for ry < 6. The correlation energy obtained by includ-
ing only the ring diagrams is shown by the red dashed line.
Adding the r;-independent contribution of the kite diagram, as
calculated by Onsager exactly, to the sum of the ring diagrams
gives rise to the solid green line. The full calculation is shown
by the purple solid line where we have added the r,-dependent
correction to the kite (open circles).

III. OUR FUNCTIONAL

In this section we present our functional form obtained by
fitting the results discussed in the previous sections to analytic
forms for a straightforward inclusion in the present imple-
mentations of the DFT. Because our results are based on a
order-by-order expansion in the number of RPA-renormalized
interaction lines, we name this functional and will refer to it
in the future as RPA-based functional (RPAF).

The correlation energy per particle e.(rs, ¢) calculated
within the RPA is given by the sum of the two Goldstone
diagrams within the first order of the reorganized perturbative
expansion: €,(rs, ¢) and €,(r, §).

The data for the ring-diagram series per particle €,(ry, ¢)
have been obtained by integration by adaptive quadrature,
which yields a more precise calculation in contrast to the
numerical results of the integrals of the correction of the
kite-diagram series within the RPA, which was obtained with
Monte Carlo integration technique and it is explained in
Appendix C.

It is very important to have an analytic expression for the
coefficient of the In(r,) for any value of ¢ because it diverges
for ry — 0 and it continues to be a large part of the functional
for values of r, in the physically realizable region. This is done
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TABLEIIL. First (second) column: The values of the coefficient ¢
(e) obtained by fitting the small (large) r, part of our data to the form
(40) [Eq. (41)] for various values of ¢. Third and fourth columns give
the values of the coefficients a, and b, entering the functional form
for €,(ry, ¢) [Eq. (42)] obtained by fitting our data to this form under
the constraints [Egs. (47)-(50). See text for details.

e ¢o (Ry) e; (Ry) a b,

0.00 —0.1423 0.8822 90.76 54.55
0.02 —0.1408 0.8893 91.67 54.64
0.40 —0.1365 09111 95.14 55.38
0.60 —0.1287 0.9488 104.51 58.17
0.80 —0.1165 1.0055 132.21 68.05
0.90 —0.1079 1.0431 168.80 82.18
0.91 —0.1069 1.0474 174.99 84.60
0.92 —0.1059 1.0517 182.03 87.39
0.93 —0.1049 1.0562 190.14 90.62
0.94 —0.1038 1.0608 199.66 94.45
0.95 —0.1027 1.0656 211.07 99.04
0.96 —0.1016 1.0705 225.43 104.97
0.97 —0.1004 1.0755 244.48 112.94
0.98 —0.0993 1.0808 272.55 124.94
0.99 —0.0983 1.0864 323.50 147.28
1.00 —0.0998 1.0925 593.52 283.05

in Appendix A briefly as follows: Each of these diagrams has
one renormalized interaction line which sums up the series of
all the polarization bubbles and one bare interaction line. Due
to this, if we use the expression of the integrand for each di-
agram that is being integrated along the imaginary frequency
iv, one can separate the regions of the integration as we did
for the calculation of the ¢, (¢) in Appendix A. By doing this,
we can keep track of the coefficients of the expansion in ry of
€,(rs, ¢). Since the diagram has one renormalized interaction
line, this gives a dependence on ry in the integrand inside a
logarithm of the dielectric function.

A. Fit equations for the ring diagram
1. Small v, limit

For a given value of ¢, we fit the data as a function of r; in
a small region of r; (0 < ry < 1) to the function

Gr(rsv C) =co+cL ln(rs)+clrs + cory ln(rs)’ (40)

using the exact coefficient ¢, as a function of ¢. This fit yields
the values of the coefficient co(¢) given in the first column
of Table II for the values of ¢ for which we have calculated
diagram. We are not going to use the values of the other
coefficients obtained this way in our functional; these other
coefficients were only necessary in order to extract the correct
value of cy. As explained in the following, we are only going
to force the contribution of the ring series to our functional to
have the correct ¢y and ¢, coefficients in the r; — 0 limit.

2. Large v, limit

For the large r; limit (100 < ry; < 1000000), we have
found that the numerical results for €,(r;, {) can be very

accurately fit to the form

er(ry o) =245 (41)

re s

We know that at very large r, values, when the 1/r2/* term
is the dominant term [4], the coefficient ey should be ¢y =
—0.803 Ry as calculated exactly in Appendix B. It was also
found to be ¢ independent. We have verified that, when we fit
the results for r; > 1000, ey approaches the calculated value.
Therefore, we adopt this value of ey for our functional for all
values of ¢. The values of e; found by fitting this large r,
(rs > 100) behavior is given in the second column of Table II
for data corresponding to the calculated values of ¢.

3. Our functional for all values of r;

We will need a compact functional form to describe
our data for the series of the ring diagrams which satisfy
the above discussed small r; and large r; behavior, and
at the same time it describes accurately our numerical results
in the entire region, especially the region of r, realized in the
real materials. We found that the following form accomplishes
these requirements:

a
€(ry, &) =(ap + airs) In (1 + —2>

s

b
+ (by + byry)In (1 + 7—§4> (42)
Iy

where the coefficients a, = a,(¢), b, = b,(¢) (n= 1,2, 3)
are functions of ¢.

The small r, limit given by Eq. (15) imposes the following
constraint on the coefficients:

ap In(az) + bo In(b,) = ¢y, 43)

7
2a0 + Zbo = —cy, (44)

where, for simplicity, we used the notation ¢ simply for cy(¢)
and ¢, for ¢z (¢). There are no spurious terms, such as ~. /7y,
which exist in the PBE functional in the small 7, limit. The ¢
dependence of ¢, is analytically known [Eq. (16)].

In the next step of our fitting procedure, we fit our results
to the functional form given by Eq. (42) in the range 0 < r; <
100 with the constraints given by Eqs. (43) and (44) and the
following additional constraints:

aja; = ey, (45)

b]bz = €y, (46)
where e; and e are the known coefficients already discussed
and ep = —0.803 and ¢; is tabulated in the second column of
Table II.

For any given value of ¢ we fit the data to the form given
by Eq. (42). There are six unknowns and the four equations.
The other parameters can be expressed in terms of a, and b,
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FIG. 11. Fit of the form given by Eq. (42) of our numerical results by numerical integration of the expression given by Eq. (12) for the sum

of the ring diagrams. (a) Small 7, region. (b) The entire region.

by solving the above four equations. We find

1 7 2 1
ay = ——[cL+— o ¢ In(a) } )
2 42 In(by) — 7 In(az)
2 1
\ = co +cL 7n(az) ’ 8)
21In(by) — § In(az)
e
a = —, (49)
a
€o
by = —. 50
1=, (50)

Using these expressions for the coefficients ag, a;, by, by in
terms of a, and b,, we can do a two-parameter fit for each
calculated value of ¢. Namely, the same procedure is repeated
for any given value of ¢ and the the results of the fits are given
in Table II.

The quality of the fit to the formula given by Eq. (42) for
¢ = 0 is illustrated in Fig. 11(a) for small values of r; and in

0.00
0.20 7
0.40
0.60
0.80 -
0.90
0.91 b
0.92
0.93
0.94
0.95
0.96 =
0.97
0.98 7
0.99
1.00

0.01 1 100

rS
FIG. 12. The data points are the ring-diagram data from Ta-
ble VIII for different values of ¢ and the solid lines are the fit of
the ring diagram using the functional given by Eq. (42).

Fig. 11(b) for the whole range of r,. For all other values of ¢
the fits are shown in Fig. 12.

4. Functional dependence on spin polarization {

Now, we wish to find interpolation formulas to describe the
¢ dependence of the coefficients in Table II. First, the values
of the constant cy(¢) are plotted in Fig. 13. Notice that the
form

2

co(¢) = Z cong*"

n=0

61V}

fits the data very well with the exception of the region near
¢ =1 as illustrated in Fig. 13 by the blue dashed line. This
behavior near { = 1 was first discussed in Ref. [26]. We were
able to obtain a reasonable fit in the whole region of ¢ using
the following interpolation formula:

1 3
o)=Y conl™ + Y Con(x" — 2", (52)
n=0 n=1

-0.1

& 012

(Ry)
[T T T T T T T T T T T

-0.14

¢

FIG. 13. ¢ dependence of the constant ¢, of the functional.
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TABLE III. Coefficients for ¢y entering in Eq. (52) (in Ry).

n 0 1 2
Con —0.1423 0.0036 0
Con 0.1971 —0.0326 —0.0177

where x(¢) is given by Eq. (17). The reason for the 2" is
because x (0) = 2, i.e., we forced the fit to the constraint that
the value of cy(¢ = 0) should be that of Table II, namely,
coo = ¢o(0). This form captures the singular behavior near
¢ = 1 by the fact that the variable x has a singular dependence
on ¢ near ¢ = 1. The fitis very good and it is given by the red
solid line in Fig. 13. The coefficients cq, (n = 0, 1) and ¢y,
(n =1, 2, 3) are given in Table III.

It is well known [27] that there is an additional constraint
linking €,(ry, ¢) for ¢ = 0 and 1:

€ (r, 1) = 3e.(r;, 0), (53)

where 7, is the rescaled Wigner-Seitz radius given by r, =
ry/2%3. We did not impose this constraint because we found
that our results, given in Appendix E for the ring series, satisfy
this relationship for all values of r; within error bars. The
above expression, which leads to the following relationship
between ¢¢(0) and ¢y (1),

co() = %Co(O) - % In(2)[1 —In(2)], (54
b4
is found to be satisfied within the errors of the fitting proce-
dures (a) in Table II, where the values listed were found by
fitting to the small r; formula given by Eq. (40) and (b) in
the results of the fitting procedure to the expression given by
Eq. (52), where Eq. (54) was not imposed.
We used the form

2

en(t) =y et (55)

n=0

to parametrize the ¢ dependence of e;. We forced the fit to the
constraint that the value of ¢;(¢ = 0) is that of Table II, i.e.,
e10 = e1(0). The other coefficients e}, are given in the second
row of Table IV and a graph illustrating the quality of the fit
is given in Fig. 14.

The values of the coefficients a, and b, as a function of ¢
are fit to the form

1 In(2
a2=azo+azl(x—2)+azz< “;X)— “; )>, (56)

1 In(2
by = bao + b1 (x —2)+b22( “;X) - )). (57)

TABLE IV. Coefficients for e; (in Ry), a,, and b, entering in
Eq. (57).

n 1 2

e 0.1648 0.0432
dyy, 192.62 —3956.38
by, 149.46 —2070.06

e, (Ry)

| | | | |
0'80 . . .

coefficients

¢

FIG. 14. The data points are the values of Table II and the solid
lines are the coefficients of Table IV fitted to the form (55) for e;
(top) and (57) for a, and b, (bottom).

Again, we forced the fit to the constraint that ay = a(¢ = 0)
and byy = by(¢ = 0) given in Table II determined earlier. The
other coefficients are given in the last two rows of Table IV
and a graph illustrating the quality of the fit is given in Fig. 14.

B. Fit equations for the kite diagram

We also need to represent the calculated data for the kite-
diagram series as a function of r; and polarization { with
a functional form which accurately reproduces the Onsager
result at the static and r; — O limit and fit accurately the
data for all the calculated values of r,. It would have been
nice to have other constraints obtained analytically to impose
on the functional form. However, handling analytically the
11-dimensional integral in any limit has turned out to be
difficult. Nevertheless, we have found numerically that the
kite-diagram series decay as 1/,/r, at large values of r, and
we chose a functional form that has this asymptotic behavior.
The following form can fit accurately the results for the kite-
diagram series:

exp(ry) = + arrsIn (1 +

1
—3/2) (58)

1+ayrs azrs + aars
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TABLE V. Coefficients of the fit of the kite diagram for different
values of ¢ obtained by fitting the data in Table IX.

TABLE VI. Coefficients for a;, a,, a3, and a4 (in Ry) as function
of ¢ obtained by fitting the kite-diagram data.

¢ a az (Ry) as ay n\m 1 2

0.0 0.10215 —0.01382 0.46529 0.00364 1 —0.05028 —0.01283
0.2 0.10876 —0.01317 0.45202 0.00329 2 0.00016 0.00808
0.4 0.10456 —0.01305 0.46978 0.00291 3 0.05868 —0.32923
0.6 0.07801 —0.01265 0.4441 0.00277 4 —0.00259 —0.00021
0.8 0.06266 —0.01023 0.36888 0.00179

0.9 0.05106 —0.00835 0.29562 0.00148 .

L0 0.04143 000571 0.19503 0.00088 We also plot the Monte Carlo results from Ref. [7] for various

where to obtain the r; — 0 limit found by Onsager, we en-
force ay = 0.04836 Ry, so this is only a four-parameter fit.
Repeating the fit to our results for all the calculated values of
¢, we obtain the values listed in Table V for the values of these
four parameters for the calculated values of ¢ and the quality
of the fit is illustrated in Fig. 15.

We use the following interpolation functional for the ¢
dependence of these four coefficients:

2
a, = Zanmg’zm forn=1,2,3,4, (59)

m=0

where we forced the fit to go through the value of each co-
efficient obtained for { = 0 as in the case of the ring-diagram
series, i.e., a0 = a,(0). The other two coefficients a,; and a,,
for each value of values of n obtained by fitting the results
listed in Table V are given in Table VI.

The quality of the fit for { = 0 is as shown in Fig. 16(a) for
small ry values and in Fig. 16(b) for a range of r; which spans
several orders of magnitude. The results for other values of ¢
are illustrated in Fig. 17.

IV. COMPARISON OF THE RPAF FUNCTIONAL
WITH OTHER FUNCTIONALS
A. Comparison with the PW functional

In Fig. 18 the RPAF functional is compared with the PW
functional as a function of ry for the spin-unpolarized case.

T T A T
0.04 — 0.0 -

0.2

0.4
L 06 |

0.8
= 0.02 0.9 -

o 1.0
S s |
wﬁ ok |
-0.02 — —

i [ [ [
0.001 1 1000 1e+06

s

FIG. 15. The data points are the kite-diagram data from Table IX
and the solid lines the fit of the kite diagram presented in Eq. (58).

values of N. Note that the raw data obtained in Ref. [6],
i.e., for any given value of N, are not available. Only the
N — oo “extrapolated” results are provided. For the purpose
of the following discussion the N dependence of the results
is needed. Nevertheless, the results of Ref. [7] are even more
valuable, as they are for larger values of N.

In Fig. 19 we plot the Monte Carlo results from Ref. [7]
for various values of N vs 1/N 3 as this is the reading term in
N — oo limit in the forms used in Refs. [6,7,28]. From this
figure, it becomes evident that, unless the asymptotic form
of the correlation energy per site €.(N) for very large N is
known, the extrapolation process cannot distinguish between
the PW values (blue solid circle at the origin) and the RPAF
values (magenta solid circle at the origin). They both seem
to be within the error of the extrapolation. Note that the PW
functional was obtained by fitting its form to the extrapolation
results of Ref. [6], which are for values of N even smaller than
the ones used in our Fig. 19. Notice that the N dependence
is neither smooth nor monotonic. A nonmonotonic behavior
is a clear sign that the results of the finite-N Monte Carlo
calculations have not reached the N — oo asymptote for a
clear and unambiguous N — oo extrapolation. Moreover, the
formula for extrapolation used in these Monte Carlo studies
was not based on any detailed knowledge of the actual form,
which is based on the structure of the interaction.

In the low r, region there is the In(r,) singularity which
is obtained within RPA due to the emergence of the infrared
cutoff gl = +/2ar,/7 (which is proportional to the Thomas-
Fermi screening length in units of the Fermi wave vector).
However, when N is not infinite there is a second competing
emergent cutoff given by

273
N = —"—"""T>
(3mw2N)3

which interferes with the extraction of the well-known
cr In(ry) term given by Eq. (15). Therefore, one has to be in
the region where gy << gir to obtain the asymptotic (N — o0)
value given by Eq. (16). However, for a value of N ~ 246
(which is the maximum value calculated in Ref. [6]) the equa-
tion gir = gy (Where one begins to feel the existence of gy)
leads to a value of r, of the order of unity. Moreover, for larger
ry this modification of the dependence of ¢.(N) on N should
cross over to a different one smoothly as a function or ry; there-
fore, the extrapolation forms discussed in Refs. [6,7,28,29] are
not valid for even larger values of r,. Therefore, one deals with
relative large finite-size effects especially for small values
of ry.

In conclusion, the belief that the PW functional is based on
results of accurately extrapolated Monte Carlo results is not

(60)
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FIG. 16. Fit of the form given by Eq. (58) to our numerical results obtained by Monte Carlo integration of the expressions given by
Egs. (28) and (29) for the kite-diagram series. (a) Small r; region. (b) The entire region.

quite valid, at least for values of r; >~ 2 which were used to fit
the PW functional.

B. Comparison with SOSEX

In this subsection we compare the results of our method
to SOSEX [30], which stands for second-order screened
exchange, a computational method used to calculate the corre-
lation energy for the homogeneous electron gas based on the
coupled-cluster expansion.

The coupled-cluster expansion method [31-33] specifi-
cally solves the time-independent Schrodinger’s equation by
writing the ground state of the many-electron system as an op-
erator of the form R = =5 acting on a noninteracting ground
state. The ansatz involves the operator R, which is not uni-
tary, typically applied to the ground-state solution from the
Hartree-Fock problem. The exponential contains the so-called
“cluster” operator, where the order of the cluster expansion

\
|- A 4
0.4 =
F * a1 4
0.3 o 3, (Ry) _
[2]
S L A aa |
S
5 021 = gy 7
o
o [ il
0.14% —
0 . H HE—— — —— R
\ \ \ \ L
0 0.2 0.4 0.6 0.8 1

FIG. 17. The data points are the values of Table V and the solid
lines are the result of the fit to the form in Eq. (59) for the coefficients
of Table VI.

depends on up to what “nth” body operator has been used.
The order of the approximation that has been used for the
homogeneous electron gas by SOSEX is for n = 2, where
the cluster operator depends on the combination of two-body
and single-particle operators [30]. The focus of this method
is to use the ansatz to find the expectation value of the bare
Coulomb potential operator V. By rearranging the terms that
reproduce the correlation energy, conveniently, one can iso-
late a specific normal ordering between the annihilation and
creation operators that reproduce the RPA results within a
good degree of accuracy. By subtracting this term to the whole
expression that contributes to the correlation energy by the
RPA, the leftover is what is commonly known as SOSEX.
The SOSEX contribution has a specific normal ordering
of the annihilation and creation operators that contributes to
the correlation energy. Such rearrangement of operators can
be represented as a diagram that has the same topology as

-0.04 T T

-0.06

-0.08

-0.1

-0.12

g(ry) (Ry)

-0.14

-0.16

-0.18

-0.2

FIG. 18. Comparison of the RPAF functional correlation energy
(magenta line) as a function of r; with the PBE functional (blue line)
and the MC results on finite-size lattices.
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FIG. 19. We plot the correlation energy as calculated by Monte
Carlo in Ref. [7] (open circles) for different number of electrons N
as a function of 1/N % for various values of ry = 1,3,5. The blue
solid circle at the origin is the value for the PW functional, while the
magenta is the corresponding value of the RPAF functional.

the full-kite diagram (from Fig. 8), which we calculated in
this work. The difference in the approaches for calculating
the correlation energy is that the coupled cluster starts from
a time-independent perturbation expansion, while in our case
we include time-dependent effects. Namely, when calculating
the full-kite diagram series, we take into consideration the
collective behavior of the screening interaction by performing
the frequency integrals. Based on such differences in the ap-
proaches, we suspect that the results of the correlation energy
between these two approaches should be different.

More specifically, the expression of the full-kite diagram
has a total of four integrals that were calculated by using
Onsager’s constant egb and the correction to the kite diagram,
given by the sum of Egs. (C5) and (C6). When the branch
cuts of the dielectric function are ignored, two out of the four
integrals remain for the correction to the kite diagram since
in the integral of the first term in the brackets of Eq. (C5) all
the complex poles are below the real line, while the integral
from the second term of the brackets of Eq. (C6), all the
complex poles are above the real line. Hence, we think the
major disagreement comes from the extra contribution that
arises by avoiding the branch cuts from the dielectric function
when doing the contour complex integration in the frequency
variable, which is ignored in the time-independent approach
(SOSEX). To test this explanation for the disagreement, we
carry out an approximation to the frequency variable of the
dielectric function by setting it to zero, and compare the
results with SOSEX.

If we set w = 0 in the expression for the kite-diagram series
and carry out all frequency integrals (of the free-interacting
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FIG. 20. Comparison between the results of the full-kite-diagram
series from Table IX at £ = 0, the values obtained in the quasistatic
limit for the full-kite-diagram series €3;(r;, 0), Onsager’s value, the
SOSEX [30], and the AC-SOSEX values.

Green’s functions) we obtain the following expression:

€375, 0)

3 1
=—5/ dA/ d3k/ &g
87> Jo k<1 @<l

X/d3ql A0(1g1 + 2| — DOk +qil — 1)
&(q1,0¢2[¢} + (& + B - @1 ]Ik + G + @i
(61)
where the superscript “qs” stands for quasistatic.

In Fig. 20, we have made a comparison between the results
of the full-kite diagram at { = O by using the data reported in
Table IX and the SOSEX data given in Ref. [30]. There is a
large numerical discrepancy between these two results, as ex-
pected since the two approaches differ in a very important way
as discussed earlier. The results obtained in the quasistatic
limit [Eq. (61)] and Onsager’s value are shown to compare
the SOSEX results obtained by Freeman [30]. Notice that the
results obtained by SOSEX are close to the results obtained
using the additional (and unnecessary) approximation given
by Eq. (61) to the full kite-diagram series.

Additionally, the data obtained from Eq. (61) by Monte
Carlo integration was fitted to the equation given by Eq. (39).
The value of the coefficient found for the r;Inr; term in
the long-wavelength limit is given by 0.00572 Ry, which
almost agrees with the C; value of 0.006 41 Ry, found for PW
contribution (i.e., the difference of PW from the sum of the
ring-diagram series) by the same fitting procedure reported
in Sec. ITE. The numerical results of the correlation energy
obtained by SOSEX almost agree with the correlation energy
from the PW functional. This means that the hypothetical co-
efficient of the r; In r, obtained from the SOSEX data should
almost agree with the C'1 obtained through the PW functional
reported in Table I. Therefore, while a subset of the terms
that occur in the coupled-cluster expansion agrees well with
the RPA results obtained by Hedin [23], there is a major
disagreement with the C; value reported by Ref. [25].
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FIG. 21. Diagrammatic illustration that the kite-diagram series (right) can be obtained from the ring-diagram series (left) by exchanging

the frequency-momentum indices of two of the fermionic propagators.

Therefore, the SOSEX contribution to the correlation en-
ergy corresponds to approximating the dielectric function
with its frequency-independent limit. However, this is a poor
approximation to this important response function because
it ignores the retardation effects [24] which characterize
the response of the electronic system to not only external
time-dependent electric fields, but more importantly to the
effective interaction between electrons inside the jellium sys-
tem. When one ignores such effects, this interaction gives
the Thomas-Fermi result, which fails to produce the Friedel
oscillations.

AC-SOSEX [34-36] is a method which attempts to include
the frequency dependence in the second-order exchange dia-
gram contribution to the correlation energy using the adiabatic
connection-dissipation formalism (ACFD). AC-SOSEX has
been used on several materials [35] and the homogeneous
electron gas [36].

Within the ACFD formalism, the RPA part of the correla-
tion energy, ERP, has been calculated and can be written as

1 [®d y
ERPA = = / i D W @FAv)F] )V, (62)
—00

ijab

where i, j (a, b) correspond to the quantum numbers of the
occupied (unoccupied) states. V. [V[/i‘;b(iv)] are the matrix
element of the bare Coulomb (coupling-strength averaged
RPA-renormalized) interaction written in the particle- and
hole-state basis and F*(iv) is the particle and hole propagator
as defined in Ref. [35] (see also Ref. [36]).

This expression yields the correct expression for the ring-
diagram series in the homogeneous electron gas problem.
Within the AC-SOSEX method, the second-order exchange
diagram is obtained from Eq. (62) by doing an interchange
between the occupied state indices in the V] term and by
picking up an extra minus sign as a global factor, as explained
in Refs. [35,36].

This is motivated by the fact that the ring-diagram series
and the kite-diagram series are related by a similar exchange
when one writes their expressions using the Feynman rules
of the many-body time-dependent perturbation approach. This
is demonstrated in Fig. 21. Namely, the diagram on the right
(kite series) can be obtained from the diagram on the left (ring
series) by simply exchanging indices of the two fermionic
lines, which in this case represent two four-momenta (momen-
tum and frequency) labels of the bare interaction term. Notice,

however, that these are 4-momenta indices, which include
the frequency indices. However, in order to obtain the RPA
result given by Eq. (62), two of these frequency integrations
have been carried out. As a result, starting from this reduced
equation the other two frequency indices are gone and, thus,
there is no way to carry out the required exchange of the full
4-vector indices in order to obtain the kite diagrams starting
from the RPA.

The fact that AC-SOSEX and the corresponding diagrams
obtained by many-body perturbation are different was also
argued in Ref. [36]. As illustrated in Fig. 20 the results of the
AC-SOSEX are very close to the SOSEX case and substan-
tially different from our kite-diagram contribution.

V. BENCHMARKING OUR FUNCTIONAL

In order to assess the accuracy of our functional, we modi-
fied the QUANTUM ESPRESSO v7.2 package [14] to include our
functional as an option and we carried out DFT calculations
within the local density approximation (LDA) for the same
entire list of crystalline materials given in Refs. [15—-17] where
the performance of various other functionals was evaluated.

The set of solids used in Ref. [15] containing 60 crystals
was used to compare the predicted lattice constant and bulk
modulus of the RPAF functional with the popular Perdew-
Wang (PW) LDA functional [5]. The experimental lattice
constants were obtained from Ref. [15] and the bulk moduli
from Ref. [16]. Pseudopotentials were generated for the PW
and RPAF functionals using the 1d1.x in QUANTUM ESPRESSO
with the pslibrary1.0.0 library of inputs [37]. A 10 x 10 x 10
Monkhorst-Pack mesh was used for the reciprocal lattice
space for all the crystals. For the energy cutoff required for
convergence, we found that, depending on the material, a
range from 40 Ry up to 140 Ry was good enough. Self-
consistent calculations were done for nine different lattice
constants, four above and four below the equilibrium lat-
tice constant, with a step of 0.01 Bohr radius. Afterward,
the nine points were fitted using the third-order Birch-
Murnaghan equation of state using the ev.x tool in QUANTUM
ESPRESSO to obtain the equilibrium lattice constant and bulk
modulus.

The Perdew, Burke, and Ernzerhof (PBE) functional [3]
shares the same local part with the PW [5] functional, i.e.,
PBE is PW plus the correction based on the generalized
gradient approximation (GGA). The GGA is an additional
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FIG. 22. Relative errors of equilibrium lattice constants (ay) of the 60 crystals listed in Ref. [15] using the PW functional (blue) and the
RPAF functional presented in this work (red). The calculations were done in QUANTUM ESPRESSO. The values are listed in Appendix E.

feature included in the PBE functional, which can be adopted
or not, namely, it has a different and independent goal from the
question of the local part of the functional. We are mindful
that the focus of this paper is precisely the local part of the
functional. Therefore, when we try to assess the accuracy of
our functional we compare it only to the PW functional since
the PBE and PW share the same local part.

The results are compared with the PW functional in the bar
graph of Fig. 22 for the lattice constants and in Fig. 23 for the
bulk moduli and the precise numerical values are given in the

100

tables of Appendix E. Our functional, which is represented
by the red color bars in both figures, are systematically better
than the results obtained with the PW functional.

We did not extend these LDA calculations to include
GGA corrections to compare with the PBE functional because
such an extension, albeit useful, will not provide a direct
benchmarking of the functional proposed here. Namely, this
proposal only affects the local part of the density functional.
How to go beyond LDA is a useful future direction of our
work.

i H PW i
B RPAF

80—

exp
| /b
[e2]
o
|

exp
0
T

40—

100]b,-b

VIELFTTPAICIIEEIIQPTTLEROGFS

FIG. 23. Relative errors of equilibrium bulk moduli (By) of 60 crystals listed in Ref. [15] using the PW functional (blue) and the RPAF
functional presented in this work (red). The values are listed in Appendix E.
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VI. CONCLUSIONS

The local part of most available functionals is fit to QMC
calculations which are inaccurate and feel strong finite-size
effects, especially when the electron gas is spin polarized.

We have argued that the perturbation expansion in an
RPA-renormalized interaction line not only removes the in-
finities introduced by the bare Coulomb interaction but it
also allows a fast convergence with respect to the number
of RPA-renormalized interaction lines. Therefore, we should
expect such an expansion to approach the correct functional
for a broad range of value of r; due to the screening effects
without having to go to a high order in this expansion.

We computed the r; and spin-polarization dependence
of the correlation energy to the leading order in the RPA-
renormalized interaction, including the frequency dependence
of the dielectric function. This leads to a functional of the
density and of spin polarization expressed in an analytic form.
We modified the QUANTUM ESPRESSO implementation of DFT
to include our functional as one option and we benchmarked
our functional on a list of materials selected and used in
Refs. [15-17]. We demonstrated that the functional proposed
here yields in general better relaxed lattice constants and bulk
moduli (Figs. 22 and 23) than the local part of the popular
functionals PW [5] (and, therefore, PBE [3] because they
share the same local functional).

For completeness, in Appendix D we studied the fate of
ferromagnetism of the uniform electron fluid as implied by
our functional. Our findings are in qualitative agreement with
other functionals derived from QMC [6] that the fully po-
larized electron gas becomes favorable for values of r, well
outside the region accessible by crystalline solids and outside
the region of validity of our expansion.

This work introduces a systematic order-by-order approach
in the number of RPA-renormalized interaction lines, which
can be improved by including the next-order correction. This
stands in contrast to the previously introduced functionals,
which are based on ad hoc procedure and, thus, produce ques-
tionable results. The next-order correction within this method,
although cumbersome, is achievable and will be our future
project.
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APPENDIX A: SMALL r; LIMIT OF
THE RING-DIAGRAM SERIES

In this Appendix, we present the calculation of the coef-
ficient of the In(r;) corresponding to the ring-diagram series
for the spin-polarized electron gas. The sum of all Goldstone
diagrams illustrated in Fig. 4 relies on the computation of the
polarization tensor I1% (¢*), which is obtained from doing the
integral given in Eq. (8).

The calculation of the ring-diagram series E,(ry, ¢) relies
on finding an expression for the self-energy X’ (¢, ¢°):

d*k Vo)
2 (gh, A
4= /(2 )4h2/(2ﬂ)4 €.(9, q0)
x GY (K" — )Y GY.(p" + ¢")GY. (p"),

(A)

which by using this expression in Eq. (5) we obtain an expres-
sion for the contribution to the ground-state energy given by
the ring-diagram series. One can rewrite the expression of the
integrated ring-diagram series into a more compact form as a
function of the polarization tensor:

v d*q M1 —e(q, @)P
Ef(r¢) = — / dk/(Zn)“ &(¢.q")

where €, (¢, ¢°) is the dielectric function given by Eq. (7) with
the coupling constant rescaled ¢> — Ae®. A useful change
of variable can be performed at the integrand to convert the
physical variables into dimensionless parameters as follows:
q — kric, ¢° — hk:v/m. By doing this, the number of parti-
cles can be factored out and we can express the contribution
to the ground-state energy in terms of the ring-diagram series
per particle €,(ry, ¢), as seen in Eq. (10). After performing the
integral over the A, we obtain the expression given in Eq. (11).

Instead of integrating the frequency variable v along the
real line, we can exploit Cauchy’s theorem. If we take
the same path we used to calculate the Ey,(r;, ¢) diagram,
we can avoid the branch cuts from the logarithmic terms of
the dielectric function which causes the integration over v
along the real line mapped into an integral along the imaginary
axis of the complex plane. The parametrization of the new
line integral is given by Eq. (12), where we identify that the
term in the argument of the logarithm is the dielectric function

e(kpi, iikiv/m):
e ar, B
<ka {2 >_ Mzzxa(of,v(xam,xg@),
(A3)

where g is the function of the Lindhard function given by
Eq. (14), which was derived by doing the high-dimensional
integral given in Eq. (8) at imaginary frequency.

By exploiting the fact that the integrand of €,(ry, ¢) is an
even function in v, the expression picks up a factor of 2, and
by performing the change of variable x = v /g and integrating
along the solid angle from the three-dimensional integral, we
obtain Eq. (12).

This integral is not trivial to calculate analytically, but to
make the integral more tractable when we separate the inter-
val of integration into three different regions: g € [0, gir] U
[gr, gc1 Y [gc, 00), where g. < 1 and g is proportional

1

to 77, which gives the notion of an infrared cutoff for the
screened interaction potential which arises from the dielectric
function of the material in RPA. In the first region, the inte-
gration does not yield a In(ry) term, but rather contributions
to the higher-order terms in r;, while the integral along the
third region for ¢ yields a contribution to the constant term
for the ring-diagram series. We focus only on the second

(A2)
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region of integration since it yields the coefficient of the In(ry)
term, whose contribution to the ring-diagram series is called
€.2(rs, ¢). In g € [qir, g.], we can do a Taylor expansion in
terms of (ar)/(mg?) at the level of the logarithm term of the
integrand from Eq. (12) up to the second order, where in such
small g region the Lindhard function can be approximated as

-y
xo(8)" x2(2)

2,2
22[1 _ itan—1<x_a>] S
Xa x 6(x? +x2)

The first term in parentheses of Eq. (A4) yields the In(ry)
term when used in the second region of integration in the
ring diagram per particle €,5(ry, ¢). By ignoring the ¢ term
in Eq. (A4), we obtain the following expression for €, (s, ¢):

3 3
€215, ) = =y In (?) ZL‘(C),
¢/ =1

1
with gir = y»r¢, for some constant y,, and the integrals are
along the ratio x are ;(¢), I(¢), and I;(¢), which are given
by the following expressions:

11(;>=/ dxIE(x.) = TEI = @) (A6)
0

(A4)

(AS5)

h() = /O dxl(x.¢) = TEO = @) (A7)

13@):2/0 dxhy (x, )y (3, ©)

Sp5 Lyt
ST X +lln<—§+ i‘) L @)
X

3 2 6

where {1 = 1 £ ¢, x was defined in Eq. (17) and the function
hs (x, ¢) is defined as follows:

L B (xa(;“ ))

o (X, ) = x5 (¢) — x arctan <) (A9)
The three integrals have been calculated by using a simple
change of variable y = 1/x and then integrating along the
complex plane by avoiding the branch cuts that come from
the logarithmic terms that come from integration by parts.
By using these results we obtain the In(ry) dependence of the
ring-diagram series per particle for small ry:

€r(rs, §) = (&) In(ry) + co,

where ¢ (¢) is the coefficient of the In(r,) term we previously
discussed in Eq. (16).

(A10)

APPENDIX B: LARGE r, DEPENDENCE OF THE SUM
OF THE RING DIAGRAMS

In this Appendix, we show how to obtain the asymptotic
behavior of €,(ry, ¢) for large r,. The change of variable
x =v/k was done in Eq. (14) to study the large r, region.
After this, it is convenient to do the following change of
variables: k = 2 and after this mathematical step, we did the
transformation x = yQ.

According to the behavior of the Lindhard function at
imaginary frequency, as Q and y variables increase, this
function decreases to values less than 1. For the purpose of
making the integral expression of €,(r,, {) tractable given
in Eq. (12), we will find the region such as the condi-
tion for [1(2Q, Qy, ¢, r,) < 1 is satisfied. By considering
that this Lindhard function yields its maximum value when
both variables Q and y are zero [g(0, 0) = 2], and the fact
that T1(2Q, yQ, ¢, r,) is proportional to the Wigner-Seitz
radius r; but inversely proportional to Q?, we have that
ﬁ(2Q, y0, ¢, ry) is less than unity only at some relatively
large value of Q. We can expect that such value of Q that
satisfies the condition for I1(2Q, yQ, ¢, ;) will depend on the
variable y due to the behavior of the function to decrease in
value as the y variable increases.

At the large Q limit, the logarithm and the arc tangent
functions in the expression of the Lindhard function can easily
be expanded in powers of 1/Q. We obtain

(ZQ Z.ZyQ2>k1°° 2:2(¢)
@) 2@ 3021+ 7))

By replacing this approximated expression of the Lindhard
function in Eq. (13) we obtain the approximated expression
of I1(2Q, y0, ¢, ry) to find the value of Q that guarantees that
this function is less than unity. The approximated expression
is

B

arg

ﬁ(zg,yQ,;,mQ~°°m, (B2)

where the condition T1(2Q, yQ, ¢, r,) < 1 is only achieved if

the inequality Q > It(rx, y), where It(rx, y) is given by
arg i

3 (1 + y2)) '

We can now start approximating the integral expression of

€,(rs, ¢) by separating the region of integration into two parts
on the Q variable:

k(ry,y) = ( (B3)

Er(r.vv {)ZEH(VS, §)+€f2(rsa C)a (B4)

where the first term integrates over y € [0, 0c0) and the region

*
of integration Q € (0, k(rs, y)], which we call region 1. The
second term is the contribution to €,(ry, ¢) in the second
region of integration, which integrates on y half of the real

*
line, and Q is integrated into Q € [k(ry, ¥), 00).

The integral in the second region was calculated by
Perdew, where it relies on using the simplified expression of
120, vQ, ¢, ry) we found in Eq. (B2) to calculate all of the
required integrals.

In the second region of integration, the integral is sim-
ple to calculate due to the condition on the function
I:I(ZQ, 0Oy, ¢, rs) < 1, which makes it possible to do a Taylor
expansion on the logarithm term of the integrand in small val-
ues of T1(2Q, Qy, ¢, ry). To obtain the accurate contribution to
the term that captures the asymptotic region of €,(r;, ¢) in the
low-density regime, we must take into consideration all orders
of expansion of the logarithm term. From such expansion, we
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have so far

—24 (> [ C
" Sy ~ d d 4 S}’H B5
€l )~ — s fo y fzw) 00'y" (BS)

n=2

where the term S, in the series is given by

S — (=DM, y0, ¢, rl"

n
n

(B6)

By using the expression given in Eq. (B2) in the integral
above, the integral over Q is simple to do, so we are left with
an integral over y:

LR =S GV
€n(rs, ¢) = ?nzz n@dn —5) J,

y - (B7)
(142}

where § = 3%71%(005)% and the sum over n and the integral
over the y variable have been calculated with Wolfram Math-
ematica, which yield

N D
M, = XZZ: s 0.133628, (BS)
o (I+y)i ()

By using these two results we obtain the asymptotic behavior
of the ring diagram, where region 2 only has a partial contri-
bution to the coefficient of the term r;>/4. We obtained

hooo 2BM;  0.120772
erz(rsvé‘) = 3 ~ - 3 i (Blo)
rs rs

—~

where E is a numerical factor that we will express in most
of our calculations in this subsection, which is given by the
following expression:

241 (2)
VEG)IT(H)ai

In the first region of integration, we exploit the fact that
the following condition for the function I1(2Q, yQ, ¢, r,) > 1
is satisfied. In the first region of integration of €,(ry, {), we
expand the logarithm terms in the integrand in powers of
1/[f1(2Q, Qy, ¢, r,)]. Three main integrals have to be calcu-
lated in the first region:

[l

(B11)

€r1(rs, §) = €l (rs, O) + €4 (rs, O) + €3 (r5, ¢),  (B12)

where each of these terms are given by the following integrals:

o0 k
€ (r, ) = %/0 dyfo dQ Q* In(I1), (B13)

20 ¢ 1
€h(r, 0) = r_Z/o dyf) dQQ*In (1 +ﬁ> (B14)
s (
[~ ¢ -
€ (rs, ¢) = _ﬁ,/ dY/ dQ O,
+ Jo 0

(B15)

where I1 = [1(2Q, Qy, ¢, r,) due to the change of variables
done in previous steps y3 = 24/(ra?).

The first integral can be expressed as

24 00 l*<<rs,y)
> / dy / do o*
7 (arg)* Jo 0

x [m (Z;) —21n(Q)

20 2yQ?
+1“<Zx"(°g<xgg>’x2y<Q¢>))}’ B

which can be further broken into a sum of three terms
er'm(rx, ¢) (where o = 1,2, 3 correspond to the three terms
in the brackets), where the first and second terms can be

integrated easily, which yields

€ (rs, £) =

28 1In (%
Erln(rsv $) = #
S5rf

—51n (;‘—;)} (B18)

where 8, = E/25, 85 = SM5I'(3)/+/7, and Mj s the follow-
ing integral:

; (B17)

et )= 2 a4 -2
r12\"s» - 73
Rl 2r@)

~ = 1.02849.

00 2
/ gy +y7) (B19)
0 (14yH)s

For the last term in Eq. (B16), which we call € 5(ry, ¢),
we did a change of variable to remove the r; and y depen-
dence in the limit of integration by using the transformation

*
Q = k(rg, y)p. In such integrand, we can do an expansion of
the Lindhard function in the large r, limit. After doing this
transformation, we obtain the following:

 22(3n)e
3p2r)i(1+y2)7

2
.20 y) (B20)

(o
@) 32

By replacing such expression in the last term inside of the
brackets in Eq. (B16), we obtain

1 -~ 52 83 30[7‘S
€13(rs, §) = = 4— e —51In o) | (B21)
4

s

By summing the terms from Eqs. (B17), (B18), and (B21) we

obtain the contribution to the coefficient of the r3/4:

192I°(3)
25 /mat Br)ir (L)

€r1(rs, &) = (B22)

The calculation of €,15(ry, ¢) relies on using the same
change of variable that we used to calculate €!, (s, ¢ ) to make
the limits of integration to be independent of r; and y. By
expanding the logarithm and keeping track of all orders of
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expansion we obtain
48T (2)M,
Jrai3m)i 1"( )5

where M, is a series that we calculated on Wolfram Mathe-
matica, which yields

€r2(rs, ) ~ , (B23)

Z( i ~ 0.08505 (B24)
n(4n +5) ' '

Similarly as done for €,1,(ry, ¢), we can calculate the last
integral in the first region of integration:

167 (2
€r13(Fs, )~ — s (14) 3
miat(3w) il (§)rd

(B25)

By summing the three terms in Eq. (B12) we obtain the
leading term for the sum of ring diagrams in region 1:

0.6823134

€r1 ~ — 3 )
rs

(B26)

and by adding such a term to the result we have obtained in
region 2 given by Eq. (B10), we obtain that the leading term
of the integral is of the power form of r;3/* and its coefficient

Ailny,n ] =

2Fz(2n)10 > / dA/d4q1 /d3q2/d k

is given below:

0.8031
el‘(rsa é‘) ~ - 3 s

rs

(B27)

which agrees with our numerical results from our fitted region
for large values of r; within errors.

APPENDIX C: CALCULATION OF THE KITE DIAGRAM

We avoid the issue of the “sign” problem, by doing a set
of transformations to the wave vector and frequency vari-
able which will also simplify the expression and reduce the
dimension of the integral given in Eq. (23). This is easily
done by isolating one of the frequency variables from the rest
in the argument of the dielectric function at the Goldstone
diagram given by Eq. (23). This allows the possibility of
doing the other two frequency integrals by using Cauchy’s
residue theorem and thus avoiding taking into consideration
the branch cuts that arise from the logarithmic terms in the
expression of the dielectric function. After doing the two
frequency integral variables k° and ¢9, we obtain the sum of
two terms Aq[ny, ny] and Az[n4, ny] given by the following
integral expressions:

AES™ [y, ny 1 = Ailny, ny]+ Aslng, ny ], (C1)

where the two main contributions that we have so far for the
correction of the kite diagram are given by the following:

AVo(k — G — @IVE(qr)
(91,49 (@) + @40 — ©g 4.0 + i)

fo}==%
x (g1, 47) Ok — 2)OG1 + G2l — kro)
O — kpo)Okrs — [k — Gi])  Olkre — K)OUK — G| — kro)
X 0 — . - 0 — . ) (Cz)
q; + Di_go ~ Do +1n q; + O g0~ Pho — 1M
AVolk — G — )V
AZ[nTa n,L] Z / d / d4q1 / d3q2 / d3 0( 6]1 612) (611) :
2h(2 )10 (11 , (ql + Dgy0 — Wi +¢y,0 — lT))
x (g1, 611)@(612 — kro)O(krs — |91 + q2|)
Ok — kro)Olkre — Ik — Gil)  Olkre — K)O(K — Gi| — kro) C3
x O+ w; —w +in QO +o —wp, —i ' ©
4i T Dp_g.6 — Do T U GO go— Wre

where the frequencies wy  are related to the energy dispersion of the electrons as w; = €;,/h and g, q(l’) is the spin trace

of the polarization tensor.

In the integral expression of As[ny,n], we can do the transformations ¢ — ¢

— 4, followed by ¢1 — —q). These

momentum transformations are what allow a common product of Heaviside functions for both A[ny,n;] and Aj[n4, n;]. We

obtain

A2Vo(k — @)VE(q)
Ar[ny,ny] = 2h(2 )10 Z / d)\/d4q1/d3q2/d3 ‘h 49 :

(ql + Ogi+0 — Do — i’?)

x (g1, ql)@(kﬂ, — )04 + ¢l — kro)

—k+al

~ ®(k - kFa)G(kFa
q(l) + w/@rq’],a - wlz,a + ”7

(C4

Okrs — K)OUK + Gil — ko)
q1+wk+qla—a)’ —in

A sequence of wave-vector transformations has been done for both expressions given by Egs. (C2) and (C4) to simplify them
and to find a common product of Heaviside functions since this makes easier the computation of these two 11-dimensional
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integrals by the MC method. For A[n4, n,] the sequence of wave-vector transformations goes as follows: First, on both terms
of Eq. (C2) flip the parity of wave vector k — —k. After this, on the resulting integral expression, transform the first of the

two 11-dimensional integrals by the following translation on the wave vector: k—k—q. Lastly, on the first integrand do the
following two parity transformations: ¢ — —¢> and §; — —4. This yields the following simplified expression for A[n4, n]:

A% 1 )L2v2 1-[() ->7 0
Ailng,ny] = — l—lo Z / d)»/d4q1/ d3qz/ 2k . 0() (q1) (611 611) :
2”1(27’[) (o)=+ 0 @ <kio k<kpo € (QI ’ ql)(ql + Wgy,0 — Wfi+¢s,0 + ln)

Volk — §) _ Volk + @1 + ) j| ()
(q(lJ + a)lz,c - a)l;+tfl,tr + ”]) (q(lJ + “)124-41,0 - w/?,a - ”])

x O(Ig1 + ¢l — ko )OIk + i _kF0)|:

The expression of As[ny, n)] can be simplified in a similar way as done for A[n4, n,] by a sequence of transformations of
wave vectors. For the first term of the integrand in Eq. (C4), we do the translation k—>k— q1- To the integrand resulting from
the previous step, the following transformation has to be performed, k — —k, which leads to the following expression:

1% 1 )\‘2‘/2 HO —" 0
i) =sos ¥ [Lan [da [ de [ en——lSrd0T D
2h(2m) o= Jo G2 <kro k<kpy en(q1, ) (@) + wgtq0 — @0 — i)

L s Volk + i + @) Volk — )
x O + @ — ke YO(IK + 1| —kpa)[ e (e
(ql + w/_é,a - wl;Jrq'l,a + lT]) (ql + wE+q1,a - wl?,a - lT])

In order to simplify the computation of the correction of the kite diagram in RPA, instead of only integrating q(l) over the
real line, we can instead exploit Cauchy’s theorem. We can choose to integrate along a contour path in the complex plane. The
contour path C can be separated into four path integrals: C;, C;, C3, C4. The path C; corresponds to the line integral over the real
line, C; would correspond to the quarter of the circle on the first quadrant of the complex plane with counterclockwise orientation
for a radius that tends to infinity, where its contribution to the complex path integral is zero. Path C; is the downward-oriented
line integral along the imaginary line, while C4 corresponds to a quarter of a circle path on the third quadrant of the complex
plane with clockwise orientation, where its contribution to the complex path integral is also zero when taking the radius of the
circular path to co. Due to the constraints given by the Heavisides, the complex poles in the expressions given by Egs. (C5) and
(C6) can only be on the second or fourth quadrant of the complex plane. Since none of the complex poles are enclosed by the
contour complex path, this means that the integration along the real line can be directly mapped into the integration along the
imaginary axis. After doing this and exploiting the fact that the polarization tensor is an even function in frequency ¢¥, we obtain
the following expression:

Vv ! 00 32V 2
AES gy nyl=———— / dk/ d3k/ d3q2/d3q1/ dv . [Vo(g1)] -
h@2m)™ L=, Jo k<krq 0<kro o Ealqn D[+ (0, — ©ko)i]

x T2(q1, V)OK + Gi| — krs)OUG1 + G2| — kro)

y Vok — 1) VK44 + )
v+ (@g1g.0 — 0001 [V + (@040 — Ogi1g0)il |

(C7)

(

The fact that the polarization tensor is completely real makes APPENDIX D: FERROMAGNETISM
it easier to compute using the stochastic integration tech-
nique. From Eq. (C7) and by doing the variable transformation
k— kpglz, 9\ — kroq1, o — kroqa, and v — hk%dv/m, we
can extract the units from the expression of the integrand.
Also, the correction to the exchange energy per particle
Aeop[ny, ny ] from the kite-diagram series (in Ry) can be fur-
ther simplified by a doing a simple variable transformation
such as v = a(qi, ¢») tan(u) and v = a(q, 75) tan(u), where
a(q1, ¢») is related to the difference between the energy dis-
persions given by the expression shown in Eq. (31). The
kite-diagram correction term per particle (in Ry) given from

the C(?I‘I'eCthH that arises from the .renormahzed interaction However, this turns out to be caused by the approximations
line yields two final results we have in Egs. (28) and (29) that  ¢e o obtain an estimate for the contribution of the ring

we discussed in the kite-diagram section. series. As shown in Fig. 24(a) the dashed black and dashed red

The magnetic response and the magnetic phase diagram
of the correlated electron fluid within RPA or otherwise has
a long history [38—40] (see also Ref. [41] and references
therein). Here we wish to use our derived functional to ask
the question of the stability of the unpolarized phase against
the fully spin-polarized one. Some time ago [27], it was
found that, if one considers the contribution to the total energy,
the kinetic and the exchange term, and only the ring-series
term in the correlation energy, there is a value of r, close to
the “physical” region where the fully polarized electron gas
becomes energetically more stable than the unpolarized one.
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FIG. 24. (a) Comparison of the total energy for { = 0 and 1. The solid lines are the total energy which includes the contribution of the
kite-diagram series, while the dashed lines do not. (b) A zoom-in of the region where there is a crossing between the energy of the fully

polarized with that of the unpolarized.

lines correspond to the total energy when only the ring series
is included in the correlation energy for { = 0 and 1, respec-
tively. The polarized fluid becomes marginally energetically
favorable against the unpolarized for r, > 70 (as also found
in Ref. [41], although the energy difference even at r; = 100
is of the order of 10~* Ry which is not comparable with the
exchange energy in Fe, for example). However, when we in-
clude the contribution of the kite-diagram series, we obtain the
solid black (¢ = 0) and solid red (¢ = 1) lines. There is a very

J

large value of r, of the order of 500, where as illustrated in
the zoomed-in Fig. 24(b) the polarized becomes more stable.
The energy difference between the fully polarized and the
unpolarized electron fluid is sizable in the physical region and
it is about the same with or without the contribution of the
kite-diagram series. This is in qualitative agreement with other
functionals derived from QMC [6,8] that the fully polarized
electron gas becomes favorable for values of r; well outside
the “physical” region.

APPENDIX E: TABLES OF NUMERICAL RESULTS

In this Appendix we give tables of various results (Tables VII-IX) discussed in the main part of the paper. The captions

explain the content of each table.
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TABLE VII. Results of the DFT calculations. Equilibrium lattice constants ag (A) and bulk modulus B, (GPa) of the 60 crystals listed in
Ref. [15]. The solid Strukturbericht symbols are in parentheses and used for the crystals as follows: fcc (A1), bec (A2), diamond (A4), rocksalt
(B1), CsCl (B2), zinc-blende (B3), and fluorite (C1). The statistics reported at the end of the table are mean error (me), mean absolute error
(mae), mean relative error (mre), mean absolute relative error (mare), variance, and relative variance. The experimental bulk moduli for most
crystals were obtained from Ref. [16], with Pb [42], HfC [43], BAs [17], and CeO, [44].

g By dg By
Crystal PW RPAF  Expt. PW RPAF  Expt. Crystal PW RPAF  Expt. PW RPAF  Expt.
Li (A2) 3366 3389 3477 15.0 14.3 13.0 NaF (B1) 4509 4521  4.609 60.9 59.4 514
Na (A2) 4.060 4.090 4.225 9.0 8.5 7.5 NaCl (B1) 5470 5.489 5.595 31.8 31.1 26.6
K (A2) 5.045 5.096  5.225 4.5 42 3.7 MgO (B1) 4.166 4.174 4207 1719 169.9 165
Rb (A2) 5380 5439  5.585 35 32 3.1 MgS (B1) 5.134 5148 5202 82.0 85.0 78.9
Ca(Al) 5.341 5.374  5.565 19.5 18.9 15 CaO (B1) 4709 4719 4803 128.8 126.0 110
Sr (A1) 5.789  5.831 6.048 13.7 13.3 12 TiC (B1) 4268 4276 4.23 281.6  276.5 233
Ba (A2) 4772 4815  5.007 11.0 10.3 10 TiN (B1) 4179 4187 4239 3190 3143 288
V (A2) 2937 2944  3.028 2027 2002 162 ZrC (B1) 4.643  4.652 4.696 2453 2437 265
Nb (A2) 3245 3253 3296 1765 173.0 170 ZrN (B1) 4528 4536 4585 2832 2776 215
Ta (A2) 3262 3269 3301 2217 2195 194 HfC (B1) 4572 4580 4.638 2619 2590 270
Mo (A2) 3.110 3.116  3.144 2955 2853 272 HfN (B1) 4468 4476 452 302.0  295.6 306
W (A2) 3136  3.141 3.162 3394 3355 296 VC (B1) 4.094 4102 4.16 3444 3373 303
Fe (A2) 2700 2705 2.861 3236 3175 167 VN (B1) 4.050 4.057 4.141 3654 3602 233
Rh (A1) 3755  3.761 3798 3134 3158 269 NbC (B1) 4429 4436 447 3333 3281 315
Ir (A1) 3.812 3.817 3.835 4059 4003 355 NbN (B1) 4361 4368 4392 3527 3459 292
Ni (A1) 3.421 3428 3516 2589 2524 184 FeAl (B2) 2.814 2819 2.889 2072 204.0 136
Pd (A1) 3.839 3846 3.881 229.1 225.6 195 CoAl (B2) 2795  2.801 2.861 207.8  203.7 162
Pt (A1) 3.893 3900 3916 307.7 3022 277 NiAl (B2) 2.833  2.840 2.887 186.9 183.4 156
Cu (Al) 3522 3530 3.603 1796 178.6 133 BN (B3) 3586 3592  3.607 4022 3974 369
Ag (Al) 4.007 4.015 4.069 136.7 142.1 109 BP (B3) 4492 4502 4538 175.8 172.6 173
Au (A1) 4.050 4.058 4.065 188.8 186.5 167 BAs (B3) 4736  4.747 4777  146.7 144.1 148
Al (A1) 3979 3994  4.032 78.2 74.4 73 AlIP (B3) 5434 5447 546 90.3 88.6 86
C (A4) 3534 3539 3567 4652  462.1 443 AlAs (B3) 5.629 5644  5.658 75.6 73.9 82
Si (A4) 5.401 5414 543 97.0 94.8 99.2 GaN (B3) 4460 4468 4531 2022  200.1 190
Ge (A4) 5.623  5.639  5.652 68.5 70.5 75.8 GaP (B3) 5392 5406  5.448 89.8 88.5 88
Sn (A4) 6476 6498  6.482 44.3 42.8 53 GaAs (B3) 5.605 5.620 5.648 74.3 72.5 75.6
Pb (A1) 4.874  4.891 4.916 52.9 51.8 45.8 InP (B3) 5.832  5.847  5.866 69.9 68.7 72
Th (A1) 4.899 4925 5074 70.8 50.7 58 InAs (B3) 6.031  6.048  6.054 59.8 58.5 58
LiF (B1) 3909 3921 4.01 87.1 85.2 69.8 SiC (B3) 4330 4338 4358 2305 2265 225
LiCl1(B1) 4965 4984 5.106 40.9 39.7 354 CeO2(Cl) 5364 5370 5411 2140 2025 220
[N B()

PW RPAF PW RPAF
me —0.072 —0.059 21.6 18.6
mae 0.074 0.061 23.9 22.1
mre (%) —1.654 —1.363 14.1 11.3
mare (%) 1.684 1.407 16.0 14.2
variance 0.0088 0.0061 1468.4 1298.3
relative variance 0.0004 0.0003 0.050 0.043
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TABLE VIII. Numerical results for the series of the ring-diagram data (in mRy) generated using adaptive quadrature integration method
for many values of ¢ and r; covering the small r, region, the large r, region, and the physical region where materials are realized.

7s\¢ 0.00 020 040 060 08 090 091 092 093 094 095 09 097 098 099 1.00

0.01 —429.0 —424.4 —410.2 —384.4 —341.6 —308.3 —304.2 —299.8 —295.2 —290.3 —285.0 —279.2 —272.9 —265.7 —256.9 —243.1
0.09 —294.5 —-291.4 —281.8 —264.5 —236.1 —214.5 —211.8 —209.0 —206.1 —203.0 —199.6 —196.0 —192.1 —187.7 —182.6 —175.3
0.1  —288.1 —285.1 —275.7 —258.9 —231.2 —210.1 —207.5 —204.8 —201.9 —198.9 —195.6 —192.1 —188.3 —184.1 —179.1 —172.1
02  —247.0 —244.4 —236.5 —222.2 —199.0 —181.4 —179.3 —177.1 —174.7 —172.2 —169.6 —166.7 —163.6 —160.2 —156.3 —151.0
03  —2235-221.2 -214.1 —201.3 —180.6 —165.1 —163.2 —161.2 —159.2 —157.0 —154.7 —152.2 —149.5 —146.6 —143.2 —138.8
04  —207.2 —205.1 —198.5 —186.8 —167.9 —153.7 —152.0 —150.2 —148.4 —146.4 —144.3 —142.1 —139.7 —137.1 —134.1 —130.3
05 —194.7 —192.7 —186.6 —175.7 —158.1 —145.1 —143.5 —141.9 —140.1 —138.3 —136.4 —134.4 —132.2 —129.8 —127.1 —123.7
06 —184.7 —182.8 —177.1 —166.9 —150.4 —138.1 —136.6 —135.1 —133.5 —131.8 —130.1 —128.2 —126.2 —124.0 —121.5 —118.4
0.7 —176.4 —174.7 —169.2 —159.5 —143.9 —132.3 —130.9 —129.5 —128.0 —126.4 —124.8 —123.0 —121.1 —119.1 —116.8 —113.9
0.8 —169.3 —167.6 —162.4 —153.2 —138.3 —127.4 —126.1 —124.7 —123.3 —121.8 —120.3 —118.6 —116.8 —114.9 —112.7 —110.1
09 —163.1 —161.5 —156.5 —147.7 —133.5 —123.1 —121.8 —120.5 —119.2 —117.8 —116.3 —114.7 —113.1 —111.2 —109.2 —106.8
—157.6 —156.1 —151.3 —142.8 —129.2 —119.2 —118.1 —116.8 —115.6 —114.2 —112.8 —111.3 —109.7 —108.0 —106.1 —103.8

Ju—

2 —1239 —122.7 —119.2 —112.8 —102.9 —-954 —-946 -93.7 —-92.8 —-919 -909 —89.9 —888 —87.6 —863 —84.8
3 —105.7 —104.7 —101.8 —96.6 —88.5 —82.6 —82.0 —-81.3 —80.6 —79.8 —-79.1 —-783 774 =765 755 744
4 -937 -929 -904 -86.0 -79.1 -741 -73.6 -73.0 -724 -71.8 —-71.1 =705 —69.8 —69.0 —682 —67.3
5 -850 —843 —82.1 -782 -722 —679 —-674 —669 —-664 —659 —653 —647 —64.1 —63.5 —62.8 —62.0
6 —783 =77.6 —-757 -722 —-66.8 —63.0 —62.6 —62.2 —-61.7 —61.2 —60.7 —60.2 —-59.7 —-59.1 —-585 -—57.8
7 -729 -723 -70.5 —-673 —-62.5 -—-59.1 —-58.7 —-583 -579 -575 -—-57.0 -56.6 —56.1 —55.6 —55.0 -—54.4
8 —684 —679 —662 —633 —589 558 —554 -—55.1 —547 —-543 -—-539 535 -53.1 -52.6 —52.1 —-51.6
9 —646 —-64.1 —-626 —-599 -558 -530 -52.6 -523 -520 -51.6 —-512 -509 -50.5 —-50.1 —49.6 —49.1
10 —613 —60.9 —-59.5 —-57.0 —-532 —-505 —-50.2 —499 —-49.6 —493 —489 —48.6 —482 —478 —-474 —47.0
20 —428 —425 —41.6 —-40.1 -379 -364 -362 —-36.0 —358 —-356 —354 -352 -350 —348 —-34.6 -—343
30 —34.1 -339 -333 -322 -30.6 —-295 -294 -293 -292 -29.0 -—-289 -287 -—-28.6 —284 -—283 -—-28.1
40 —289 —-288 —-283 -274 -262 -—-253 =252 -—-25.1 —-250 —-249 -—-248 247 -24.6 -—-245 -243 242
50 —254 =252 248 -241 -23.1 -224 -223 -222 -222 -221 -—-220 -219 -21.8 -21.7 -21.6 -215
60 227 =226 -223 -21.7 -20.8 -202 -20.1 -20.1 -200 —-199 —-199 -19.8 —19.7 —19.6 —195 —-194
70 —-20.7 -20.6 —-203 -19.8 —19.0 —185 —-184 —-184 —-183 —-183 —-182 —18.1 —181 —-18.0 —-179 -17.8
80 -19.1 -190 -18.7 —-183 -176 -171 -171 -17.0 —-170 -169 —-169 —168 —16.7 —16.7 —16.6 —16.5

90 =177 =177 -174 -17.0 -164 —-160 —-159 —-159 —-158 —-158 —15.7 —157 —-156 —15.6 —155 —15.4
100 —-16.6 —165 —163 —-159 —154 —150 —-150 —149 —-149 —-148 —148 —147 —-147 —146 —14.6 —145
200 -10.7 -106 -105 -103 -100 -98 -98 -98 -98 -97 -97 -97 -97 -96 -96 -96
300 -82 81 -81 -79 -77 -76 -76 -76 -76 =75 =75 =75 =75 =75 =15 74
500 -58 —-58 -57 =57 =55 -55 =55 -54 -54 -54 -54 -54 -54 -54 54 54
1000 -36 -36 -36 -35 -35 -34 -34 -34 -34 -34 -34 34 -34 -34 34 =34
2000 -22 =22 =22 =22 =22 -21 -21 -21 -21 -21 -21 -21 -21 =21 -—-21 -21
3000 -7 -7 -17 -17 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -—-16 -—-16
4000 -14 -14 -14 -14 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13
5000 -2 -12 -12 -12 -11 -11 -11 -11 -11 -11 -11 -11 -11 -—-11 —-11 -—-1.1
20000 —-043 —043 —-043 —-043 —043 —-042 —-042 —042 —-042 —-042 —-042 —-042 —-042 —-042 —-042 —042
200000 —0.08 —0.08 —0.08 —-0.08 —0.08 —0.079 —0.079 —0.079 —0.079 —0.079 —0.079 —0.079 —0.079 —0.079 —0.079 —0.079
1000000 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024 —0.024
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TABLE IX. Numerical results for the kite-diagram series (in mRy) generated using Monte Carlo integration method for many values of
¢ and r, covering the small r, region, the large r, region, and the physical region where materials are realized. (The standard deviations are
reported in parentheses.)

7 t=0 r\¢ 0.2 0.4 0.6 0.8 0.9 1.0

0.01 47.60 (10) 0.2 40.75 (19) 40.85 (44) 41.66 (32) 42.83 (12) 43.3 (56) 44.44 (14)

0.09 44.16 (16) 0.4 36.23 (37) 37.37 (20) 37.77 (25) 39.24 (16) 39.5 (51) 42.30 (9)
0.1 4353 (18) 0.6 33.79 (20) 34.31 (16) 35.02 (20) 36.85 (45) 37.6 (49) 39.89 (18)
0.2 40.85 (25) 0.8 31.2(19) 31.75 (27) 32.68 (22) 34.46 (35) 36.0 (47) 37.76 (32)
0.3 38.45 (26) 1 27.77 (61) 29.42 (28) 30.09 (32) 32.46 (47) 33.6 (44) 36.43 (27)
0.4 36.00 (37) 12 26.41 (35) 27.79 (28) 27.59 (55) 30.34 (45) 32.2 (42) 34.83 (32)
0.5 34.26 (36) 1.4 23.90 (62) 25.51 (59) 27.08 (40) 29.68 (25) 31.0 (40) 34.05 (27)
0.6 33.90 (19) 1.6 23.10 (23) 24.02 (31) 25.37 (35) 27.10 (75) 29.7 (39) 32.65 (28)
0.7 31.89 (60) 1.8 21.62 (29) 21.38 (92) 24.49 (24) 26.79 (40) 28.9 (38) 31.71 (20)
0.8 30.2 (17) 2 20.55 (29) 21.63 (40) 23.23 (21) 25.73 (27) 27.5 (36) 30.46 (40)
0.9 28.79 (54) 22 19.29 (23) 19.67 (40) 21.95 (28) 24.23 (44) 26.9 (35) 29.48 (49)
1 27.62 (84) 24 17.04 (73) 18.66 (38) 21.12 (19) 24.26 (26) 25.5(33) 28.80 (19)
2 20.31 (33) 2.6 17.08 (26) 17.44 (74) 19.69 (28) 21.97 (74) 24.6 (32) 27.82 (23)
3 14.85 (68) 2.8 16.16 (19) 17.28 (22) 18.96 (35) 22.02 (29) 24.5 (32) 26.90 (38)
4 10.56 (44) 3 14.58 (40) 15.97 (29) 17.01 (60) 21.18 (29) 23.3 (31) 25.93 (57)
5 8.04 (34) 32 14.02 (25) 14.17 (67) 16.63 (42) 20.41 (31) 22.18 (62) 24.71 (63)
6 5.07 (39) 3.4 13.27 (55) 14.41 31) 16.44 (29) 19.70 (28) 21.6 (28) 24.81 (43)
7 2.23 (41) 3.6 12.13 (33) 13.17 (53) 15.82 (32) 18.91 (25) 21.0 (28) 23.81 (31)
8 0.78 (69) 3.8 12.14 (33) 12.61 (36) 14.97 (66) 18.34 (27) 20.3 (27) 23.47 (26)
9 —1.70 (72) 4 10.59 (49) 11.72 (51) 14.9 (22) 17.79 (22) 19.69 (23) 22.32 (44)
10 —2.11 (41) 42 9.81 (35) 11.35 (26) 13.53 (33) 17.14 (24) 18.8 (25) 2221 (54)

20 —11.13 (90) 4.4 9.08 (67) 10.42 (29) 12.89 (28) 15.74 (38) 18.8 (25) 21.4 (13)
30 —14.85 (28) 4.6 9.01 (29) 9.50 (41) 11.95 (28) 15.47 (54) 18.26 (19) 20.87 (28)
40 —17.91 (46) 438 8.10 (56) 9.49 (27) 11.91 (18) 14.79 (58) 17.3 (23) 20.14 (71)
50 —19.45 (65) 5 7.49 (65) 8.59 (80) 11.58 (39) 14.21 (35) 16.1 (11) 20.04 (33)
60 —20.27 (43) 52 6.74 (51) 7.94 (39) 10.98 (30) 14.50 (29) 16.7 (22) 19.01 (35)
70 —21.67 (58) 5.4 6.17 (36) 7.68 (32) 10.47 (31) 12.99 (69) 16.1 (21) 19.13 (23)
80 —22.14 (28) 5.6 5.91 (43) 7.36 (22) 9.62 (26) 13.08 (37) 15.9 (21) 18.79 (24)
90 —22.62 (48) 5.8 4.85 (43) 6.17 (42) 8.54 (61) 12.78 (27) 14.8 (20) 17.18 (70)
100 —23.68 (80) 6 4.66 (59) 6.43 (27) 8.93 (30) 12.59 (21) 14.8 (20) 17.78 (24)

200 —25.09 (62) 10 —1.76 (57) —1.00 (68) 2.01 (75) 3.9(11) 8.20 (44) 8.8 (12)
300 —24.57 (25) 20 —13.0(27) —9.57 (67) —6.71 (65) —4.01 (48) —2.5(12) 1.35 (62)
500 —24.71 (49) 30 —15.18 (66)  —12.76 31)  —11.0(15) —8.91 (50) —7.59 (51) —4.60 (49)

1000 —23.55 (36) 40 —17.05@47) —1581(47) —1476(86)  —11.00 (42) —9.56 (77) —9.6(22)
2000 —20.77 (48) 50 ~1925(@61) —17.42(38) —16.01(41)  —1329(65) —12.02(40) —11.57(82)
3000 —20.87 (73) 60 —20.47 (76)  —19.34(44)  —18.42(98)  —1553(52) —13.72(34)  —12.24(47)
4000 —19.49 (22) 70 —22.0(11) —1929(31) —17.92(33) —16.08(45) —15.10(40) —13.32(33)
5000 —18.44 (18) 80 —21.38(49) —212(32) —19.7 (47) —17.92(53) —17.15(74)  —15.39(39)
20000 —14.35(22) 90 —2246(54)  —20.81 (31)  —20.28(45) —1838(55) —1731(61) —16.07(33)
200000 —7.13 (15) 100 —23.15(72)  —21.6(15) —21.01 (44) —18.63(43)  —18.60(50)  —17.22(58)
1000000 —3.89 (16) 200 —2443(49)  —2343(33)  —23.56(79) —2246(34) —2230(47)  —21.97(61)
300 2424 (48)  —24.88(50)  —24.06(40)  —23.92(57) —24.04(60) —23.12(48)
400 —25.44(76)  —24.10(36)  —24.34(29) —23.52(25) —2336(30) —24.33(53)

500 —2428 (33)  —24.50(43)  —24.89(70)  —24.86(70)  —23.49(32)  —26.9(22)
1000 —2356(39) —22.88(28) —23.11(32) —23.99(48) —23.94(33) —24.59(62)
2000 —21.16(25)  —21.95(70) —22.18(56)  —22.10(21)  —22.88(49)  —23.71(36)
3000 —20.16(38)  —20.44(22)  —20.46(30) —21.79(50) —21.69(26)  —22.92 (36)
4000 —19.45(37) —19.53(24) —20.06(33)  —20.85(29) —20.76 21)  —21.68 (23)
5000 —19.76 (69)  —18.96 (27) —19.86(55) —20.32(77)  —20.15(23)  —21.79 (45)
20000 —13.98 (24) —1431(21) —1458(17) —1634(56) —1593(26) —17.77 (47)
200000 —7.00 (20) ~7.55(19) —7.46 (14) —8.80 (30) —9.06 (22) —9.88 (30)
1000000 —4.26 (39) —3.78 (19) —4.72 (25) —4.41 (19) —5.52(32) —5.56 (19)
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