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Abstract: We investigate superresolution of two general point sources using continuous 
rotation of the observation basis. Optimal superresolution with maximum estimation accu-
racy is achieved when measurements are performed in the Schmidt basis. 

Recently, it has been demonstrated that the conventional Abbe-Rayleigh resolution limit can be overcome for
passive point sources when the spatial domain of the signal is analyzed in Hermite Gaussian (HG) mode basis
instead of direct intensity measurement [1, 2]. This is due to the fact that measurements in the decomposed HG
basis allows opportunities for more accurate estimation. It is now natural to ask: what about perform measurements
in another basis? Given that there are infinite number of bases, does an optimal basis exist? To answer these
questions, here we perform a systematic investigation of analyzing the estimation accuracy quantity (in terms of
quantum Fisher information) in a continuously varying basis. Interestingly, it is found that there do exist such
an optimal basis with maximum quantum Fisher information. More surprisingly, this optimal basis is exactly the
Schmidt basis that spans simultaneously the spatial degree of freedom (DoF) and the non-spatial DoFs. Our results
provide important guidance for the optimum realization of two-point source superresolution.

To illustrate our approach, we consider the superresolution of two arbitrarily unbalanced and partially coherent
point sources. The full optical field of a point source can always be described by its spatial dependence (in terms
of spatial domain vectors |h±⟩) and the remaining DoFs (in terms of generic vector basis |φ1,2⟩ that can represent
the temporal modes, polarization, etc.). Then the total state of the two sources can be in general described as

|Ψ⟩= a |h+⟩ |φ1⟩+b |h−⟩ |φ2⟩ , (1)

where a and b are arbitrary amplitudes (permitting any unbalanceness) of the two sources respectively. In the most
general case, |φ1,2⟩ are non orthogonal, i.e., α = ⟨φ1|φ2⟩ representing arbitrary partial coherence. Thus one can
always express |φ2⟩ = α |φ1⟩+ β |φ⊥

1 ⟩ with ⟨φ1|φ⊥
1 ⟩ = 0 and |α|2 + |β |2 = 1. The spatial states |h±⟩, taken as

amplitudes of Gaussian point spread functions, are also non-orthogonal at finite separation with d = ⟨h−|h+⟩. The
spatial DoF and the non-spatial DoF are apparently entangled in (1), which can be quantified with concurrence [3]
to be C = 2|ab|

√
1−|dα|.

Then the two source state can be rewritten as

|Ψ⟩= (a |h+⟩+α|h−⟩) |φ1⟩+bβ |h−⟩ |φ⊥
1 ⟩ . (2)

To explore the effect of continuous basis rotation, we now apply an arbitrary rotation of the non-spatial states, i.e.,

|φ θ
1 ⟩ = cosθ |φ1⟩+ sinθ |φ⊥

1 ⟩, (3)
|φ θ

2 ⟩ = −sinθ |φ1⟩+ cosθ |φ⊥
1 ⟩. (4)

The rotation angle θ is the continuously varying parameter for arbitrary basis. With this rotated basis, one can
further express the state |Ψ⟩ as

|Ψ⟩ = |hθ
1 ⟩ |φ θ

1 ⟩+hθ
2 ⟩ |φ θ

2 ⟩ , (5)

where we have defined two new spatial states, |hθ
1 ⟩ = cosθ(a |h+⟩ + α|h−⟩) + sinθbβ |h−⟩, and |hθ

2 ⟩ =
−sinθ(a |h+⟩+α|h−⟩)+ cosθbβ |h−⟩.

Now one is ready to analyze the Fisher information (FI) of estimation the unknown separation s. For normal-
ization consideration, we adopt the weighted Fisher information proposed in Ref. [4]. It is calculated based on the
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Fig. 1. For a given unbalancencess a =
√

3/2 and b = 1/2 (a) Illustration of Ftot with respect to
separation s and rotating basis parameter θ . (b) Illustration of Ftot with respect to θ and entanglement
C for a fixed separation s = 0.5σ .

conditional measurement of finding the entangled partner on |φ θ
1 ⟩ or in |φ θ

2 ⟩. Information will be stored in two
sub-systems considering the weights for each of |hθ

1 ⟩ and |hθ
2 ⟩, i.e, the total Fisher information can be achieved as

Ftot = ⟨hθ
1 |hθ

1 ⟩Fρ1 + ⟨hθ
2 |hθ

2 ⟩Fρ2 , where Fρ1 and Fρ2 are FI for ρ1 = |hθ
1 ⟩⟨hθ

1 | and ρ2 = |hθ
2 ⟩⟨hθ

2 | respectively [5,6].
Through some tedious algebraic calculations, the total FI can be obtained as

Ftot =
1

4σ2 (Γ
2
1 +Γ

2
2 +Γ

′2
1 +Γ

′2
2 )− (Γ1Γ2 +Γ

′
1Γ

′
2)

d(−s2 +4σ2)

8σ4 +
1

4σ2 d2s2(Γ1Γ2)
2

(Γ2
1 +Γ2

2)+2Γ1Γ2d
+

1
4σ2 d2s2(Γ′

1Γ′
2)

2

(Γ′2
1 +Γ′2

2 )+2Γ′
1Γ′

2d
,

where σ is the width of the point spread function, Γ1 = (
√

λ1 cosθc1 −
√

λ2 sinθc2)− d√
1−d2

(
√

λ1 cosθc2 +
√

λ2 sinθc1), and Γ2 = 1√
1−d2

(
√

λ1 cosθc2 +
√

λ2 sinθc1), and Γ′
1 = (

√
λ1 sinθc1 +

√
λ2 cosθc2) −

d√
1−d2

(
√

λ1 sinθc2 −
√

λ2 cosθc1) and Γ′
2 = 1√

1−d2
(
√

λ1 sinθc2 −
√

λ2 cosθc1). Here the coefficients c1 and

c2 are expressed as c1 =
√

1+cosΩ

2 , c2 =
√

1−cosΩ

2 where cosΩ = cos2η√
1−(bd)2 sin2 2η

and sinη =
√

b2(1−d2)α . The

parameter λ1,2 takes the form [1+
√

1± (bd)2 sin2 2η ]/2 respectively.
Obviously, the total Fisher information Ftot is a function of the two-source separation s, entanglement C, and

the rotational parameter θ for any unbalancencess a,b. For a given unbalancencess a =
√

3/2 and b = 1/2, Fig. 1
(a) illustrates the behavior of Ftot with respect to the two-source separation s and the rotating basis parameter θ ,
and Fig. 1 (b) shows the behavior of Ftot with respect to θ and the entanglement C. Interestingly, there exists an
optimal angle cosθ = 1

λ1
c1 cosη that enables the total Fisher information to reach its maximum. At its maximum

in Fig. 1 (a), the Fisher information is finite even when the separation s decreases to zero. From Fig. 1 (b), one
also notes that entanglement C is beneficial to increase the Fisher information [6].

Surprisingly, this particular optimal basis is exactly the Schmidt basis of the two vector spaces {|hθ
1 ⟩, |hθ

2 ⟩} and
{|φ θ

1 ⟩ , |φ θ
2 ⟩}, i.e., ⟨hθ

1 |hθ
2 ⟩ = ⟨φ θ

1 |φ θ
2 ⟩ = 0. In other words, the optimal estimation occurs when the measurement

is exactly in the Schmidt basis of the entangled state |Ψ⟩.
In conclusion, we have carried out a systematic analysis of the effect of continuous basis change on the su-

perresolution accuracy of two partially coherent and unbalanced point sources. The well-known Schmidt basis is
found to be the optimal basis for maximum Fisher information even at the zero separation case. Our result pro-
vides important guidance to the realization of optimal two-source superresolution. Future works will be dedicated
to reveal the fundamental significance of Schmidt decomposition in estimation theory. Our work is supported by
NSF Grant No. PHY-2316878 and the U.S. Army under Contact No. W15QKN-18-D-0040.
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