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The 2023 smooth Lagrangian Crack-Band Model (slCBM), inspired by the 2020
invention of the gap test, prevented spurious damage localization during fracture
growth by introducing the second gradient of the displacement field vector, named the
“sprain,” as the localization limiter. The key idea was that, in the finite element
implementation, the displacement vector and its gradient should be treated as
independent fields with the lowest (C0) continuity, constrained by a second-order
Lagrange multiplier tensor. Coupled with a realistic constitutive law for triaxial
softening damage, such as microplane model M7, the known limitations of the classical
Crack Band Model were eliminated. Here, we show that the slCBM closely reproduces
the size effect revealed by the gap test at various crack-parallel stresses. To describe it, we
present an approximate corrective formula, although a strong loading-path dependence
limits its applicability. Except for the rare case of zero crack-parallel stresses, the fracture
predictions of the line crack models (linear elastic fracture mechanics, phase-field,
extended finite element method (XFEM), cohesive crack models) can be as much as
100% in error. We argue that the localization limiter concept must be extended by
including the resistance to material rotation gradients. We also show that, without this
resistance, the existing strain-gradient damage theories may predict a wrong fracture
pattern and have, for Mode II and III fractures, a load capacity error as much as 55%.
Finally, we argue that the crack-parallel stress effect must occur in all materials, ranging
from concrete to atomistically sharp cracks in crystals.

fracture energy | fracture and damage mechanics | second displacement gradient |
material rotation gradient | spress–sprain relation

All line crack models, which include the linear elastic fracture mechanics (LEFM),
the XFEM, and Barenblatt’s cohesive crack model (1–3) [with its reincarnation as
Hillerborg’s model (4)] cannot reproduce the effect of crack-parallel stresses. The reason
why this effect went undetected for a century until the invention of the gap test (5, 6)
is that in all of the standardized fracture test specimens, the crack-parallel stresses are
negligible (�̄xx ≈ 0). The recent fads of peridynamics and phase-field model also fail
to reproduce the gap test as well as 10 other recently emphasized distinctive fracture
tests (7, 8). In addition, all the integral-type nonlocal models and peridynamics (9) have
unsurmountable problems with the boundary conditions, which are fatal at the crack
faces.

The classical crack band model, CBM, proposed in 1983 (10, 11), has been shown to
surpass all of the aforementioned models by far (7). This model uses the finite element
(FE) size to represent the width of the crack band, which is set equal to the material
characteristic length l0 best identified from size effect tests. Within each FE, the damage
is assumed to be uniform and must be described by a realistic damage law. However, the
CBM is not perfect because the variation of the width of crack band front along with the
damage distribution across the band cannot be captured and, if a regular mesh is used, a
crack band inclined to the mesh lines propagates in a zig-zag way, locally biased by the
mesh orientation (even though the overall crack path, dictated by maximization of the
energy release, remains essentially correct).

The aforementioned shortcomings are remedied by the new smooth Lagrangian Crack-
Band Model, slCBM (12). In slCBM, excessive damage localization is limited by the
so-called sprain energy density, Φ, which is defined in ref. 12 as a function of the third-
order tensor, �ijk, of the second gradient (or the Hessian) of the vectorial displacement
field. The term “sprain” (13) was borrowed from orthopedic medicine where it has long
been used to describe “the damage of a ligament over a finite length without a full break”
(e.g. ref. 14). The sprain is the second gradient ui,jk of the displacement vector ui (in
Cartesian coordinates xi, i, j, k = 1, 2, 3), multiplied by the material characteristic length
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l0, which makes it dimensionless. The partial derivative of the
sprain energy density with respect to the sprain tensor was named
the “spress” tensor in (12), which is the work-conjugate force
variable that corresponds to the sprain tensor. By means of l0,
the sprain and spress are made to possess, conveniently, the same
dimensions as the strain and stress although they reflect third-
order tensorial quantities. Note that they have nothing to do with
continuum homogenization by a uniform strain field.

In the first paper that introduced the sprain energy as a
localization limiter (13), the sprain energy attributed to each FE
node was differentiated with respect to the nodal displacements.
This yielded a set of self-equilibrated curvature-resisting sprain
forces, some of which had to be applied on the nodes adjacent to
each FE. This required an additional script file that ran through
each node. Providing the adjacent node numbers turned out to be
a huge computational disruption, which resulted in an increase
in the running time of a FE code such as Abaqus by almost two
orders of magnitude.

The slCBM formulated in ref. 12 eliminates the use of
adjacent nodes by introducing an independent field �ij that is
an approximation of the actual strain gradient ui,j. The �ij and
ui,j fields are weakly constrained by a Lagrange multiplier tensor
�ij, while the gradient �ij,k gives the curvature (or second gradient,
the Hessian) of the displacement vector ui. This formulation not
only obviates the need for applying curvature-resisting sprain
forces on the adjacent nodes, but also allows both ui and �ij fields
to be assigned the lowest interelement continuity, C0, which is
generally favorable for fracture modeling.

The classical strain-gradient theories (15) may be regarded as
a special case in which the gradient !ij,k of material rotation !i,j
is not resisted, which seems to be a physically unrealistic feature
(Fig. 1). The error due to omitting !ij,k will here be shown
to be negligible in symmetric fracture modes but large, with
errors exceeding 50%, in shear and shear-compression fracture
modes.

Remark 1. CBM and previous experiments: Since the in-
ception of the CBM in 1983, it was clear that the contrast
between the success of the CBM predictions for shear and
shear-compression cracks in reinforced concrete and the poor
predictions of LEFM (2, 16, 17) and of the cohesive (line)
crack model (or Hillerborg’s fictitious crack model), signaled
the importance of triaxial stresses at fracture front. To clarify
this argument, Tschegg (18) came up already in 1995 with
a pioneering adaptation of the wedge-splitting experiments.
However, unlike the gap test which transits from one stati-
cally determinate configuration to another and can be eval-
uated easily without any FEA, Tschegg’s test was statically
indeterminate and did not have the maximum �̄xx near the
notch tip. A proper evaluation of this test called for an
optimization of FEA with an assumed triaxial damage law,
which was complicated and made the evaluation ambiguous and
inconclusive.

Remark 2. Isogeometric analysis (IGA) approach: A recent
study (19) reproduced the sprain energy effect by means of
IGA, which presents another avenue to ensure the continuity of
displacement gradient. However, in the IGA, due to its founding
in splines, the displacement gradient continuity is higher than
C0. In contrast to slCBM, the IGA basis precludes a nodal jump
in the gradient of displacement gradient–a feature that seems
not beneficial in numerical simulation of fracture. This suggests
that, for the IGA, one might need to subdivide l0 into smaller
subelements than in ref. 19.

Spress and Sprain. To summarize the theory (12), we decompose
the Helmholtz continuum energy density as

Ψ̄(�, �) = Ψ(�) + Φ(�), [1]

where Ψ is the standard strain energy density, Φ is the sprain
energy density, � is the strain tensor and � is the sprain tensor

A

B

D

E

C

Fig. 1. (A) Due to heterogeneity, the dashed line is impossible, and the change of gradient indicated by the curve can happen only over a finite distance
dictated by the maximum admissible curvature represented by the characteristic length l0; (B and C) if the change of gradient over distance Δx equal to l0 in
figure (B) were unresisted (i.e., required no energy), then distance Δx could be made arbitrarily small as in figure (C), which would imply sliding on the vertical
plane, absurdly with no resistance. This theoretical point suffices to prove that omission of the rotation gradient is wrong. (D and E) Example of a torsional
displacement field when changing the distance between the two rotated planes at different spacing l0.

2 of 9 https://doi.org/10.1073/pnas.2410668121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"N
O

R
TH

W
ES

TE
R

N
 U

N
IV

ER
SI

TY
, S

ER
IA

LS
 D

EP
A

R
TM

EN
T"

 o
n 

Se
pt

em
be

r 2
6,

 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
29

.1
05

.8
6.

57
.



(dimensionless); � denotes the strain gradient tensor (dimension
m−1). Their component definitions in Cartesian coordinates xi
(i = 1,2,3 in 3D, or 1,2 in 2D) are

�ijk = l0ui,jk, �ijk = �ij,k, ui,jk = �ijk + !ij,k, [2]

The subscripts preceded by a comma denote partial derivatives;
ui = components of displacement vector u, �ij = (ui,j + uj,i)/2
= small strain tensor (linearized) and !ij = (ui,j − uj,i)/2 =
material rotation tensor. The sprain energy, the spress, and the
curvature-limiting spress–sprain relation are expressed as

Φ(�) =
∫

sijkd�ijk, sijk =
∂Φ(�)
∂�ijk

, [3]

sijk = �
〈
|�| − C

〉
�ijk/|�|, [4]

where Φ(�) is a function of the dimensionless third-order tensor
� with components �ijk. Here, � is the sprain stiffness; |�| is a
suitable norm of �, for example, ‖�‖2, and C is the threshold
below which the effect of the displacement field curvature on
damage is nil. Such a situation prevails in most of the volume of
the structure, in which the classical continuum mechanics with
no sprain energy applies.

Eq. 4 is not a constitutive relation, because its purpose is a
geometric restriction—to set the maximum possible curvature
of the vector field (e.g., force the dashed curve in Fig. 1A to be
replaced by the smooth change of slope over certain minimum
distance controlled by the maximum curvature). The spress–
sprain relation may be thought to have a character similar to the
penalty function used in computer simulations of rigid contact
problems, in which there is, of course, no spring at the contact.
The spring-like resistance provided by the penalty function is
not a material property but a trick, emulated by the spress,
which facilitates the FE analysis of contact problems. Different
expressions for the penalty function may serve the purpose equally
well.

The Question of Spress–Sprain Cross Dependence and Geo-
metric Restriction. The spress–sprain relation is essentially a
geometric limitation on the maximum possible curvature (or on
the norm or magnitude of the hessian) of the displacement field
that is permitted by the size of inhomogeneities in the material
microstructure (as shown in Fig. 1D). It has nothing to do with
the classical homogenization of the heterogeneous microstructure
of material over some material representative volume whose size
is the material characteristic length l0. The only material length
that must be considered as a material property in the spress–
sprain relation is the minimum radius r0 = Δx/Δ� admitted by
the maximum size of material inhomogeneities (Fig. 1D), such
as grains. This radius, or maximum possible curvature 1/r0, can
be determined only by testing specimens with strongly variable
displacement gradient, by inverse analysis of many observations,
or by micromechanics. Clearly, r0 cannot be less than several
grain sizes (Fig. 1E).

Remark 3. Analogy with molecular interactions: Molecular
dynamics is often simplified by considering only pair interactions
between two particles characterized by a pair potential, such as
the Lennard-Jones potential, whose derivative is an interparticle
force. The pair potential completely defines the energy density
as a function of the finite strain tensor. But for a more realistic
modeling, one must also consider the valence and dihedral angles
(20, 21). The valence angle is defined by three particles (or
points), such as 6 ACB in Fig. 1A or 6 CAB in Fig. 1D. A change

of this valence angle is resisted by a bending moment, similar
to the idea of sprain energy here. The dihedral (or torsional)
angle represents the relative (torsional) rotation of two parallel
planes. This rotation is defined by four points, such as the top
four corners of the gradient line segments on parallel vertical
planes in Fig. 1C, and is resisted by a torque, same as here. Thus,
omitting here the material rotation gradient is similar to omitting
the resistance to a change of dihedral angle in molecular dynamics
(considering quantum mechanics or DFT would, of course, be
physically better justified yet also far more complicated). It may
further be noted that the resistance to a change of dihedral angle
has no analogy in the strain gradient models, which may be seen
as a fundamental deficiency of these models.

Here, the only purpose of the sprain energy and the associated
spress–sprain relation is to provide, for convenience, a soft quasi-
elastic resistance to an abrupt change of displacement gradient.
Although, in the previous study (13), a cross-correlation with
volume change �V was intuitively introduced by a weakening
threshold C when the volumetric expansion gets too high,
there are no cross-relations introduced in Eq. 4. In the present
calculations, a zero spress is assumed in Eq. 3 when |�| <
threshold C (although, in the preceding study, a small but
nonzero spress below threshold C was introduced to enhance
convergence (12)).

Broadening the Concept of Strain Localization Limiter. In 1976
(22), it was shown that FE analysis of a tensioned bar with
a strain-softening stress–strain relation predicts, paradoxically,
the bar to fail at zero energy dissipation unless the minimum
element size is limited to a certain characteristic length l0 that
is a considered as a material property. Without this limitation,
the continuum model could not reproduce the transitional size
effect, nor the gap test and the variation of energy dissipation
rate during crack growth. The strain-based localization limiter
for the minimum element size (16, 23) thus became the basis of
the crack band model (10) and generally of FE failure analysis
of concrete, geomaterials, and fiber composite airframes with a
strain-softening stress–strain relation.

The introduction of sprain requires the concept of localization
limiter to be broadened to the localization of sprain, which
includes localization of material rotation gradient. Since the
sprain differs from the strain gradient, �ij,k, only by !ij,k, one
needs to add only a localization limiter on the material rotation
gradient. This is accomplished by introducing additional energy
density that is a function of !ij,k and resists its value becoming
unrealistically large.

Lagrange Multiplier Constraint as a Generalized Force Ensu-
ing from Finite Difference Approximation. Consider a one-
dimensional (1D) finite element of length h on the interval
(x1, x2) with nodal displacements u1 and u2 at nodes x1 and
x2, respectively (see figure 2 in ref. 12). The gradient of the axial
displacement u within this element is u′ = (u2−u1)/h. Further,
we introduce the nodal approximate independent displacement
gradients �1 and �2. Their average over the element is �̄ =
(�1+�2)/2. The advantage of having introduced the independent
gradient is that the curvature of u within the element can be
expressed as u′′ = (�2 − �1)/h without any need to consider
the adjacent nodes outside the element. The condition for �̄ to
approximate the actual gradient u′ obviously is u′ − �̄ ≈ 0. The
finite difference solution of the nodal values of u based on all
the foregoing equations can be used to enforce on a 1D bar the
condition of maximum admissible curvature u′′.

PNAS 2024 Vol. 121 No. 40 e2410668121 https://doi.org/10.1073/pnas.2410668121 3 of 9
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A

C D

B

Fig. 2. (A) Near-notch damage zone in a symmetric 3PB test specimen using 3D slCBM with the (x, y) plane curvature control: 3-Point Bend test specimen
(3PB). (B) Map of sprain energy intensity in the near-notch region. (C) Profile of sprain energy density ratio � across the damage band front (� = sprain energy
density/total energy density); the curvatures at both ends are not restricted because � < threshold. (D) Near-notch strain profiles for three cases of threshold
parameter: 10−6, 10−5, and 1.5× 10−3 (on the Right, the threshold is too large to limit curvature, which makes the situation equivalent to the CBM).

It would, however, be difficult to extend the foregoing finite
difference approximation to two or three dimensions (2D or
3D). It is more effective and physically meaningful to recast
the foregoing finite difference formulation into an energy-based
variational form. To this end, we rewrite the constraint between
�̄ and u′ in the form:∫ x2

x1

��(u′ − �̄)dx = 0, [5]

This is a variational equation that must be satisfied for any
variation �� that is physically admissible. This variational
equation implies a physical constraint on the gradient difference
Δ = u′ − �̄ = 0, which we already obtained directly from the
finite difference approximation in 1D. Eq. 5 represents work and,
since Δ is a generalized displacement, � must be a generalized
force, which is independent of Δ and represents a pseudogravity
moment density (dimension N·m/m3, or N/m2).

Remark 4. Relation to nonlocal models: It is important to
note that the present model is not a nonlocal model even
though it prevents the softening damage from localizing into
a zone narrower than a certain material characteristic length.
The nonlocality, as a localization limiter, proposed in 1976
(22), is expressed through the averaging of strain or damage
in a heterogeneous solid over a certain finite length, l0, that is
a material constant. The later advent of peridynamics perverted
this concept as a supposed interaction between two points (or
particles) over a finite distance, l0, skipping intermediate particles.
Such interaction does not exist in solids except on the atomic
scale. Thus the peridynamics is a fiction and physically unjustified
concept. Labeling it “nonlocal” is incorrect. Its predictions have
been shown to conflict with a broad range of experiments (7, 8).

3D Variational Formulation. We now integrate the strain and
sprain energy densities over the structure volume, including the
applied volume forces f and surface forces p, to obtain the

expression for the potential energy (i.e., Helmholtz free energy) of
the structure. Taking the first variations with respect to ui, �ij and
�ij, we apply the Gauss integral theorem and obtain the following
three minimization conditions of equilibrium as constrained by
�ij:∫

V

{
�ij · ��ij − fi · �ui − �ij · �ui,j

}
dV +

∫
S
piuidS

=
∫
V

{
−�ij,j − fi + �ij,j

}
· �ui dV +

∫
S
(. . .) dS = 0, [6]∫

V

{
sijk · ��ijk + �ij · ��ij

}
dV

=
∫
V

{
−l0sijk,k + �ij

}
· ��ij dV +

∫
S
(. . .) dS = 0, [7]∫

V
−
{
ui,j − �ij

}
· ��ij dV = 0, [8]

Here, V and S are the structure volume and surface area, and pi
are the applied surface forces (or tractions). Eqs. 6–8 must hold
for any variation, which yields the local equilibrium equations,
similar to those for 2D (12):

�ij,j + fi − �ij,j = 0, l0sijk,k − �ij = 0, ui,j − �ij = 0, [9]

Tackling Various Computational Difficulties. The 3D finite
element formulation is based on the three variational Eqs. 6–8.
In 3D, we have 3 degrees of freedom (DoFs) per node for
u, 9 for ∇u, and 9 for � , which is in total 21 DoFs per
node. This means 168 DoFs for an 8-node 3D brick element.
Obviously, this creates a big computational burden and calls for a
supercomputer.

This burden may be alleviated in various ways. One way is
to delay the Lagrange multiplier tensor by one load step or, if
the step is iterated, by one iteration. Thus, the number of DoF
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of a brick element gets reduced to 96, which is still demanding
but manageable. For our purpose, it suffices to consider only 3D
situations in which the curvature (sprain) threshold C is expected
to be exceeded only in plane (x, y), where x is the forward crack
direction and y is the crack plane normal. Then, ui,jk needs to
be limited only in plane (x, y). With no loss of accuracy, the
formulation of a 3D 8-node brick element thus gets simplified as

u = [u, v, w]1×3 � = [�ij]2×2 � = [�ij]2×2, [10]

where i, j ∈ {1, 2}. Then, the numbed of DoFs per node
is reduced to 11 or 88 per brick element (provided that the
threshold C is not exceeded in the (x, z) and (y, z) planes). The
3PB (three-point-bend), the gap test, and the 4PB shear test
configurations normally satisfy this condition, using a realistic
threshold C.

Here, like in ref. 12, Matlab and Abaqus with a user element
were used in FE simulations. It is also effective to use the coupling
feature provided by COMSOL multiphysics software. Starting
from Eqs. 6–8, the weak variational equations derived from
the energy functional provide partial differential equations of
solid mechanics coupled with two additional tensorial fields.
Using the weak contribution function feature, it was checked
that COMSOL produces the same results as Matlab and Abaqus
do. For postpeak softening, it provides simulations under crack
mouth opening displacement control more seamlessly, with the
applied load set as a global unknown variable. Besides, even
though no time-dependent evolution equation is specified for �
and �, COMSOL yields the same displacement field of slCBM
regardless of whether the explicit dynamic or static algorithm is
used.

Fig. 2D, based on a smooth spress–sprain relation, shows that
the maximum size h of square or brick elements needed to ensure
a smooth strain profile across the damage band is h ≈ l0/6, where
l0 is the material characteristic [which is best identified by fitting
scaled size effect tests (16)]. The figure also shows differences in
the results caused by changing threshold C .

Numerical Simulation of the Gap Test Using the slCBM. Con-
ceived in 2020 and presented in refs. 5 and 6, the gap test has three
important consequences for fracture mechanics: 1) The material
fracture energy, Gf , varies significantly with the crack-parallel
stress, 2) a fracture process zone (FPZ) at the fracture front must
have a finite width and 3) the FPZ must be characterized by a
damage law that is not scalar but triaxial and tensorial, and must
be realistic for each given material, such as microplane model M7
for concrete (24, 25) whose superiority in fitting the distinctive
fracture test data was demonstrated in refs. 7 and 8, especially
compared to peridynamics and phase field models.

Briefly, in the gap test, the end supports of 3PB specimens
are set so as to leave certain gap. The gap is calculated so as
to close at the right deflection of the beam (see the schematic
picture in Fig. 3). The initial loading is introduced by a pair
of elasto-plastic pads, which are installed at the mid-span on
both sides of the notch, facing the midspan load applied by
the testing machine. The gaps close once the pads reach the
desired yield plateau. The bending moments from the reactions
at the end supports, then, drive the fracture across the beam.
A feature that makes the evaluation unambiguous is that the
system remains statically determinate throughout the whole test
(to simplify numerical simulations, the constant plastic forces
from the yielding pads could thus be replaced by applied dead
loads). Another important feature is that stress field near the
notch tip is an almost uniform crack-parallel compressive stress.

A

B

D

C

Fig. 3. (A) Schematic description for the gap test. (B) The stress–strain
relationship for the pads demonstrates that plastic pads maintain nearly
constant stress level after yielding. (C) Applied load vs. displacement in gap
test. (D) Fracture energy Gf (normalized by Gf0) as a function of crack-parallel
stress �xx (normalized by �c = 31 MPa) obtained by slCBM and the scalar
elasto-plastic damage model compared with two experimental data points,
each representing the average of 9 gap tests.

The gap tests are made on geometrically scaled specimens of three
sizes, so that the Gf could be evaluated by the size effect method
(which is the most accurate method for a heterogeneous material).

The computer results obtained with the slCBM and mi-
croplane model M7, shown in Fig. 3, match the experimental
findings in which the fracture energy nearly doubles as the
crack-parallel compressive stress increases from zero to 0.4 of
the compressive strength �c . The results of 3D simulations
shown here use the curvature control only in plane (x, y). This
is sufficient in the case of the gap test because threshold C is
never exceeded in planes (x, z) and (y, z). The result in Fig. 3
demonstrates that the slCBM can correctly reproduce the gap
test and does so better than the classical CBM as reported in
refs. 6 and 8.

It is noteworthy that if, by contrast, the damage constitutive
law were changed to the classical scalar damage model, the
material fracture energy Gf would remain constant when the
applied crack-parallel stress changes (as in phase-field models).
Thus the strong effect of crack-parallel compression on Gf
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would be entirely missed. This highlights the importance of
using a realistic triaxial damage law when large crack-parallel
stresses act.

The M7 simulations with the classic CBM have previously
been shown to predict a strong effect of transverse �̄zz in 3PB
specimens. Ditto for the effect of !ij,k observed in Mode III
fracture tests such as the torsion test (7). Such effects are likely to
be universal.

Distinction from Classical Strain-Gradient, Micropolar, and
Other Material Rotation Models. The initial aim of introducing
the strain gradients into material constitutive laws was merely to
provide homogenization of elastic microstructure with additional
local degrees of freedom (28–31). In some studies (32), material
rotations implied by the second gradient of displacement were
mentioned but no energy density was attributed to them (until
2022). Most studies have used only simplified hypothetical
damage laws, which are adequate for illustrative sketches but
not for engineering applications.

Beginning in 1984, the strain-gradient continuum has been
exploited as a damage localization limiter in quasibrittle fracture
modeling (33–35), (36, section 2.9 and equation 13.10.25). An
important theory, not intended for fracture, was the strain gradi-
ent (nonsoftening) plasticity in which the problem of localization
instability does not arise. The objective was a continuum model
of elasto-plastic metals accounting for geometrically necessary
dislocations, motivated by thin metallic films (37–39).

Fundamentally different were theories such as the micropolar
continuum which, too, are irrelevant to damage localization. In
these theories, the homogenization dealt with specific material
microarchitectures such as flexible frames in which, unlike here,
the rotations of beam joints are independent of the rotations of
beam members and are unrelated to the continuum displacement
field (40–42), (36, sections 2.9 and 2.10).

Strain-Gradient vs. Sprain. Among all materials, the largest
variety of fracture tests is available for concrete (see the 11
distinctive tests in ref. 43). In those tests as well as others, the
microplane model M7 performed well and much better than the
constitutive damage models of classical type, based on subsequent
loading surfaces and tensorial invariants. However, M7 has not
been implemented in the strain-gradient theory. If the sprain
theory using the M7 constitutive law were compared to an
existing strain-gradient theory with a different constitutive law,
it would be unclear whether differences in their responses should
be attributed to the difference in the constitutive law rather than
to the replacement of the strain gradient with the sprain.

Here a strain-gradient approach is obtained by deleting the
material rotation gradient, !ij,k, which is accomplished by
symmetrizing ui,jk at the outset. This makes the sprain tensor �i,jk
identical to the strain-gradient tensor �ijk, allowing a meaningful
comparison to the sprain model. For clarity, we also ensure
that the lack of material rotation gradient !ij,k be the only
difference in the comparison by keeping in the strain gradient
program not only the same constitutive law but also the present
Lagrangian multiplier method with the C0 continuity of strains
as independent variables.

Fig. 4A–E shows the change in slCBM when!ij,k is suppressed
for simulations of 3PB mode I fracture tests, and of the 4PB
Mode II shear fracture tests. Note that: 1) The strain-gradient
and sprain models are virtually identical if the crack line is the
axis of deformation symmetry, which implies Mode I fracture. 2)
The slCBM simulations of shear or mixed-mode fracture predict

loads up to 55% higher than the strain-gradient model. 3) The
slCBM may also predict a different crack pattern. Due to a higher
sensitivity to rotation gradient, the slCBM is able to capture the
plane crack starting before the peak load, documenting a different
crack evolution.

Still bigger differences may logically be suspected for 3D
torsion-induced Mode III fracture simulations, in which the �̄xx
may cause a major change in the failure mode and fracture shape
that cannot be captured by the strain-gradient models at all.

Path Dependence Error in ApproximatingGf As Function of �̄xx .
As shown in figure 9 in ref. 6, the effect of crack-parallel stress �xx
is strongly path-dependent. For the gap test path (first applying
�̄xx , subsequently growing fracture), the results for concrete can
be described by a simple curve-fitting (equation 1 in ref. 6):
Gf /Gf 0 = 1 + a/(1 + b/�)− (1 + a+ b)�s/(1 + b), where � =
�̄xx/compressive strength and Gf 0, a, b, s are constants. However,
whether �̄xx is applied first or latter, or simultaneously with
fracture loading, makes a huge difference (see figure 9 in ref. 6).

Similar equations could be formulated for other materials
and other simple paths. One might want to apply them in FE
computations to modify the Gf based on the �̄xx value from the
previous load step. That might roughly suffice for anchor pullout,
ice sheet pushing on vertical column, shear in a reinforced
concrete (RC) beam or slab, longitudinal crack in pressurized
fuselage, or in rocket casing. However, in many other situations
the Gf , as a function of �, is enormously path-dependent, and a
FE incremental loading simulation is then required.

Likely Universality of Crack-Parallel Stress Effects. The experi-
ments of Brockmann and Salviato (44) already showed that crack-
parallel compression has also a major effect on the fracture energy,
Gf , of composites. It causes a major decrease, rather than increase,
of the Gf of quasi-isotropic fiber-polymer composites. Based
on realistic simulations with the sphero-cylindrical microplane
model (45), this effect should be strong in shale (similar to
that in concrete but anisotropic) and probably in most rocks,
in all composites, printed architected materials, and polymers
that exhibit nano-scale crazing.

The simulation by lattice discrete particle model, LDPM,
which is the most realistic discrete element type model for
concrete, can also capture the crack parallel stress effect at the
mesoscale (46), in good agreement with slCBM. The crack-
parallel stress effect must even be expected in perfect atomistic
fracture of crystals. Why?—Because fracture creates surface
energy, which causes that the near-surface atoms must get
displaced into higher energy positions and thus they must resist
the crack-parallel stresses in a different way (it may be pointed out
that the effect of crack-parallel stress on the surface energy was
pointed out in a different context already in 1993 (47) but the
connection to fracture mechanics has apparently not been noted).

Recent experiments (48) further showed that, in ductile
fracture of polycrystalline metals such as aluminum, the long-
studied effect of crack-parallel stress �xx (aka T -stress) cannot
be attributed solely to the yielding zone (about 0.1 m in size).
Rather, it must be partly attributed to the fact that the fracture
in metals is not a line but must have a front that is several
crystal sizes wide, which is about 5 to 10 μm. An interesting
consequence is an extended size effect law with an intermediate
asymptote (equation 40 in ref. 48, spanning the range 1 : 1000).
This law allows the Gf of such metals (equal to the J -integral) to
be obtained by measuring the maximum loads of relatively small
specimens exhibiting large-scale yielding.
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A

D E

B C

Fig. 4. Comparisons of the slCBM with the Strain Gradient theory: (A) In symmetric fracture tests such as 3PB, the responses obtained from both models
differ negligibly because the rotation gradients in the notch line vanish and on its sides are not big enough to exceed the threshold. (B and C) These are Mode
II four-point-bend (4PB) Iosipescu shear tests with two different constitutive laws—scalar damage law and Grassl’s constitutive model [aka CDPM law featured
in software COMSOL (26, 27)]. The material rotation gradients on the notch line are significant and increase in postpeak. (D and E) The absence of !xy,x in
strain-gradient model leads to different fracture pattern evolution. After exceeding threshold C= 5 · 10−5, � was kept constant. � = 1 MPa in (A); � = 0.11 MPa
in (B); � = 0.105 MPa in (C); and � = 0.01 MPa in (D and E).

Where Crack-Parallel Stresses Matter in Practice. Almost every-
where: • Longitudinal crack in pressurized fuselage • Cracks in
the casing of solid-fuel rocket • Shear cracks in aircraft wing,
wing box, rudder, stabilizer • Shear cracks in fiber composite
wind turbine • Aircraft and automobile crashworthiness, crush
cans • Cracks caused by projectile impact • Most thermal cracks
• Cracks in inflatable shells • Shear failure of RC beams and slabs
(historically the most challenging fracture problem) • Cracks in
prestressed concrete • Fracking, esp. with poromechanical fluid-
to-solid stress transfer • Sea ice sheet pushing on a fixed structure
• Cracks in geology or in seismic events such as Earthquake fault
• Fracture in arch dam or arch bridge abutments, in footings
• Pullout fracture of anchors in rock or concrete • Particle
comminution in projectile impact • Fracture of fatigued plastic-
hardening polycrystalline metals • Burst of mine stopes, borehole
breakout, failure of tunnels, excavations • Fracture of bone, bio-
materials, dental materials • Hydraulic fracturing for deep CO2

sequestration in peridotite • Fracture in poro-mechanics • Implo-
sion of Oceangate deep submersible near the Titanic wreck; etc.

Conclusions and Main Observations. The fracture mechanics of
line cracks, whether LEFM or cohesive, must now be regarded as
an illustrative yet crude approximation that is good enough for
preliminary estimates. Nevertheless, it will remain indispensable
for its instructive value, by describing the essential features of
fracture behavior in simple terms. It will remain necessary for
getting insight into the effects of various parameters and the
scaling. The conclusions are as follows:

1. The smooth crack band with a tensorial Lagrange multiplier
constraining the displacement gradient is shown to reproduce
correctly the gap tests of various sizes, as well as the size
effect tests and Mode II shear tests on a quasibrittle material
(concrete).

PNAS 2024 Vol. 121 No. 40 e2410668121 https://doi.org/10.1073/pnas.2410668121 7 of 9
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2. Computer simulations calibrated by experiments confirm that
the width of damage zone at the crack band front at peak load
is not constant but changes with the crack-parallel stress. Yet
the crack front width is controlled by a constant material
characteristic length. The width changes play a role in how
the crack-parallel stresses affect the fracture energy.

3. The crack-parallel stresses likely affect the fracture energy
in all materials—not only concrete and rocks but also fiber
composites, ceramics, sea ice, rocks and stiff soils, polymers,
polycrystalline metals, and atomistically sharp nanoscale
cracks in crystals.

4. The classical strain-gradient theories are a special case of the
present theory when the material rotation gradient is omitted.
They differ by only less than 1% for symmetric deformation
fields in Mode I fractures. The reason is that the rotation
gradient does not dominate in the regions on the side of the
symmetry line.

5. The strain-gradient theories paradoxically imply that a finite
difference in material rotations on two arbitrarily close parallel
planes would not be resisted by sprains, in addition to the
shear stresses produced by strains. The lack of energy density
in the strain-gradient theories attributed to material rotation
gradients must lead to insufficient resistance to fracture with
a torsional (or Model III) component. This is physically
questionable and may incur a significant error in Mode III
fractures. Therefore, using these theories in engineering design
might be inaccurate when a torsional component is involved
[as in torsional Mode III fracture tests (7)].

6. For in-plane (Mode II) shear fractures, the maximum load
can be 29% different and the postpeak load 55% higher than
the strain gradient prediction, and insufficient resistance to
localization of to the rotation gradient may also cause crack
pattern evolution difference. The underestimation of shear
fracture energy is of similar magnitude. This may particularly
matter for simulating impact. Even bigger discrepancies are
expected for torsional Mode III fracture. Generally, the errors
grow with the sprain stiffness (i.e., with the slope of the spress–
sprain curve).

7. Using a realistic triaxial softening damage law (such as
microplane model M7 for concrete) is important. The spress–
sprain relation is essentially geometric in nature, i.e., a cur-
vature limitation, and is not a material constitutive property.
Only the associated material length, of curvature radius, is a

constitutive material property, dictated by the size and spacing
of material inhomogeneities. Possible coupling with stress–
strain constitutive relation may require further study.

8. While crude estimates can be made with a simple formula for
the crack-parallel stress effect on the material fracture energy,
fracture-sensitive designs will require incremental FE analysis
based on the spress and sprain evolution.

9. The classical concept of localization limiter in FE damage
analysis needs to be broadened by including the energy
density of material rotation gradient as an additional
localization limiter.

10. Finally, a benefit for strain-gradient FE programming: If we
formulate a strain-gradient FE program as a special case of the
FE sprain program in which the displacement gradient tensor
is replaced by its symmetric part, the strain-gradient program-
ming benefits from the computational efficiency of treating
both the displacements and the strains as independent fields
of C0 continuity constrained by the Lagrangian multiplier.

Data, Materials, and Software Availability. Model inp files data have been
deposited in the author’s Github repository: github.com/Houlin2018/slCBM
(https://github.com/Houlin2018/slCBM) (49). All study data are included in the
main text.
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