
Induced Model Matching:
Restricted Models Help Train Full-Featured Models

Usama Muneeb
Electrical and Computer Engineering

University of Illinois Chicago
umunee2@uic.edu

Mesrob I. Ohannessian
Electrical and Computer Engineering

University of Illinois Chicago
mesrob@uic.edu

Abstract

We consider scenarios where a very accurate (often small) predictive model using
restricted features is available when training a full-featured (often larger) model.
This restricted model may be thought of as “side-information”, and can come
either from an auxiliary dataset or from the same dataset by forcing the restriction.
How can the restricted model be useful to the full model? To answer this, we
introduce a methodology called Induced Model Matching (IMM). IMM aligns the
context-restricted, or induced, version of the large model with the restricted model.
We relate IMM to approaches such as noising, which is implicit in addressing
the problem, and reverse knowledge distillation from weak teachers, which is
explicit but does not exploit restriction being the nature of the weakness. We show
that these prior methods can be thought of as approximations to IMM and can be
problematic in terms of consistency. Experimentally, we first motivate IMM using
logistic regression as a toy example. We then explore it in language modeling,
the application that initially inspired it, and demonstrate it on both LSTM and
transformer full models, using bigrams as restricted models. We lastly give a
simple RL example, which shows that POMDP policies can help learn better MDP
policies. The IMM principle is thus generally applicable in common scenarios
where restricted data is cheaper to collect or restricted models are easier to learn.

1 Introduction

In many applications, it is both statistically and computationally easier to construct (often small)
feature-restricted models. In this paper, we address the question of whether this could be beneficial in
the construction of an (often larger) full-featured model.

To motivate, consider the following toy logistic regression problem, with further details in Section
7. Say we have three features (x1, x2, x3) ∈ R3 and a binary label y ∈ {0, 1}. Let features be
generated from a distribution π and let labels be conditionally generated according to a logistic
(full-featured) true model P (y|x1, x2, x3). Assume we have ample feature-restricted data with only
one feature (x1, y), which, by marginalization, are samples from the (feature-restricted) true induced
model P (y|x1) =

∑
x2,x3

π(x2, x3|x1)P (y|x1, x2, x3). By virtue of this data, we get a very good
approximation P̂ of P , which we can use as a target induced model. How do we use P̂ , along with
full-featured data (x1, x2, x3, y) to obtain a (full-featured) learned model Q(y|x1, x2, x3)?
A few possible approaches are as follows. We could ignore P̂ , and learn Q simply by minimizing
cross-entropy on the data. This is wasteful, because P̂ contains valuable information. Alternatively,
we could learn Q by minimizing cross-entropy in addition to a secondary loss that keeps Q close to
P̂ . This is reasonable — in Section 2 we relate this to reverse knowledge distillation and in Section
6 to noising. However, P̂ addresses a markedly different task than Q, i.e., that of predicting with a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:umunee2@uic.edu
mailto:mesrob@uic.edu

restricted set of features. Instead, what this paper proposes is to equalize the field when comparing to
P̂ , by inducing a restricted model Q(y|x1) from Q during training, and using a secondary loss to
match P̂ to Q, rather than to Q. We call this induced model matching (IMM). In Figure 1 we show
how this speeds up learning and reduces predictor variance.

0 10 20 30 40 50
Dataset Size

50

60

70

80

90

100

Ac
cu

ra
cy

IMM with Target Model P̂

Noising/Reverse-KD with Target Model P̂

Interpolation with Target Model P̂

No IMM, Noising or Interpolation

Figure 1: Comparing test accuracy of logistic model, trained using interpolation, noising, and IMM (with a
Bayes Optimal P). Bars are 10th to 90th percentiles of 300 runs.

This example gives an overview of the entire process behind IMM. Most of the paper, however, is
dedicated to language modeling, where very natural restricted models exist, namely N -grams. The
inspiration of this research is in fact rooted in certain language model data augmentation techniques
that noise the data using N -grams Xie et al. (2017). The fresh perspective that we offer here is that
such noising is best understood as an attempt to incorporate a feature-restricted model’s knowledge
into the full-featured model being trained. This interpretation reveals the general fundamental
question: If we are armed with a very accurate feature-restricted model, what is the right way
to incorporate it into the training of a model with a larger feature set?

Our contributions and organization are as follows:

1. In Section 3, we rigorously frame this question through the notion of an induced model.
2. In Section 4, we use this framework to propose a strategy to incorporate the knowledge of

the restricted model during learning. This consists of using a regularizer that matches the
predictions of the induced learned model with that of the desired target restricted model.
This is the language model instance of the induced model matching (IMM) methodology.

3. In Section 5, we propose computational approaches to make IMM practical and pave the
way for further scaling IMM.

4. In Section 6, we loop back to relate IMM to the noising approach of Xie et al. (2017) and to
reverse knowledge distillation. We share two key findings. First, these alternatives may be
thought of as approximations to IMM. Second, they have a major caveat. They may not be
consistent even in the ideal infinite-data regime, in contrast to IMM, which is consistent.

5. In Section 7, we experimentally demonstrate the effectiveness of IMM through: (1) details of
the logistic regression example, (2) experiments on an LSTM RNN for language modeling
and on BERT for classification, showing improvements on multiple tasks, and (3) a simple
reinforcement learning example that illustrates the further potential of IMM.

In Section 8 we discuss limitations and applications beyond those illustrated in the paper.

2 Related Works

We review two lines of work that are closely related to IMM, noising and knowledge distillation,
which are respectively implicit and explicit versions of the same idea. We also review key literature
showing the continued merit of N -grams as restricted models.

Noising and Data Augmentation in Language Modeling The noising methodology in language
modeling was proposed initially in order to provide a Natural Language Processing (NLP) parallel
to the many data augmentation techniques that existed in other machine learning applications (e.g.,
sampling translated and rotated variants, in image processing and computer vision).

2

Most data augmentation techniques in NLP have used noising or smoothing in one form or another.
Feature noising by Wang et al. (2013) was one of the earliest attempts at noising when it came to
structured prediction tasks. Later, Xie et al. (2017) successfully used restricted language models,
namely unigrams and bigrams, to perform data augmentation through noising. By making a rough
connection between noising and smoothing, Xie et al. (2017) were able to show a clear advantage,
beyond the use of other regularization techniques such as dropout. Section 6 more closely examines
the claims of that paper and connects it to the framework of the present one.

The current approach is not related to all data augmentation techniques, rather specifically to those that
use noising with a restricted model. Indeed, it can complement other data augmentation techniques.
For example, in our BERT experiments, this technique complements the MLM objective, where the
masking itself can be thought of as data augmentation. Similarly, it is capable of complementing
alternative masking and corruption techniques, such as EDA (Wei and Zou, 2019) and SSMBA
(Ng et al., 2020), which are known to outperform BERT’s default masking for the MLM objective.
Similarly, IMM’s gains are in addition to those from other regularization techniques, e.g., weight
decay and dropout (Srivastava et al., 2014), as these can be simultaneously utilized.

N -grams and their Merits N -grams are based on co-occurrence counts, which makes them easy
to learn but limits their usefulness for long histories. However, common techniques such as smoothing
and backoff make it possible to build excellent short-context models such as bigrams and trigrams,
which can rival or exceed neural models that use the same context size (Chelba et al., 2017). This
hints at there being value in using these N -gram models to improve long-context models. Some of
the earliest attempts at this interpolate the output of the smaller model with modern models. The
continued relevance of this approach is evidenced in a very recent paper (Liu et al., 2024) that
proposes a special data structure to precompute N -grams to arbitrary lengths and uses interpolation to
improve larger language models (LMs). A key motivator of the current paper is the approach of Xie
et al. (2017), which instead noises the training data of LMs using N -grams, with improved outcomes
over interpolation. Note that other approaches that take advantage of N -grams also exist, such as that
of Li et al. (2022), who let LMs learn what the N -gram could not, i.e., the residual.

Knowledge Distillation Knowledge distillation (KD) is a paradigm first proposed to let a powerful
teacher model help better train a weaker student model, by complementing the hard labels of existing
data with soft labels (Hinton et al., 2015). In the present notation, the resulting average loss takes the
following general form,

Cross-Entropy (Q) + λ
∑
x

πn(x)DKL

(
P teacher
τ (·|x)

∥∥∥Qτ (·|x)
)
, (1)

where Cross-Entropy uses hard data, x are contexts, πn is the empirical distribution of contexts, Q
is the learned/student prediction model, and P teacher is the teacher model, which can be thought of as
providing soft predictions. τ , the softmax temperature, is used for smoothing the outputs.

Most relevant to IMM is the recent discovery that, paradoxically, KD with a weak teacher can be
helpful to a powerful student. This “reverse-KD” or “distillation from weak teachers” phenomenon
was first demonstrated in vision by Yuan et al. (2020), who interpret and ascribe its performance to
smoothing targets in a context-dependent way using the teacher, in contrast to typical label smoothing
that can be interpreted as using a uniform distribution. Though this comes years after the noising
papers, it parallels closely how Xie et al. (2017) transition from uniform noising to Kneser–Ney
noising. Later, reverse-KD was also shown to be effective in language models (Qin et al., 2021).

On the surface, IMM is similar to reverse-KD, as it uses a weak target teacher to regularize a powerful
student’s learning. A quick comparison to Eq. (14) when P teacher is the restricted model P reveals
that reverse-KD has more in common with noising, which we show can be sub-optimal. Indeed, the
major difference between reverse-KD and IMM is the fact that the weakness of the teacher in this
case is of a very particular nature — it stems from the reliance on a restricted context. Reverse-KD
ignores this fact by comparing the student model Q directly to the teacher model in the KL term
of Eq. (1). In contrast, IMM harnesses this fact, by comparing the student indirectly to the teacher
(target model) at its own level, i.e., using the induced model Q. Very recent work by Lee et al. (2023)
shows that reverse-KD in language, unlike in vision, can be harmful with very weak teachers, and
thus it is not advisable to use reverse-KD with the simple restricted models, e.g., bigrams, that we
consider here. Our work shows that they can be effectively incorporated, if we use IMM instead.

3

3 Problem Description

Problem Setting We consider the problem of training a full model Q(yt|xt) that is able to predict
a label of data point t based on its full context. For example, in forward predictive models, xt is the
sequence of past tokens and yt is the next token. Throughout the paper, Q always denotes the full
model and is deemed to belong to a reasonably large functional class. Given context-prediction data
(xt, yt) of size n, possibly tokenized from a single text, let the primary loss used for training this
model be the log-loss. Thus training minimizes the cross-entropy risk:

Cross-Entropy(Q) = −
∑
t

logQ(yt|xt) ≡
∑
x

πn(x)
∑
y

Pn(y|x) log
1

Q(y|x) ,

where πn is the empirical distribution of the context and Pn be the empirical distribution of the
prediction given the context. Note that (xt, yt) refer to tokens while (x, y) refer to types. Minimizing
this empirical risk can be seen as Q striving to approach the “true” model P (yt|xt) generating the
data, in average context-conditional KL divergence. The idealized risk is thus:∑

x

π(x)
∑
y

P (y|x) log P (y|x)
Q(y|x) ≡

∑
x

π(x) DKL (P (·|x)∥Q(·|x)) (2)

where now π is also the true (not empirical) context distribution.

Induced Models While Q strives to approximate all of P , we may have additional knowledge
about P that captures some of its properties. We consider in particular knowledge of the following
form. Assume that the full context xt can be decomposed into a short context xt and an extended
context xt, and that one has access to the “true” model that predicts yt based solely on the short
context xt, i.e. P (y|x). To make the notation easier to follow, we invite the reader to consult the
glossary of notations in Appendix A. How is this restricted model related to P and π? By a simple
marginalization argument, we can see that this model is:

P (y|x) =
∑
x

P(y, x|x) =
∑
x

π(x|x) P (y|x, x) (3)

We call P the true induced model. It depends both on the context distribution π and the true model P .
Since we do not have the latter two, we cannot explicitly compute P . What motivates us, however, is
the possibility to learn it more accurately than P , either by virtue of its smaller parametrization or
thanks to cheaply procured auxiliary context-restricted data.

Problem Statement Given knowledge of the true induced model P , or a very good approximation
thereof, how can this information be incorporated to improve the learned model Q?

4 Induced Model Matching (IMM)

Construction of the IMM risk To address the problem, we introduce a secondary loss that matches
the learned model’s prediction with that of the induced model, whence the name Induced Model
Matching or IMM. The key insight here is not to match P with Q, but rather with Q, the learned
induced model that, just like the move from P to P in Eq. (3), specializes Q to performing predictions
with only the short context:

Q(y|x) =
∑
x

π(x|x)Q(y|x, x) (4)

Let’s first idealize and assume availability of P and the context distribution π, required to compute Q.
Equipped with Q, we can introduce the idealized induced model matching (IMM) risk, a secondary
risk that is the average context-conditional KL divergence with the restricted context:∑

x

π(x)
∑
y

P (y|x) log P (y|x)
Q(y|x)︸ ︷︷ ︸

DKL(P (·|x)∥Q(·|x))

(5)

4

Since P and π are not available in practice, the idealized IMM risk cannot be computed. However,
as the core motivation of using P is the potential ability to learn it very accurately from data, we
assume instead that we have access to a target induced model P̂ as a proxy to P . As for calculating Q,
knowledge of π in Eq. (4) can be intuitively understood as a mechanism for filling-in for the extended
context, based on the short context. As such, we have the following natural empirical version which
can be thought of as averaging Q over all extended contexts in the dataset, while keeping the short
context fixed:

Q̂(y|x) ∝
∑
t

1{xt = x}Q(y|xt) (6)

The proportionality constant is unimportant as, thanks to the logarithm, it contributes only a constant
to the overall risk. By combining these empirical proxies, we obtain the empirical IMM risk:

IMM(Q) =
∑
x

πn(x)
∑
y

P̂ (y|x) log 1

Q̂(y|x) (7)

This mirrors Eq. (5), up to P inside the logarithm, which only contributes an additive entropy term
that does not depend on Q and is thus irrelevant to optimization.

IMM as a regularizer Given a reliable P̂ , we propose to incorporate this knowledge into the full
model by using the IMM risk as a regularizer. Using a hyper-parameter λ that can be tuned, our
induced model matching methodology consists of training the model Q by minimizing

Cross-Entropy(Q) + λ IMM(Q). (8)

Separating IMM into components To weave IMM into existing ML optimization pipelines, it
is useful to treat it as a separable risk. For this, we can rewrite Eq. (7) by expanding the empirical
distribution πn. Then, the components of this separable risk are given by the conditional cross-
entropies between P̂ and Q̂, because we can write:

IMM(Q) = − 1

n

∑
t

[∑
y

P̂ (y|xt) log Q̂(y|xt)

]
︸ ︷︷ ︸

IMMt(Q)

.
(9)

The simplest version of P̂ could be based on empirical counts, which may be valid if the context
space is discrete and small. In language modeling, smoothing methods can be used to generate better
versions of P̂ , such as the modified Kneser–Ney smoothed version of the bigram counts (Kneser and
Ney, 1995; Chen and Goodman, 1999) that can be expressed as

P̂ (y|x) = 1

n

∑
t

(1− ν(x))1{yt = y}+ ν(x)b(y),

where ν(x) is the missing mass for previous token x and b is the back-off distribution. For logistic
regression in Section 7 the context space is continuous, and these components come from a separately
trained one-feature predictor. For our RL example, they come from the optimal actions of a POMDP.

5 Computation

A direct implementation of IMM is prohibitive, since evaluation of the risk, Eq. (8), requires making
a secondary pass over the entire dataset for each t, when inducing the model in Eq. (6). We address
this with two approaches. The first approximates the objective by replacing this secondary pass with
sampling whereas the second incorporates this secondary pass into the primary pass by serializing the
gradient calculation. Sampled IMM has the advantage of low gradient variance at the expense of added
computation. Serialized IMM has higher gradient variance but has only constant-factor computational
overhead. All of our experiments use sampled IMM, with the exception of a demonstration of
serialized IMM for logistic regression (in Appendix D.5), as a proof of concept for IMM’s scalability.

5

Sampled IMM To alleviate the exact computation of IMM, we could maintain a dictionary/multiset
of extended contexts for each short context1, and sweeping only across those. This amounts to
rewriting Eq. (6) as follows:

Q̂(y|x) ∝
∑

t′ : xt′=xt

Q(y|xt, xt′) =
∑

x∈extend(xt)

Q(y|xt, x),where extend(x) =
⊎

t : xt=x

{{xt}} (10)

is the multiset of extended contexts of the short context of x.

Since a given short context may appear in a large number of extended contexts, the dictionary/multiset
approach of Eq. (10) remains expensive. In particular, gradients need to be computed with each
of these contexts. Instead, we propose an approximation based on writing the (normalized) sum as
an expectation over samples from extend(xt), followed by approximating this expectation with k
samples. As a result, the IMM component at t becomes:

IMMt(Q) = −
∑
y

P̂ (y|x) log
[
EX∼extend(xt) [Q(y|xt, X)]

]
(11)

≈ −
∑
y

P̂ (y|x) log
[
1

k

k∑
i=1

Q(y|xt, xi)

]
, (12)

where xi ∼ extend(xt) are samples from the multiset of extended contexts. Implementation details
are deferred to Appendix C, including Algorithms 1 and 2 that describe a typical training loop when
sampled IMM or serialized IMM are incorporated into SGD respectively.

At first glance, it appears that sampled IMM requires maintaining k copies of the model. However,
this can be sequentialized, as explained in Appendix C.2. This means that the space overhead during
training is a factor of 2 compared to the baseline of no-IMM (i.e., a second set of gradients). However,
the time overhead is generally a k-fold increase over the baseline, but can be worse for recurrent
models such as LSTMs. This is because we typically unroll the model over L tokens and can perform
forward/backward passes over this unroll, in L steps. If we apply IMM at every unroll position, we
need to restart the LSTM, which then incurs anO(kL)-fold increase. We partially mitigate this in our
current implementation by applying IMM periodically (not at every iteration), see Appendix D.2.2.
For example, if we apply it only every Ω(1/L) iterations, the overhead factor remains O(k).

Serialized IMM Sampled IMM delivers the benefits of IMM, but at a computational cost. To make
IMM truly scalable, it is imperative to bring it to near-constant factor overhead to the baseline of
no-IMM. The main bottleneck is the calculation of the learned induced model Q̂. The following
alternative approach bears a resemblance to the sequentialization aspect covered in Appendix C.2,
Eq. (20). Up to a constant, we can write the idealized IMM risk of Eq. (5) as an averaging only over
short contexts:

−
∑
x

π(x)
∑
y

P (y|x) logQ(y|x), where the induced model is Q(y|x) =
∑
x

π(x|x)Q(y|x, x).

The gradient of this IMM risk then becomes:

−
∑
x

π(x)
∑
y

P (y|x)
∑

x π(x|x)∇Q(y|x, x)
Q(y|x) = −

∑
x

∑
x

π(x)π(x|x)
∑
y

P (y|x)∇Q(y|x, x)
Q(y|x)

The empirical version of this gradient is:

− 1

n

∑
t

∑
y

P̂ (y|xt)
∇Q(y|xt, xt)

Q̂(y|xt)
=

1

n

∑
t

∇

ĨMMt︷ ︸︸ ︷(
−
∑
y

P (y|xt)
Q(y|xt, xt)

Q̂(y|xt)︸ ︷︷ ︸
correction

logQ(y|xt, xt)
)

(13)

The last expression in Eq. (13) is in the form of a “corrected” cross-entropy between P̂ and Q̂, which
we denote by ĨMMt. The correction factor is not differentiated and is the ratio or Radon–Nikodym

1This requires space O(n log n) only, because each key in the dictionary is a short context, and each value is
a set of pointers to the data, with set size equal to the number of times that short context appears. Adding up the
number of occurrences of all short histories gives us n and each pointer requires O(log n) bits.

6

derivative of Q relative to Q̂. What this accomplishes is to delegate the averaging of the gradients
to the primary pass over the dataset. If the correction term is given, computing this gradient costs
the same as computing the baseline of no-IMM gradients. There are two caveats: first, because the
averaging is now happening in the primary pass, the variance of this gradient is higher than sampled
IMM and, second, the correction factor still requires knowing the learned induced model Q̂. To
address the higher variance of the gradients, techniques such as momentum approaches along with
learning rate schedulers can be used. To address knowing Q̂, we suggest the heuristic of updating Q̂

only periodically. Then, if model Q† (that eventually becomes stale) is used to calculate Q̂†, use the
ratio Q†

/
Q̂† for correction factor. Using the current Q tends to cause instability, likely due to the

correction no longer obeying expected constraints, e.g., mean 1 for every y. By choosing the update
period inversely proportionally to the cost of updating Q̂† and by keeping Q† in memory, we incur
an O(1) factor increase in time and space compared to no-IMM, which makes this variant of IMM
highly scalable. Note that without the correction factor, IMM turns into reverse-KD and noising, a
connection that we elaborate on in Section 6.

6 Analysis

In what follows, we assume to be in the realizable case, i.e., that the model space of Q is expressive
enough to contain the true model P . We also take an infinite-data perspective and focus on consis-
tency only, even though IMM also confers a finite-sample advantage (understanding this advantage
analytically is worth studying in the future.) We show (1) that IMM is consistent, (2) that noising
and reverse-KD are akin to single-sample IMM, (3) that this shows that they minimize an upper
bound on the IMM risk, and finally (4) that this introduces sub-optimality, which could even threaten
consistency. This gives basic analytical backing to why IMM is preferable.

Consistency of IMM Observe that if, in the main objective, Eq. (8), cross-entropy and IMM
were replaced with their true counterparts, Eqs. (2) and (5) respectively, then Q = P remains the
minimizer of the objective. This observation shows that we recover the true model in the infinite-data
regime, i.e., that IMM is consistent for all λ. We next aim to show that the key caveat of noising and
reverse-KD is that they may be inconsistent, unless λ is made to vanish.

From single-sample IMM to noising and reverse-KD We first explain how IMM and noising
are related. Experimentally, using a single sample (k = 1) in the IMM approximation of Eq. (12)
produces perplexities that are near-identical to noising. We explain this phenomenon as follows.
Say data point t is considered during optimization, in an SGD mini-batch. When a single random
extended context is sampled, it is equivalent to swapping that data point’s context with another based
on the multiset extend(xt). That context belongs to a different data point t′. Since sampling is done
uniformly from the multiset, this simply presents data to the SGD algorithm in a different random
order, possibly with repetition. More pertinently to noising, the actual prediction yt′ has no role in
calculating the loss. Instead, the prediction is randomized through the sum over all possible y in Eq.
(9). Though not identical, this is a very close map to the noising-based data augmentation proposed
by Xie et al. (2017), namely prediction noising (see Appendix B.1 for a review of this framework and
why prediction noising is its main aspect.) It is in fact even closer to an alternative proposed later by
Gao et al. (2019), which uses soft prediction vectors just like P̂ in this single-sample approximation
of IMM. As a result of this argument, we can think of noising as minimizing the following idealized
objective, which coincidentally is equivalent to the reverse-KD objective (Yuan et al., 2020; Qin et al.,
2021) (see also Section 2) with P as the teacher:

Cross-Entropy(Q) + λ
∑
x

π(x)
∑
y

P (y|x) log 1

Q(y|x)︸ ︷︷ ︸
key difference

(14)

Inconsistency of noising and reverse-KD How is this single-sample IMM objective related to
performing IMM? Recall that we can write a single component of the empirical IMM risk with
sampling as in (12), which by Jensen’s inequality can be upper bounded as follows:

−
∑
y

P̂ (y|x) log (EX [Q(y|xt, X)]) ≤ −
∑
y

P̂ (y|x)EX [log (Q(y|xt, X))] (15)

7

A single-sample approximation of the expectation inside the log is in fact a biased estimator of the
left-hand side. However, it is an unbiased estimator of the right-hand side, with the expectation
outside of the log. Thus, noising and reverse-KD upper bound the IMM risk. Minimizing an upper
bound instead of the desired risk could introduce suboptimality. The following proposition uses
the difference between these methods, which pit the target model against the full learned model Q
and not the induced learned model Q like IMM (contrast Eq. (14) and Eq. (5)), to show that this
suboptimality can indeed occur. Even in the realizable case and with infinite data, IMM is always
consistent but there exists a counterexample where noising and reverse-KD fail to consistently recover
the true model. The proof is in Appendix B.2.

Proposition 6.1. Assume that we are optimizing the idealized noising objective of Eq. (14) — i.e., we
are operating in the infinite-data regime — and let Q⋆ be its global minimizer. Assume further that
the model class for Q contains the true model P — i.e., we are in the realizable case. Then, there
exists a choice of π and P such that Q⋆ ̸= P .

7 Experimental Results

7.1 Starting Toy Example: Logistic Regression

Consider the logistic regression example from the introduction. The main results are given in Figure
1 and the full experimental details can be found in Appendix D.1. Here we highlight how the problem
fits the IMM framework and where it deviates from language modeling. First, note that the context
decomposition is x = x1 and x = (x2, x3).

Setting We sample features uniformly over a cube and assume we have ample data points of the
form (x1, y). This allows us to build an excellent restricted model to predict the label based on just
x1, call it P (y|x1), nearly close to the (restricted) Bayes predictor or true conditional probability. Just
like in language modeling, to induce a model we need to draw x’s from its conditional distribution
given x. Q(y|x1), the induced model of Q(y|x1, x2, x3), can then be interpreted as the average of Q’s
predictions, when xt = (x2, x3) is drawn from its conditional distribution given xt = x1. Since we
typically don’t have access to this distribution, we approximate it empirically. In language modeling,
we could just sample from the empirical distribution of x for a given x. In logistic regression, this is
not viable since x1 is continuous and does not repeat. We rely instead on density estimation. We use
a soft nearest-neighbor density estimate f̂(x2, x3|x1) ∝

∑n
t=1 δx2,t,x3,t

(x2, x3)e
−α|x1,t−x1|, where

1/α is the bandwidth of the Laplace kernel. (With cross-validation, we determine α = 1 to be a good
choice.) If we let wt(x1) = e−α|x1,t−x1|, the resulting induced model by marginalization is:

Q(y|x)=
∫

f(x|x)Q(y|x, x)≈
n∑

t=1

wt(x)∑n
t=1 wt(x)

Q(y|x, xt)

These equations are respectively equivalent to Eqs. (4) and (6). The IMM risk and the corresponding
overall objective remain the same:

IMM(Q) =
n∑

t=1

∑
y=0,1

P̂ (y|x1,t) log
1

Q(y|x1,t)
, Cross-Entropy(Q) + λ IMM(Q).

Results In Figure 1, we compare the performance of IMM-trained Q (green) to that without IMM
(maroon). We sweep a range of n from 2 to 50, and use a cross-validation optimized λ for each (details
in the Appendix D.1.1). The key observations are that: (1) IMM always improves on the baseline
performance, (2) the variance of the outcomes is also typically diminished, (3) the improvement is
greater with less data, but the gain across data sizes is equivalent to access to an average of 30%
extra data. This and similar experiments suggest that gains are highest when the dataset size is
comparable to the number of parameters. This simple scenario demonstrates how IMM effectively
harnesses the benefit of accurate feature-restricted models when training full-featured models. For
reference, we also include the results of noising and interpolation. IMM is always better than noising,
but interestingly interpolation is better with very few samples, though much worse with more. We
attribute this to the fact that with less data it is harder to obtain an accurate induced model.

8

Table 1: Perplexity for an LSTM Language Model using the Penn TreeBank dataset. The numbers on None and
KN Noising are from Xie et al. (2017) and can be replicated using their original code (we use the model with
latent dimension 1500). Like the baseline, for each row, we report the best value across as many restarts.

Improvement Validation Test

None (only regular dropout) 81.6 77.5
KN Noising (reproducible) 76.7 73.9
IMM with KN Bigram 76.0 73.3

Table 2: Results on the BERTBASE Language Model. The baseline numbers can be replicated using the original
BERT code by Google, as well as our provided repository. Matthew’s Correlation Coefficient is used for CoLA,
F1 score for MRPC and Accuracy for QNLI and RTE. Like the baseline, reported numbers are averages across
multiple restarts.

BERTBASE + MLM +IMM

CoLA 52.1 ± 4.0 55.0 ± 3.0 60.0 ± 1.0
MRPC 88.9 ± 2.0 89 ± 1.0 90 ± 1.0
QNLI 90.5 ± 2.0 91.0 ± 2.0 93.5 ± 1.0
RTE 66 ± 3.0 68 ± 2.0 71 ± 1.0

7.2 Language Modeling Experiments

In these language modeling experiments, the restricted model we use is the modified Kneser–Ney
bigram (Kneser and Ney, 1995; Chen and Goodman, 1999) of the dataset in question. To see why this
is a good choice, we refer the reader to benchmarking done by Chelba et al. (2017); neural models
(single layer and 2-layer LSTM RNNs) could not improve upon the perplexity of an interpolated
Kneser–Ney N -gram of a similar order. After the introduction of the attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015), better neural models now dominate language modeling (Vaswani
et al., 2017; Devlin et al., 2018; Turc et al., 2019). We investigate how IMM could potentially improve
even these more modern models, by using BERT’s performance on some GLUE benchmarks as
a proof of concept. (Appendix D.2.1 gives evidence that IMM indeed improves the full model’s
performance on the restricted task.)

LSTM RNN Experiments We build on top of the code provided by Xie et al. (2017) using the
same topology for the LSTM RNN. The chief purpose of these experiments is to contrast directly
with noising introduced in that paper. The PTB dataset is a document dataset and the LLM is solving
a next word prediction task. The average cross-entropy of multiple unroll positions of the RNN,
or exponentiated as perplexity, is used as the measure of performance. For training and measuring
validation perplexity, L = 35 unroll positions are used. During testing, only 1 unroll position is used.
The IMM component is always calculated by running the LSTM in an evaluation mode (i.e., without
any dropout). In addition, while regular evaluation updates the state in stateful models like the LSTM,
the IMM branch never changes the state and uses the state set by the primary branch when traversing
the dataset. In Table 1, we report perplexity values using k-sampled IMM with k = 10. The table
also includes the best noising results that we could reproduce based on the code of Xie et al. (2017),
after communication with the authors (these are 0.5 more than the paper’s numbers).

BERT Experiments We introduce the IMM objective in BERT’s fine-tuning phase by reintroducing
the Masked Language Model (MLM) objective that is originally only present during pre-training. In
Google’s original BERT code, MLM was present during pre-training but removed from fine-tuning,
possibly because of minimal gain. For us, however, MLM is ideally suited to be augmented with the
IMM objective because it is based on cross-entropy and we can similarly generate an induced bigram
for predicting masked words in a sequence of tokens. We report numbers on these datasets in Table 2.
The second column shows the numbers after adding back the MLM objective, which doesn’t produce
much gain on its own. The third column adds IMM within MLM, significantly boosting the gains.

Since some GLUE (Wang et al., 2018) datasets (used in the original BERT paper) are too large to
be trained in an academic setting, we use a subset of the GLUE tasks (Warstadt et al., 2018; Dolan
and Brockett, 2005; Rajpurkar et al., 2016; Dagan et al., 2005) to demonstrate the gains using IMM.
For diversity, our selected GLUE tasks are a mixture of single-sentence and double-sentence tasks.
Further experimental details are provided in Appendix D.2.

9

7.3 Reinforcement Learning: POMDPs helping MDPs

IMM is particularly appealing in situations where incomplete-feature data may be much more
available, due to reasons like law, privacy, or limited sensing. If an autonomous driving system
is developed with few sensors, and later a new system taking advantage of more sensors is to be
designed, the older system may act as a restricted model helping the new design. If a diagnostic
system is built based on a limited set of genetic markers, and later more markers are determined
relevant, then the legacy system can be used without referring to the legacy data, which may need to be
kept private. If a platform’s recommendation and ad engine is trained from ample general-public data,
and later a personalized engine is to be developed, then the older engine can inform the personalized
one through IMM.

In stateful environments, problems like the latter often require a reinforcement-learning (RL) solution.
If the personalized engine has full-featured data, it can use the data to train an MDP (Markov Decision
Process) policy to optimize expected reward (Sutton and Barto, 2018). In contrast, the general-public
data, despite being abundant, may lack in features and may only allow for solving a POMDP (Partially
Observable Markov Decision Process). We can show that IMM can allow a good POMDP solution to
significantly improve MDP training, by modifying policy-gradient methods such as REINFORCE
(Williams, 1992). In Figure 2, we illustrate the reward achieved with and without the use of IMM,
for learning policies for an agent on a toroidal 11× 11 grid, with reward peaking at its center. The
POMDP only observes one coordinate, whereas the MDP observes both.

0 100 200 300 400 500
Number of epochs

0

5

10

15

20

Av
er

ag
e

Re
wa

rd

IMM using maximal utility action
No IMM

Figure 2: Average reward of MDP trained without and with IMM incorporating POMDP. Details in Appendix D.

8 Conclusion

In this paper, we addressed the question of how to incorporate accurate restricted models in the
training of full-featured models using the principle of induced model matching (IMM). This was
inspired by interpreting some noising-based data augmentation techniques in natural language noising,
as an attempt to harness the knowledge of the restricted model used for noising. We showed that
naı̈ve noising is not the best way to incorporate this knowledge, as it may fail to consistently recover
the true model. IMM, on the other hand, directly aligns the learned model with the target model and
is consistent. The results shows that IMM always outperforms noising, and improvements even decay
gracefully with lower restricted model quality (see Appendix D.4). One limitation of our approach is
that computing the induced model exactly is not always viable. To remedy this, we proposed sampled
IMM, which yields accurate but somewhat computationally demanding learning, and serialized IMM,
which is slightly less accurate but has a potential to be as efficient as the no-IMM baseline. We
then experimentally demonstrated the gains that IMM can offer, in a logistic regression toy example,
when training LSTM language models and fine-tuning pretrained transformers, and in a simple
reinforcement learning scenario. We believe that scaling from feature-restricted to full-featured
models is an important yet under-studied sub-problem of knowledge transfer. In addition to the
proof-of-concept experiments in this paper, many others of particular contemporary relevance may be
devised. For example, lengthening the context of large language models remains an open problem;
we believe that IMM can be part of betters solutions, by correctly informing new longer-context
LLMs using current shorter-context LLMs. The principle behind IMM is applicable very generally
and we hope this work gives impetus to such explorations.

10

Acknowledgments and Disclosure of Funding

This paper is based upon work supported in part by the National Science Foundation, through the
NSF CAREER Program under Award No. CCF-2146334 (From Rare Events to Competitive Learning
Algorithms), the NSF HDR TRIPODS Phase II Program under Award No. ECCS-2217023 (IDEAL
Institute), and the NSF TRIPODS Phase I Program under Award No. CCF-1934915 (UIC Foundations
of Data Science Institute). Computational infrastructure was supported in part by the NSF MRI
Program Award No. CNS-1828265 (COMPaaS DLV).

References
Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Chelba, C., Norouzi, M., and Bengio, S. (2017). N-gram language modeling using recurrent neural
network estimation. arXiv preprint arXiv:1703.10724.

Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–394.

Dagan, I., Glickman, O., and Magnini, B. (2005). The pascal recognising textual entailment challenge.
In Machine Learning Challenges Workshop, pages 177–190. Springer.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dolan, W. B. and Brockett, C. (2005). Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J. K., and Kochenderfer, M. J. (2017).
POMDPs.jl: A framework for sequential decision making under uncertainty. Journal of Machine
Learning Research, 18(26):1–5.

Gao, F., Zhu, J., Wu, L., Xia, Y., Qin, T., Cheng, X., Zhou, W., and Liu, T.-Y. (2019). Soft contextual
data augmentation for neural machine translation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 5539–5544.

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Kaplun, G., Malach, E., Nakkiran, P., and Shalev-Shwartz, S. (2022). Knowledge distillation:
Bad models can be good role models. Advances in Neural Information Processing Systems,
35:28683–28694.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling. In 1995
International Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 181–184.
IEEE.

Kochenderfer, M. J., Wheeler, T. A., and Wray, K. H. (2022). Algorithms for decision making. MIT
press.

Lee, H., Hou, R., Kim, J., Liang, D., Hwang, S. J., and Min, A. (2023). A study on knowl-
edge distillation from weak teacher for scaling up pre-trained language models. arXiv preprint
arXiv:2305.18239.

Li, H., Cai, D., Xu, J., and Watanabe, T. (2022). Residual learning of neural text generation with
n-gram language model. arXiv preprint arXiv:2210.14431.

Liu, J., Min, S., Zettlemoyer, L., Choi, Y., and Hajishirzi, H. (2024). Infini-gram: Scaling unbounded
n-gram language models to a trillion tokens. arXiv preprint arXiv:2401.17377.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025.

11

Ng, N., Cho, K., and Ghassemi, M. (2020). SSMBA: Self-supervised manifold based data augmenta-
tion for improving out-of-domain robustness. arXiv preprint arXiv:2009.10195.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. PMLR.

Qin, Y., Lin, Y., Yi, J., Zhang, J., Han, X., Zhang, Z., Su, Y., Liu, Z., Li, P., Sun, M., et al. (2021).
Knowledge inheritance for pre-trained language models. arXiv preprint arXiv:2105.13880.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Well-read students learn better: The
impact of student initialization on knowledge distillation. arXiv preprint arXiv:1908.08962, 13.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2018). Glue: A
multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wang, S. I., Wang, M., Wagner, S., Liang, P., and Manning, C. D. (2013). Feature noising for
log-linear structured prediction. In Proceedings of the 2013 conference on empirical methods in
natural language processing, pages 1170–1179.

Warstadt, A., Singh, A., and Bowman, S. R. (2018). Neural network acceptability judgments. arXiv
preprint arXiv:1805.12471.

Wei, J. and Zou, K. (2019). Eda: Easy data augmentation techniques for boosting performance on
text classification tasks. arXiv preprint arXiv:1901.11196.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256.

Xie, Z., Wang, S. I., Li, J., Lévy, D., Nie, A., Jurafsky, D., and Ng, A. Y. (2017). Data noising as
smoothing in neural network language models. arXiv preprint arXiv:1703.02573.

Yuan, L., Tay, F. E., Li, G., Wang, T., and Feng, J. (2020). Revisiting knowledge distillation via label
smoothing regularization. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3903–3911.

12

A Explanation of main notations

Figure 3 gives a schematic overview of the process of IMM.

Induced Model Matching

Cross-EntropyP (y|x) Q(y|x)

P (y|x) P̂ (y|x)

M
arginalization

M
arginalization

Q̂(y|x)

𝜋!
empirical context

distribution

Pn(y|x)

data

π
true context
distribution

true feature-restricted
induced model

full-featured true
predictive model

full-featured learned
predictive model

learned feature-restricted
induced model

data

proxy

Figure 3: Schematic overview of IMM.

Table 3: Glossary

Prediction Variables y (generic) yt (at datapoint t of n)

Context Variables x (generic) xt (at datapoint t of n)
x denotes short context and
x denotes extended context
Thus, x = (x, x)
extend(x) multiset of x co-occurring with x

Prediction based on Full Context P (y|x) (using true model) Q(y|x) (using learned model)
In the case of BERT experiments, Q(y|x) denotes a prediction
vector for a certain masked position.

Dataset Size n is the dataset size
The n subscript may be used to denote empirical distributions

Context Distribution π (true context distribution)
πn (empirical context distribution)

Learned Model Q alone, without parenthesis denotes the learned context-conditional model (which
includes its parameters), e.g., LSTM or Transformer

Prediction based on Restricted Context P (y|x), using true induced model
P̂ (y|x), using target induced model, a proxy to P . This is
the Kneser–Ney bigram in our experiments.
Q(y|x), using learned induced model, i.e., based on true π

Q̂(y|x), using empirical learned induced model, i.e. based
on empirical πn, a proxy to Q

Table 3 compiles our main notation. We summarize the main formulation here and explain how it
connects to its instances in the experiments.

• Q is always the full model (LSTM or Transformer). Q(yt|xt) is thus a learned context-
conditional model: takes the full context (xt) and outputs prediction probabilities (over yt).
In Eq. (4), − log(Q) is the log-loss, whose average is the cross-entropy.

– LSTM/PTB: context = previous words, prediction = next word, and cross-entropy =
main (next-word prediction) loss.

13

– BERT/GLUE: context = unmasked words, prediction = masked word, and cross-entropy
= MLM (masked word prediction) portion of the fine-tuning loss.

– Note: KL divergence and cross-entropy are interchangeable, as their difference doesn’t
depend on Q.

• True context distribution π and true context-conditional model P describe the unknown
probability space. We assume tokenized data (xt, yt) generated according to π(xt) and
P (yt|xt).

– The goal of learning Q is to approximate P .
• Empirical context distribution πn and empirical context-conditional model Pn are

histograms of the context and context-conditional prediction, per training counts.
– Using these instead of the true is equivalent to replacing expectations (over the data

distribution) with sums (over the training set), e.g., Eq. (5)→ Eq. (9).
• Induced model: specializes full context-conditional model (yt|xt) to short context only
(yt|xt), under a specific context distribution.

– If the full context-conditional is P and the context distribution is π, we get the true
induced model P . This is the ideal, or Bayes’ optimal small model (which is not
available in practice). In practice, we approximate it by a target induced model, P̂
(e.g., Kneser–Ney bigram).

– If the full context-conditional is Q, and the context distribution is...

* ... π, we get the learned induced model Q. This is the best way Q can predict
based only on the short context. However, we cannot evaluate it without π. Instead,
we use...

* ... πn, and get the empirical learned induced model Q̂. This, we can evaluate and
use in our training.

In summary, the experiments use Q̂ given by Eq. (6), efficiently approximated via sampling in Eq.
(18). This is then plugged into the empirical IMM objective in Eq. (9), which pits Q̂ against P̂ .

B Caveats of prior methods: noising and reverse-KD

B.1 A quick review and analysis of noising-based data augmentation

In Xie et al. (2017), noising was proposed as an approach to perform data augmentation in language
and sequence-to-sequence models. Two types of noising were suggested: context noising and target
noising. We first show that context noising is not justifiable except in select cases. To simplify, we
consider only a bigram model, with counts c(x, y), where x is the context and y is the prediction.
The general noising scheme in Xie et al. (2017) would, with some probability γ(x) that may depend
on the context, substitute either the context, the prediction, or both with a sample from a distribution
q(·). It is straightforward to show that, as a result, the expected counts presented to the learner are no
longer c(x, y), but rather change to c̃(x, y) as follows.

(a) If only contexts are noised, then c̃(x, y) =

[1− γ(x)]c(x, y) + q(x)
∑
x′

γ(x′)c(x′, y)

(b) If only the predictions are noised, then c̃(x, y) =

[1− γ(x)]c(x, y) + q(y)γ(x)c(x)

(c) Lastly if both predictions and targets are noised, independently, then c̃(x, y) =

[1− γ(x)]c(x, y) + q(y)q(x)
∑
x′,y′

γ(x′)c(x′, y′)

These noising schemes are primarily motivated (see Xie et al. (2017), Section 3.3) through the idea
that noising leads to classical forms of smoothing, and which in turn may be a desirable property

14

to inject into training more sophisticated language models. This is indeed true in case (a) when
γ(x′) = λ is constant and q(·) = c(·)/n is the unigram distribution, leading to simple interpolative
smoothing. It immediately fails to be true when q is any other distribution even if γ(x′) = λ, as one
needs to normalize with c(x) to get a conditional distribution. The failure of this interpretation is even
more apparent in case (a), when γ(x′) and q(·) are determined via the missing mass and Kneser–Ney
backoff, failing to recreate any likeness of the Kneser–Ney smoothed bigram. The situation is at least
as bad in case (c).

The only instance that succeeds to uphold “noising as smoothing” is case (b), which recreates both
interpolative smoothing in the unigram case, and gives an output related to the Kneser–Ney bigram
with the choices of γ(x′) and q(·) from the paper. This last case is of particular interest to us, namely
because even though it may appear that we recreate the Kneser–Ney bigram itself, the choice of
γ(x′) = γ0N1+(x−1, ·)/c(x) with γ0 = 0.2 or 0.6 (see Xie et al. (2017), Table 1 and Figures 1
and 2) makes it evident that this is under-weighed to represent the missing mass, which typically
corresponds to larger discounts (0.75 or higher), due to the heavy Zipfian nature of language. What
can we deduce from this? If ν(x) is the true missing mass in the Kneser–Ney model, then we can
understand this choice as γ(x) = λν(x). As a result, we have:

c̃(x,y) = (1− λ)c(x, y) + λ [(1− ν(x))c(x, y) + ν(x)q(y)c(x)] (16)

Upon close examination, we identify this as an interpolation between the data on the left and the
Kneser–Ney bigram on the right, which suggests a form that is similar to IMM, in that the typical
calculation of the log-loss is additionally joined by the log-loss pitted against a target model, the
Kneser–Ney bigram.

B.2 Proof of Proposition 6.1

Assume that we are optimizing the idealized noising objective of Eq. (14) — i.e., we are operating in
the infinite-data regime — and let Q⋆ be its global minimizer. Assume further that the model class
for Q contains the true model P — i.e., we are in the realizable case. Then, there exists a choice of π
and P such that Q⋆ ̸= P .

Proof. Let us first rewrite (14) below, with the addition of constants (an entropy to the first term and
P (y|x) in the logarithm of te second term) that do not change the minimizer of this objective:

D(P∥Q)︸ ︷︷ ︸
f(Q)

+λ
∑
x

π(x)
∑
y

P (y|x) log P (y|x)
Q(y|x)︸ ︷︷ ︸

g(Q)

.

To simplify the notation, let f refer to main objective term and g refer to the noising regularization,
which we have equivalently identified with the single-sample approximation of IMM.

We note that both f and g are convex in Q and f ≥ 0. Since f(Q) is minimized at P , its gradient
should be 0 at P . g(Q) is 0 at P .

If λg(Q†) is −ϵ < 0 at some Q†, then along the line connecting P to Q†, λg(Q) is below the line 0
to −ϵ. To compensate, f would need to be above the line 0 to +ϵ, which would violate the fact that
the gradient of f is 0 at P .

We now numerically show that g(Q) can indeed be negative at some Q†, for a given construction
with specific choices of π and P .

Consider a trigram scenario, with x = (x−1, x−2) and where we understand the short context as
x = x−1 and the extended context as x = x−2. Let us rewrite the regularization term g(Q) explicitly
splitting the short and long contexts:

g(Q) =
∑

x−1,x−2

π(x−1, x−2)
∑
y

P (y|x−1) log
P (y|x−1, x−2)

Q(y|x−1, x−2)
(17)

15

We search for distributions over the prediction y, short context x, and extended context x. Consider
the following resulting tensor:

P (y, x−1, x−2) =


[
0.396 0.003
0.1 0.05

]
[
0.004 0.297
0.1 0.05

]


Based on this, we get the context distribution π(x, x), the conditional P (y | x−1, x−2), as well as
the restricted model P

π(x−1, x−2) =

[
0.4 0.3
0.2 0.1

]

P (y | x−1, x−2) =


[
0.99 0.01
0.5 0.5

]
[
0.01 0.99
0.5 0.5

]


These give us the following induced model:

P (y | x−1) =

[
0.57 0.5
0.43 0.5

]
Now consider the following choice of Q†:

Q†(y | x−1, x−2) =


[
0.5 0.5
0.5 0.5

]
[
0.5 0.5
0.5 0.5

]


Plugging the above choice of π, P , P (y | x−1, x−2) and Q into Eq. (17) gives us a negative value of
g(Q†) = −1.1, thus completing the construction of the counterexample and the proof.

Table 4: Deterioration of noising vs. consistency of IMM when λ = 1.5 is fixed in the logistic regression example.
This is a concrete manifestation of Propositon 6.1.

Dataset Size Baseline Noising IMM IMM-Noising Gap

N=5 73.14 +16.17/-14.53 76.85 +18.58/-13.15 79.96 +14.99/-12.38 3.11
N=10 84.17 +13.51/-10.86 84.37 +7.40/-7.63 88.65 +9.65/-7.68 4.28
N=15 89.86 +8.86/-6.80 86.17 +6.17/-5.53 92.52 +6.19/-4.81 6.35
N=20 92.35 +7.35/-5.32 86.99 +5.69/-5.37 94.30 +4.63/-3.70 7.30
N=30 94.94 +3.97/-3.43 88.68 +4.35/-4.32 95.69 +3.39/-2.64 7.01
N=40 96.33 +3.00/-2.33 89.70 +3.73/-3.97 96.59 +2.59/-2.08 6.89
N=50 97.14 +2.47/-2.20 90.78 +3.78/-3.55 97.34 +2.34/-1.99 6.56

Experimental Evidence of Inconsistency One may dismiss Proposition 6.1 as being too specific
of a counterexample. After all, in Figure 1, the gap between all methods does vanish. It is important
therefore to emphasize that this only happens because we are being very favorable to noising.
Specifically, we are decaying λ (the amount of noising) optimally with increasing data. This is
necessary for noising, for the precise reason of Proposition 6.1: even if the target model is perfect,
because noising incorrectly tracks the target model, without decaying its influence it will not only
not narrow the gap, but would in fact derail the learned model. Decaying λ is also acknowledged as

16

critical in the reverse knowledge-distillation literature (see for example Sec. 3 of Qin et al. (2021)).
However, tuning λ is optional for IMM, thanks to Q̂ (with more extended context samples) accurately
tracking the target (see the flat curves on the right column of Figure 6 in Appendix D.1.1).

To experimentally verify this, we ran the logistic regression example with fixed λ = 1.5 (optimal at
data size 5). The results are below. IMM maintains performance comparable to Figure 1, whereas
noising experiences a widening gap, and soon underperforms even the baseline.

B.3 Knowledge Distillation Theory

We would like mention that recent theory elucidates how weak teachers can be useful in reverse
KD (Kaplun et al., 2022). That work is specific to the classification setting and assumes that the
teachers are good samplers, i.e., noisy versions of the Bayes decision, and shows that reverse-KD can
effectively ensemble multiple teachers and remove the noise. This setting and assumptions do not
directly apply here, however, a common insight may be that the process of inducing a model can also
be thought of as ensembling, but over contexts rather than over independent resampling. Otherwise,
considering that the implicit noising objective that we identify in Eq. (17) is equivalent to the explicit
objective of reverse knowledge distillation, the arguments in this section equally apply as caveats for
reverse-KD when the weak teacher is a restricted-context model.

C Implementation Details

Algorithm 1 Sampled IMM with SGD for a Model Q with parameters W . To connect with the
notation of the paper, this version most closely resembles the language modeling version (with the
details of the sequentialization of log-sum gradients skipped for simplicity). The logistic regression
equivalent uses a soft nearest neighbor density estimate (ref D.1) instead of creating a multiset and
sampling from it.

Input: Data (xt, yt) for t = 1, 2, ..., n, k = sampling rate
Output: IMM-trained model Q

1: repeat
2: Q(y|xt)← FEEDFORWARD(Q, xt, xt)
3: ∇W Cross-Entropy(Q)← BACKPROPAGATE(Q,Cross-Entropy(Q, yt))

4: Q̂(y|xt)← 0
5: for all i, xsample ∈ Enumerate(Sample(extend(xt), k)) do
6: Q̂(y|xt)← Q̂(y|xt) + FEEDFORWARD(Q, xt, x

sample)
7: end for
8: Q̂(y|xt)← Q̂(y|xt)/k

9: IMMt(Q) = −∑y P̂ (y|xt) log Q̂(y|xt)

10: ∇W IMMt(Q)← BACKPROPAGATE(Q, IMMt(Q))
11: APPLYGRADIENTS(∇W Cross-Entropy(Q) + λ∇W IMMt(Q))
12: until convergence

C.1 k-approximated IMM

For the approximation, a given short context xt, we take only a fixed number k of samples X1, · · · , Xk

uniformly from extend(xt). The approximated Q̂ (Eq. (11)) can then be written as

Q̂(y|x) ≈ 1

k

k∑
i=1

Q(y|xt, x
sample
i ∼ extend(xt)) (18)

Indeed this is what is happening on lines 5-8 of Algorithm 1. Sampling k extended contexts is only
part of the solution. Another algorithmic innovation that we need is to address the task of computing
the derivative of our main objective, Eq. (8), because it requires differentiating Eq. (7), where a
naı̈ve implementation would need all k instances of the LLM used to estimate Q̂(y|x) in the memory
simultaneously. Fortunately, we provide a solution to this, explain in detail in Section C.2 below.

17

Algorithm 2 Serialized IMM with SGD for a Model Q with parameters W . As in Algorithm 1,
this is notationally closest to the language modeling version. For implementation details for the
logistic regression example, see D.5, as well as D.1 (for the soft nearest-neighbor density estimate
formulation).

Input: Data (xt, yt) for t = 1, 2, ..., n, r = refresh frequency
Output: IMM-trained model Q

1: repeat
2: Q(y|xt)← FEEDFORWARD(Q, xt, xt)
3: ∇W Cross-Entropy(Q)← BACKPROPAGATE(Q,Cross-Entropy(Q, yt))
4: if Repeats % r = 0 then
5: Q† ← Q

6: Q̂† ← 0
7: for all t = 1, 2, ..., n do
8: for all y do
9: Q̂†(y|xt)← Q̂†(y|xt) + FEEDFORWARD(Q†, xt)

{Or use other induction mechanism, e.g., density estimator for logistic regression.}
10: end for
11: end for
12: NOGRADIENT(Q†, Q̂†)
13: end if
14: ˜IMMt(Q) := −∑y

Q†(y|xt)

Q̂†(y|xt)
P̂ (y|xt) logQ(y|xt)

{This is not the IMM loss, but its gradient averages to the correct gradient, see Section 5.}
15: ∇W

˜IMMt(Q)← BACKPROPAGATE(Q, ˜IMMt(Q))

16: APPLYGRADIENTS(∇W Cross-Entropy(Q) + λ∇W
˜IMMt(Q))

17: until convergence

C.2 IMM Gradient Computation

Eq. (7) is a cross-entropy and the Q̂(y|x) term that we approximated in Eq. (18) occurs inside the log
term of the cross-entropy. Naı̈vely backpropagating through this term makes the memory complexity
of backpropagation scale with the number of random samples k used to approximate Q̂(y|x). In
our experiments, it was problematic for the GPU (Nvidia V100 with 32 GB memory) to perform
backpropagation for k > 6 for the LSTM RNN.

Contemporary deep learning frameworks do not have the ability to sequentialize along k the compu-
tation of the derivative of a log where the argument of the log is an average (or a sum) of k entities.
This is expected, because log(A+B) cannot be decomposed, and therefore, sequentializing this by
splitting the cost function (this cross-entropy term) is not possible.

Despite this, we propose a solution that may be of interest generally when such differentiation needs
to be performed. This stems from the simple observation that the derivative of log(f + g) can be
represented as a weighted average of the derivatives of log(f) and log(g), where the “crosstalk”
weights do not require differentiation:

∇ log(f + g) =
∇f +∇g
f + g

= f
f+g∇ log f + g

f+g∇ log g.

In summary, this allows us to compute the derivatives separately for each random sample and
accumulate them appropriately.

Sequentializing IMM gradient computations using crosstalk

Recall that we can write an IMM component at data point t (Eq. (12)) with k randomly sampled
extended contexts as:

18

IMMt(Q) = Cross-Entropy(Q̂(y|x), P̂ (y|x))
= −

∑
y

P̂ (y|x) log
[
EX [Q(y|xt, X) | xt]

]
⋆≈ −

∑
y

P̂ (y|x) log
[
1

k

k∑
i=1

Q(y|xt, Xi ∼ extend(xt))

]

= −
∑
y

P̂ (y|x) log
[
1

k

k∑
i=1

Q(y|xt, xi)

]
(19)

where ⋆ comes from Eq. (18).

The above entity cannot be directly decomposed into k terms because it involves the log of a sum.
Since it’s the IMM component of the loss, during backpropagation, we will need its derivative with
respect to the parameters of the neural model (LSTM RNN or BERT). In the next section, we see that
the derivative can be decomposed into k terms.

Denoting the set of parameters using W , we can then write∇W IMM(Q) as below.

∇W IMMt(Q) = −
∑
y

P̂ (y|x)∇W log

[
1

k

k∑
i=1

Q(y|xt, xi)

]

= −
∑
y

P̂ (y|x)
∇W

[
1
k

∑k
i=1 Q(y|xt, xi)

]
1
k

∑k
i=1 Q(y|xt, xi)

= −
∑
y

P̂ (y|x)
1
k

∑k
i=1∇WQ(y|xt, xi)

1
k

∑k
i=1 Q(y|xt, xi)

= −
∑
y

P̂ (y|x)
∑k

i=1∇WQ(y|xt, xi)∑k
i=1 Q(y|xt, xi)

= −
∑
y

P̂ (y|x)
[

k∑
i=1

(
1∑k

i=1 Q(y|xt, xi)

)
∇WQ(y|xt, xi)

]

= −
∑
y

P̂ (y|x)
[

k∑
i=1

(
Q(y|xt, xi)∑k
i=1 Q(y|xt, xi)

)
∇WQ(y|xt, xi)

Q(y|xt, xi)

]

= −
∑
y

P̂ (y|x)
[

k∑
i=1

(
Q(y|xt, xi)∑k
i=1 Q(y|xt, xi)

)
∇W logQ(y|xt, xi)

]

= −
k∑

i=1

∑
y

P̂ (y|x)
(

Q(y|xt, xi)∑k
i=1 Q(y|xt, xi)

)
∇W logQ(y|xt, xi)

=
k∑

i=1

∇W

−∑
y

P̂ (y|x)Ct,i(y)︸ ︷︷ ︸
crosstalk

logQ(y|xt, xi)



(20)

We notationally move the derivative outside, but it is crucial that Ct,i(y) =
Q(y|xt,xi)∑k
i=1 Q(y|xt,xi)

be treated
as a constant with respect to the parameters of the LLM. We do this to show that we can effectively
compute individual cross-entropies, with the Ct,i(y) terms acting like a “crosstalk” between the k
random samples. This exactly parallels the decomposition that we highlighted above for the case
of ∇ log(f + g). Note that this decomposition is not possible directly on the cross-entropy (that
involves the log of a sum), but possible when we consider its gradient.

19

Overcoming limitations of contemporary frameworks to compute the crosstalk vector

We cannot compute the above total gradient, i.e. ∇W IMM(Q) unless for every t and y we have Ct,i(y)
for i ∈ [1, k]. To this end, we implement this by partially running the feedforward computation graphs
of all k random samples only until the point which gives us Q(y|xt, xi) for i ∈ [1, k]. Once we
have all the Q(y|xt, xi), we can normalize all of them by their element-wise sum to get the weights
Ct,i(y). These weights are then fed back into the graph, and the forward pass is completed to get a
“tampered” cross-entropy for i ∈ [1, k]. The k backward passes using these tampered cross-entropies
give us the terms inside the sum in the last step of (20), which after summation produce∇W IMM(Q).

D Additional Experimental Details

We now provide some additional detail of both the logistic regression and language modeling
experiments. One minor difference between the two is that in the logistic regression case we
interpolate the main loss (1−λ) and the IMM risk (λ), to efficiently cross-validate for the choice of λ
as we explain in Section D.1.1. In the language modeling experiments, we simply add the regularizer
with the factor λ, while maintaining the main loss as is (factor 1).

D.1 Logistic Regression Toy Example

We provide the complete details of the logistic regression toy example2. Consider a dataset with
feature space x = (x1, x2, x3) ∈ R3 containing two linearly separable classes, defined by a linear
discriminant g(x) = ax1+bx2+cx3+d. We will think of features as decomposable into x, the short
context of restricted features, and x, the extended context of remaining features. For this example, let
x = x1 and x = (x2, x3). The choice of word “context” stems from features in language modeling.

Target restricted model Say features are sampled uniformly over a cube and that we have ample
observation of the labels y = 1{g(x) > 0} along only the short context, i.e., ample data points of the
form (x1, y). This allows us to build an excellent restricted model to predict the label based on just
x1, call it P (y|x1) or P (y|x). For the sake of this example, let us assume that this is the (restricted)
Bayes predictor or true conditional probability.

Main question We then observe a few samples of all features along with labels, i.e., data points of
the form (x1, x2, x3, y). How can we use the restricted model P̂ (y|x1) as part of the training of the
full model Q(y|x1, x2, x3)?

Induced model Say we have n data points. Let us index them by t = 1, · · · , n, written either
as (xt, yt) or (x1,t, x2,t, x3,t, yt). The key concept of the method is that it is not Q’s behavior
that should target that of P̂ (y|x1), but rather the behavior of Q if it were itself restricted. We
call this restricted version Q the induced model of Q and, by marginalization, we interpret it as
the average of Q’s predictions, when xt is drawn from its conditional distribution given xt. Since
we typically don’t have access to this distribution, we approximate it empirically. In language
modeling, we could just sample from the empirical distribution of x for a given x. In logistic
regression, this is not viable since x1 does not repeat. We instead use a soft nearest-neighbor density
estimate f̂(x2, x3|x1) ∝

∑n
t=1 δx2,t,x3,t

(x2, x3)e
−α|x1,t−x1|, where 1/α is the bandwidth of the

kernel. (With cross-validation, we determine α = 1 to be a good choice in this example.) If we let
wt = e−α|x1,t−x1|, the resulting induced model by marginalization is:

Q(y|x) =
∫

f(x|x)Q(y|x, x) (21)

≈
n∑

t=1

wt(x)∑n
t=1 wt(x)

Q(y|x, xt) (22)

Just like in language modeling, to induce a model we need to to draw x’s from its conditional
distribution given x. Unlike in the discrete case where we could directly approximate the conditional
distribution using the empirical counts, we need to rely here on an estimated density.

2Code is available at https://github.com/uicdice/imm-logistic-regression

20

https://github.com/uicdice/imm-logistic-regression

Matching the target The main objective of logistic regression is to minimize
−∑n

t=1 logQ(yt|x1,t, x2,t, x3,t), which is equivalent to Cross-Entropy(Q) versus the em-
pirical distribution. We now additionally want the induced model Q to match the target restricted
model P̂ . This gives this method the name Induced Model Matching (IMM). This requirement can
be captured through a KL-divergence, and introduced as a regularizer. The result is a secondary
objective, which we call the IMM risk, expressed as:

IMM(Q) =
n∑

t=1

∑
y=0,1

P̂ (y|x1,t) log
1

Q(y|x1,t)
(23)

The overall objective then becomes

Cross-Entropy(Q) + λ IMM(Q), (24)

where λ is the regularization trade-off and can be determined via cross-validation (details in the
Appendix D.1.1).

IMM improves restricted-context prediction In Figure 4, for n = 10 and 30 Monte-Carlo runs,
we show how the induced model of Q (i.e. Q) fairs in its prediction, compared to the target model P̂ .
Note that without IMM (i.e. with λ = 0), the secondary objective is large and thus Q’s performance
is worse. With increasing λ, IMM improves this performance both in average and in variance. We
deduce that there is information in the accurate restricted model P (y|x) that is not known to Q, unless
we explicitly incorporate it. This shows that Q gets better at predicting from a restricted context,
naturally bringing up the question: does it also get better at predicting from the full context, i.e., the
main objective?

0.0 0.2 0.4 0.6 0.8
λ

1+λ

1

2

3

4

5

IM
M
(Q

)

Figure 4: Performance on restricted task, i.e. IMM(Q) measured on models Q trained using Eq. (24) as the
objective with varying λ

1+λ
ratio (refer to Appendix D.1.1). We stop at λ

1+λ
= 0.9 because λ

1+λ
= 1 would zero

out the contribution of the main objective (and replacing the main objective completely is never the intention).

IMM improves full-context prediction In Figure 1, we compare the performance of IMM-trained
Q (green) to that without IMM (maroon). We sweep a range of n from 2 to 50, and use a cross-
validation optimized λ for each (details in the Appendix D.1.1). The key observations are that:
(1) IMM always improves on the baseline performance, (2) the variance of the outcomes is also
typically diminished, (3) the improvement is greater with less data, but the gain across data sizes is
equivalent to access to an average of 30% extra data. This and similar experiments suggest that gains
are highest when the dataset size is comparable to the number of parameters. This simple scenario
demonstrates how IMM effectively harnesses the benefit of accurate feature-restricted models when
training full-featured models.

21

Visualizing the effect of IMM In Figure 5, we illustrate the 3-dimensional logistic regression
problem. The features are samples uniformly in this box. The Bayes-optimal restricted model
only uses the x1-coordinate, and so assigns probabilities proportionally to the blue/red areas in the
illustrated slice. IMM then encourages the full logistic model to be consistent with these weights,
i.e., making sure the proportion of points labeled ± agrees with these weights at each x1. Intuitively,
this biases the separating plane to have the right inclination/alignment with the x1-axis, which
subsequently speeds up the learning process.

x1

x2

x3

0

0

0

1

1

1

-1

2

2

Figure 5: A visualization of the inductive bias brought upon by IMM in the logistic regression example.

D.1.1 Tuning Lambda

As mentioned in Section 7.1, IMM always improves baseline performance. The main parameters to
choose are α and λ. For α, we performed a few experiments on held-out data and determined the
value of 1 to be generally adequate. For λ, we saw that adapting to the dataset size made a more
significant difference. This makes sense, as for smaller datasets, we want more IMM contribution to
compensate for the lack of data (i.e., we want a larger λ).

To determine a good schedule for λ as a function of dataset size n, we sweep the ratio λ
1+λ (which

represents the IMM coefficient as a fraction of the combined IMM and regular loss coefficients) in
the range [0, 1]. We repeat this for learning rates 0.1 as well as 1.0, for a range of dataset sizes, from
a minimum of 2 to a maximum of 50.

We provide our λ tuning plots in Figure 6. Since a learning rate of 1.0 was found to give the best
results, we choose it for all the reported experiments. Looking at our plots in Figure 6, we select
λ/(1 + λ) of 0.8, 0.7, 0.6 for dataset sizes, n of 2, 10 and 20 respectively. These suggest a linearly
decaying optimal λ/(1 + λ), in this range of dataset sizes. For this example, doing an interpolation
fit, we create our automatic λ schedule rule to be λ

1+λ = −0.0111n+ 0.818.

22

0.0 0.2 0.4 0.6 0.8
λ

1+λ

50

55

60

65

70

75

80

A
cc

ur
ac

y

Dataset Size: 2, Learning Rate: 0.1

0.0 0.2 0.4 0.6 0.8
λ

1+λ

45

50

55

60

65

70

75

80

A
cc

ur
ac

y

Dataset Size: 2, Learning Rate: 1.0

0.0 0.2 0.4 0.6 0.8
λ

1+λ

75

80

85

90

95

A
cc

ur
ac

y

Dataset Size: 10, Learning Rate: 0.1

0.0 0.2 0.4 0.6 0.8
λ

1+λ

75

80

85

90

95

A
cc

ur
ac

y
Dataset Size: 10, Learning Rate: 1.0

0.0 0.2 0.4 0.6 0.8
λ

1+λ

82

84

86

88

90

92

94

96

98

A
cc

ur
ac

y

Dataset Size: 20, Learning Rate: 0.1

0.0 0.2 0.4 0.6 0.8
λ

1+λ

86

88

90

92

94

96

98

A
cc

ur
ac

y

Dataset Size: 20, Learning Rate: 1.0

Figure 6: Effect of varying λ/(1 + λ) on different dataset sizes and learning rates of 0.1 and 1.0. Every point is
an average of 30 runs and the error bars are computed using 10th and 90th percentiles.

23

Table 5: Restricted vs. Full Model on the Bigram Task (i.e., predicting the next word given only the previous one.)
The small model is the Kneser–Ney bigram on the PTB training set. The full model is the 1,500-dimensional
2-layer LSTM from Xie et al. (2017), trained without noising on the PTB training set. To make the LSTM predict
the next word based only on the previous one, we complete the history by averaging predictions over all extended
contexts in the training set (full word history) that share that short context (same previous word). In the language
of the paper, this is exactly the induced bigram of the learned LSTM. We report the cross-entropy and perplexity
of each model on the PTB test set. Note that the small model clearly outperforms the LSTM on this restricted
task.

Dataset LSTM LSTM Kneser–Ney
w/o IMM w/ IMM

Train 260.16 → 237.55 92.19
Validation 339.24 → 302.30 199.28
Test 309.56 → 278.48 185.71

D.2 Language Modeling Experiments

Code is available at https://github.com/uicdice/imm-language-modeling

D.2.1 Evidence that IMM acts through improving restricted task

We give an illustrative example that shows the advantage that a restricted model may have, and which
we would like to incorporate into the full-featured model. Clearly, our approach is only valuable if
this the case. The simple experiment that we propose is to compare how well a full-featured model
(LSTM) performs a restricted task, namely bigram prediction, vs. a restricted model built for that
task (Kneser–Ney Bigram).

How can an LSTM perform bigram prediction when given only a single word? It can do so by
averaging its output over all possible long histories consistent with that word, which is exactly the
notion of induced model of Eq. (3). In Section 4, we show how to do this empirically.

When we do this comparison for the non-noised LSTM in (Xie et al., 2017), we obtain the results
tabulated in Table 5. The Kneser–Ney bigram (restricted model) outperforms the LSTM (full
model) on the restricted task. This may appear surprising, however, had this not been the case, the
improvements that Xie et al. (2017) obtained through noising would have been hard to explain! More
importantly, using IMM improves the performance of the LSTM on this task, mirroring the logistic
regression case — cf. Figure 4.

D.2.2 Parameter details

Choice of λ For Language Modeling experiments, due to computational cost, we did not perform
an exhaustive search for the best λ. We tried a few values of λ and tested on held-out data, and
determined the value of 0.2 to work well in most cases, and adhered to it in all of the experiments.

Restarts We would like to clarify that the baseline for LSTM RNN (Xie et al., 2017) reports the
best perplexity across multiple restarts while the baseline for BERT (Devlin et al., 2018) reports the
average across multiple restarts. We do likewise in our experiments. We have additionally included
error bars for BERT experiments as that’s where most of the gain is seen for BERT.

Clipping On the technical front, we note that in either LSTM or BERT, if gradient clipping (Pascanu
et al., 2013) is used, then gradients should be clipped separately for the primary objective and the
IMM objective (i.e. they should be clipped before they are added together). The reason is that they
are obtained from two loss functions that have very different scales.

Choice of k To reduce overhead for LSTM, we perform IMM only every j’th batch using k-samples.
Otherwise we use 1-sample IMM. For BERT, we perform k-sample IMM every minibatch. For the
selection of the parameter k (number of long histories used to approximate the induced model), we
experimented with k ∈ {1, 5, 10, 20}. For the LSTM experiments, there was not much gain going
from 10 to 20, so we settled for k = 10 (and j = 5) as a good compromise between the accuracy and
time complexity of the induced model computation. For the BERT experiments, we used k = 5.

24

https://github.com/uicdice/imm-language-modeling

IMM through reintroduced MLM loss in BERT fine-tuning BERT on GLUE differs from
LSTM on PTB in two ways: (1) it is not a next-word predictive model, and (2) its main loss during
fine-tuning is the task (e.g., CLS) loss. We do not touch the latter. Instead, we reintroduce the
MLM loss, to have a fine-tuning predictive task close to our formulation. Since MLM is based
on cross-entropy, IMM can be directly added to it as a secondary loss. Additionally, only for the
computation of the IMM component, at each location of a fine-tuning training sentence, we mask
that word and all future words during the forward passes being done to compute the IMM component.
This forces BERT to act like a causal model, i.e., it predicts the next word based only on the past, as
in our main formulation. This is done to ensure that the induced model of BERT is the right induced
model to match against an accurate causal model. Incidentally, for this accurate target model we used
the Kneser–Ney bigram constructed from the Wikipedia data, on which BERT is initially trained.

In summary, in the BERT experiments we fine-tune with the sum of 3 losses: the task loss, the MLM
cross-entropy loss, and the IMM risk for the MLM task.

D.3 RL Experiment

We consider an 11× 11 toroidal grid in the (x, y) plane with a predefined reward landscape that has
a single peak at the center of the grid, see the heatmap in Figure 7. The toroidal configuration allows
the agent to wrap around the grid in case it exceeds its confines, which allows us to rely on uniformity
in the action space, in any state.

0 2 4 6 8 10

0

2

4

6

8

10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 7: Heat map representing the reward function, which depends on state only, on the 11× 11 toroidal grid
of the RL experiment.

We model this as both a Markov Decision Process (MDP) as well as a Partially Observable Markov
Decision Process (POMDP). The MDP agent knows both the x and the y coordinates of position,
while the POMDP agent knows only x but maintains a uniform belief over the y dimension. We
first solve the POMDP using the POMDPs.jl (Egorov et al., 2017) package package and the Fast
Informed Bound (FIB) Solver (Kochenderfer et al., 2022) to obtain a very accurate policy based on
partial information. (These POMDP policies are represented in the form of alpha vectors.)

MDP Training without IMM Our MDP training algorithm is REINFORCE (Williams, 1992).
REINFORCE, at every epoch, samples a set of observations, which can also be called a batch. In
REINFORCE, at every epoch we sample fresh data from the policy. We elect to limit the observation
length at every epoch, to emulate limited exploration, and hence the number of epochs can be seen as
the effective dataset size.

Adding IMM to REINFORCE For every observation, we consider its restricted context to be
x (the known dimension of the POMDP agent). Unlike language modeling experiments (where
we randomly sample for the extended context), we use the POMDP belief. Here, we thus use a

25

uniform distribution over the unknown dimension y (the analog of the extended context). Using this
distribution, we compute our policy’s induced model. We then match this induced model against the
POMDP agent’s action, which is an action based solely on the knowledge of x (and only a belief over
y). We manually set λ to 0.25.

Experimental Results We set the per epoch observation length to 50. Since then the number of
epochs represents our dataset size control, we vary it and compare the performance of REINFORCE
and IMM-augmented REINFORCE3 by evaluating their average reward over a given rollout horizon.
Similarly to the logistic regression experiments, we see that IMM is uniformly beneficial, with gains
at their best when the dataset size is roughly in the regime of the number of parameters. We perform
30 Monte Carlo runs at each number of epochs, and report 10th and 90th percentiles. Here also, IMM
reduces the variance of the reward. Results are reported in Figure 2.

D.4 Effect of Restricted Model Quality

While the paper is presented under the assumption that we have access to a very good target model P̂ ,
we also ran experiments to show the effect of model quality on IMM. Of course, for the language
model, we don’t have a gold reference and the fact that IMM achieves gains and improves on noising is
evidence that even non-perfect models help. However, for the logistic regression and RL experiments
we do have gold references, which we can weaken. We weaken the restricted Bayes-optimal predictor
in the regression example by adding Bernoulli noise to the label (interpolate with a coin flip), 20% for
the medium quality model and 50% for the low quality model. For the RL experiment, we replace the
max on the POMDP utility with a softmax, and adjust the quality via the temperature of the softmax
(small is higher quality). Even with reduced model quality, we find out that IMM always improves
learning. However, for this to happen, we need to tune λ more carefully than when the model is
perfect, leading to less reliance on the IMM risk when the dataset size increases (otherwise the noise
in the lower quality models would offset the convergence). For logistic regression, this is illustrated
in Figure 8. For RL, this is illustrated in Figure 9.

0 10 20 30 40 50
Dataset Size

50

60

70

80

90

100

Ac
cu

ra
cy

IMM with high quality model

IMM with medium quality model

IMM with low quality model

No IMM

Figure 8: Test accuracy of logistic regression model trained without IMM and with IMM using restricted model
of varying quality levels, with λ determined through dataset size (refer to Appendix D.1.1). At every dataset size,
we perform 300 runs and plot the 10th and 90th percentiles for error bars.

All experiments in this section use the Sampled IMM variant. In Appendix D.5, we show that
Serialized IMM achieves competitive statistical performance with

D.5 Serialized IMM Performance

To demonstrate the validity of the Serialized IMM variant, which comes with computational advan-
tages that can allow IMM to scale, we implemented it for the logistic regression example. However,
we first elaborate on the details of the Sampled IMM, to show the dramatic computational advantage.
By combining the density estimation approach for obtaining the induced model, as outlined in Section
7.1 with the sequentialization technique explained in Appendix C.2, we obtain the following gradient

3Code is available at https://github.com/uicdice/imm-reinforce

26

https://github.com/uicdice/imm-reinforce

0 100 200 300 400 500
Number of epochs

0

5

10

15

20

Av
er

ag
e

Re
wa

rd

IMM using maximal utility action
IMM using softmaxed POMDP policy (temperature=0.5)
IMM using softmaxed POMDP policy (temperature=1.0)
No IMM

Figure 9: Average reward of MDP trained without and with IMM incorporating POMDP solutions of various
“qualities”. Details in Appendix D.

calculation for the IMM risk (compare to Eq. (20)):

IMMt(Q) = −
∑
y

P (y|xt) log Q̂(y|xt)

∇W IMMt(Q) = −
∑
y

P (y|xt)∇ log Q̂(y|xt)

= −
∑
y

P (y|xt)∇ log

[
n∑

t′=1

(
wt,t′∑n

t′=1 wt,t′

)
Q(y|xt, xt′)

]

= −
∑
y

P (y|xt)
∇
[∑n

t′=1

(
wt,t′∑n

t′=1
wt,t′

)
Q(y|xt, xt′)

]
∑n

t′=1

(
wt,t′∑n

t′=1
wt,t′

)
Q(y|xt, xt′)

= −
∑
y

P (y|xt)
∇ [
∑n

t′=1 wt,t′Q(y|xt, xt′)]∑n
t′=1 wt,t′Q(y|xt, xt′)

= −
∑
y

n∑
t′=1

P (y|xt)
∇ [wt,t′Q(y|xt, xt′)]∑n
t′=1 wt,t′Q(y|xt, xt′)

= −
∑
y

n∑
t′=1

P (y|xt)
∇ [wt,t′Q(y|xt, xt′)]∑n
t′=1 wt,t′Q(y|xt, xt′)

Q(y|xt, xt′)

Q(y|xt, xt′)

= −
∑
y

n∑
t′=1

P (y|xt)
wt,t′Q(y|xt, xt′)∑n

t′=1 wt,t′Q(y|xt, xt′)

∇Q(y|xt, xt′)

Q(y|xt, xt′)

= −
n∑

t′=1

∑
y

P (y|xt)
wt,t′Q(y|xt, xt′)∑n

t′=1 wt,t′Q(y|xt, xt′)︸ ︷︷ ︸
crosstalk

∇ logQ(y|xt, xt′)

∇W IMM(Q) = − 1

n

n∑
t=1

n∑
t′=1︸ ︷︷ ︸

double summation

∑
y

P (y|xt)
wt,t′Q(y|xt, xt′)∑n

t′=1 wt,t′Q(y|xt, xt′)︸ ︷︷ ︸
crosstalk

∇ logQ(y|xt, xt′)

Here wt,t′ uses the index of x1, rather than its value, as argument. By using a density estimator that
looks at the entire dataset, we have a sampling scheme that effectively has set k = n, costing an
n-fold computational time increase. While we can address this through shortcuts (e.g., sparsifying w),
this extreme version of computing the induced model is revealing in terms of where the bottleneck is,
i.e., computing Q̂.

27

For the Serialized IMM variant, by comparing the above to Eq. (13), we see the large gain thanks
to the double summation collapsing into a single summation. We still need to compute Q̂ for the
correction factor, but we can do this every n iterations. By incurring theO(n) slowdown only 1

n of the
time, we go back to only a constant factor overhead. The additional noise in the gradient and the fact
that Q̂ is stale between updates mean that Serialized IMM cannot be expected to perform at the same
level as Sampled IMM. Furthermore, the Serialized IMM does not use the smooth nearest-neighbor
averaging, except for the calculation of Q. Despite this, we see in Figure 10 that Serialized IMM
remains better than noising and, for larger dataset size, starts to approach Sampled IMM. Note that
for ease of reproducibility, a fixed λ = 0.7 was used for these results and no particular optimization
tweaks were made to compensate for gradient noise, suggesting that performance could be improved
by making such changes.

0 10 20 30 40 50
Dataset Size

50

60

70

80

90

100

Ac
cu

ra
cy

Sampled IMM

Serialized IMM

Noising/Reverse-KD

No IMM or Noising

Figure 10: Serialized IMM vs. Sampled IMM and Noising for logistic model. Serialized IMM provides O(k)-
times computational speedup over Sampled IMM (where k is the number of samples and, in this case, k =
dataset size). The serialized version lacks the smoothing of the sampled version yet approaches it for larger
dataset sizes and always improves on noising.

E Potential Negative Societal Impact

Improving language models can have negative societal impact, if these language models are fine-tuned
for tasks that are not aligned with positive human values. We hope that progress achieved by new
methodologies such as IMM will not be put into misuse of this kind. On the contrary, we expect that
any improved statistical efficiency achieved by methods like IMM to bring value when data is not as
abundant, thus helping make machine learning and language modeling more impactful in underserved
domains, where data is more scarce.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
IMM as a generalization of noising is analytically shown in the paper, along with noising’s
caveats that are solved by IMM. It’s application is experimentally demonstrated in the paper,
in Language Modeling and Reinforcement Learning experiments, as well as a proof of
concept, using Logistic Regression.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
IMM, in some applications like noising, requires random sampling, because exact evaluation
is not feasible. This affects the accuracy of the induced model, but regardless, IMM is able
to outperform the baseline (i.e. noising).

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
The only proof is the one that discusses the caveat of noising through a counter example.
All assumptions and a complete proof is present.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Code for all experiments has been anonymously released with clear instructions for re-
producibility. A summary of relevant experimental details is also contained within the
paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Code for all experiments has been anonymously released with clear instructions for re-
producibility. A summary of relevant experimental details is also contained within the
paper.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
A summary of relevant experimental details is also contained within the paper.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Error bars have been provided along with the number of Monte Carlo runs performed to
obtain each bar.

29

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

We mention the GPU used (Nvidia V100 with 32 GB memory)

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Improving language models can have negative societal impact, if these language models are
fine-tuned for tasks that are not aligned with positive human values. We hope that progress
achieved by new methodologies such as IMM will not be put into misuse of this kind.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Appendix E addresses this.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

None of our datasets are scrapped. Pre-trained checkpoints are from reliable sources (Google
trained checkpoint).

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

All our code (both original and derivative) is Apache 2.0 licensed and a copy of this license
is included in all code repositories. Datasets are public domain.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

The only new asset is code. Code for all experiments has been anonymously released with
clear instructions for reproducibility. A summary of relevant experimental details is also
contained within the paper.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

No human subjects were involved.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

30

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
No human subjects were involved.

31

	Introduction
	Related Works
	Problem Description
	Induced Model Matching (IMM)
	Computation
	Analysis
	Experimental Results
	Starting Toy Example: Logistic Regression
	Language Modeling Experiments
	Reinforcement Learning: POMDPs helping MDPs

	Conclusion
	Explanation of main notations
	Caveats of prior methods: noising and reverse-KD
	A quick review and analysis of noising-based data augmentation
	Proof of Proposition 6.1
	Knowledge Distillation Theory

	Implementation Details
	k-approximated IMM
	IMM Gradient Computation

	Additional Experimental Details
	Logistic Regression Toy Example
	Tuning Lambda

	Language Modeling Experiments
	Evidence that IMM acts through improving restricted task
	Parameter details

	RL Experiment
	Effect of Restricted Model Quality
	Serialized IMM Performance

	Potential Negative Societal Impact

