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A B S T R A C T

Standalone off-grid electrical systems, no matter where they are deployed or for what user class, are designed
based upon the load they are expected to serve. State-of-the-art computerized off-grid system design tools require
the user to specify the expected load profile, that is, how the power consumption changes throughout the day.
Often, this is at an hourly resolution, and some characterization of the distribution of power around the average
values may be required. Specifying realistic and reasonable load profiles is a barrier to the appropriate design of
standalone systems. This research extends previous studies on daily energy consumption of residential solar-
powered off-grid systems on the Navajo Nation to provide hourly load profiles, statistical characteristics, and
probabilistic models. The data analyzed come from 90 homes over a two-year period. K-means clustering is used
to identify prototypical normalized load profiles when the data are grouped by year, season, weekday, and
weekend. Eight parametric probability density functions are fit to the grouped data at an hourly resolution. Their
fit to the data is evaluated using the Cramér-von Mises (CvM) statistic. The results show that the load profiles
tend to be night-peaking and that Log Normal and Gumbel distributions can reasonably model variation in the
data. The load profiles and probabilistic models can be used in off-grid design software and to synthesize load
profiles for design and future research.

Introduction

The Navajo Nation is a sovereign nation located in the southwestern
region of the United States. Its territory spans approximately 70,000
km2. More than 160,000 people live within its land (U.S. Census Bureau,
2020). Navajo Nation is home to exceptional mineral, energy, and solar
resources, yet over 10,000 homes within it are without grid-connected
electricity (Gallucci, 2019). The burden of this form of energy poverty
on human development and quality of life are numerous and well-
documented, affecting income, health, and educational outcomes
(Asghar et al., 2022; Franco et al., 2017; International Energy Agency,
2014; Kanagawa & Nakata, 2008; Sarkodie & Adams, 2020a, 2020b;
Sovacool& Ryan, 2016). It is also a notable form of distributional energy
injustice, where the un-electrified homes are unduly burdened with the
impacts of an electricity system that they do not directly benefit from
(Sovacool et al., 2016).

The Navajo Tribal Utility Authority (NTUA) has made progress in

eroding the electrification deficit through various programs, including
grid extension and by offering off-grid solar systems (Navajo Tribal
Utility Authority, 2022). Grid extension generally is the least-cost option
for homes that are in relatively dense clusters and are close to the
existing grid. However, consistent with their pastoral tradition, many
homes on the Navajo Nation are separated from each other by large
distances and at a low density. Some homes are as far as 70 km from the
grid. With grid extension costs typically greater than USD$40,000 per
kilometer, off-grid systems offer a viable alternative for those homes far
from the grid.

NTUA has been implementing off-grid systems on the Navajo Nation
since the 1990’s (Begay, 2018). More recently, partially supported by
funds from the U.S. government CARES Act (Coronavirus Aid, Relief,
and Economic Security Act), NTUA has installed over 450, 3.8 kW off-
grid solar systems on the Navajo Nation (2020 CARES Act Final
Report for Navajo Nation Leadership, 2021).

Data acquisition systems were integrated into the off-grid solar
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systems, which enabled the creation of a rich data set of electricity
consumption of off-grid homes on the Navajo Nation. The first analysis
of this data set was done in (Louie et al., 2023) and focused on the daily
energy consumption characteristics of 127 of the homes. This analysis
was prioritized because average daily consumption, along with the solar
resource, are two key inputs to the design of an off-grid system,
particularly if a standards-based methodology is applied (Louie, 2018).
The analysis showed that the average AC-side consumption was 2.78
kWh per day, but with a wide range of variation between homes. Forty
percent of the total energy consumed was attributed to just 20 % of the
homes (Louie et al., 2023). The daily consumption tended to follow
seasonal patterns, which peaked in the summer and exhibited a 10 %
decline in year-over-year consumption (Louie et al., 2023).

In (Louie et al., 2023), the authors identified the data set as having
important value at sub-daily timescales by using it to create prototypical
hourly load profiles. These load profiles are needed in numerical design
approaches, including those using software such as HOMER Pro (Bekele
& Palm, 2010; Ma et al., 2014; UL, 2023; Xendee, 2024). Some software
also requires parameters that characterize the stochastic nature of the
load (UL, 2023). This research extends the analyses in (Louie et al.,
2023) by identifying prototypical hourly load profiles through K-means
clustering and evaluating eight parametric probabilistic models to
characterize the stochasticity of the load.

The primary contributions of this research are the detailed presen-
tation of the load profiles and parametric probabilistic models derived
from data from 90 of NTUA’s off-grid systems. These load profiles can be
used in off-grid system design of homes in similar contextual and irra-
diation conditions, and by researchers in need of realistic, representative
load profiles. Due to the unique circumstances of the Navajo Nation, the
intent of this research is not to show how the load profiles are gener-
alizable or applicable to other contexts, but rather, it supports the view
that off-grid users on Tribal Lands have electricity-use characteristics
that are different than documented elsewhere (Louie et al., 2023).

A load profile, in its simplest form, describes the typical power
consumption of a facility or load center over the course of a 24-hour
period. It may represent the consumption of a single user or an aggre-
gation of users. Load profiles of mini-grid and other off-grid system users
in Sub-Saharan Africa have been presented in literature (Williams et al.,
2017; Yoder&Williams, 2020). But, as described in (Louie et al., 2023),
there is evidence that consumption of off-grid users in the Sub-Saharan
context is strikingly different than on the Navajo Nation.

Researchers have developed approaches to synthesizing realistic
load profiles. One example is LoadProGen (Mandelli et al., 2016, 2017).
While these approaches are useful, they require some knowledge of the
users, for example the appliance ownership or geographical location. An
alternative method to constructing load profiles is to employ a data-
driven approach, relying on historical load data from similar users. In
(Blodgett et al., 2017), a data-driven approach was shown to reduce
average daily consumption errors by 70 % over other approaches. The
research presented in this paper supports a data-driven approach for
load profile creation. The contributions of this paper are: 1) it considers
a novel data set – individual domestic users on a Tribal Land; 2) it
identifies prototypical annual, seasonal, weekday, and weekend load
profiles, and 3) it evaluates parametric probabilistic models of hourly
load.

This paper is arranged as follows. The Data set description section
provides background information on the data considered in this work.
The Methodology section describes the methodology for developing the
load profiles. Representative load profiles are provided in the following
section. Statistical analysis of the load profiles is presented in the Sta-
tistical analysis section. Parametric probability distributions are fit to
the data and evaluated in the Probabilistic models section. Discussion of
the load profiles and additional insight are provided in the Discussion
section. The Conclusions and future work Section summarizes the work
and describes the next steps for this research.

Data set description

This paper considers off-grid residential solar systems installed on
the Navajo Nation by NTUA in late 2020. An image of the type of off-grid
system considered in this work is shown in Fig. 1. The system consists of
a 3.8 kW bi-facial solar array arranged into two sub-arrays each with a
charge controller; 16 gel lead acid batteries each rated at 12 V, 183 Ah
(20-hour rate), and arranged into a 48 V battery bank with nominal
capacity of 35.1 kWh; and a 8 kW inverter. The off-grid systems are each
outfitted with a cellular-connected data acquisition system by Samsara
(Samsara, Inc, 2020). This paper considers 90 of the homes with off-grid
systems. These homes were selected because their data records span two
years and they generally had high-quality data.

Although many system quantities are measured, this work is pri-
marily concerned with measurements of real power, expressed in watts,
and measured at the AC-side of the inverter. The data considered
spanned from 1 January 2021 to 31 December 2022. The data for each
day began at 0:00 UTC, which was then adjusted to Mountain Standard
Time (−6). No adjustments for daylight saving time were made.

The data were automatically sampled, but the sampling was done at
irregular intervals, typically ranging from every 5 to 30 s. The data are
first arranged into a minutely time-series by averaging all the samples
recorded within the same minute according to their timestamp. Missing
values were excluded from the averaging. Any minute without data was
marked as such. A ten-minute data set was then created from the
minutely data by averaging. Again, missing values were excluded from
the averaging, and any ten-minute interval without data was marked as
such. Linear interpolation was applied to the remaining data to fill-in
any missing data in the 10-minute data set. If the first or last data
point for a day is missing, then linear interpolation was not applied.
Instead, the day was excluded from the data set.

Any day that was missing more than 18 ten-minute (three hours
total) intervals of data or was excluded from the data set. Any day that
was flagged as having an outage was also excluded. Outages were usu-
ally caused by the inverter disconnecting the load—and data acquisition
system—when the battery voltage fell below a temperature-dependent
threshold. An outage was assumed to have occurred if the minutely
battery voltage fell below 47.1 V and was immediately followed by an
interruption of data lasting for at least 15 min. Other times, data were
missing due to communication hardware malfunction.

Fig. 1. Image of the type of off-grid solar system considered in this work. The 8
kW inverter, charge controllers, 48 V battery bank and data acquisition system
are in the enclosure in the foreground. The bi-facial 3.8 kW PV array tilted at 35
degrees in the background (Louie et al., 2023).
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Methodology

This research considers normalized hourly load profiles of the data.
This section describes the methodology for creating these load profiles
and for associating them into clusters based upon their shape. Several
overlapping subsets of the data are considered. These are referred to as
“All Years” (data from both 2021 and 2022), “2022”, “2021”, “Winter”
(1 Jan.–31Mar. of 2021 and 2022), “Spring”(1 Apr.–30 Jun. of 2021 and
2022), “Summer” (1 Jul.–30 Sep. of 2021 and 2022), “Fall”(1 Oct.–31
Dec. of 2021 and 2022), “Weekday” and “Weekend” (weekday and
weekend days from 2021 and 2022). These subsets of data are referred
to as “Groups”. The number of days of data considered for each Group
after preprocessing is shown in the rightmost column of Table 1. The
process for creating a normalized load profile for each system in a Group
is displayed in Fig. 2.

The days are indexed numerically so that d is 1 for 1 January 2021,
and d is 730 for 31 December 2022. The day indices that belong to the
Group under consideration is denoted as G . The index of the last day in
the Group is dlast. Starting with the first system k, each day is considered
one at a time. If the day d is in G , then the ten-minute data for that day
are normalized using the ℓ-1 norm. In this way, the sum of the 10-min-
ute normalized load profile for day d and system k is exactly equal to 1.

This process repeats for each day in G through dlast. For example, in
the All Years Group, up to 730 10-minute normalized load profiles are
created for system k. These load profiles are then averaged to create a
single 144-element 10-minute average normalized load profile. This
load profile is then downsampled by summing the six 10-minute values
that correspond to each hour for all hours, resulting in a single
normalized hourly load profile. The sum of the 24-elements in this load
profile is exactly equal to 1. The elements of the normalized hourly load
profile can be interpreted as the proportion of that day’s total energy
consumption that was consumed during a given hour, on average.

The process repeats for the next system until all 90 systems have been
considered for the Group, nominally yielding 90 separate normalized
hourly load profiles (note that a particular system may not have any
valid data in a certain Group, and so fewer than 90 load profiles may be
generated for that Group). Then, the next Group is considered. Hereafter
for the sake of concision, normalized hourly load profiles are referred to
simply as “load profiles”.

The load profiles within each Group exhibit a variety of patterns.
Simple averaging of all the load profiles in a Group masks this variation.
To better represent the typical load profile patterns within each Group, a
clustering algorithm was used. Specifically, SciKit-Learn’s imple-
mentation of the Lloyd’s K-means algorithm was used with 30 different
initializations per Group (Lloyd, 1982; Pedregosa et al., 2011).

The K-means algorithm partitions the load profiles intoM clusters for
each Group. Each load profile “belongs” to exactly one cluster. Each
cluster has one “centroid”. Each centroid can be thought of as a 24-
element vector whose elements correspond to an hour of the day and
whose values are equal to the average load profile of their cluster. The

centroids are hereafter referred to as “prototype” or “prototypical” load
profiles as they are representative of the load profiles belonging to their
cluster for a given Group.

The number of clustersM produced by the algorithm for each Group
is specified by the user. Determining M is not always straightforward
with unsupervised machine learning techniques such as K-means. The
approach used in this work is to consider the silhouette score
(Rousseeuw, 1987). Silhouette scores range from −1 to 1 with larger
positive numbers typically indicating better clustering. Silhouette scores
were calculated for each group for a number of clusters ranging from 3
to 15. Although the number of clusters corresponding to the greatest
silhouette score was not the same for each Group, it was most often
achieved at or near five clusters. For the sake of clarity and consistency,
five clusters were used for each Group. The percentage of the total days
of data corresponding to each cluster and Group are summarized in
Table 1.

Prototypical load profiles

This section presents the prototype load profiles for each Group of
data based on the methodology previously described. Recall that a
prototype load profile for a cluster is the average of the load profiles
belonging to that cluster. The prototypical load profiles tell the story of a
typical day’s consumption. In the design of off-grid systems powered by

Table 1
Percent and number of days of data per group.

Group Cluster Total days

1 2 3 4 5

(%) (%) (%) (%) (%)

All years 40.0 14.7 2.5 21.1 21.6 33,249
2022 26.7 40.9 5.5 11.2 15.7 19,391
2021 35.3 19.4 8.4 13.6 23.2 13,583
Winter 20.2 34.5 15.8 9.0 20.4 6445
Spring 39.4 4.4 22.8 12.1 21.2 10,013
Summer 16.6 27.4 35.7 7.5 12.8 9569
Fall 18.0 18.4 13.4 34.7 15.4 6654
Weekday 3.2 32.4 36.8 23.6 4.2 14,622
Weekend 40.1 16.1 17.4 24.8 1.5 9543

Fig. 2. Block diagram of the normalized load profile creation process for a
given Group.
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a solar array, the energy consumed before sunrise and after sunset is
especially important, as this influences the size of the battery bank.
Generally, it is advantageous for the evening and overnight consumption
to be low. Also of interest is the peak of the load profile, as this in-
fluences the size of the inverter.

All Years

Examined first are the load profiles consisting of the two year range
of data. The prototype load profiles for each of the five clusters are
shown in Fig. 3. Also shown are the actual load profiles that were
associated with each cluster. Here, N refers to the number of systems
whose load profiles were associated with each cluster. Generally, the
actual load profiles match the prototype load profiles but, as can be
expected with K-means clustering, none are an exact fit. With some
exceptions, the hourly consumption generally ranged from three to 6 %

of the daily energy.
The 33 homes in Cluster 1 had relatively consistent consumption

throughout the day with a peak in the evening around 20:00. Evening
peaks were also evident in Clusters 2 and 5. Clusters 3 exhibited a day-
peaking characteristic. However, only four homes had load profiles
belonging to this cluster. Cluster 4 exhibited a consistent daytime load,
slightly increasing until 20:00. With the exception of Cluster 2, the
prototype load profiles exhibit a rise beginning at approximately 6:00,
when presumably the occupants wake up and begin using appliances.

Yearly

Comparing the years 2021 and 2022 show how, if at all, the load
profiles evolved over time. Note that as described in (Louie et al., 2023),
the consumption in 2022 was approximately 10 % less than in 2021. The
prototypical load profiles for 2021 and 2022 are shown in Figs. 4 and 5,

Fig. 3. Load profiles (thin lines) and prototype load profile (dashed lines) of
each cluster for the All Years Group.

Fig. 4. Load profiles (thin lines) and prototype load profile (dashed lines) of
each cluster for the 2021 Group.
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respectively. Keep in mind that the homes assigned to a certain cluster in
2021 do not necessarily correspond to the same numbered cluster in
2022. For both years, only a small number of homes exhibited morning-
or day-peaking behavior (Cluster 1 and 2 in both figures). The majority
of the homes saw peaks occurring in the evening, around 20:00. A
notable difference is Cluster 3 in 2021 showed a pronounced dip in
consumption from approximately 9:00 to 15:00 which is not represented
by any of the clusters in 2022. Overall, the general shapes of the load
profiles do not appear to be substantially evolving from one year to the
next.

However, the load profiles of many of the individual homes did
change from 2021 to 2022. This is shown in Fig. 6. The circles on the left
represent the five clusters of the 2021 Group; the five circles on the right
represent the 2022 Group. The area of the circles are proportional to the
number of homes associated with each cluster. The circles and wedges
are color-coded based on the 2021 clustering. For example, the 32

homes that were clustered with Cluster 1 in 2021—represented by the
dark blue color—scattered into different clusters in 2022, with 8
belonging to Cluster 1, 13 belonging to Cluster 2, none belonging to
Cluster 3, and so on. While one might expect the most of homes asso-
ciated together in the same cluster in 2021 to also be associated together
in 2022—even if the cluster number itself was different—this was
generally not the case. Rather, the homes in a given cluster in 2021
tended to disperse in the 2022 clustering. The only 2021 cluster where
more than half of the homes stayed grouped together was Cluster 5, in
which 11 of the 14 homes moved to Cluster 2 in the 2022 Group.
Inspecting the load profiles for Cluster 5 in the 2021 Group and Cluster 2
in the 2022 Group, shows that in general these homes reduced their
evening peak somewhat.

Quarterly load profiles

Considered next are quarterly (seasonal) load profiles. In (Louie
et al., 2023), a seasonal component to average daily energy consumption
as noted, with increased consumption in the summer months. The data
for both years are combined for each quarter. The resulting prototype
load profiles are shown in Fig. 7. Note that a small number of systems did
not have valid data remaining after the cleaning process for given
Group. Therefore, the total number of load profiles in each Group does
not always equal 90. The load profiles during the summer months (July
through September) generally exhibit more consumption during the
daytime, whereas the fall (October through December) and winter
(January through March) months often have more pronounced evening
peaks.

Fig. 5. Load profiles (thin lines) and prototype load profile (dashed lines) of
each cluster for the 2022 Group.

Fig. 6. Cluster membership composition from 2021 clustering to
2022 clustering.
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Weekday and Weekend

It is common for the load of most users to be different during the
weekdays and weekends. Here, the weekend is considered to start at
18:00 Mountain Standard Time on Friday and end on 17:50 on Sunday.
In this way, evening behavior on days preceding a typical day off of work
are captured. Fig. 8 shows the clustered load profiles for weekdays and
weekends, respectively. Data for 2021 and 2022 are combined. The
profiles do not exhibit substantial differences. The predominance of
night-peaking load remains. Although, the daytime consumption is
somewhat greater on the weekend days. This suggests that homes are
similarly occupied during weekends and weekdays and appliances—-
which can be consistent with anecdotal observations of irregular,
inconsistent, or self-employment.

Representative load profiles

Although the prototype profiles provide information on typical pat-
terns of average consumption, the statistical details of the variation

within each hour is often also of interest. To illustrate the variation,
actual load for five specific homes – each corresponding to a different
Cluster for the All Years group— are provided in Fig. 9. The specific
homes chosen are those that had the lowest average mean squared error
between their load profile and the corresponding prototype load profile.

The load are expressed as box plots for each hourly interval. The
whiskers extend to 1.5 times the inter-quartile range. Outliers are dis-
played as small “+” symbols. Shown in this way, the variation that oc-
curs in each interval is apparent. In all cases, consumption two to three
times the median, or more, was observed. Of particular note is the
variation for Cluster 3, where on some days over 20 % of the day’s total
energy was consumed in just 1 h. Moreover, the distribution is generally
asymmetric, with outliers that are greater than the median appearing
more frequently and severe than those less than the median. This sug-
gests that a Normal (Gaussian) model of consumption may be insuffi-
cient to characterize the observed distribution of load.

Statistical analysis

The load profiles presented in the previous sections show the average
load for each hour for each data set. As was shown in Fig. 9, there can be
substantial variation in consumption during the same hour on different
days, even in the same home. This variation is described by the statis-
tical moments of standard deviation σ, skewness γ, and kurtosis β. The
moments are provided in Table 2 for the All Years group for Cluster 1.
Also shown are the 0.10 and 0.90 quantiles, denoted as Q(10) and Q(90),
respectively. These quantiles are useful in understanding the extremes of
consumption that occurred each hour. The statistics for the remaining
clusters are found in the Appendix.

Although the statistics are different for each cluster, hour, and group,
some general trends emerge. Of particular note is that all the hours
exhibit a positive skewness, indicating that the distributions are asym-
metric with a tendency for more extreme positive values than negative.
This is consistent with the observations from Fig. 9. The kertosis for
almost all hours indicate that the distributions are leptokurtic. A lep-
tokurtic distribution is one that generally has “flatter” tails, producing
more frequent outliers than a Normal distribution.

The statistical moments are useful in suggesting which parametric

Fig. 7. Prototype load profiles for the Quarterly (seasonal) Group.

Fig. 8. Prototype load profile (dashed lines) of each cluster for the Weekday
and Weekend Groups.
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distributions are reasonable candidates to fit to the data, as discussed in
the following sections.

Probabilistic models

This section evaluates parametric distributions as models of the load
for each Group, cluster, and hour. Eight common distributions are
considered: Beta, Gamma, Gumbel, Log Normal, Nakagami, Normal,
Rayleigh and Weibull. These were selected based on inspection of the
statistical moments and histograms of the data.

Cramér-von Mises statistic

The parameters for each distribution were determined using the
maximum likelihood estimation procedure. This step was implemented
using the SciPy library for Python (Virtanen et al., 2020). The fit of each

distribution was evaluated using the Cramér-von Mises (CvM) statistic.
The CvM statistic was selected because unlike the χ statistic, the CvM it
is strictly objective. Briefly, the CvM statistic compares the CDF of the
considered distribution to the empirical cumulative distribution func-
tion (eCDF) of the considered load data for a given hour and cluster.

The CvM criterion is:

w2 =

∫ ∞

−∞
(F(x) − F̂(x) )

2dF(x) (1)

where F(x) is the CDF of the considered distribution and F̂(x) is the eCDF
of the data for a specific hour of a load profile cluster (Berg, 2009; Genest
et al., 2009). The CvM test statistic (T) is practically implemented as:

T = nw2 =
1
12n

+
∑n

i=1

(
2i− 1
2n

− F(xi)
)2

(2)

where xi are the data sorted in ascending order, and n is the number of
data for a considered Group, cluster, and hour (D’Agostino & Stephens,
1986). With this formulation, a smaller value of T indicates a closer fit of
the distribution to the data. The CvM statistic was computed for each
Group, cluster, hour and for each of the distributions considered.

It is helpful to have a visual sense of the distributions’ fit to the data.
Examples of fit distributions for two different hours for Cluster 1 of the
All Years group are provided in Figs. 10 and 11.

The figures show the histogram of the data along with the distribu-
tions with the smallest (best) and largest (worst) CvM test statistics T.
Fig. 10 is an example where the best fitting distribution (Log Normal)
resulted in a low CvM statistic. The dashed line reasonably approximates
the histogram of the actual data. For comparison, also shown is the worst
fitting distribution for this data—the Rayleigh distribution. Fig. 11, on
the other hand, was the hour with the overall worst fitting distribution
for this cluster. The best fitting distribution was a Gumbel with a CvM
statistic of 1.63. While certainly not as close of a fit as the Log Normal
distribution in Fig. 10 is, it is at least reasonable. The worst fitting dis-
tribution was the Normal.

The performance of the distributions for the All Years Group are
summarized in Table 3. The table shows the average CvM statistic for
each distribution when averaged across all five clusters and all hours.
The Log Normal distribution has the lowest average CvM statistic, and
thus can be concluded as the best fitting by that measure. The Gumbel,

Fig. 9. Box plots of hourly load for homes whose load profiles that most closely
match prototype load profiles for the All Years Group.

Table 2
Statistical moments for Cluster 1: All Years Group.

Hour Mean Std. Skew. Kurt. Q(10) Q(90)

0 0.038 0.014 2.132 19.403 0.023 0.053
1 0.036 0.013 1.326 8.429 0.022 0.050
2 0.035 0.013 1.613 12.235 0.020 0.049
3 0.034 0.013 1.240 5.706 0.020 0.047
4 0.035 0.015 3.302 39.200 0.019 0.049
5 0.037 0.019 4.536 48.673 0.019 0.053
6 0.040 0.024 4.628 47.043 0.020 0.064
7 0.042 0.024 3.183 20.162 0.021 0.070
8 0.043 0.025 2.978 17.365 0.022 0.070
9 0.043 0.023 2.918 16.064 0.023 0.069
10 0.042 0.022 3.642 32.676 0.023 0.064
11 0.041 0.021 3.081 20.651 0.022 0.062
12 0.041 0.020 3.087 19.785 0.022 0.060
13 0.041 0.020 3.202 21.366 0.022 0.059
14 0.041 0.020 2.976 18.937 0.022 0.059
15 0.042 0.021 3.370 27.898 0.022 0.061
16 0.042 0.020 2.948 21.049 0.022 0.062
17 0.044 0.023 3.818 35.663 0.023 0.065
18 0.047 0.023 3.385 32.928 0.025 0.070
19 0.049 0.022 2.749 21.924 0.028 0.074
20 0.051 0.021 2.107 12.668 0.030 0.075
21 0.049 0.020 2.103 12.587 0.030 0.073
22 0.045 0.017 1.843 10.006 0.027 0.065
23 0.041 0.016 2.511 20.991 0.025 0.058
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Beta, and Gamma distributions also achieved similarly low CvM aver-
ages. Note that the Normal distribution was the second worst perform-
ing, only behind the Rayleigh distribution.

Another meaningful way of comparing the distributions is by the
number of hours for each cluster and year that a distribution had the
lowest CvM score among the other distributions. This is summarized in
rightmost column in Table 3. Note that because there are five clusters
with hourly granularity and there are nine Groups, there are 5 × 24 × 9
= 1080 opportunities for a distribution to have the lowest CvM. By this
measure, the Gumbel is the best-performing. It was the best-fit distri-
bution in 46 % of the hours, with the Log Normal distribution being the
best fit in 42.3 % of the hours. The Normal distribution was the best-

fitting in just 1.1 % of the hours. Overall, the analysis shows that if a
single distribution is to be used to model the variation of load in a given
hour, the Log Normal or Gumbel distributions should be chosen.

Cramér-von Mises test

The CvM statistics are now used in the non-parametric Cramér-von
Mises hypothesis test (Dytham, 2011; Mooney, 1997). Let F*(y, z) be the
best-fitting distribution with parameters z for a given Group, cluster, and
hour. The normalized load data for the given Group, cluster, and hour
are x = [x1, …, xn]. Let the CvM statistic of F*(y, z) when evaluated
against x using (2) be T*(x). The null hypothesis H0 is that the data x are
from F*(y, z). From a statistical viewpoint, in a well-fitting distribution
the null hypothesis is accepted.

The first step is to map T*(x) to its p-value. This is accomplished
using a Monte Carlo approach. A Monte Carlo approach is necessitated
because the distribution of the CvM statistics—known as the “sampling
distribution”–depends on F*(y, z) and the number of data points n.
Determining closed form representations of the sampling distribution is
not always tractable, and so the Monte Carlo approach is warranted
(Mohr, 1990; Mooney, 1997).

Random samples x̃1 =
[
x̃1,1, ⋯, x̃1,n

]
are drawn from F*(y, z). The

CvM statistic, T1(x̃1) is computed as in (2) using x̃1 instead of x. The
process repeats to generate n CvM statistics T(x̃) = [T1(x̃1) , …,Tn(x̃n) ].

The sampling distribution is approximated by T(x̃), and maps T*(x)

to a p-value (Mohr, 1990; Mooney, 1997). The p-value is the proportion
of T(x̃) that is greater than or equal to T*(x) (recall that larger values of
T indicate a worse fit). In other words, the p-value can be thought of as
estimate of the probability that F*(y, z) will fit the distribution of the
normalized load data x better than the distribution of random samples
x̃j. In this formulation, a larger p-value indicates stronger evidence that
the distribution fits the data well.

As an example, Cluster 2 for the Summer Group had n = 2624 hourly
data points for hour 4:00. The best-fitting distribution F*(y, z) is Log
Normal with location, scale, and shape parameters of z = −0.014,
0.041, 0.290 and corresponding CvM statistic T*(x) = 0.082. To deter-
mine the p-value, 2624 random samples x̃1 were drawn from the same
Log Normal distribution F*(y, z) and the corresponding CvM statistic
T1(x̃1) was computed. The Monte Carlo process is repeated to generate
2624 CvM statistics (the sampling distribution), as shown in Fig. 12. A
total of 1738 out of the 2624 elements in T(x̃) are greater than or equal

Fig. 10. Best fitting (T = 0.17) and worst fitting (T = 1.47) distributions to
data for cluster 3, hour 7 in the All Years group.

Fig. 11. Best fitting (T = 1.63) and worst fitting (T = 7.9) distributions to data
for cluster 3, hour 15 in the All Years group.

Table 3
Fit summary All Years Group.

Distribution Avg. CvM Statistic Best fit

Log Normal 2.8 42.3 % (457)
Gumbel 3.1 46.0 %(497)
Beta 3.7 5.4 %(58)
Gamma 3.9 2.8 % (30)
Nakagami 8.0 0.6 % (7)
Weibull 8.6 1.1 % (12)
Normal 13.8 1.1 % (12)
Rayleigh 13.8 0.6 % (7)

Fig. 12. Histogram of CvM statistics for Cluster 2 of the Summer Group
generated by Monte Carlo simulation. The vertical dashed line marks the CvM
statistic of the fit Log Normal distribution.
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to T*(x), corresponding to a p-value of 0.66. With this large p-value,
there is insufficient reason to reject the null hypothesis, and it can be
reasonably concluded that the load for hour 4:00 is produced by a sto-
chastic process following a Log Normal distribution with parameters
−0.014, 0.041, 0.290. A smaller p-value such as 0.01 would indicate that
it is unlikely that the data actually are from F*(y, z).

As may be expected, the best-fitting distributions exhibited a wide
range of p-values, which are summarized in the cumulative distribution
function (CDF) plot in Fig. 13. Usually, a level of significance α is sub-
jectively selected as a threshold for rejecting or accepting the null hy-
pothesis. In this research the p-value itself is more useful for interpreting
the fit of the distribution, rather than if the null hypothesis is accepted or
rejected. After all, the goal is to identify the best-fitting distribution, not
evaluate hypotheses of the fit. Still, for completeness and to more
conveniently summarize the results, a value of α = 0.20 is selected.
Approximately 25 % of the 1080 best-fit distributions resulted in
p-values greater than or equal to 0.20, indicating that these distributions
fit the data well from a statistical viewpoint. The number of hours where
this occurred varied unevenly depending the Group and cluster, as
summarized in Table 5. Distributions with p-values greater than or equal
to 0.20 are marked in bold in the tables in the Appendix.

Synthesis of load

The load profiles and parametric models have an important appli-
cation in synthesizing a time-series of load. The general process for
doing so is described in the following. To begin, the average daily load
must be specified by the user. One approach to doing so is to consult the
average daily load for off-grid homes on the Navajo Nation described in
(Louie et al., 2023). Other approaches of estimating the average load are
described in (Louie, 2018). For each hour of the day, consult the load
profile of choice and multiply the average daily load by the load profile
mean. Using the average daily load of 2.78 kWh/day in (Louie et al.,
2023), and the All Years Group load profile cluster 0 is used. Consulting
Table 4, for hour 0:00, is seen that the Log Normal distribution best fits
the data. The location, scale, and shape parameters for this hour are
−0.023, 0.598, and 0.216, respectively. The load value can be sampled
from this distribution, and then multiplied by 2.78 kWh to model the
hourly consumption. This approach is repeated using the corresponding
distribution and parameters for the remaining hours.

This approach does not capture the inter-hour relationships of the
load, but this form of timeseries modeling is not often done in off-grid
design programs. Timeseries models can be developed as a natural
extension of the research presented in this paper.

Discussion

It is interesting to compare the load profiles for these off-grid systems
to those reported elsewhere. The load profiles on the Navajo Nation
generally exhibit night-peaking characteristics. This is consistent with
residential off-grid systems reported in mini-grids in Sub-Saharan Africa
(Williams et al., 2017). However, the load profiles on the Navajo Nation
generally have higher load during the day than in Sub-Saharan Africa,
where zero or nearly zero daytime consumption is common. This could
be attributed to several possible and plausible reasons. Anecdotally, off-
grid homes on the Navajo Nation seem to have more appliances than in
Sub-Saharan Africa. The “stand-by” load of these appliances would
contribute to greater daytime consumption. Also, most mini-grids in
Sub-Saharan Africa have energy-based tariffs, which incentivizes homes
to limit consumption. Unplugging appliances, which eliminates their
stand-by consumption, is a common practice. The off-grid homes
considered in this research paid a flat monthly fee, which is partially due
to the added technical complexity of implementing metering and pay-
ment systems.

Although there was some variation in load profiles between the
Groups, in general, the same characteristics were found in most clus-
ters—an increase in load from 6:00 to 8:00, steady daytime consump-
tion, and an evening peak around 18:00. This suggests that the statistics
and probabilistic models for the All Years Group can be generally used.
However, since some design approaches consider winter, summer, and
weekday and weekend load, statistics for these are provided in theFig. 13. Cumulative distribution function of p-values for the best-fitting dis-

tributions for all hours, clusters, and Groups.

Table 4
Best fit distribution and parameters for All Years Group Cluster 1.

Time Distribution Parameter

0 Log Normal −0.023, 0.0598, 0.216
1 Log Normal −0.032, 0.0675, 0.181
2 Log Normal −0.028, 0.0622, 0.195
3 Log Normal −0.031, 0.0638, 0.189
4 Log Normal −0.015, 0.0476, 0.279
5 Gumbel 0.029, 0.0124
6 Gumbel 0.031, 0.0143
7 Gumbel 0.033, 0.0152
8 Gumbel 0.034, 0.0155
9 Gumbel 0.034, 0.0150
10 Gumbel 0.033, 0.0144
11 Gumbel 0.033, 0.0140
12 Gumbel 0.033, 0.0139
13 Gumbel 0.033, 0.0141
14 Gumbel 0.033, 0.0142
15 Gumbel 0.034, 0.0145
16 Gumbel 0.034, 0.0146
17 Gumbel 0.035, 0.0154
18 Gumbel 0.038, 0.0160
19 Log Normal −0.017, 0.0638, 0.294
20 Gumbel 0.042, 0.0161
21 Log Normal −0.019, 0.0655, 0.268
22 Log Normal −0.019, 0.0618, 0.249
23 Log Normal −0.030, 0.0697, 0.202

Table 5
Number of hours with p-values greater than or equal to α = 0.20.

Group Cluster

1 2 3 4 5

All Years 0 0 6 4 5
2022 0 0 5 1 0
2021 4 18 0 3 14
Winter 6 0 0 5 5
Spring 0 23 11 8 16
Summer 18 9 0 20 7
Fall 0 10 22 0 13
Weekday 0 10 22 0 13
Weekend 0 2 9 5 15
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Appendix.
The parametric distributions that had the overall best fit were the

Log Normal and Gumbel. Therefore, a reasonable approach would be to
use it as the default model of variation of consumption.

As previously described, a data-driven approach for off-grid system
design can significantly reduce load estimation error, reducing capital
costs or improving reliability. This research demonstrates how high-
resolution measured load data can be analyzed and used to generate
load profiles to achieve that aim. As more load data becomes available
for off-grid systems in a variety of contexts, it is worthwhile to discuss
the general considerations and limitations of this approach.

First, it is emphasized that load data alone is insufficient to develop
meaningful load profiles for a data-driven load estimation approach.
Contextual information is extremely important in understanding
how the data should and should not be used. As mentioned, one
should not expect load profiles based on data from the Navajo Nation
to serve as a reasonable estimate of load in rural Zambia. In partic-
ular, the tariffs charged for energy, willingness and ability to pay,
availability and types of appliances used, and general socio-
economic and environmental conditions all influence consumption.
The developed load profiles should only be used in similar contexts.
Second, the technology itself may influence load profiles. The
inverter and battery ratings impose an upper limit on consumption
and the shape of the load profile. Ideally, the load profile would
represent the unconstrained or true demand for electricity. This is
not the case when there are outages caused by energy shortages or
equipment malfunction. Including days where an outage occurs al-
ters the load profile—the consumption is zero during an outage—and
therefore does not represent the true demand. The average load
profile will be artificially lower during times prone to outages. On
the one hand, excluding outage days runs the risk of eliminating days
where consumption was perhaps higher than normal. In this paper,
outage days were excluded as they were infrequent in the homes
considered. It is less straightforward how to handle situations when
there are a high number of outages, for example more than 20 % of
the days. One approach would be to develop a separate load profile
for the outage days, and backfill the times when an outage occurs
with the load profile from days in which outages did not occur. Since
most energy-constrained outages occur late in the evening when the
load tends to be constant, an alternative approach would be to use
linear interpolation across the outage period.
Third, the scope of the data is important. At least one year of data
should be collected to capture seasonal variation. The minimum
sampling rate should be one hour as this is the resolution used by
most design software.
Fourth, when data from multiple homes are available, it is important
to identify prototypical load profiles as was done in this work before
any data aggregation. Engineering judgement is needed to determine
if differences exhibited in the prototypical load profiles identified by
the clustering technique are salient enough to warrant disaggrega-
tion of the data. Keep in mind that when several prototypical load
profiles are identified, the practical challenge of deciding which to
use in load estimation for a new home is introduced. Capturing de-
mographic and contextual information can help in this. For example,
if a certain prototypical load profile is found to primarily occur in
homes of retired elders, then it is reasonable to apply that load profile
to design an off-grid system for home occupied by retired elders.
Similarly, splitting the data temporally—bi-annually, seasonally,
monthly, and weekday/weekend—should be explored. This is
particularly important in locations with large seasonal variation in
insolation.
Lastly, the average or median values are generally not sufficient to
represent the load. As was shown in this data set, there can be wide
variation in load for any given hour of a load profile. Understanding

the extremes—especially high consumption levels—will lead to a
more appropriate system design.

Conclusions and future work

This research presented normalized load profiles and associated
statistical moments and probabilistic models derived from high-
resolution consumption data from 90 off-grid homes on the Navajo
Nation. The normalized load profile describes the average proportion of
a day’s total energy consumption that was consumed during each hour.
A K-means clustering approach identified five prototypical normalized
load profiles for each grouping of data: All Years, 2022, 2021, Winter,
Spring, Summer, Fall, Weekday, and Weekend. Despite some differences
in the prototypical load profiles, several common, general features
emerged: the load profiles almost all peaked near 18:00, and most had
low overnight that started to increase at approximately 6:00. Year-to-
year comparison showed that it was common for the load profiles of
the individual homes to change, albeit modestly, from one year to the
next. These load profiles support a data-driven approach to off-grid
energy production system design, and can directly be incorporated
into off-grid system design software such as HOMER Pro. Statistical
moments were computed for the load profiles, and variation that of
consumption that occurs within each hour was examined. Eight para-
metric distributions were evaluated for the suitableness in modeling this
variation. In general, the Log Normal and Gumbel were found to be the
best performing when evaluated by the Cramér-von Mises statistic. An
important conclusion is that the usual assumption of Normal variation
around the mean is not appropriate. The distributions exhibited a range
of p-values, and approximately 25 % passed a hypothesis test based on a
level of significance α = 0.20.

The data and analyses presented in this paper can enable further
research in the domain of off-grid system design and analysis. Future
research avenues include developing timeseries models of the load that
capture inter-hour relationships of consumption, and combing the load
profiles with solar data to evaluate the sizing of off-grid systems on the
Navajo Nation or similar locations, and aggregating the load profiles to
study the viability of minigrids vis-á-vis standalone off-grid systems. In
addition, further research is needed to explain why the load profiles
exhibit the characteristics described in this paper.

When considering the development of load profiles based on data, an
important open research question is the benefit gained by using highly
nuanced load profiles in the design phase. For example, what is lost by
using a single hourly load profile to represent an entire year versus
developing load profiles for each month or by accurately modeling the
variability? The more nuance and detail included increases the data
collection and processing burden that might not be offset by meaningful
improvements in design.
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Appendix A

Statistical quantities and best-fit distribution parameters are provided in the Appendix for prototype load profiles of selected groups of data. The
Groups included are the All Years, Winter, Summer, Weekday, and Weekend. The 2021 and 2022 Groups are not included as they were generally
similar; the Spring and Fall Groups are not included as it is the seasons with more extreme climate that are generally of interest in off-grid solar design.

Tables 6–10 provide the mean and standard deviation of the prototype load profiles for each hour of the selected Groups of data. Higher order
moments are generally not needed in off-grid design software, and so are excluded. Tables 11–20 provide the parameters of the best-fitting distribution
for each hour of each cluster for each of the selected Groups of data. The parameters are ordered as: location, scale, and shape parameters (for Beta
distributions, the shape parameters are ordered as a, b). Distributions whose corresponding p-values are greater than or equal to 0.20 are marked in
bold. Consult SciPy (Virtanen et al., 2020) for formulations of the distributions.

Table 6
Normalized load profiles for All Years Group.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

0 0.038 0.014 0.045 0.016 0.036 0.020 0.029 0.016 0.037 0.018
1 0.036 0.013 0.044 0.016 0.037 0.021 0.026 0.015 0.031 0.015
2 0.035 0.013 0.043 0.016 0.036 0.017 0.024 0.014 0.028 0.013
3 0.034 0.013 0.044 0.022 0.036 0.018 0.023 0.013 0.027 0.013
4 0.035 0.015 0.045 0.024 0.040 0.023 0.023 0.014 0.026 0.013
5 0.037 0.019 0.044 0.020 0.053 0.032 0.024 0.016 0.028 0.017
6 0.040 0.024 0.042 0.019 0.063 0.035 0.028 0.021 0.031 0.019
7 0.042 0.024 0.039 0.019 0.073 0.033 0.034 0.025 0.037 0.024
8 0.043 0.025 0.038 0.022 0.069 0.037 0.041 0.029 0.039 0.025
9 0.043 0.023 0.036 0.021 0.050 0.034 0.047 0.032 0.040 0.025
10 0.042 0.022 0.034 0.021 0.040 0.026 0.049 0.033 0.039 0.023
11 0.041 0.021 0.034 0.020 0.036 0.022 0.048 0.032 0.038 0.022
12 0.041 0.020 0.034 0.020 0.035 0.020 0.048 0.029 0.039 0.023
13 0.041 0.020 0.034 0.019 0.033 0.018 0.048 0.028 0.039 0.023
14 0.041 0.020 0.036 0.021 0.034 0.018 0.049 0.029 0.039 0.021
15 0.042 0.021 0.037 0.021 0.035 0.020 0.051 0.030 0.040 0.021
16 0.042 0.020 0.039 0.024 0.037 0.022 0.053 0.031 0.042 0.023
17 0.044 0.023 0.040 0.025 0.037 0.022 0.054 0.032 0.046 0.026
18 0.047 0.023 0.043 0.024 0.036 0.018 0.056 0.032 0.053 0.029
19 0.049 0.022 0.047 0.024 0.036 0.018 0.057 0.029 0.060 0.029
20 0.051 0.021 0.052 0.022 0.037 0.018 0.058 0.029 0.067 0.028
21 0.049 0.020 0.054 0.022 0.037 0.017 0.053 0.025 0.068 0.027
22 0.045 0.017 0.051 0.019 0.037 0.017 0.042 0.021 0.059 0.025
23 0.041 0.016 0.047 0.016 0.035 0.018 0.034 0.018 0.047 0.022

Table 7
Normalized load profiles for Summer Group.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

0 0.034 0.016 0.035 0.014 0.043 0.013 0.023 0.016 0.031 0.014
1 0.030 0.012 0.032 0.013 0.041 0.013 0.021 0.015 0.030 0.014
2 0.028 0.011 0.030 0.012 0.040 0.012 0.019 0.014 0.029 0.013
3 0.026 0.011 0.029 0.012 0.041 0.017 0.018 0.013 0.028 0.012
4 0.026 0.011 0.029 0.013 0.041 0.017 0.018 0.012 0.030 0.017
5 0.031 0.025 0.028 0.013 0.041 0.017 0.018 0.013 0.035 0.023
6 0.039 0.031 0.030 0.015 0.040 0.016 0.021 0.018 0.044 0.029
7 0.046 0.028 0.031 0.016 0.040 0.018 0.024 0.017 0.054 0.033
8 0.047 0.028 0.035 0.018 0.039 0.017 0.031 0.023 0.057 0.035
9 0.042 0.024 0.038 0.019 0.038 0.016 0.037 0.029 0.053 0.036
10 0.038 0.023 0.040 0.018 0.037 0.016 0.045 0.033 0.049 0.034
11 0.037 0.023 0.043 0.020 0.038 0.016 0.051 0.036 0.045 0.029
12 0.037 0.021 0.044 0.020 0.039 0.015 0.058 0.039 0.043 0.025
13 0.037 0.019 0.046 0.021 0.040 0.015 0.065 0.042 0.042 0.024

(continued on next page)
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Table 7 (continued )

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

14 0.038 0.020 0.047 0.021 0.040 0.016 0.071 0.042 0.042 0.024
15 0.039 0.019 0.049 0.022 0.041 0.016 0.078 0.045 0.042 0.023
16 0.042 0.021 0.051 0.024 0.042 0.016 0.078 0.048 0.043 0.025
17 0.047 0.026 0.053 0.028 0.044 0.017 0.076 0.050 0.044 0.027
18 0.052 0.027 0.055 0.029 0.044 0.017 0.065 0.050 0.045 0.025
19 0.059 0.029 0.055 0.026 0.045 0.016 0.049 0.035 0.045 0.024
20 0.067 0.028 0.057 0.023 0.047 0.016 0.040 0.026 0.049 0.025
21 0.066 0.027 0.055 0.022 0.048 0.016 0.036 0.022 0.046 0.022
22 0.053 0.023 0.048 0.019 0.046 0.014 0.032 0.021 0.040 0.018
23 0.041 0.021 0.040 0.016 0.044 0.014 0.027 0.019 0.035 0.018

Table 8
Normalized load profiles for Winter Group.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

0 0.037 0.020 0.039 0.016 0.045 0.018 0.029 0.020 0.034 0.014
1 0.030 0.016 0.037 0.015 0.042 0.017 0.026 0.019 0.031 0.013
2 0.026 0.013 0.036 0.015 0.041 0.017 0.022 0.014 0.030 0.014
3 0.024 0.012 0.034 0.013 0.039 0.018 0.022 0.014 0.030 0.013
4 0.023 0.012 0.035 0.015 0.038 0.016 0.022 0.015 0.030 0.016
5 0.023 0.012 0.038 0.020 0.037 0.017 0.024 0.023 0.032 0.017
6 0.023 0.014 0.041 0.023 0.040 0.021 0.025 0.020 0.037 0.022
7 0.026 0.019 0.043 0.023 0.040 0.024 0.030 0.027 0.047 0.028
8 0.033 0.024 0.043 0.022 0.040 0.026 0.040 0.036 0.052 0.031
9 0.042 0.027 0.043 0.024 0.039 0.025 0.052 0.038 0.049 0.028
10 0.043 0.025 0.040 0.021 0.037 0.024 0.061 0.047 0.045 0.026
11 0.042 0.024 0.040 0.020 0.036 0.026 0.058 0.045 0.040 0.022
12 0.042 0.024 0.040 0.021 0.036 0.028 0.052 0.038 0.039 0.022
13 0.042 0.025 0.039 0.020 0.036 0.026 0.050 0.033 0.039 0.022
14 0.041 0.023 0.040 0.021 0.036 0.025 0.047 0.035 0.038 0.021
15 0.042 0.022 0.040 0.022 0.037 0.023 0.048 0.030 0.039 0.022
16 0.044 0.025 0.041 0.020 0.037 0.032 0.049 0.034 0.039 0.021
17 0.047 0.026 0.042 0.025 0.039 0.030 0.050 0.034 0.042 0.024
18 0.054 0.028 0.045 0.025 0.042 0.023 0.052 0.038 0.049 0.025
19 0.065 0.029 0.051 0.024 0.052 0.025 0.057 0.036 0.057 0.025
20 0.072 0.029 0.053 0.023 0.056 0.025 0.056 0.033 0.059 0.024
21 0.070 0.027 0.050 0.021 0.056 0.022 0.049 0.026 0.056 0.022
22 0.061 0.027 0.047 0.018 0.052 0.021 0.043 0.024 0.048 0.020
23 0.048 0.024 0.042 0.017 0.048 0.021 0.036 0.022 0.039 0.017

Table 9
Normalized load profiles for Weekday Group.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

0 0.038 0.014 0.037 0.019 0.029 0.015 0.045 0.016 0.035 0.020
1 0.036 0.013 0.031 0.015 0.026 0.014 0.044 0.017 0.036 0.021
2 0.035 0.013 0.028 0.013 0.024 0.013 0.043 0.016 0.036 0.017
3 0.034 0.013 0.027 0.013 0.023 0.013 0.045 0.023 0.036 0.018
4 0.035 0.016 0.027 0.014 0.023 0.014 0.046 0.025 0.040 0.023
5 0.037 0.020 0.029 0.018 0.025 0.017 0.045 0.021 0.052 0.032
6 0.041 0.024 0.031 0.020 0.029 0.023 0.042 0.019 0.064 0.035
7 0.043 0.025 0.037 0.025 0.035 0.026 0.039 0.019 0.073 0.034
8 0.043 0.024 0.039 0.025 0.042 0.029 0.038 0.022 0.070 0.038
9 0.042 0.023 0.038 0.024 0.047 0.031 0.035 0.020 0.051 0.034
10 0.041 0.021 0.037 0.022 0.048 0.032 0.034 0.020 0.040 0.026
11 0.040 0.020 0.037 0.021 0.047 0.033 0.033 0.020 0.037 0.023
12 0.040 0.020 0.038 0.022 0.046 0.028 0.033 0.020 0.035 0.020
13 0.041 0.020 0.037 0.022 0.047 0.027 0.033 0.018 0.033 0.018
14 0.041 0.020 0.037 0.021 0.048 0.027 0.035 0.020 0.033 0.017
15 0.041 0.020 0.039 0.021 0.050 0.028 0.036 0.020 0.036 0.021
16 0.042 0.020 0.041 0.023 0.052 0.030 0.038 0.024 0.038 0.024
17 0.044 0.024 0.046 0.027 0.054 0.032 0.040 0.023 0.036 0.020
18 0.047 0.023 0.054 0.031 0.056 0.031 0.043 0.024 0.037 0.018
19 0.050 0.022 0.062 0.031 0.059 0.029 0.047 0.025 0.036 0.017

(continued on next page)
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Table 9 (continued )

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

20 0.052 0.021 0.069 0.029 0.059 0.028 0.052 0.023 0.037 0.017
21 0.050 0.019 0.070 0.027 0.054 0.025 0.054 0.022 0.038 0.017
22 0.045 0.017 0.060 0.026 0.043 0.021 0.051 0.019 0.037 0.017
23 0.041 0.015 0.048 0.023 0.034 0.017 0.047 0.017 0.034 0.018

Table 10
Normalized load profiles for Weekend Group.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

0 0.041 0.015 0.034 0.015 0.030 0.016 0.038 0.018 0.030 0.008
1 0.040 0.014 0.033 0.015 0.027 0.015 0.033 0.015 0.029 0.008
2 0.039 0.014 0.031 0.014 0.025 0.014 0.030 0.014 0.029 0.007
3 0.039 0.015 0.030 0.014 0.023 0.013 0.028 0.013 0.030 0.011
4 0.039 0.017 0.029 0.014 0.023 0.013 0.027 0.013 0.035 0.021
5 0.040 0.018 0.029 0.014 0.022 0.012 0.028 0.015 0.055 0.036
6 0.042 0.021 0.032 0.020 0.024 0.015 0.031 0.023 0.066 0.038
7 0.042 0.022 0.038 0.025 0.028 0.020 0.035 0.023 0.070 0.027
8 0.042 0.023 0.047 0.031 0.036 0.024 0.039 0.027 0.068 0.031
9 0.040 0.021 0.054 0.034 0.045 0.030 0.040 0.024 0.059 0.032
10 0.038 0.019 0.054 0.037 0.048 0.029 0.040 0.022 0.047 0.024
11 0.038 0.018 0.050 0.032 0.048 0.026 0.039 0.021 0.039 0.021
12 0.039 0.020 0.047 0.030 0.049 0.028 0.041 0.022 0.035 0.012
13 0.039 0.020 0.044 0.027 0.051 0.030 0.041 0.022 0.035 0.013
14 0.040 0.020 0.045 0.029 0.053 0.031 0.042 0.020 0.036 0.013
15 0.040 0.020 0.044 0.027 0.055 0.031 0.041 0.021 0.035 0.012
16 0.042 0.022 0.044 0.025 0.055 0.030 0.043 0.022 0.035 0.012
17 0.043 0.025 0.045 0.025 0.057 0.031 0.046 0.023 0.038 0.017
18 0.044 0.022 0.046 0.026 0.055 0.033 0.049 0.025 0.038 0.014
19 0.046 0.020 0.049 0.025 0.056 0.025 0.055 0.027 0.039 0.014
20 0.049 0.020 0.050 0.025 0.056 0.028 0.063 0.027 0.039 0.013
21 0.049 0.019 0.048 0.023 0.053 0.025 0.065 0.027 0.041 0.016
22 0.046 0.017 0.041 0.017 0.045 0.022 0.058 0.023 0.039 0.012
23 0.043 0.015 0.037 0.017 0.036 0.019 0.047 0.022 0.033 0.012

Table 11
Best fit parameters for All Years Group.

Cluster 2 Cluster 3

Time Dist. Parameters Dist. Parameters

0 LogN −0.024, 0.0670, 0.224 LogN 0.005, 0.0273, 0.539
1 LogN −0.021, 0.0625, 0.240 LogN 0.003, 0.0299, 0.505
2 LogN −0.024, 0.0651, 0.228 LogN −0.003, 0.0363, 0.426
3 Gum. 0.036, 0.0138 LogN −0.004, 0.0370, 0.416
4 Gum. 0.036, 0.0142 LogN −0.004, 0.0395, 0.478
5 Gum. 0.036, 0.0140 Gam. 0.000, 0.0182, 2.896
6 Gum. 0.034, 0.0136 Weibull 0.000, 0.0710, 1.912
7 Gum. 0.031, 0.0134 LogN −0.070, 0.1392, 0.227
8 Gum. 0.030, 0.0137 Beta −0.003, 7.8767, 3.827, 415
9 Gum. 0.028, 0.0139 LogN −0.004, 0.0454, 0.611
10 Gum. 0.026, 0.0134 LogN −0.004, 0.0384, 0.540
11 Gum. 0.026, 0.0134 LogN −0.004, 0.0358, 0.473
12 Gum. 0.026, 0.0138 LogN −0.002, 0.0333, 0.462
13 Gum. 0.026, 0.0136 Gum. 0.026, 0.0120
14 Gum. 0.027, 0.0142 Gum. 0.027, 0.0123
15 Gum. 0.028, 0.0143 Gum. 0.027, 0.0131
16 Gum. 0.030, 0.0151 LogN −0.005, 0.0380, 0.442
17 Gum. 0.031, 0.0159 Gum. 0.028, 0.0137
18 Gum. 0.034, 0.0158 Gum. 0.028, 0.0134
19 Gum. 0.037, 0.0165 Gum. 0.029, 0.0130
20 Gum. 0.042, 0.0171 Gum. 0.029, 0.0129
21 LogN −0.019, 0.0705, 0.276 Gum. 0.030, 0.0128
22 LogN −0.022, 0.0704, 0.247 Gum. 0.030, 0.0119
23 Beta −0.008, 2.8437, 11.43, 582 LogN 0.004, 0.0271, 0.505

H. Louie et al. Energy for Sustainable Development 83 (2024) 101572 

13 



Table 12
Best fit parameters for All Years continued.

Cluster 4 Cluster 5

Time Dist. Parameters Dist. Parameters

0 LogN −0.010, 0.0365, 0.386 LogN −0.006, 0.0396, 0.404
1 LogN −0.009, 0.0333, 0.389 Gum. 0.025, 0.0112
2 Gum. 0.019, 0.0102 Gum. 0.022, 0.0101
3 Gum. 0.018, 0.0096 Gum. 0.021, 0.0095
4 Gum. 0.017, 0.0098 Gum. 0.021, 0.0096
5 LogN −0.005, 0.0257, 0.480 Gum. 0.021, 0.0107
6 LogN −0.002, 0.0252, 0.600 LogN −0.003, 0.0300, 0.500
7 LogN −0.003, 0.0307, 0.614 LogN −0.004, 0.0348, 0.542
8 LogN −0.005, 0.0399, 0.585 LogN −0.006, 0.0390, 0.514
9 LogN −0.008, 0.0480, 0.519 Gum. 0.029, 0.0169
10 LogN −0.008, 0.0494, 0.507 Gum. 0.029, 0.0162
11 Gum. 0.035, 0.0206 Gum. 0.029, 0.0157
12 Gum. 0.036, 0.0198 Gum. 0.029, 0.0157
13 Gum. 0.036, 0.0199 Gum. 0.030, 0.0155
14 Gum. 0.037, 0.0202 Gum. 0.030, 0.0154
15 Gum. 0.038, 0.0209 Gum. 0.031, 0.0156
16 Gum. 0.040, 0.0215 Gum. 0.032, 0.0165
17 Gum. 0.041, 0.0223 Gum. 0.036, 0.0181
18 Gum. 0.043, 0.0226 LogN −0.012, 0.0600, 0.400
19 LogN −0.034, 0.0872, 0.304 Gum. 0.047, 0.0224
20 LogN −0.041, 0.0953, 0.278 LogN −0.048, 0.112, 0.242
21 Beta −0.034, 5.14, 12.324721 LogN −0.064, 0.130, 0.200
22 Beta −0.008, 6.88, 5.529757 Beta −0.015, 4.69, 9.00, 559
23 Beta −0.002, 7.4202, 3.986824 Gam. 0.000, 0.0102, 4.617

Table 13
Best fit parameters for Summer Group.

Cluster 1 Cluster 2 Cluster 3

Time Dist. Parameters Dist. Parameters Dist. Parameters

0 Gum. 0.027, 0.011 Beta −0.003, 4.654, 7.170, 871 LogN −0.010, 0.051, 0.242
1 Gum. 0.024, 0.009 Beta −0.001, 4.611, 6.868, 937 LogN −0.013, 0.053, 0.222
2 Gum. 0.023, 0.008 Beta −0.002, 2.477, 7.029, 528 LogN −0.015, 0.054, 0.215
3 Gum. 0.022, 0.008 LogN −0.013, 0.040, 0.286 Gum. 0.035, 0.011
4 Gum. 0.021, 0.008 LogN −0.014, 0.041, 0.290 Gum. 0.035, 0.011
5 LogN 0.004, 0.022, 0.601 Gum. 0.023, 0.010 Gum. 0.034, 0.011
6 LogN 0.005, 0.027, 0.673 Gum. 0.024, 0.011 Gum. 0.033, 0.011
7 LogN 0.001, 0.038, 0.575 Gum. 0.025, 0.012 Gum. 0.033, 0.012
8 LogN −0.002, 0.042, 0.530 Gum. 0.027, 0.013 Gum. 0.032, 0.012
9 LogN −0.004, 0.041, 0.492 LogN −0.017, 0.052, 0.323 Gum. 0.031, 0.012
10 LogN −0.002, 0.035, 0.518 LogN −0.033, 0.070, 0.251 LogN −0.014, 0.050, 0.267
11 LogN −0.001, 0.033, 0.525 Beta −0.009, 4.793, 7.279668 LogN −0.017, 0.053, 0.257
12 LogN −0.003, 0.036, 0.460 LogN −0.033, 0.075, 0.245 LogN −0.020, 0.057, 0.240
13 LogN −0.005, 0.038, 0.426 LogN −0.026, 0.070, 0.274 LogN −0.027, 0.065, 0.211
14 LogN −0.004, 0.038, 0.429 LogN −0.026, 0.070, 0.276 LogN −0.024, 0.063, 0.224
15 LogN −0.004, 0.039, 0.427 LogN −0.027, 0.073, 0.273 LogN −0.024, 0.064, 0.226
16 LogN −0.005, 0.043, 0.420 Gum. 0.040, 0.018 LogN −0.021, 0.062, 0.240
17 Beta 0.006, 9.200, 3.002, 671 Gum. 0.042, 0.019 LogN −0.017, 0.059, 0.263
18 Gam. 0.005, 0.014, 3.339 Gum. 0.044, 0.020 LogN −0.014, 0.056, 0.268
19 Gum. 0.046, 0.021 Gum. 0.044, 0.019 LogN −0.016, 0.059, 0.248
20 LogN −0.035, 0.098, 0.267 LogN −0.030, 0.084, 0.254 LogN −0.020, 0.066, 0.226
21 Beta −0.004, 7.234, 7.074, 725 LogN −0.031, 0.083, 0.244 LogN −0.022, 0.069, 0.218
22 LogN −0.014, 0.063, 0.337 LogN −0.032, 0.078, 0.230 LogN −0.018, 0.062, 0.214
23 LogN −0.001, 0.038, 0.445 LogN −0.019, 0.057, 0.267 LogN −0.014, 0.057, 0.227
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Table 14
Best fit parameters for Summer Group continued.

Cluster 4 Cluster 5

Time Dist. Parameters Dist. Parameters

0 LogN −0.002, 0.021, 0.639 Gum. 0.025, 0.011
1 LogN −0.002, 0.019, 0.637 Gum. 0.024, 0.010
2 LogN −0.001, 0.016, 0.668 Gum. 0.023, 0.010
3 Gam. 0.001, 0.009, 1.826 LogN −0.010, 0.036, 0.312
4 Gam. 0.001, 0.009, 1.761 Gum. 0.023, 0.011
5 Gam. 0.001, 0.010, 1.733 LogN 0.001, 0.028, 0.599
6 Gam. 0.001, 0.012, 1.618 LogN −0.001, 0.037, 0.633
7 Beta 0.000, 8.15, 2.012, 694 Gam. 0.002, 0.022, 2.363
8 Beta 0.001, 17.3, 1.657, 971 LogN −0.003, 0.051, 0.566
9 Gam. 0.002, 0.023, 1.557 LogN 0.006, 0.037, 0.690
10 Beta 0.001, 23.3, 1.707, 897 LogN 0.004, 0.037, 0.635
11 Naka. 0.004, 0.059, 0.535 LogN 0.001, 0.037, 0.562
12 Naka. 0.004, 0.067, 0.569 LogN −0.001, 0.039, 0.502
13 Naka. 0.003, 0.075, 0.663 LogN −0.001, 0.038, 0.493
14 Weibull 0.002, 0.076, 1.687 LogN −0.003, 0.040, 0.461
15 Weibull 0.005, 0.081, 1.637 LogN −0.001, 0.038, 0.476
16 Weibull 0.002, 0.085, 1.660 LogN 0.000, 0.039, 0.492
17 Beta −0.003, 30.8, 2.542, 989 LogN 0.000, 0.039, 0.498
18 Gam. 0.000, 0.036, 1.782 Gum. 0.035, 0.017
19 Gum. 0.034, 0.025 Gum. 0.035, 0.017
20 Gum. 0.029, 0.019 Gum. 0.038, 0.018
21 Beta −0.004, 12.1, 3.19, 949 LogN −0.019, 0.061, 0.318
22 Gam. 0.000, 0.014, 2.30 LogN −0.016, 0.053, 0.308
23 Beta 0.000, 4.493, 2.004, 338 Gum. 0.028, 0.012

Table 15
Best fit parameters for Winter Group.

Cluster 1 Cluster 2 Cluster 3

Time Dist. Parameters Dist. Parameters Dist. Parameters

0 Beta 0.003, 9.58, 2.84, 798 LogN −0.023, 0.060, 0.246 LogN −0.037, 0.080, 0.207
1 LogN −0.005, 0.032, 0.448 LogN −0.029, 0.064, 0.214, LogN −0.045, 0.086, 0.187
2 LogN −0.006, 0.030, 0.390 LogN −0.029, 0.063, 0.216, Norm. 0.041, 0.017
3 Gum. 0.018, 0.009 Beta −0.018, 3.278, 15.2, 941 Beta −0.014, 4.75, 10.4, 922
4 Gum. 0.018, 0.009 LogN −0.020, 0.054, 0.259, Norm. 0.038, 0.016
5 Gum. 0.017, 0.009 Gum. 0.030, 0.014, LogN −0.031, 0.066, 0.244
6 Gum. 0.017, 0.010 Gum. 0.032, 0.015, Gum. 0.031, 0.015
7 LogN −0.004, 0.026, 0.545 Gum. 0.034, 0.016, Gum. 0.031, 0.016
8 Gam. 0.001, 0.015, 2.235 Gum. 0.034, 0.015, Gum. 0.030, 0.016
9 Gam. 0.001, 0.017, 2.383 Gum. 0.034, 0.015 Gum. 0.029, 0.016
10 Gum. 0.033, 0.018 Gum. 0.032, 0.014 Gum. 0.027, 0.016
11 Gum. 0.032, 0.018 Gum. 0.032, 0.014 Gum. 0.026, 0.015
12 Gum. 0.032, 0.017 Gum. 0.032, 0.014 Gum. 0.026, 0.016
13 Gum. 0.032, 0.017 Gum. 0.032, 0.014 Gum. 0.026, 0.015
14 Beta 0.000, 5.411, 3.430, 453 Gum. 0.032, 0.014, Gum. 0.027, 0.015
15 Rayleigh 0.001, 0.033 Gum. 0.032, 0.015, Gum. 0.027, 0.015
16 Gum. 0.033, 0.019 LogN −0.021, 0.059, 0.289, Gum. 0.027, 0.016
17 Gum. 0.035, 0.020 Gum. 0.034, 0.015, LogN −0.004, 0.037, 0.526
18 LogN −0.028, 0.078, 0.327 Gum. 0.036, 0.016, Gum. 0.032, 0.017
19 LogN −0.083, 0.146, 0.192 Gum. 0.041, 0.017, LogN −0.031, 0.079, 0.293
20 LogN −0.092, 0.162, 0.171 Gum. 0.042, 0.017, LogN −0.043, 0.097, 0.236
21 LogN −0.092, 0.160, 0.163 Gum. 0.041, 0.016, LogN −0.041, 0.095, 0.226
22 LogN −0.071, 0.129, 0.200 Gum. 0.039, 0.015, LogN −0.037, 0.087, 0.232
23 Naka. 0.004, 0.050, 0.942 LogN −0.021, 0.061, LogN −0.026, 0.072, 0.262
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Table 16
Best fit parameters for Winter Group continued.

Cluster 4 Cluster 5

Time Dist. Parameters Dist. Parameters

0 Gum. 0.021, 0.013 LogN −0.016, 0.049, 0.266
1 Gum. 0.019, 0.011 LogN −0.021, 0.051, 0.233
2 Gum. 0.016, 0.010 LogN −0.020, 0.049, 0.246
3 Gum. 0.016, 0.010, LogN −0.022, 0.050, 0.245
4 Gum. 0.016, 0.010, LogN −0.014, 0.043, 0.300
5 LogN −0.002, 0.022, 0.615 Gum. 0.025, 0.012
6 LogN −0.003, 0.023, 0.596 Gum. 0.028, 0.014
7 LogN −0.002, 0.024, 0.743 LogN −0.008, 0.049, 0.467
8 Gamma 0.000, 0.025, 1.607 LogN −0.008, 0.053, 0.471
9 Gum. 0.036, 0.025 LogN −0.009, 0.053, 0.440
10 Gum. 0.043, 0.029 LogN −0.007, 0.046, 0.460
11 Gum. 0.041, 0.026 Gum. 0.031, 0.015
12 Gum. 0.037, 0.024 Gum. 0.030, 0.015
13 Gum. 0.036, 0.022 Gum. 0.030, 0.015
14 Gum. 0.034, 0.022 Gum. 0.029, 0.014
15 Gum. 0.035, 0.022 Gum. 0.030, 0.015
16 Gum. 0.035, 0.022 Gum. 0.031, 0.015
17 Gum. 0.036, 0.023 Gum. 0.032, 0.017
18 Gum. 0.038, 0.023 Gum. 0.038, 0.019
19 Gum. 0.043, 0.025 LogN −0.025, 0.079, 0.289
20 Ray. −0.003, 0.048 LogN −0.034, 0.090, 0.248
21 Norm. 0.049, 0.026 LogN −0.030, 0.083, 0.251
22 Ray. −0.002, 0.037 Gum. 0.039, 0.015
23 Gum. 0.026, 0.017 Gum. 0.032, 0.013

Table 17
Best fit parameters for Weekday Group.

Cluster 1 Cluster 2 Cluster 3

Time Dist. Parameters Dist. Parameters Dist. Parameters

0 LogN −0.023, 0.060, 0.215 LogN −0.005, 0.038, 0.426 LogN −0.011, 0.037, 0.375
1 LogN −0.033, 0.068, 0.179 LogN −0.006, 0.035, 0.393 Gum. 0.020, 0.011
2 Beta −0.011, 2.404, 13.604, 692 LogN −0.010, 0.036, 0.338 Gum. 0.019, 0.010
3 LogN −0.031, 0.064, 0.188 Gum. 0.021, 0.010 Gum. 0.018, 0.009
4 LogN −0.013, 0.046, 0.296 Gum. 0.021, 0.010 Gum. 0.018, 0.010
5 Gum. 0.030, 0.013 LogN −0.003, 0.028, 0.483 LogN −0.004, 0.025, 0.492
6 Gum. 0.032, 0.014 LogN −0.004, 0.031, 0.503 LogN −0.002, 0.026, 0.613
7 Gum. 0.033, 0.015 LogN −0.003, 0.034, 0.563 LogN −0.004, 0.033, 0.606
8 LogN −0.005, 0.043, 0.429 LogN −0.004, 0.037, 0.535 LogN −0.007, 0.042, 0.544
9 Gum. 0.033, 0.015 Gum. 0.028, 0.016 LogN −0.008, 0.048, 0.505
10 Gum. 0.033, 0.014 Gum. 0.028, 0.016 LogN −0.007, 0.048, 0.511
11 Gum. 0.032, 0.014 Gum. 0.028, 0.015 Gum. 0.034, 0.020
12 Gum. 0.032, 0.014 Gum. 0.029, 0.015 Gum. 0.035, 0.019
13 Gum. 0.033, 0.014 Gum. 0.028, 0.015 Gum. 0.036, 0.020
14 Gum. 0.033, 0.014 Gum. 0.028, 0.015 Gum. 0.036, 0.020
15 Gum. 0.033, 0.014 Gum. 0.030, 0.015 Gum. 0.037, 0.020
16 Gum. 0.034, 0.015 Gum. 0.031, 0.017 Gum. 0.039, 0.021
17 Gum. 0.035, 0.015 Gum. 0.035, 0.018 Gum. 0.041, 0.022
18 Gum. 0.038, 0.016 Gum. 0.041, 0.021 Gum. 0.043, 0.023
19 Gum. 0.041, 0.016 Gum. 0.049, 0.023 LogN −0.045, 0.101, 0.268
20 Gum. 0.042, 0.016 Beta −0.013, 8.809, 8.106, 864 LogN −0.054, 0.110, 0.240
21 Gum. 0.041, 0.015 Beta −0.020, 6.794, 10.62, 799 LogN −0.076, 0.128, 0.188
22 LogN −0.016, 0.059, 0.265 LogN −0.040, 0.097, 0.250 Naka. 0.000, 0.048, 1.132
23 LogN −0.020, 0.059, 0.236 Gam. 0.000, 0.011, 4.397 Beta −0.004, 4.716, 4.763, 592
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Table 18
Best fit parameters for Weekday Group continued.

Cluster 4 Cluster 5

Time Dist. Parameters Dist. Parameters

0 LogN −0.025, 0.067, 0.223–8888 LogN 0.003, 0.028, 0.503
1 LogN −0.002, 0.019, 0.637 LogN 0.002, 0.030, 0.499
2 LogN −0.001, 0.016, 0.668 LogN −0.004, 0.037, 0.414
3 Gam. 0.001, 0.009, 1.826 LogN −0.004, 0.037, 0.419
4 Gam. 0.001, 0.009, 1.761 LogN −0.003, 0.038, 0.499
5 Gam. 0.001, 0.010, 1.733 LogN −0.005, 0.050, 0.552
6 Gam. 0.001, 0.012, 1.618 Weibull 0.000, 0.072, 1.932
7 Beta 0.000, 8.15, 2.012, 694 Beta −0.021, 9.902, 7.571, 788
8 Beta 0.001, 17.3, 1.657, 971 Beta 0.001, 13.785, 3.256, 647
9 Gam. 0.002, 0.023, 1.557 LogN −0.002, 0.043, 0.642
10 Beta 0.001, 23.3, 1.707, 897 LogN −0.003, 0.037, 0.553
11 Naka. 0.004, 0.059, 0.535 LogN −0.003, 0.035, 0.486
12 Naka. 0.004, 0.067, 0.569 LogN −0.002, 0.033, 0.469
13 Naka. 0.003, 0.075, 0.663 Gum. 0.026, 0.012
14 Weibull 0.002, 0.076, 1.687 Gum. 0.026, 0.012
15 Weibull 0.005, 0.081, 1.637 Gum. 0.027, 0.013
16 Weibull 0.002, 0.085, 1.660 LogN −0.004, 0.037, 0.468
17 Beta −0.003, 30.8, 2.542, 989 Gum. 0.028, 0.013
18 Gam. 0.000, 0.036, 1.782 Gum. 0.029, 0.013
19 Gum. 0.034, 0.025, Gum. 0.028, 0.013
20 Gum. 0.029, 0.019, Gum. 0.029, 0.013
21 Beta −0.004, 12.1, 3.19, 949 Gum. 0.030, 0.013
22 Gam. 0.000, 0.014, 2.30 Gum. 0.030, 0.012
23 Beta 0.000, 4.493, 2.004, 338 LogN 0.004, 0.027, 0.505

Table 19
Best fit parameters for Weekend Group.

Cluster 1 Cluster 2 Cluster 3

Time Dist. Parameters Dist. Parameters Dist. Parameters

0 LogN −0.016, 0.056, 0.244 LogN −0.039, 0.072, 0.200 Gam. 0.000, 0.009, 3.477
1 LogN −0.017, 0.056 0.237 LogN −0.032, 0.063, 0.221 Gam. 0.000, 0.008, 3.273
2 Beta −0.002, 1.98 8.95, 417 LogN −0.027, 0.056, 0.238 Gum. 0.019, 0.010
3 LogN −0.013, 0.050 0.265 LogN −0.027, 0.055, 0.241 LogN −0.009, 0.030, 0.372
4 Gum. 0.032, 0.012 LogN −0.023, 0.051, 0.266 LogN −0.008, 0.028, 0.399
5 Gum. 0.033, 0.013 Naka. 0.001, 0.031, 1.111 LogN −0.008, 0.028, 0.401
6 Gum. 0.033, 0.014 Gum. 0.024, 0.013 LogN −0.003, 0.024, 0.501
7 Gum. 0.034, 0.014 Gum. 0.028, 0.016 LogN −0.003, 0.027, 0.562
8 Gum. 0.033, 0.014 LogN −0.007, 0.047, 0.500 LogN −0.006, 0.037, 0.525
9 Gum. 0.032, 0.014 LogN −0.008, 0.055, 0.495 Gum. 0.033, 0.020
10 Gum. 0.031, 0.013 LogN −0.003, 0.049, 0.554 Gum. 0.036, 0.020
11 LogN −0.017, 0.053 0.296 LogN −0.005, 0.048, 0.504 Gum. 0.037, 0.020
12 Gum. 0.031, 0.014 Gum. 0.035, 0.019 Gum. 0.037, 0.020
13 Gum. 0.031, 0.014 Gum. 0.033, 0.018 Gum. 0.039, 0.021
14 Gum. 0.032, 0.014 Gum. 0.034, 0.018 Gum. 0.040, 0.021
15 Gum. 0.032, 0.014 Gum. 0.034, 0.018 Gum. 0.042, 0.022
16 Gum. 0.033, 0.015 Gum. 0.033, 0.017 Gum. 0.043, 0.021
17 Gum. 0.034, 0.015 Gum. 0.034, 0.018 Gum. 0.043, 0.022
18 Gum. 0.035, 0.015 Gum. 0.036, 0.018 Gum. 0.042, 0.022
19 LogN −0.020, 0.064 0.279 Gum. 0.038, 0.019 LogN −0.061, 0.114, 0.213
20 LogN −0.023, 0.069 0.259 Gum. 0.039, 0.019 LogN −0.042, 0.095, 0.269
21 LogN −0.020, 0.067 0.258 Beta −0.010, 6.662, 6.662767 Beta −0.024, 6.979, 9.652, 868
22 LogN −0.020, 0.064 0.239 Beta −0.021, 3.195, 12.797644 LogN −0.031, 0.073, 0.284
23 LogN −0.017, 0.059 0.237 LogN −0.027, 0.062, 0.258 Weibull 0.001, 0.039, 1.904
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Table 20
Best fit parameters for Weekend Group continued.

Cluster 4 Cluster 5

Time Dist. Parameters Dist. Parameters

0 Gum. 0.030, 0.013 LogN −0.005, 0.033, 0.218
1 Gum. 0.026, 0.011 Gum. 0.026, 0.006
2 Gum. 0.024, 0.010 LogN −0.009, 0.037, 0.180
3 LogN −0.011, 0.037, 0.310 Gum. 0.026, 0.007
4 Gum. 0.022, 0.010 LogN 0.012, 0.018, 0.690
5 Gum. 0.022, 0.011 LogN 0.012, 0.030, 0.858
6 LogN −0.003, 0.030, 0.496 Weibull 0.013, 0.058, 1.417
7 LogN −0.006, 0.036, 0.487 Norm. 0.070, 0.027
8 LogN −0.006, 0.039, 0.517 Weibull 0.024, 0.049, 1.479
9 Gum. 0.030, 0.016 LogN −0.003, 0.056, 0.479
10 Gum. 0.031, 0.016 LogN −0.002, 0.044, 0.432
11 Gum. 0.030, 0.015 Gum. 0.032, 0.011
12 Gum. 0.031, 0.016 Gum. 0.030, 0.009
13 Gum. 0.032, 0.015 Gum. 0.030, 0.010
14 Gum. 0.033, 0.015 Gum. 0.030, 0.010
15 Gum. 0.033, 0.015 Gum. 0.030, 0.009
16 Gum. 0.034, 0.016 Gum. 0.029, 0.009
17 Gum. 0.036, 0.017 Gum. 0.031, 0.011
18 Gum. 0.038, 0.018 Gum. 0.031, 0.011
19 Gum. 0.044, 0.020 Gum. 0.033, 0.011
20 Gum. 0.050, 0.022 Gum. 0.033, 0.011
21 LogN −0.037, 0.099, 0.251 Gum. 0.034, 0.011
22 LogN −0.048, 0.104, 0.215 LogN −0.004, 0.041, 0.270
23 Gum. 0.038, 0.017 Gum. 0.028, 0.008
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