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VARIABLE TIME STEP METHOD OF DAHLQUIST, LINIGER
AND NEVANLINNA (DLN) FOR A CORRECTED
SMAGORINSKY MODEL

FARJANA SIDDIQUA AND WENLONG PET*

Abstract. Turbulent flows strain resources, both memory and CPU speed. A family of second-
order, G-stable time-stepping methods proposed by Dahlquist, Liniger, and Nevanlinna (the DLN
method) has great accuracy and allows large time steps, requiring less memory and fewer FLOPS.
The DLN method can also be implemented adaptively. The classical Smagorinsky model, as an
effective way to approximate a resolved mean velocity, has recently been corrected to represent
a flow of energy from unresolved fluctuations to the resolved mean velocity. In this paper, we
apply the DLN method to one corrected Smagorinsky model and provide a detailed numerical
analysis of the stability and consistency. We prove that the numerical solutions under arbitrary
time step sequences are unconditionally stable in the long term and converge in second order.
We also provide error estimates under certain time-step conditions. Numerical tests are given
to confirm the rate of convergence and also to show that the adaptive DLN algorithm helps to
control numerical dissipation so that a flow of energy from unresolved fluctuations to the resolved
mean velocity is visible.

Key words. Eddy viscosity, corrected Smagorinsky model, complex turbulence, backscatter, the
DLN method, G-stability, variable time-stepping.

1. Introduction

Herein we give an analysis of the method of Dahlquist, Liniger, and Nevanlinna
[19] (the DLN method) for the corrected Smagorinsky model (CSM henceforth) [59]
with variable time steps. Time adaptivity (adjusting time steps based on certain
criteria) is an effective way to balance accuracy and time efficiency.

Eddy viscosity (EV) models are the most common approaches to depict the aver-
age turbulent flow of Navier-Stokes equations (NSE). Various eddy viscosity models
in practical settings are proposed for analytical and numerical study [4,21,22,28,29].
In large eddy simulation (LES), backscatter is the study and measurement of the
energy transfer process from small, unresolved turbulent scales to large, resolved
scales in a computational fluid dynamics (CFD) simulation. Unfortunately, most
EV models have difficulties in simulating backscatter or complex turbulent flow not
at statistical equilibrium due to the neglect of the intermittent energy flow from
fluctuations back to means. To overcome this defect, Jiang and Layton [33] derive
a new eddy viscosity model from an equation describing the evolution of variance in
a turbulent flow. Rong, Layton, and Zhao [57] extended the usual Baldwin-Lomax
model so that the new model can account for statistical backscatter' without artifi-
cial negative viscosities. Recently, Siddiqua and Xie [59] have corrected the classical
Smagorinsky model [60] with no new fitting parameters to reflect a flow of energy
from unresolved fluctuations to means in the CSM. Most recently, Dai, Liu, Liu,
Jiang, and Chen [18] proposed a new dynamic Smagorinsky model by an artificial
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880 F. SIDDIQUA AND W. PEI

neural network for the prediction of outdoor airflow and pollutant dispersion. In the
report, we give a detailed numerical analysis of the CSM [59] under arbitrary non-
uniform time grids. Given bounded flow domain Q C R? (d = 2,3), time interval
[0,T], and the prescribed body force f(x,t), the pair (w(x,t),q(z,t)) approximate
an ensemble average pair of velocity and pressure of Navier-Stokes solutions (u, D)
and is governed by the following system

(1)

we— ngzAwt—l—w-Vw—qu—V- (Cs0)2|Vw|Vw) =f, (z,t)€Q2x(0,T]
V-w=0, (x,t) €% (0,T]
w(x,()):wg(x), el )
w(z,t)=0, (x,t) €00 x(0,T]
/ p(z,t)dr =0, te (0,7

Q

This is an eddy viscosity model. Constant Cs = 0.1 is suggested by Lilly [42]. ¢
is a length scale (or grid-scale) and u is a constant from Kolmogorov-Prandtl re-
lation [38,54]. v is the kinematic viscosity and vy = (C,s6)%|Vw| is the turbulent

viscosity. || is the Euclidian norm on R%. The viscous term V-((C,0)?|Vw|Vw) in
(1) comes from the classic Smagorinsky model and the kinetic energy penalization
cis?

—=-Awy in (1) is newly added for the CSM. All other terms in (1) are from stan-
dard Navier-Stokes equations (NSE). In [59], the CSM model derivation and some
basic properties of the CSM are developed, and two algorithms for its numerical
simulation are proposed. However, the significant backscatter of model dissipa-
tion is not observed in specific examples except for Linearized Crank-Nicolson time
discretization [59, page 21-22]. Besides that, constant time discretization in their
algorithms (Linearized Crank-Nicolson time-stepping scheme) excludes the use of
time adaptivity since the solution pattern (in terms of stability and convergence)
under extreme time step ratios is hard to expect!. Dahlquist, Liniger, and Nevan-
linna designed a one-parameter family of one-leg, second-order methods for evolu-
tionary equations [19]. This family of one-leg methods (For convenience, we call
this family the DLN method.) is proved to be G-stable (non-linear stable) under
any arbitrary time grids [14-16] and hence ideal choice for time discretization of
fluid models®. Herein we apply the fully discrete DLN algorithm (finite element
space discretization) for the CSM in (1) and present a complete numerical analysis
of the algorithm in Section 4. We prove that the numerical solutions on arbitrary
time grids are unconditionally long-term stable, and converge to exact solutions at
second order with moderate time step restrictions. Let {t,})_, be the time grids
on interval [0, T] and k,, = t, 41 — t,, the local time step. w” and ¢" are numerical
approximations of velocity and pressure at time ¢,, of the CSM in (1) respectively on
certain finite element space with the diameter h. The fully discrete DLN algorithm

n [19], the linearized Crank-Nicolson scheme and applying to the problem y/(t) = A(t)y(t)
with Re(A(t)) < 0 and A(t2,) = 0. Under certain time step sequence (kn, = 7 and kan4+1 = 1/2),
the sequence of numerical solutions satisfy y2, = (—2)™yo, which implies the scheme is not stable.

2To the best of our knowledge, the DLN method is the only variable multi-step method which
is both non-linearly stable and second-order accurate.
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(with parameter 6 € [0, 1]) for the CSM in (1) at time ¢, is written as follows:

h h h h h h
w1+ arw) + agwy_; C25? A(O‘anﬂ + ajwl + apw!_ )

2

Oégk —aokn 1 1% @Qk —Oéokin 1

2/3“” wl, Zﬁ/” wh ) —vA ZB(") wi_ )+ ( Zﬁg qy)
+V-(<056>2|V(Zm” )1V Zﬂe" whe)) = Zﬂg" wt)
=0

h —
V'wn+1—0,

for 1 <n < N — 1. Here the coefficients in (2) are

1 2 6(1-6%)
o 10+1) (n) 1 (1 + (1+5 9)2 T e T a0z T 9)
_ n _ —62
a|=| 0 |, [p"]|= 1(1- 2%y)
1
ag =(0—1) (n) _¢? (1067
> Bo 11+ B2y - 28 - 9)

The step variability e, = (kn — kn—1)/(kn + kn—1) € (—1,1) is the function of two
step sizes and €, € (—1,1).

The main result of this article is the complete numerical analysis of the DL-
N method in Section 4 and computational tests in Section 5 showing backscatter
phenomena for the CSM model (1). The paper is organized as follows. We pro-
vide necessary notations and preliminaries for numerical analysis in Section 2, and
present the fully discrete variational formulation in Section 3. We show that the
DLN solutions are long-term, unconditional stable in Theorem 4.5 of Section 4.1
and perform the variable step error analysis with the moderate time step restric-
tion in Theorem 4.8 of Section 4.2. Furthermore, we present the test problem with
exact solutions [23] in Section 5.1, to confirm the fully discrete DLN algorithm is
second-order in time, and a test problem about the flow between offset cylinder-
s [32] in Section 5.2 to check the unconditional stability and the efficiency of the
time adaptivity of the DLN algorithm.

1.1. Related Work. Smagorinsky model and other large eddy viscosity models
have been studied and corrected in numerous works [1,3,12,37,39,49,50]. Mean-
while, various efficient numerical schemes have been designed to address the com-
plexity of the Smagorinsky model and other turbulence models [20, 34,51, 52, 58].
Due to the fine properties of stability and consistency, the whole DLN family calls
great attention to the simulation of evolutionary equations and fluid models. The
DLN method with § = % is suggested in [19] to relieve the conflict between er-

ror and stability. Kulikov and Shindin find that the DLN method with 6 = %

has the best stability at infinity [40]. The midpoint rule (the DLN method with
6 = 1), conserving all quadratic Hamiltonians, has been thoroughly studied and
widely used in computational fluid dynamics [2,5,7-9,26,43]. Recently, the whole
DLN family has been applied to some time-dependent fluid models and shows its
outstanding performance in some specific examples [46,53,55,56]. In addition, the
DLN implementation has been simplified by the re-factorization process (adding
time filters on backward Euler method) for wide application [47]. Time adaptivity
of the DLN method (by the local truncation error criterion) is proposed to solve
stiff differential systems for both efficiency and accuracy [48].
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2. Notations and preliminary results

In this section, we introduce necessary notations and preliminary results. Recall
that Q C R? (d = 2, 3) is the bounded domain of the CSM in eq. (1). Banach
space LP(2) (p > 1) contains all Lebesgue measurable function f such that |f|?
is integrable. For r € {0} UN, Sobolev space W ?(Q) with norm .||, contains
all functions whose weak derivatives up to m-th belong to LP(Q2). Thus W™ (Q)
is exactly LP when m = 0. We use H™ with norm || - ||, and semi-norm | - |,,, to
denote the inner product space W™?2(Q2). || - | and (-,-) denote the L?(2) norm
and inner product, respectively. The solution spaces X for the velocity and @ for
the pressure are defined as:

X:{v € (LS(Q))d:Vv S (L3(Q))dXd, U’E)Q = O}, Q:{q € L*(Q) :/ q dx = 0},
Q
and the divergence-free velocity space is

V={veX:(q,V-v)=0, Vg€ Q}.

X' is the dual norm of X with the dual norm

(f,v)
fll-1= sup ;
17l 0#£veX [Vl

Definition 2.1. (Trilinear Form) Define the trilinear form b* : X x X x X - R
as follows

Ve X'

b* (u,v,w) := %(u~Vu,w)—%(u~Vw,v), Yu,v,w € X.

Lemma 2.2. The nonlinear term b*(-,-,-) is continuous on X x X x X (and thus
on VXV x V) which has the following skew-symmetry property,
(3) b* (u,v,w) = —b*(u, w,v), b*(u,v,v) = 0.
As a consequence, we get
b*(u,v,w) = (u-Vo,w), VYueVandv, we X,

b*(u,v,v) =0, Vu, velX.
Proof. Proof of this lemma is standard, see p.114 of Girault and Raviart [24]. O
Lemma 2.3. For any u, v, w € X
" b (u, v, w) < C(Q)[|[Vull[Vol[ [V,
b (u, v,w) < CQ)|[ul V2|Vl 2| Vo] |V,

Proof. By Holder’s inequality, Poincaré-Friedrichs’s inequality and Ladyzhenskaya’s
inequality. (]

Next is a Discrete Gronwall Lemma, see [27, Lemma 5.1, p.369].

Lemma 2.4. Let At, B be non-negative real numbers and {an}>y, {bn}o,,
{en}5%0, {dn}S2, be non-negative sequences of real numbers such that

4 14 V4
ag+ ALY by ALY dnan+AtY e+ B, VEN,

n=0 n=0 n=0

and Atd,, <1 for all n, then

‘ ¢ ‘
ag—l-AthnSexp (At%%)(At;cn—i—B), V¢ € N.

n=0
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Proof. See [27, p.369]. O

Lemma 2.5. (Strong Monotonicity (SM) and Local Lipschitz Continuity
(LLC)) For any u, v, w € W13(Q)

(SM) (IVu|Vu—|Vw|Vw, V(u —w) > C1 ||V (u — w)][5 5,
(LLC)
(IVu|Vu—|Vw|Vw,Vv) < Co (max{||Vullos, [ Vwllos}) | V(u—w) o3 Vvlo,s,
where C, Cy are positive constants independent of u, v, w.
Proof. We refer to [17,36,44] for proof. O

Let 7, be the edge-to-edge triangulation of the domain € with diameter h > 0.
X" ¢ X and Q" C Q are certain finite element spaces of velocity and pressure
respectively. The divergence-free subspace of X" is

Vvh.= {vh eX: v =0, We Qh}.
Given (w,q) € X x @, we assume that the corresponding finite element pair
(X", QM) satisfies
X" C™_space containing polynomials of highest degree r (r € N),
Q" : C™-space containing polynomials of highest degree s (s € N).

We have the following approximations (See [6,13] for proof):

inf [Jw—v",, <O 9wy, we (HTHINX,
vheXh
inf |lg—p"[le, < CRFH R glosr, g€ BT NQ.
phth
where 0 < ¢; < min{m + 1,7 + 1} and 0 < {5 < min{m + 1,s + 1}. We need the
LP — L2-type inverse inequality [44].

(6)

Theorem 2.6. Let © be the minimum angle in the triangulation of domain Q C R?
(d=2,3) and X" be the finite element space with highest polynomial degree r. For
any v" € X" and 2 < p < oo, there is a constant C = C(0,p,r) > 0 such that

(7) 190" lo,p < CRECF T,
where V" is the element-wise defined gradient operator.

Proof. See [44, p.349-350] for proof. O

We assume that (X", Q") satisfies the discrete inf-sup condition:

. (phv V- vh) h
8 inf sup ———->=> > C,
® pheQ yrexn [IPMII[VOR]] T

where C is a positive constant independent of h. We define the Stokes projection
(I&w,I%q) € V" x Q" to be the solution of the following problem

v(Vw, Vol — (¢, V - o") = v(VIw, Vo) — (I8¢, V - "), Vo € X"
—(", V- Igw) =0, W' e Q"
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We need the following the approximation properties of the Stokes projection if
the finite element spaces X" and Q" satisfy the discrete inf-sup condition in (8)
(see [25,35] for proof)

1
h . h -1 h
fw— Il <2(1+ OT’;) it oyt it g =),
h -1 h . h
(10) o~ Bew| <(v inf g —p") + it fw— "))

1 -1 h . h
X sup f(V inf ||€A —p || + inf |¢)A —w |1),
gerz@\fo} 19 greqr ! o 1Pa

where the pair (¢5,£;) € X x @Q is the solution to the dual Stokes problem

v(Vo,Vog)+ (V-v,&) = (g,v), YweX,
(V-¢4,p) =0, Vp e Q.

3. The variable step DLN method for CSM

We denote w(t,) by w, and q(t,) by ¢, in the CSM in (1). w! € X" and
qZ € Q" represent the DLN solutions of w,, and ¢, respectively. For convenience,
we denote

2 2 2
tn,,@ = Zﬁén)tn—lﬂ—fv Wn,B = Zﬁén)w(tn—l-&-é)v U)Z”@ = Zﬁén)wiﬁ—l—l—&
£=0 £=0 £=0

2 2 2
dn,B = Zﬁén)q(tn,1+g), qﬁ,ﬁ = Zﬁén)qﬁfl%»b fn,ﬁ = Zﬁén)f(tn,1+g),
£=0

£=0 £=0

and represent the average time step ask, — agk,—1 by En. The variational formu-

lation of the variable time-stepping DLN scheme (with grad-div stabilizer [11]) in

(2) is: given wl, w!_; € X" and ¢!, ¢_, € Q", find wl,, and ¢/, , satisfying

(11)
<a2w:{+1+a1wﬁ+aowﬁfl ’Uh) +C’§‘52 (aQVwZH +a; Vwl +agVuh Vvh>
E; s NJ2 E; y
+ V(sz,ga vvh) + 0" (wz,[% w'Z,,[% Uh) + 7(v ! wz,ﬂa V- Uh) - (QZ,[% V- Uh)
+ ((035)2|Vw2ﬁ|vqugﬁ,wh) = (fag, "), W e XM

(v . wz,ﬁaph) = 07 vph S Qh7

where constant v > 0 needs to be decided by specific problems. Let 1;77; denote the
standard (second order) linear extrapolation [45] of w!

wh = Bs ) 1+ wfi —\ 77— wﬁfl + 5 )wfi + 5(5 )wkfl-
kn—l kn—l
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After applying the linearly implicit DLN scheme for time discretization, we get the
following discretization:

<a2wﬁ+1 +aiz\uﬁ+aowﬁ,1 7vh) N 0;1;52 (aQVwZH +a1/V\wZ+a0VwT’Ll 7Vvh>
ky kn,
(12) +V(Vwh 5, Vo) 4 b (wh wh 5, 0") + (V- wh 5,V - 0")
— (@, V- 0") + ((Co0) [Vl |Vl 5, V0" ) = (£(tn,p),0"), Wo" € X7,
(V- wZ’@ph) =0, Vp" e Q"
4. Numerical Analysis

We define the discrete Bochner space with time grids {t,}_, on time interval
[0, 7],
(0, N; (W) ) = {f (. 8) € WD) | flllowmop < 00},
20, N5 (W) ) s={ () € (W) [ £]]lpym.pa,p < 00},
where the corresponding discrete norms are

1

N 1
1510 325, 1t s 15105 (2o )Tt ) ™

Definition 4.1. For 0 < 6 < 1, define the semi-positive symmetric definite matrix
G(0) by

1(1+0)1 0

(o) = [4< ! o)L v Lol

We present two Lemmas about the stability and consistency of the DLN method.

Lemma 4.2. Let {y,})_, be any sequence in (L2(Q))d. For any 6 € [0,1] and
ne{l,2,---,N — 1}, we have

2 2 2
(Z QpYn—1+4) Z ﬁén)yn—ue Hyn+1 ‘ " +H Z Al
=0 =0 ae) W¥nllae) "5
where the || - ||g(g)-norm is
u ? tr  tr u 1 2 1 2 2 d
(14) =", v"]G(0) 1O+ A=), Vu,v e (L)),
Ullc(o) v 4

where tr means transpose of any vector and the coefficients {)\é")}ﬁzo are

n 6 1- 92 n 1- ny(n n 1 ny(n

(a5) A= 06D e Imenym e T e )
V2(1 +£,0) 2 2

Proof. The proof of identity in (13) is just algebraic calculation. O

Remark 4.3. If we replace (LQ(Q))d by Euclidian space R, the identity in (13)
still holds and implies G-stability of the DLN method with 6 € [0,1). Recall the
definition of G-stability for the one-leg, m-step scheme with constant step k [15]:

m m m
> e =kf (D Betnii-6, Y Betni1—r)-
=0 =0 =0
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The above scheme satisfies G-stability condition if there exists a real symmetric
positive definite matriz G = [g;;]7"—, such that for all n

Y GYpy1 — YITGY,, < 2k (f( > Betniie, Y 5eyn+1—e),2ﬂeyn+1—z)~
=0 =0 =0

where Yo, = [Yn, Yn—1,"** s Yn—m+1)". The above G-stability inequality ensures that
the deviation from the initial condition in (in G-norm) controls the deviations from
the sequence of solutions at later times based on that initial condition. From the
G-stability identity in (13), the DLN method with 6 € [0,1) is G-stable. For the
case 0 = 1, the DLN method with 0 = 1 is reduced to the one-step midpoint rule
and its G-stability property is easy to check by definition.

Lemma 4.4. Let Y be any Banach space over R with norm |- ||y, {t»}2_o be time
grids on time interval [0, T] and u be the mapping from [0,T] to Y. We set

and assume that the mapping u(t) is smooth enough about the variable t, then for
any 6 € [0, 1],

S ? e 2
|38 utnre) = uttn)], <Ok [ il
£=0 1

tn—
1 2 2 tn+t1 )
(16 = Y aultarad =~ utns)|, <COR [ sl
n =0 tn—l

Proof. We use Taylor’s Theorem and expand u(tn+1), w(tn), u(tn—1) at t, g. By
Holder’s inequality, we obtain (16). ]

4.1. Stability of the DLN scheme for the CSM. The DLN method is a one
parameter family of A-stable, 2 step, G-stable methods (0 < 6 < 1). It reduces to
the one-step midpoint scheme if # = 1. Moreover, the G(#)-norm in (14) does not
depend on the time step ratio. In this Subsection, we prove the unconditional, long-
time, variable time step energy-stability of (11) by using the G-stability property
(lemma 4.2) of the method.

Theorem 4.5. The one-leg variable time step DLN scheme by (11) is uncondi-
tionally, long-time stable, i.e. for any integer N > 1,

146 Cis5?
(7). = (kP +=5

+Z(||ZA<"> P HZW)wn_HH%Zk S IV 4V - wl?)
C(O)k:

1
| ol o e + S NG 1.2

0
IValel) + =7 (kP + = Dl )

+Zk/ [(Cs0)?|Vwh 4[]Vl 4dz <

146 C5
+T(Hw1 ?

w|?).

1-0
wbl?) + =7 (e 1P+
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Proof. We set v = wz,ﬁ, ph = qzﬁ in (11). By lemma 2.2 and identity (13) in
lemma 4.2, we obtain

S )L GRS 2
(Z AWy 1405 wn,ﬁ) +— M (Z Oéngn 1+ an ﬁ) + ’yk ||v wn B”
=0

+7<:\n/ (1/+ (C(9§)Q|Vwﬁﬁ|)|VwZﬁ\2 dx = kn(fn,g,wzﬁ)
Q

< knll frsll -1V gl
The G-stability identity (13) in Lemma 4.2 implies

(18)
wh ? wh ||? (n) 2/ b ho)2
il +HD n_WHHc S+ (C0)2 Vs o) [Vl P
n llage) [l
=~ 0452 V! V!
hoo12y 1 (n)
k| V- wh |12+ H s o HVw +HZ>\ YVl WH )

Eon )
< — .
< sl
By triangle inequality and (16) in lemma 4.4, we get

~ ~ o~

k., k., K,
el fa 21 <= Fns = F )l + 1 (tnp) 2

CO)kmax [ (Fn + kn 1)
< | e+ 7t )l
v tn—1
We sum (18) over n from 1 to N — 1 and have the desired result in (17). O

Remark 4.6. We identify the following quantities from the energy equality in (17):
(1) Model kinetic energy,

146 C45? —0 Ci?
Ex'=— (Il ||+ 7 Vi ?) + == (lwik I+ 2

IVwhe [1?)-
(2) Energy dissipation due to viscous force,
EN = VIIVwhey >

(8) Eddy viscosity dissipation,

£EP :/ (Cob)2 IVl gl] IVl 5f? da
Q
(4) Numerical dissipation,
212:0 )\fv_le’(,ﬁ“

kn—1

2 042

2 N-—-1 2
20N lefilf%rl
+ 2

o~

kn_1

ND _

EXP wanishes if and only if 6 € {0,1}.
(5) The model dissipation originating from the CSM in (1),

2
2
H[ A V| )
G(O) " =0

+ [ [CopiTubs ol Vuks s,

2
Vwna
V’U)N_

g Ci? HVwN
kN 1/14 va

G(6) H
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Model dissipation in this paper can be positive or negative. When it is
positive, it aggregates energy from mean to fluctuations. When negative,
enerqgy is transferred from fluctuations back to the mean.

Remark 4.7. The one-leg linearly implicit DLN method by (12) is unconditionally,
long-time stable, i.e. for any integer N > 1,

1+6 05 1-6

C4?
(19) T(sz@Hz 3

(lwhe 1[I+ %)

+Z(HZA<"> Lo+ HZA(”)V wu)@k S Vw2 4AlV -l

wi|*) + =

CO b 1
+Zk [ 1Ol 1Tl < S oy 1B,
1+0 Ci? 1-6 C’6
H (b P+ S5 Tl ) + S (b P+ ST u?)

4.2. Error Analy51s of the DLN Scheme for the CSM. In this Subsection, we
analyze the error between the semi-discrete solution and the fully discrete solution
to (1) in Theorem 4.8 under the following time step condition!:

ce)

(20) T(kn+1||vwn+l,ﬁ”4 + /ananﬁW + kn—lllvwn—w\\4) <1, vn.

Theorem 4.8. Let (w(t), q(t)) be sufficiently smooth, strong solutions of the CSM.
We assume that the velocity w € X, pressure ¢ € @Q, body force f of the CSM in

(1) satisfy
weL>P (0, N; (H™)H)NebP (0, N; (H™)D)ne>P (0, N3 (H™)D)ne># (0, N; (W),
wy € L2(0,T; (H™1)4), wy € L2(0,T; (H")?),
wy € L2 (0,T; (H™™HY)NL3 (0, T; WH)Y)NL3 (0, T; (H™) ) NLA (0, T; (H™1)4),
q € >°(0,N; H*Th), fie € L*(0,T; X',

and the finite element spaces X", Q" satisfies the discrete inf-sup condition in (8)
and approzimations in (6). Under the time step condition in (20), the variable
time-stepping DLN scheme (with 6 € [0,1]) for the CSM in (11) satisfies: for
r, s,€ {0} UN and any integer N > 2

2

1/2
oy oy lun—wnl+CE (Z wh 5= wng)ll)
< O(K2, b, W T SR8 6K3/2).

Remark 4.9. Since § has the same dimension as h, the spatial convergence rate in
(21) is min{r, s+ 1} as long as the highest polynomial degree for velocity r € {1,2}.
Thus the DLN algorithm in (2) is second-order accurate in both time and space if
we choose Taylor-Hood P2 — P1 finite element space and set the time step At = h.

Proof. The proof is relatively long, thus we devide the rest of proof into four parts:

1. We combine CSM at time ¢, g and the DLN algorithm for CSM in (11) to

. . . . . h
derive the equation of pointwise error ;11 1= wp11 — wy 4.

ITo our best knowledge, time step conditions like At < O(v~3) cannot be avoided for fully-
implicit schemes in error analysis.
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2. We set W, to be the velocity component of Stokes projection (wy,0) onto
Vh x Q" and decompose the error to be e, = (w, — W,,) — (wh —W,,) :=

n
N — . Then we transfer the error equation to be the new equation in

terms of {nn—1+é}z%:0 and {¢n—1+€}?:0'
3. We obtain the bound for ¢" 11 by addressing the terms from
e the newly added kinetic energy penalization in the CSM,
e the classic Smagorinsky model,
e the DLN algorithm for standard NSE.
4. We use the discrete Gronwall inequality in Lemma 2.4, approximation for
Stokes projection in (10) and approximation for interpolation in (6) to
achieve convergence of numerical solutions in L?-norm and H'-norm.

Part 1. We start with the CSM at time ¢, 3 (1 <n < N —1). For any ot e v,
the variational formulation becomes

4 52
(we(tn,p), ") + CZQ (Ve (tn,p), Vo) + 0" (w(tn,p), w(tn,p),v") = (q(tn,5), V- 0")

Fu(Vw(ty s), Vo) + ((035)2|Vw(tn,ﬁ)|w(tn,ﬁ),wh) = (f(tnp),0"), Yo" € V",

Equivalently,
(22)
QoW+ Wn+ oW1 5\ - C20% 1 oV wn +a1 Vi, +aoVw, h
( =~ U )+ 2 ( = ,V’U )
kn H K,
+b* (w5, Wy 5, 0") — (q(tnp),V - Uh)-I-l/(anﬁ, Vo) + (V- wp 5, V - v7)

+ ((OSJ)QIan,ﬁ [Vion, 5, V“h)

4 2
=)+ g (PRGOS G,V

+ ((055)2 (V.5 Vin 5— [V (b ) Vet ), Vvh) (1),

where the truncation error is

QoW + Wy, + QQWay—
Tn(vh):< 2Wn+41 1% n T QWn—1 —wt(tn,,g),vh)Jrl/(V(wn,ﬁ*w(tn,@)),vvh)
n

+ b*(wnﬁﬂ Wn, B, Uh) - b*(w(tnﬁ)7 w<tn,5)7 Uh) + (f(tn,ﬁ) - fnﬁ’ Uh)'

2
We denote the error e, = w, — wﬁ and e, g = Zﬂgn)en_l_% Then we subtract
=0

the DLN scheme in (11) from (22) to get the following error equation: Vo' € V"
(23)

(a26n+1 —&—aien—&—aoen,l 7 vh) N 0;132 <a2Ven+1 —&—al/\Ven—kaOVen,l ’ Vvh)

ky, H kn
+ 0" (wp, 8, Wn, 8, vh)—b*(wzﬁ, wﬁﬁ, vh)—&—V(Ven,B, Vol ) +~(V - en,s,V - o)

+ ((Cs0)2(IV a5l T s — [Vl 5| Vuh 5), Vo)

0352 (Oéngn+1 + a1 Vw, +agVw,_1
I En
+((035)2(|an,5\anﬁf|Vw(tn7,3)|Vw(tn75)),Vvh) + (o).

:(q(tnﬁ),v-vh)—&— —th(tn,g),Vvh)
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Part 2. We denote W,, to be velocity component of Stokes projection (w,,0) onto
VT x Q" and denote

N = Wy — Wy, ¢h = wh - Wy
Thus e,, =1, — . Notice that,

b* (wn, 8, Wn, 8, o) — b*(wzﬁ, wzﬁ, o)
=b"(wn g, Wn, 3, o) — b*(wZ,B, Wn, 3, o)

+ b*(wz,ﬁ,wnﬁ,vh) — b*(whyﬁ,wzyﬁ,vh),

n

=b"(€n,8, Wn,g, Uh) + b (wﬁ,m €n,B; 'Uh)a

and

/Q(|an,5|an75 - |Vwﬁ75|VwZﬁ) : Voldz

:/ (IVwn 5| Vwng — [VWo gV Wy g + [V Wy 5| VW, 5 — [Vl 5| Vw)t 5) : Vo'da.
Q

We also adopt the following notations

2

2
Mn,p = Zﬁé")nnfum ¢Z,g = Zﬁén) 271%,

=0 £=0

and use the above calculations to derive the error equations from (23)
(24)

ol tardl+aodl | N\ C6% (Ve +ai Vel +ag Vel _

R I L L)
kn, 2 kp

—b*(en,g,wn,g,vh)—b*(wﬁﬁ,en’f;?vh)—&—l/(V(bZﬁ?Vvh)—l—’y(v-qﬁzﬁ,v-vh)

+(css)2/(\wzﬁ|w’;ﬁ — VW 5| VW, 5) = (Vo) da
Q

:(Oégnn_H +a1Mn +aoNn-1 vh) n C’fdQ <a2V77n+1 +a1Vn,+aogVnua Vvh)
Ky, ’ I Ky, ’

+(Cs(s)2/Q(an,5|anﬁ — VW, 5| VW, ) : Vo'da

+ (Vi g, VO') + (V5 V- 0") = (q(tn,5), V - 0")
Ci5? Vuw, Vwy, Vwy,—
B ;2 (az w +1+a1%w,+ao Wy —1 —th(tnﬁ),Vvh)

- ((C’Lg(S)z(\Vmeanﬂf|Vw(tn,5)|Vw(tn,5)), Vvh> — (M),
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We set vh = gbflﬁ in (24) and use (13) in Lemma 4.2,

2

h 2 2 ~
o ' +HZA<”></> ][RV PRV P
n |lG(s) G(6)
C452 2 Veh 2
n+1 n (n)
- e
H Von llo) HVWH Z Gu-tre
04 2
(Zaevnn 116, V), ﬁ)
=0
C46%k,, [0V, Vw,, + oV,
B su2 (OQ w'+1+a17€\w,+010 v ! —th(tn,ﬂ)aV’Uh>

(25) 27 h h h
—(C.0) kn/g(wwnﬁwwnﬁ— VW 5|V W, 5): (Vg 5)da

+ (055)%/ (IVwn,g|Von g — [VWo 5| VW, 5): VO sdx

(O (1Y 6V s = [Vl ) V(i 5)), V0"

2
+ (Z Apln—1+¢, (bz,ﬂ) + an(vnn,ﬁv vd)z,ﬂ) + ’Ykn(v * M, B> V- ¢'Z,,8)

- En Q(tn ﬁ) V- QSZ,ﬁ) + 7f\nb* (en,ﬁ» Wn,3, éf’ﬁ,ﬁ) + /I;nb* (wz,ﬁa €n,B3s QSZ,,B)
— k(6] ).

On the right-hand side of equation (25), the first two terms are due to the new
kinetic energy penalization in the CSM, the third to fifth terms arise from the

classic Smagorinsky model, and the remaining terms are from the DLN scheme for
standard NSE.

Step 3. Now we deal with the terms on the right hand side of (25).
e The term due to the new kinetic energy penalization in the CSM:
By Cauchy Schwarz inequality, Poincaré inequality and Young’s inequality,

(26)
O (e vit) < (G B+ g5t

We use the approximation of Stokes projection in (10), approximation theorem of
interpolation in (6) and Holder’s inequality

2
2
|- acVmvee| <o
£=0

2 2
Z aevwn—1+éH )
=0 Tt

(27) SC(Q)h2T(||wn+1 - wnHerl + || wng1 — wn,1||§+1)

tnt1
<C(O)R* (ky, + knfl)/ lwe|7 1 dt.

tn—1
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By (27), (26) becomes

2

452 ntl
(e vl ) <cw (Y e 1960

tn

(28) C4 2

By Cauchy-Schwarz inequality, Young’s inequality and (16) in Lemma 4.4
(29)

C16%k, n n n—
4 <a2Vw +1+ oV, + aoVwn—1 th(tnﬁ%vqj)zﬁ)

p? K
CE,L C46%\2 QaWp 41+ Wy + Wy, 1 5
< S — — "
<O (8 o mertestatentn )+
0(9) ma 0462 e 2 an h 2
< -~/ max v .
< S (S’ / [Vt + 22 |96

o Viscous terms arising from the classic Smagorinsky model:
By strong monotonicity property (SM) in Lemma 2.5,

) (Cub) / (Yl Vel s [V W 5[V W s): (Vo )de

>C1(Cs0)kn | VL 5115 5

We denote R,, = max{||Vwy, gllo.3, |[VWa.sll0,3} and use Local Lipschitz continuity
(LLC) in Lemma 2.5

(C.0) %, / (Vi 5 Vit 5 (VWi 5|V Wi 5): (V)

(C48)%kn CoRon |V sll0.31 V0 5l0.3
_C(Cy 8)2C3 %, C1(C, 5)
Y —ReT) T

By triangle inequality,

"RV sl s + "Vl 5113 5

R <max{||an sllo,3,

[V (Wa,5=wng)l|o sHIVwn,gllos} = 1Vnsllos+ | Vewn,slo,s-

We use (7) in Theorem 2.6, the bound for Stokes projection in (10) and approxi-
mation theorem of interpolation in (6)

IVnn,ll0.3 < Ch™YS|| Vi gll < CH™= Y |wy, gl g1
By the fact: for any a,b,c € R with ¢ > 1,
(31) (lal +[b)° < 27 (Jal® + []°),

we have
(32)
3/2 3/2 3/2
RE2|V005l85 <CUIV sl 1105 155 1 Vwn sl153)
<CR¥ =2 |lw, 42 1+0h3/27" Vw5 |23 || Vw5155

SCRY= 2 lwn g1 30 + OB = (J[wp, 6741+ Ve, 613 ) -
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By triangle inequality, the fact in (31), (16) in Lemma 4.4 and Holder’s inequality,
[wn,s 741 SCllwn,s — w(tnp)ll71 + Cllw(tn,s) 741

tnt1 /
<Ok [ Tl )+ Clluttn s

tn—1

tn+1
O [ Tl + Cluttn )4

tn—1

(33)

By (32) and (33), (31) becomes
(34) (C.6)%, / (Yt |Vt~ [T Wi [V W ) (Vs )

3
C(C48)2C2 30 d. r_d bnin
<(\ﬁ)12[(1+h2 $)h 7 4(/c?nax/ l[wee |3y dt+ (n 4 Eno1) [|w(tn,p) 1541

n—1

tnt1
R W [ 0 g+ (B[ Tt )]

tn—1

We denote S,, = max{||an75||o73, ||Vw(tn,5)||0,3}. By (LLC) in Lemma 2.5 and
Young’s inequality,

Fon ((CL0)2 (V0 5]Vt 5 = [V (t ) [Vt ), V5 5)
(35) SEn(Csa)202$n|’v(wn,ﬂ - w(tn,,ﬁ’))Ho’g”v‘bZ,ﬁ”O 3

C(C,6)2C3 HM C1(C40)2k:
VCi n.p)) 1

By (16) in Lemma 4.4 and Young’s inequality,

SS/QHV(UM,/B —w(t Hv¢h,3||o3

3 3
St ||V (w(tn6) = wnp)ll 5

3
<C (|7 (wltn,8)=wn,p) g 4+ ¥ (w(tn,) ~10n,5) |12 1 V005

%
\0,3)

3 (2T ) tnta 3
<C0) (K IVl ) +0<>(ma)J [Vl o) 10 51
t

tn1

n—1

tnt 3 tni1 %
<o [ vl st + OB [ 1wl )
(36) e o
+ O(a)kmavawnﬂHOB

9 tnt1 3 3
gC’(G)k{;}ax( / ||thtH§’3dt) +C(9)k§1.dx< /

tn—1 tn—1

tht1 3

Vw1 st

|

o OOk ([ (w(tn,5) = wa,) g5 + [V (t0,5)15.5)

15 9 3 2 5
Sc(g)(kgax+kr%ax+k1%ax)</ ||tht||(2),3dt) +C( ) max”vw( ",5)”03

tn—1

By Holder’s inequality,

tnt1 tnt1 .
(37) ([ 19wl )™ < oz [ 9l .
tn—1

tn—1 n—
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By (36) and (37), (35) becomes

Fon ((CL0)2 (V0 5[Vt 5 = [V (t ) [Vt ), VS 5)

C(O)KS 1 (C.0)2CS? ot
( \/(CT ) |:(k1(151ax + k?ﬂax )/t ||thtH:Og,3dt

o+ i+ K1) [Vt )3 5]

e Terms coming from the DLN scheme for standard NSE:
Similar to the treatment of (28), we have

(38) <

n+

(39) (Zamn o) < CONE2 [ a4 2ot

tn—1

By the definition of Stokes projection in (9), (Vnnﬁ,V(ﬁZﬁ) = 0. By Cauchy
Schwarz inequality, Poincaré inequality and Young’s inequality,
Ve (V- 1hn,3,V - 61 ) <vdken IIVmLzaIIHVaSh,B\

07 k
< (V6% + 2 IIV¢>Z,5|I2.

By the approximation of Stokes projectlon in (10), triangle inequality and (16) in
Lemma 4.4

(40)

V00,817 <CR" (llwn,p — w(tn,p) 1741 + lw(tn,p)ll 1)

2r (1.3 o 2
<O (K [ Tl + e p)|241):

tn—1

(41)

By (41), (40) becomes
V(Y 10,3,V - 8 )

(42) C~2h2r trha u@n
<O (b [l O b)) ) + 52 V60 1

v tn

We choose p" to be L2-projection of ¢(t, g) onto Q", then
kn (q(tn,p), V60 5) =kn(q(tn,p) =", V-0} 5) <Vdknq(tn,s)—p" IV} 5.

By Young’s inequality and approximation of pressure in (6), we have

Ch25+2

%

(43) En(Q(t7L,B)7V'¢Z,5) < (k +kn 1)||q( n B)”s—i—l + 39 ||V¢h,ﬁ

By (4) in Lemma 2.3, Young’s inequality and approximation of Stokes projection
in (6)

~

knb*(en,57wn,ﬁ7¢z,ﬁ)
:knb*(nn,ﬁa Wn, B ¢Z,5) - knb*( 'Z,ﬂvwn,ﬂv ¢Z,ﬁ)
<Ckn HVﬂn.ﬂll||an,ﬁ||HV¢Z,5|| + Challgn 512 Vwn gl V0 511>

Ck 2, 2 vk hoy2
Bl + ol + SVl Bn
Ck:nhQ’"
< (llwn.pllr41 + Ve gll*) + hal2+ = I\V¢h,gll2
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We use triangle inequality, (16) in Lemma 4.4 and Hoélder’s inequality
Hwn,ﬁ”:%+1 SO(Hwn,ﬁ —w(ty /3)” 41+ [lw(t nﬁ)”r-i-l)
tn+1
2
<O[(Chi [ 1 Nouliadt)” + ot )]
n—1
7 frts 4 4
<OO) (K [ ol rdt + (a2 ).
th—1
4 7 frad 4 4
Vsl <CO) (K [ IVwnaldt + [Vt )]).
tn—1
Thus (44) becomes

knb* (en,ﬁa Wn, B, QSZ,ﬁ)

(9 h2r tn+1 tn41
%(kfnax/ Hwtt||r+1dt+kmax/ ||tht|‘4dt

tn—1 tn—1

<

+ (b + o) llw(tn g) vy + (ko + kn—l)HVW(tn,ﬁ)||4)

Ck
+ T;||V10n,ﬂ||4||¢2,ﬁ

o~

vk,
2 + §||V¢Z,ﬁ||2~

By (3), (4), approximation of Stokes projection in (10) and approximation theorem
for interpolation in (6)

~

vk,
a1Vl + 7IIV¢" al?

knb* (wth,Bv €n,B; ¢1};,ﬁ) <
(46)
C’h k

— % 7"—0—12vanB||2+7”v¢ slI*.

Now we deal with & nTn (O ) by Cauchy Schwarz inequality, Poincaré inequality
and (16) in Lemma 4.4, the ﬁrst three terms become

7 (azwn+1 + rwy, + apwWn—1
n

En - wt(tn,ﬁ)a(bz,ﬁ)

Q2Wpi1 + LWy, + oWy —
T T TR 1—wt<tn,ﬁ>H||v¢z,ﬁ||
(47) Chn || \
n || ¥2Wnt1 + Q1Wy, + AWy —1 H 9
< 1 _
< o wiltn )| + 221960
CO)kpa [T
< OO [ o a1 ot o1
tn—l
vhn (V(wn,p = w(tn,p)), Ve, 5)
Ckn
(48) IVewn, = Veoltn,s H+ 76l

Cijfnax fni
- / el 4 2o ||V¢h,5||2

tn—1
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By (4) in Lemma 2.3 and triangle inequality, two non-linear terms become

kb (wn,5, w5, @ ) — Rab® (w(tn,) w(tn,s), )
:E b* (wn)g - ’u}(tn”@), W 3, ¢Z”@) + Enb* (w(tn,g), Wy, — ’w(tn”g), ¢Z,5)

Ckn I/En
1V (s = w(ta )| (IVwn 51> + [ Veoltns) ) + 55196 6

o~

kn
DIPUI (a5 =t ) |*+21 Vet 0)1?) + 5V 5

o~

SC - 2.

y (16) in Lemma 4.4 and Hélder’s inequality,

max

tnit
1V (twnp — w(tn )| <COKT / Ve |[4dt.

n—

trnt1
[V (wn, 5= w(tn )| Ve (tn,5)|IP<C (0) 2 / IVw(tn, )Pl Vwe | *dt

n—

<CORS, [ (It )+ [Vl )t
Y 4 4
<O, [ 1Tl ORIVl
Hence,
(49) Finb" (1,3, 00,5, 07 5) = Kb (w(tn,5), 0(tn,5), 67 )

/\

C(0)k* st
< s (1 )T+ o) V0t ) 4 22 96012
t

max
n—1

By Cauchy-Schwarz inequality, Poincaré inequality, Young’s inequality and (16) in
Lemma 4.4

‘ 2

vk,
(tnp) — fn,ﬂn?_ﬁ—nwz,ﬁ
C’kn tnt
K / 1l
V 1

En(f(t ) fn,ﬂa¢7z,[3)
(50)

nall”

max
n—

Step 4.
We combine (28) - (30), (34), (38), (39), (42), (43), (45) - (50) into (25) and then

sum (25) over n from 1 to N — 1 to obtain

N—-1 2 2
o CLo% || Vel H w o | mo.n |
. SIS 9]
A w2 [Vohallew) ;( ; o ; Vet
N—-1 N N—1 N
(51) +Z EnllVOh 24> vEallV - 08 1243 C1(Cud) 2kl |V R 51135
n=1L n=1
0)kn ||ang||4 n HP o clet||vek||?
< 2 (g 117+ D1 + 1y I | | R
Z ntl —1 ) oh @) w2 ||[Voh ()

N-1

Ch" ~
ol o (3 VRl Vel 5112) + (0, Funax, b, 6),

n=1
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where
F(ea kmam h7 6)

2r+42 2 C;lé? 2 2r 2
=COR o+ OO (S ) WM louliego i)

Cy2h?"
+ 2
14

(Kl 2o,zamssy + Mool 2,5)

+

C(@) h2r 8 4 8 4 4 4
(kS 010 0,0 S V0 01 g 2 IV 01 0.2,6)

C(C,5)2C3? )
vie ’

3r__d
+ WE V0l oz + IVl 05.5)]

3r

|1+ R% )%~ 4 (&

Ch?st2 C(0)Fmax Chiax

+ alll3 41,28 T THwtttHLQ(O 102y t » vatt”m(o T;L?)
0(9) max (Cs0”

+T( 2 ) vattt||L2(OTL2)
C(O)k* Okt

+%[(1 + kL )IVwe 7 } +—= Il £t 22 0.7, x7)
C(O)K3,,, (Cu0)2Cy?

4 OOk v [(k&ax+k;ax DIVenldso s + IIVell0s,)-

By (17) in Theorem 4.5,
N-1

D vk ||Vl )17 < C(9).
n=1
We set
™ 4
kmaxVS
and
D1 n=>0
Dl + D2 n=1
(52) dpn=¢Dn1+Dp+Dpy1 2<n<N-2.
Dy_2+Dn_y n=N-1
DN,1 n=N

By the time step restriction in (20), we have kpaxd, < 1 for all n. Then we use
the definition of G(8)-norm in (14) and apply Gronwall’s inequality in Lemma 2.4
o (51) (with d,, defined in (52) and At = kpayx)

V-~
1% 11 +C () 25 allVeh 11

n=1

N—-1
max C(0)h"
esxp ( ) [C O 24 12+ F O, Ko 1 6)

1_ m
n—1 ax n

4 $2
O (Ih1? +1681) + <O (1wt + 19641
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By triangle inequality, approximation properties of Stokes projection in (10) and
approximations of finite element space in (6), we have (21). O

Remark 4.10. The Semi-implicit DLN algorithm has been applied to the Navier
Stokes equation [53] and outperforms the corresponding fully implicit algorithm in
two aspects: removing the time step restriction like (20) as well as avoiding the
non-linear solver at each time step. For error analysis of the semi-implicit DLN
algorithm for CSM (12), the SM (SM) and LLC (LLC) conclusions should be
adjusted and are left as an open problem. To do so, one can follow the work in
[30, 81] where a new linear extrapolation of the convecting velocity for CNLE is
proposed that ensures energetic stability without a time-step restriction.

5. Numerical Tests

We perform two numerical tests in this section. The first test with known exact
solutions is to verify the rate of convergence of the DLN scheme. The second test is
to show that DLN exhibits intermittent backscatter under both uniform time grids
and variable time steps. For both tests, we choose three values for the parameter
0: 2/3,2/\/5,1. The value §# = 2/3 is proposed in [19] to minimize the error
constant and maintain stability. the value § = 2/+/5 is suggested in [40,41] to
guarantee the best stability at infinity (long-time simulations in practice). The
DLN method with § = 1 is reduced to one-leg midpoint rule, having the smallest
error constant [8] and conserving all quadratic Hamiltonians. We use the software
FreeFem++ for programming and Taylor-Hood (P2 — P1) finite element space for
spatial discretization.

5.1. A test with exact solution. We choose the test problem proposed by Guer-
mond, Minev, and Shen [23] to confirm the second-order convergence of the constant
time-stepping DLN method. The exact solutions on the domain Q = (—1,1)? are

w(x,y,t) = 7sin t[sin 27y sin? 7, — sin 27z sin? 7y] ",

p(z,y,t) = sint cos wa sin 7y.

Initial conditions, boundary conditions, and body force f(x,t) are decided by the
exact solutions. We set model parameters Cs; = 0.1, 4 = 0.4, Re = 5000, and §
to be the shortest edge of all triangles. We simulate the test up to 7' = 10. We
denote the error of velocity and pressure at time ¢, to be e and eP respectively
and measure the performance by the following variables

1/2
¥ loeo = max, lle¥llzzy, e llowo = 3 Kletla) -
== 0<n<N

1/2
e locso i= max lleb ey, Metlloo:=( 3 klehlBa) -
=0 0<n<N

where k is the constant time step. From Tables 1 and 2, we observe that the
constant time-stepping DLN method with # = 2/3 obtains second convergence for
this test. The results of § = 2/1/5 and # = 1 (in Tables 4 to 7) are very close thus
we leave them to Appendix.
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TABLE 1. Errors by || - ||co,0-norm and Convergence Rate for the
constant DLN with 6 = 2/3.

k h lle¥|llco,0  Rate [[|Ve“|llo,0 Rate leP] | 0,0 Rate
0.08 0.08571 6.0302 - 56.8481 - 10.8576 -
0.04 0.04221 0.0498844 6.9175 1.35745 5.3881 0.079143  7.1000
0.02 0.02095 0.0119835 2.0575 0.399758 1.7637 0.0192928 2.0364
0.01 0.01048 0.00297779 2.0087 0.10394 1.9434 0.00490525 1.9757

TABLE 2. Errors by || - |jo,o-norm and Convergence Rate for the
constant DLN with 6 = 2/3.

k h le* o0 Rate [[|Ve“|llo,o Rate leP] 0,0 Rate
0.08 0.08571 7.8961 - 79.3971 - 12.3373 -
0.04 0.04221 0.107395 6.2001 3.06024 4.6974  0.143315  6.4277
0.02 0.02095 0.024972  2.1045 0.900864 1.7643 0.0345612 2.0520
0.01 0.01048 0.00617647 2.0155 0.234349 1.9427 0.00877951 1.9769

(a) ER (b) £
(c) ER (d) &R

FIGURE 1. Variable Step DLN (12) with Tol = 0.15,Re =

10, 000,60 = %,CS =0.1,p = 0.4. We do not see backscatter in
ev.

5.2. Test2. Flow between offset cylinder. We choose the 2D offset cylinder
problem proposed by Jiang and Layton [33] to see whether the CSM (1) admits the
transfer of energy from fluctuations back to means in the turbulent flow. Meanwhile,
we would like to see how the time adaptive algorithm affects the occurrence of the



900

F. SIDDIQUA AND W. PEI

(a) ER

() €N

csmp
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FIGURE 2. Variable Step DLN (12) with Tol = 0.15,Re =
10, 000,60 = \%, Cs=0.1, u=0.4. We see backscatter in EW.

(c) ER
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o 1 2 3 s 5 © 7 5 o 10

(d) €%

FIGURE 3. Variable Step DLN (12) with Tol = 0.05,Re =
10,000,6=0.95,Cs=0.1, 1 =0.4. We see backscatter in EX.
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mD csmp

(a) €R (b) £
(c) EW (d) €9

FIGURE 4. Variable Step DLN (12) with Tol = 0.01,Re =
10,000,0=0.98,Cs=0.1, 1 =0.4. We see backscatter in .

backscatter phenomenon. The domain €2 is a unit disk centered at the origin with
a smaller off-center obstacle inside, i.e. Q= {(z,y): 2?2 +y* <1, (v —0.5)2 +y> >
0.12}. The flow is driven by a counterclockwise rotational body force

f(xaya t) = [*42,/(]- - 1172 - y2),4$(1 - .’E2 - y2)]tr’

with no-slip boundary conditions on both circles. Since the flow is driven by a
counterclockwise force (f = 0 on the outer circle), it rotates about the origin and
interacts with the immersed circle. We use 400 nodes on the outer circle and 100
nodes on the inner circle for mesh generation. We set final time 7' = 10 and model
parameters Cy = 0.1, u = 0.4, Re = 10%, § to be the shortest edge of all triangles
(~ 0.01129). The backscatter phenomenon is measured by the model dissipation
Ew:

—~—

EMP = £ 4 /Q(Cs(5>2|Vw}1i/71,ﬂ||vw1}<'fl,ﬁ|2dx’

C462 oVl + o V'l | + apVwh,
gesm :/ ( 5 2VWN 1VWN_1 0VWN_9 _Vw}&_l,6> de.
Q

s kN1

Larger oscillations of £ around zero means significant backscatter phenomenon.
Thus only M makes contribution to backscatter. To design a time adaptive
mechanism for the variable time-stepping DLN method, we adopt the minimum
dissipation criteria proposed by F. Capuano, B. Sanderse, E. M. De Angelis, and
G. Coppola [10]: time step k,, is adjusted to ensure the ratio of numerical dissipation



902 F. SIDDIQUA AND W. PEI

TABLE 3. Total time steps taken to reach T = 10 while using
variable DLN for different values of 6.

0 Tol Total time steps Backscatter observed
0.98 0.01 9575 Yes
0.95 0.01 6505 No
0.95 0.05 1604 Yes
2/v/5  0.01 8988 No
2/v/5  0.05 5680 No
2/v/5 0.15 1973 Yes
2/3  0.01 9944 No
2/3  0.05 9575 No
2/3  0.15 7149 No

&N, and viscous dissipation £ is less than required tolerance Tol, i.e.

ND

Xn+1 = 5%1 < Tol.

n+1
If the above criterion is satisfied, we accept the result of the current step and double
the time step for the next step calculation. Otherwise, we halve the current time
step for re-computing. We set the maximum time step kpax = 0.025 for accuracy
and minimum time step ki, = 0.0001 for efficiency. The initial time step kg equals
kmin and initial conditions are obtained by solving the steady Stokes problem with
the same body force f(x,y,t) and same Re. Tolerance Tol is pre-set each time to
achieve the backscatter phenomenon to the largest possibility.

We first attempt the adaptive DLN algorithms with § = 2/3 and Tol = 0.15.
From Figure 1, we don’t see the backscatter phenomenon since E™ is overwhelmed
by second term in Y, ;. Then we try the adaptive DLN algorithms with 6 = 2/1/5
and same Tol. This time we observe evident backscatter in Figure 2. Hence,
it’s reasonable to expect that the backscatter phenomenon is more significant if 4 is
larger. Then we try the adaptive DLN algorithms with § = 0.95 and Tol = 0.05. We
observe more significant backscatter phenomenon in Figure 3. Lastly we increase 6
to 0.98 and decrease Tol to 0.01 and still achieve large oscillations of £} | around
zero in Figure 4. We also attempt these four 6 values with different tolerance
and summarize the results in Table 3. Table 3 shows that it’s more likely to have
backscatter phenomena by the adaptive DLN algorithms with larger 6. Also for
relatively small 6 values, we can increase Tol (larger average time step size) to have
backscatter phenomena more easily.

Then we apply the constant time-stepping DLN algorithm in (11) with & = 0.001
to the same problem. From Figures 5 to 8, there is no backscatter phenomenon
for all four 6 values, which implies that it’s more likely to have the backscatter
phenomenon during the simulations with adaptive DLN algorithms. Moreover, we
couldn’t see the backscatter phenomenon unless we increase 6 to 1 (See Figure 9).
The oscillations in the model dissipation may come from the effect of normal ringing
[5], which is seen in the standard midpoint rule.

Finally, we check how the new kinetic energy penalization in CSM affects the
kinetic energy KE = 1|lwk||>. We try different combinations of 6 and Tol for
adaptive DLN algorithms and observe that the KE stabilizes or only varies within
a small range when backscatter happens. On the other hand, KE continues to
increase with no backscatter phenomena. Figure 10 confirms our observation. The
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csmp

(a) £ (b) £5
A b,
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FIGURE 5. Constant time step DLN (12) with & = 0.001, Re =
10,000,0 = 0.98,Cs = 0.1, u = 0.4. We do not see backscatter in
Ew.

left picture is the result of adaptive DLN algorithm with 6 = 0.95 and Tol = 0.01.
The kinetic energy continues to increase after a long time with no backscatter
phenomenon happening (See Table 3). The right picture shows the converse: the
adaptive DLN algorithm with 8 = 0.95 and Tol = 0.05 has kinetic energy around
42 with significant backscatter phenomenon (See Table 3).

6. Conclusion

In the report, we propose the variable time-stepping DLN algorithm for the CSM
and present a complete numerical analysis of the algorithm. In the stability analysis,
we have shown that the numerical solutions are unconditionally stable in energy over
the long term. In the error analysis, we have proved that the numerical velocity
converges at second order under mild time step limits if the highest polynomial
degrees satisfy r = 2 and s = 1, which is verified by the first numerical test
problem in Subsection 5.1. It’s clear that to get the backscattering phenomenon
not from the ringing property of the method, we need dissipative methods and we
need some control of numerical dissipation, EXP. We therefore test in Subsection
5.2 by adapting the time step using minimum dissipation criteria. The closer § =
1, the closer the DLN method gets to be exactly conservative. If it is exactly
conservative, we do not need tight control over EX°. The further we go away from
exactly conservative, the tighter control we need over ENP to see what seems to
be true. In the future, error analysis for a semi-implicit DLN algorithm for CSM
to avoid time restriction could be proven since it’s an important open problem.
Furthermore, in 3D, storage can be an issue and hence analysis of the reduced
storage penalty method is also an interesting problem.
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FIGURE 6. Constant time step DLN (12) with k& = 0.001, Re =
10,000,0 = 0.95,Cs = 0.1, u = 0.4. We do not see backscatter in
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7. Appendix

In this appendix, we provide additional some additional tables and figures.

TABLE 4. Errors by || - ||co,0-norm and Convergence Rate for the

constant DLN with § = 2//5.

k h Ile[llooco  Rate [[[Ve”|loo Rate  [[[eP]lco  Rate
0.08 0.08571 6.1375 - 59.5951 - 10.2725 -
0.04 0.04221 0.0499412 6.9412  1.35769  5.4560 0.0803944 6.9975
0.02 0.02095 0.0119888 2.0585 0.399817  1.7637 0.0195956 2.0366
0.01 0.01048 0.00297839 2.0091  0.103952  1.9434 0.00502445 1.9635

TABLE 5. Errors by || - ||o,o-norm and Convergence Rate for the
constant DLN with = 2/\/5

Fh Tl Fate J[Ve'llog Rate  [Iellln_ Rate
0.08 0.08571 8.05856 - 86.5876 - 11.9822 -
0.04 0.04221 0.107272 6.2312  3.05843  4.8233 0.143556  6.3831
0.02 0.02095 0.0249452 2.1044 0.900625 1.7638 0.0346417 2.0510
0.01 0.01048 0.00616932 2.0156 0.234285 1.9427 0.00880143 1.9767
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FIGURE 7. Constant time step DLN (12) with k& = 0.001, Re =
10,000, 0= \%, Cs=0.1,u=0.4. We do not see backscatter in EX.
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FIGURE 8. Constant time step DLN (12) with k& = 0.001, Re =
10,000, 0= %, Cs=0.1, = 0.4. We do not see backscatter in EWP.
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FIGURE 9. Constant time step DLN (12) with & = 0.001, Re =
10,000,0=1,C, = 0.1, u=0.4.

KE w KE

(a) KE, Tol=0.01 (b) KE, Tol=0.05

FIGURE 10. Variable Step DLN (12) with Re = 10,000,0 =
0.95,Cs =0.1, 4 =0.4. The left picture is for no backscatter and
the right picture is for backscatter.

TABLE 6. Errors by || - ||co,0-norm and Convergence Rate for the
constant DLN with 6 = 1.

k h lle®|lloc.o  Rate [[|Ve¥|llo,0 Rate leP] | 0.0 Rate
0.08 0.08571 6.03148 - 72.2845 - 14.0717 -
0.04 0.04221 0.0499902 6.9147 1.35784 5.7343 0.0831369 7.4031
0.02 0.02095 0.0120016 2.0584  0.399858 1.7638 0.0203057 2.0336
0.01 0.01048 0.00298191 2.0089  0.103961 1.9434 0.00512713 1.9857
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TABLE 7. Errors by || - |jo,o-norm and Convergence Rate for the
constant DLN with 6 = 1.

k h lle“[lloo  Rate [[[Ve"|[loo Rate  [[[e”|lloo  Rate

0.08 0.08571  8.50684 - 105.23 - 14.0354 -

0.04 0.04221 0.107277 6.3092  3.05802  5.1048  0.14397  6.6072
0.02 0.02095 0.0249479 2.1044 0.90061  1.7636 0.0347625 2.0502
0.01 0.01048 0.0061698 2.0156 0.234279 1.9427 0.00883384 1.9764
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