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ABSTRACT

Adversarial training (AT) can help improve the robustness of Vision
Transformers (ViT) against adversarial attacks by intentionally
injecting adversarial examples into the training data. However,
this way of adversarial injection inevitably incurs standard accu-
racy degradation to some extent, thereby calling for a trade-off
between standard accuracy and adversarial robustness. Besides, the
prominent AT solutions are still vulnerable to adaptive attacks. To
tackle such shortcomings, this paper proposes a novel ViT archi-
tecture, including a detector and a classifier bridged by our newly
developed adaptive ensemble. Specifically, we empirically discover
that detecting adversarial examples can benefit from the Guided
Backpropagation technique. Driven by this discovery, a novel Multi-
head Self-Attention (MSA) mechanism is introduced for enhancing
our detector to sniff adversarial examples. Then, a classifier with
two encoders is employed for extracting visual representations re-
spectively from clean images and adversarial examples, with our
adaptive ensemble to adaptively adjust the proportion of visual rep-
resentations from the two encoders for accurate classification. This
design enables our ViT architecture to achieve a better trade-off
between standard accuracy and adversarial robustness. Besides, the
adaptive ensemble technique allows us to mask off a random subset
of image patches within input data, boosting our ViT’s robustness
against adaptive attacks, while maintaining high standard accuracy.
Experimental results exhibit that our ViT architecture, on CIFAR-10,
achieves the best standard accuracy and adversarial robustness of
90.3% and 49.8%, respectively.
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1 INTRODUCTION

The Vision Transformers (ViT) architecture has demonstrated im-
pressive capabilities in a wide range of vision tasks, including image
and video classification [2, 12, 73], dense prediction tasks [46, 80, 81],
self-supervised learning [3, 20, 72], among others [6, 13, 24, 27, 36,
38, 39, 41, 49, 50, 62, 62, 89]. However, similar to Convolutional
Neural Networks (CNNs) [21, 25, 28, 32, 40, 61, 63, 68-70, 92], the
ViT architecture is vulnerable to adversarial attacks [5, 11, 18, 54—
56, 91] achieved by maliciously altering clean images within a small
distance, leading to incorrect predictions with high confidence. This
vulnerability hinders the adoption of ViT in critical domains such
as healthcare, finances, etc.

So far, adversarial training (AT) methods [1, 29, 30, 35, 52, 63, 79,
82, 90] are widely accepted as the most effective mechanisms for
improving ViT’s robustness against adversarial attacks, by inten-
tionally injecting adversarial examples into the training data. Unfor-
tunately, existing AT solutions struggle with two limitations. First,
they suffer from a trade-off between standard accuracy (i.e., the accu-
racy on clean images) and adversarial robustness (i.e., the accuracy
on adversarial examples), with improved robustness while yield-
ing non-negligible standard accuracy degradation. Second, these
solutions are not effective against adaptive attacks [9, 45, 75, 86],
i.e, a category of adversarial attacks capable of exploiting the weak
points of defense methods to adaptively adjust their attack strate-
gies. Hence, it calls for the exploration of enhancing ViT’s robust-
ness against adaptive attacks.

One potential direction to tackle the trade-off between standard
accuracy and adversarial robustness is the detection/rejection mech-
anism. This involves training an additional detector to identify and
reject malicious input data, with several solutions proposed in the
literature [51, 58, 60, 74, 88]. However, these detection techniques
have limited effectiveness against adaptive attacks and cannot be
applied to scenarios involving natural adversarial examples, as re-
ported in a prior study [26]. Hence, it is crucial to develop novel
solutions that can address limitations associated with the aforemen-
tioned direction and are suitable for a wide range of scenarios.

In this work, we aim to boost the robustness of ViT against
adaptive attacks in a more general and challenging scenario where
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malicious inputs cannot be rejected. Such a scenario is common to
several critical application domains, such as autonomous driving,
where the system must correctly recognize a road sign even if it
has been maliciously crafted. To this end, we propose a novel ViT
architecture consisting of a detector and a classifier, connected by
a newly developed adaptive ensemble. After adversarially trained
by One-step Least-Likely Adversarial Training, our proposed ViT
architecture can withstand adaptive attacks while incurring only a
negligible standard accuracy degradation.

In essence, our detector incorporates two innovative designs
to make adversarial examples more noticeable. First, based on
our empirical observations, we introduce a novel Multi-head Self-
Attention (MSA) mechanism [78] to expose adversarial perturba-
tion by Guided Backpropagation [71]. Second, the Soft-Nearest
Neighbors Loss (SNN Loss) [14, 64] is tailored to push adversar-
ial examples away from their corresponding clean images. Our
detector thus can effectively sniff adaptive attack-generated ad-
versarial examples. On the other hand, our classifier’s adversarial
training involves two stages: pre-training and fine-tuning. During
the pre-training stage, our classifier utilizes one clean encoder, one
adversarial encoder, and one decoder to jointly learn high-quality
visual representations and encourage pairwise similarity between
a clean image and its adversarial example. Here, we extend Masked
Autoencoders (MAE) [20] to facilitate adversarial training through
a new design. Specifically, we reconstruct images from one pair
of a masked clean image and its masked adversarial example, for
representation learning, with a contrastive loss on a pair of visual
representations to encourage similarity. In the fine-tuning stage, we
discard the decoder and freeze the weights in the well-trained de-
tector and two encoders, with a newly developed adaptive ensemble
to bridge the detector and the two encoders, for fine-tuning an MLP
(Multi-layer Perceptron) for accurate classification. Our adaptive en-
semble also masks off a random subset of image patches within the
input, enabling our approach to mitigate adversarial effects when
encountering malicious inputs. Extensive experimental results on
three popular benchmarks demonstrate that our approach outper-
forms state-of-the-art adversarial training techniques in terms of
both standard accuracy and adversarial robustness.

2 RELATED WORK

Detection Mechanisms. Detecting adversarial examples (AEs)
and then rejecting them (i.e., detection/rejection mechanism) can
improve the model’s robustness against adversarial attacks. That
is, the input will be rejected if the detector classifies it as an adver-
sarial example. Popular detection techniques include Odds [60],
which considers the difference between clean images and AEs
in terms of log-odds; NIC [51], which checks channel invariants
within deep neural networks (DNNs); GAT [88], which resorts to
multiple binary classifiers; JTLA [58], which proposes a detection
framework by employing internal layer representations, among
others [15, 17, 34, 67, 85]. Unfortunately, existing detection methods
are typically ineffective in defending against adaptive attacks. Be-
sides, the detection/rejection mechanism cannot be generalized to
domains where natural adversarial examples exist. Our work differs
from previous solutions in two aspects. First, we introduce a novel
Multi-head Self-Attention (MSA) mechanism by using the Guided

Fudong Lin, Jiadong Lou, Xu Yuan, and Nian-Feng Tzeng

Backpropagation technique, which can largely expose adversarial
perturbations. Second, we incorporate the Soft-Nearest Neighbors
(SNN) loss to maximize the differences between clean images and
adversarial examples. These innovative designs enable our detector
to effectively defend against adaptive attacks. Moreover, our newly
developed adaptive ensemble further enhances our detector, em-
powering it to be applied to scenarios where rejecting input images
is not allowed.

Adversarial Training Approaches. Adversarial training (AT)
aims to improve the model’s robustness against adversarial attacks
by intentionally injecting adversarial examples into the training
data. For example, PGD-AT [52] proposes a multi-step attack to
find the worst case of training data, TRADES [90] addresses the
limitation of PGD-AT by utilizing theoretically sound classification-
calibrated loss, EAT [76] uses an ensemble of different DNNs to
produce the threat model, FAT [82] reduces the computational
overhead of AT by utilizing FGSM attack with the random initial-
ization, LAS-AWP [29] boosts AT with a learnable attack strategy,
Sub-AT [35] constrains AT in a well-designed subspace, and many
others [1, 7, 16, 22, 23, 30, 42-44, 53, 66, 79, 83, 84, 93, 94]. However,
prior ATs suffer from the dilemma of balancing the trade-off be-
tween standard accuracy and adversarial robustness. Besides, their
improved robustness is vulnerable to adaptive attacks. In contrast,
our work introduces a ViT architecture consisting of a detector and
a classifier, connected by a newly developed adaptive ensemble,
able to boost AT to defend against adaptive attacks. Meanwhile, it
lowers the standard accuracy degradation by employing two en-
coders for extracting visual representations respectively from clean
images and adversarial examples, empowering our ViT architecture
to enjoy a better trade-off between accuracy and robustness.

3 PRELIMINARY: ONE-STEP LEAST-LIKELY
ADVERSARIAL TRAINING

Adversarial training (AT) improves the model’s robustness against
adversarial attacks by feeding adversarial examples into the training
set. Given a model f with parameters 6, a dataset with N samples,
ie,X ={(x;,yi) |i € {1,2,..., N}}, the cross-entropy loss function
L, and a threat model A, AT aims to solve the following inner-
maximization problem and outer-minimization problem, i.e.,

N
min Z max L(fo(xi +8), yi) (1)

where the inner problem aims to find the worst-case training data
for the given model, and the outer problem aims to improve the
model’s performance on such data. Recently, one-step Fast Ad-
versarial Training (FAT) [82] is popular due to its computational
efficiency. FAT sets the threat model under a small and I con-
straint €, i.e, A = {3 : ||| < €}, by performing Fast Gradient
Sign Method (FGSM) [18] with the random initialization, i.e.,

8 = Uniform(—e,€) + € - sign(Vx L(fo(xi), yi)),

8 = max(min(§, €), —€),

@)

where Uniform denotes the uniform distribution and sign is the sign
function. Notably, the second row in Eq. (2) serves to project the
perturbation & back into the I ball around the data x;.
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To find the worst-case adversarial examples, we extend FAT
by performing the least-likely targeted attacks, inspired by prior
studies [33, 76]. That is, given an input x;, we perform targeted
FGSM by setting the targeted label as its least-likely class, i.e., yfl =
arg min fg(x;), arriving at,

& = Uniform(—¢, €) + € - sign(Vy L(fp(x:), y')),

8 = max(min(4, €), —¢),

©)

Our one-step least-likely adversarial training is to utilize Eq.(3) to
produce the threat model.

4 OUR APPROACHES

4.1 Problem Statement

We consider a set of N samples, i.e, X ={(x;, y;) |i € {1,2,...,N}},
where x € RFXWXCH g an input image with the resolution of
(H, W) and the channel count of Cy, and y € [C] denotes its label.
For notational convenience, we let d = H X W X Cy. A classifier is
a function fp: R — [C], parameterized by a neural network. We
consider two types of inputs, i.e., a clean image xcln
the standard distribution Dgq and an adversarial example x
sampled from the adversarial distribution D,q,. We assume Dgq
and D, 4, follow different distributions. The clean image x°I jtself
or its augmented variant can be the input, while the adversarial ex-
ample x23V is a malicious version of x within a small distance. That
is, for some metric d, we have d(x, xadv) < ¢, but x24 can mislead
conventional classifiers. Parameterized by another neural network,
a detector gy is to tell whether an input image is a clean image

sampled from
adv

or not, i.e., gg : RY — {£1}, where +1 and —1 indicate a clean im-
age and an adversarial example, respectively. The binary indicator
function 1.y is 1 if both the detector g¢ and the classifier fy make
correct predictions. We follow previous studies [52, 90] by refer-
ring standard accuracy, and adversarial robustness, as classification
accuracy on clean images and adversarial examples, respectively.

4.2 Detector

Parameterized by a neural network with parameters ¢, the detector
9¢: RY — {+1} is to determine whether the input is a clean image
or not, where +1 and —1 respectively represent a clean image and
an adversarial example, i.e.,

+1, if x is a clean image
(4)

—1, otherwise.

gg(x) = {

Aiming to generalize the robust model to critical domains (e.g.,
autonomous driving), the input will not be rejected in this work.
Instead, we have modified it to output an estimated probability of
p € [0,1] for clean images and 1 — p for adversarial examples.
The design of our detector architecture is motivated by our empir-
ical observation in that the adversarial perturbation is detectable after
Guided Backpropagation visualization. Due to the small distance
between a clean image and its corresponding adversarial example,
their difference is notoriously imperceptible (see Figures 1a and 1d),
making it theoretically hard to detect adversarial examples [74]. In
our empirical study, we resort to Guided Backpropagation [71] to
visualize the difference between a clean image and an adversarial
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(a) Clean image (b) Guided

Grad-CAM

(c) Guided Backprop

(d) Adversarial
example

(e) Guided
Grad-CAM

(f) Guided Backprop

Figure 1: Visualizations on the clean image (Top) and the
adversarial example (Bottom). Left: Original clean image and
adversarial example. Middle: Guided Grad-CAM visualiza-
tion. Right: Guided Backpropagation visualization.

example. Interestingly, we have discovered that after Guided Back-
propagation visualization on the adversarial example, its adversarial
perturbation is quite noticeable; see Figure 1c versus Figure 1f, i.e.,
visualization on a clean image versus on its adversarial example.
Notably, our experiments also include the visualization compari-
son of Guided Grad-CAM [65], developed recently; see Figure 1b
versus Figure le. However, Guided Grad-CAM exhibits inferior
performance (compared to Guided Backpropagation) in terms of
exposing adversarial perturbation. This empirical study motivates
us to maximize the difference between clean images and adversarial
examples by using Guided Backpropagation visualization.

Figure 2a illustrates our detector architecture. Given an input
image x € R4, we perform Guided Backpropagation on the original
image, arriving at an input variant x” € R Following the standard
Vision Transformers (ViT) [12], we patchify the two inputs into
two sets of image patches and embed them via linear projection,
arriving at two sets of patch embeddings, ie., E, € RM*D and
E;, € RMXD respectively for the original input and its input variant.
Here, M represents the number of patches and D indicates the
hidden dimension. Driven by the above empirical observation, a
naive idea to expose adversarial perturbation is to add two sets of
patch embeddings. However, our empirical results show that this
simple solution cannot achieve satisfactory performance. To address
this issue, we propose a novel Multi-head Self-Attention (MSA) [78]
to consider two sets of patch embeddings simultaneously, inspired
by recent studies [4, 46, 57]. Let E = Ej, + Epos and E’ = E:f, +Epos
respectively represent two sets of patch embeddings after adding
positional embeddings Epos € RM*D  our proposed MSA can be
expressed as follows:

T
MSA (O, K, V) = Softmax( 2K+ By o

Q=W -E K=Wg-E V=Wy-E.
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Figure 2: Our model architecture: (a) detector and (b) classifier during the pre-training stage.

Here, B = Wg - E’ is the relative detection bias obtained from
the Guided Backpropagation-based input variant. Wp, W, Wy,
and Wp are learnable projection matrices, similar to those in prior
studies [59, 78]. The intuition underlying Eq. (5) is that we aim to
expose adversarial perturbation by adding the relative bias obtained
from Guided Backpropagation visualization. After encoding, we
follow Masked Autoencoders (MAE) [20] by performing global
average pooling on the full set of encoded patch embeddings, with
the resulting token fed into an MLP (i.e., multiple-layer perceptron)
for telling whether the input is a clean image or not.

Aiming to further differentiate adversarial examples from clean
images, we propose a novel loss function to train our detector,
including a Cross-Entropy (CE) Loss Lce and a Soft-Nearest Neigh-
bors (SNN) loss Lsnn [14, 64], for jointly penalizing the detection
error and the similarity level between the clean image and the
adversarial example, i.e.,

Laet = (1= 1) - Lee(gp(x), y*) + 4+ Lo (27, 22Y),  (6)

where A € (0, 1) is a hyperparameter to control the penalty degree
of the two terms, and z and z29" denote the global representa-
tions, i.e., the global average pooling of encoded representations,
for clean images and adversarial examples, respectively.

The SNN loss is a variant of contrastive loss, allowing for the
inclusion of multiple positive pairs. We regard members belonging
to the same determined class (e.g., two clean images) as positive
pairs, while members belonging to different determined classes (e.g.,
a clean image and an adversarial example) as negative pairs. Given
a mini-batch of 2B samples, with one half being clean images, i.e.,
{(xi, y?etzl)}?zl, and the other half of adversarial examples, i.e.,

{(x;‘.‘dv, ydet—_1)}2B the SNN loss at temperature 7 is defined

i i=B+1°
below:
L I e e OP(=sim(zi,2))[7)
Lo =5 ) log ——p———— N0
2B ; Zifl,i#-k exp(_SIm(Zi’ Zk)/T)

where z; is the visual representations for the input x; and the
similarity metric sim(-, -) is measured by the cosine distance. The
SNN loss enforces each point to be closer to its positive pairs than
to its negative pairs. In other words, the SNN loss penalizes the
similarity level between clean images and adversarial examples,
making adversarial examples more discernible by our detector.

4.3 Classifer

Inspired by self-supervised learning for vision tasks [3, 8, 20], we
separate our adversarial training into two stages, i.e., pre-training
and fine-tuning, for learning high-quality visual representations
and fine-tuning a robust classifier, respectively.

Pre-training. Our classifier architecture for the pre-training is
inspired by MAE [20]. Different from MAE, we utilize two en-
coders, denoted as the clean encoder and the adversarial encoder,
for learning visual representations from clean images and adver-
sarial examples, respectively. The decoder aims to reconstruct the
original inputs from the visual representations encoded by the two
encoders. Figure 2b shows the classifier architecture during the pre-
training. Given an input image x € R?, let x" and x4V denote its
clean and adversarial variants, respectively, with the clean variant
obtained by augmenting the original input. Regarding the clean
variant x, we randomly mask out a large proportion of image
patches (e.g., 75%) and then feed the subset of visible patches into
the clean encoder. The masked tokens are inserted into correspond-
ing positions after the encoder. Finally, the decoder reconstructs
the clean variant ¥ from the full set of image patches, including
encoded visible patches and masked tokens. The reconstruction of
the adversarial variant x4 follows a similar procedure, except that
its visible patches are encoded by the adversarial encoder. Notably,
the position of masked image patches in the adversarial variant x4
is the same as that in the clean variant xI" in order to minimize
their visual representation difference during the pre-training.

Let 29" and 224V respectively denote the global representations
of clean and adversarial variants, obtained by performing global av-
erage pooling on the decoder’s input sequence. Our design utilizes a
new loss function to learn visual representations by simultaneously
minimizing the reconstruction error and the visual representation
difference, i.e.,

Lene = (1= Q) Lree(x, %) + Q- Lz, 22M), ®)

where Q € (0,1) is a hyperparameter and x is the reconstructed
image. Lrec and L denote the reconstruction loss and the con-
trastive loss, respectively. Given a set of B input images, we first
generate their adversarial variants, arriving at a mini-batch of 2B
samples, consisting of B clean variants {xl?ln}]ig=1 and B adversarial

variants {x?d"}?fB +1- We consider the form of contrastive loss in
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Figure 3: Illustration of our model architecture during the fine-tuning stage.

SimCLR [8], and define our contrastive loss at temperature 7 as
follows:

exp(sim(z;, Zj)/7)

£@.J) = ~log Yizkk=1,...28 exp(sim(z;, z;) /1)’
b ©)
La=55 kZ:l [e(k,k +B) + ¢(k + B, k)],

where z; denotes visual representations for xfln (or x?dv) and the
similarity level sim(-, -) is measured by the cosine distance. In par-
ticular, we regard clean and adversarial variants from the same
input as positive pairs, while the rest in the same batch are negative
pairs. Hence, the loss value decreases when visual representations
for the clean and the adversarial variants of the same input become
more similar.

Fine-tuning. The detector and the classifier (including two en-
coders and one decoder) are trained jointly in the pre-training
stage. After that, we drop the decoder and freeze the weights in
the well-trained detector and two encoders, with Figure 3 depict-
ing our model architecture during the fine-tuning stage. Different
from MAE, which encodes the full set of image patches during the
fine-tuning, our approach randomly masks out a relatively small
proportion of image patches (e.g., 45%), aiming to eliminate the
potential adversarial effect if the input is an adversarial example.

Given an input image (x, y°1s), where x € R? is either a clean
image or an adversarial example with the label ¥ € [C], we ran-
domly mask the input image twice, arriving at two different masked
inputs. Two subsets of visible patches from the two masked inputs
are fed into the clean and the adversarial encoders, respectively. The
masked tokens are introduced onto their corresponding positions
after the encoder, obtaining two full sets of visual representations,
i.e, 24" and 224 which are partially encoded by the clean and
the adversarial encoders, respectively. We then perform the global
average pooling on the adaptive ensemble of 2™ and 224", with the
result fed into an MLP for classification.

Adaptive Ensemble. Although randomly masking an input image
can eliminate the potential adversarial effect, this way inevitably
hurts standard accuracy during the fine-tuning. In this paper, we
propose adaptive ensemble [37] to tackle this issue. That is, the
global representation for an input image is derived from the sum of
2 and 224V with an adaptive factor p € [0, 1], where 2" and 224¥
are visual representations encoded by the clean and the adversarial
encoders, respectively, and p is the probability of the input image
being a clean image estimated by our detector.

Let A be a full set of image patches and V be a subset of A,
including visible patches only. 1y () is the indicator function for
evaluating whether an image patch is visible. Hence, for each image
patch of A, we have,

. 1, if the patch is visible _
Ly (i) = ,i=1,2,..,M,  (10)

0, otherwise

where M is the number of image patches, i.e., |A|. For notational
convenience, we let ]1%,ln indicate visible patches fed into the clean
encoder. Likewise, ]lf“,dv indicates visible patches fed into the adver-
sarial encoder. Let 2; be the visual representation of the i-th image
patch, with i € {1,2,..., M}. Our adaptive ensemble is defined by:

_b 1803 - 280 4 (1 - p) - 230V (i) - 20V
max (p ARG + (1 - p) - 13V (i), e)

where the denominator serves to normalize the adaptive ensemble
of égln and Q?d", and € is a small value to avoid divison by zero (i.e.,
€ = le — 12 in this paper). The intuition underlying Eq. (11) is that
if our detector has a high confidence that the input is a clean image
(i.e, p is large), the global representation 2; will be mostly encoded
by the clean encoder. Otherwise, z; will be mainly encoded by the
adversarial encoder. In addition, as our pre-training encourages
the similarity level of the clean and the adversarial variants from
a given input (see Eq. (8) and Eq. (9)), and two different masked
inputs exist upon the fine-tuning, the invisible image patches in
one masked input can be glimpsed from the other masked input.

Zj

, (11)
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5 EXPERIMENTS AND RESULTS
5.1 Experimental Setup

Datasets. We conduct experiments on three widely-used bench-
marks. (i) CIFAR-10 [31]: 60,000 32x32 RGB images of 10 classes.
(ii) CIFAR-100 [31]: 60, 000 32x32 RGB examples in 100 categories.
(iii) Tiny-ImageNet [10]: 120, 000 64x64 RGB images of 200 classes.

Compared Methods. We compare our approach with four detec-
tion methods, i.e., Odds [60], NIC [51], GAT [88], and JTLA [58].
We compare our approach with five adversarial training (AT) coun-
terparts: PGD-AT [52], TRADES [90], FAT [82], Sub-AT [35], and
LAS-AWP [29], to exhibit how it boosts the ViT’s robustness.

Evaluation. We consider three state-of-the-art adaptive attacks, i.e.,
AutoAttack [9], Adaptive Auto Attack (A%) [87], and Parameter-
Free Adaptive Auto Attack (PF-A%) [45], for evaluating detection
accuracy and adversarial robustness. The attack constraint, if not
specified, is set to € = 8/255.

Model Size. We build our detector and classifier on top of Vision
Transformers (ViT), with their architectures following ViT [12] and
MAE [20], respectively. Our model size is pruned down to as small as
possible in order to conduct a fair comparison with baselines. Table 1
lists the model size details. Our architecture consists of a detector
and a classifier (including two encoders and one decoder), with
54.0M parameters in total. To conduct a fair comparison, existing
adversarial training baselines use the ViT-Base model [12] with
total parameters of 85.6M as the backbone network.

Hyperparameters. For all our models, if not specified, we use
AdamW [48] with $1=0.9, f2=0.999, the weight decay of 0.05, and
a batch size of 512. During the pre-training, the detector and the
classifier (i.e., two encoders and one decoder) are trained jointly.
For the detector, we follow the setting in [19] by setting the epochs
of 100, the base learning rate of 1e — 3, the linear warmup epochs of
5, and the cosine decay schedule [47]. For the classifier, by contrast,
we pre-train it for 200 epochs, with the base learning rate of le — 4,
the linear warmup of 20 epochs, and a masking ratio of 75%. After
pre-training, we drop the decoder and freeze the weights on the
detector and the two encoders. Then, we finetune the classifier
for 100 epochs, with the base learning rate of le — 3, the linear
warmup of 5, and the cosine decay schedule, and a masking ratio
of 45%. The patch size is set to 4 (or 8) for CIFAR-10/CIFAR-100 (or
Tiny-ImageNet). We grid-search hyperparamters A in Eq. (6) and
Q in Eq. (8) of Section 4 and empirically set A to 0.15 and Q to 0.35
for all datasets.

5.2 Overall Performance on Our Classifier

Overall Comparisons on CIFAR-10. We first conduct extensive
experiments on CIFAR-10 and compare our approach to its state-of-
the-art adversarial training (AT) counterparts listed in Section 5.1
in terms of standard accuracy and adversarial robustness under
attack constraints of € = 4/255 and of € = 8/255. Table 2 lists
comparative results. It is observed that our approach achieves the
best performance under all three scenarios. In particular, our ap-
proach achieves the standard accuracy of 90.3%, outperforming the
best competitor (i.e., LAS-AWP) by 3.5%. This is contributed by em-
ploying two encoders to extract visual representations respectively
from clean images and adversarial examples, able to significantly
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mitigate the adverse effect of adversarial training on standard accu-
racy. Besides, when the attack constraint is set to € = 4/255, our
approach achieves the best robustness of 49.8%, 49.5%, and 48.1%
against AutoAttack, Adaptive Auto Attack (A%), and Parameter-Free
Adaptive Auto Attack (PF-A3), respectively. Our method signifi-
cantly surpasses all its counterparts. For example, it outperforms
two recent state-of-the-arts, i.e., Sub-AT and LAS-AWP, respectively
by 2.6% and 4.5% under the attack of A3. Thirdly, increasing the
attack constraint to € = 8/255 results in the decrease of adversarial
robustness. But our approach still maintains the best robustness of
45.3%, 44.5%, and 44.7% under the attack of AutoAttack, A3, and
PF-A3, respectively. The comparative results demonstrate that our
masked adaptive ensemble is robust enough to withstand strong
white-box attacks. This is because masking a small proportion of
image patches can significantly mitigate the adversarial effect of
malicious inputs.

Overall Comparisons on CIFAR-100 and Tiny-ImageNet. Here,
we conduct a comprehensive comparison between our approach
and adversarial training (AT) counterparts on CIFAR-100 and Tiny-
ImageNet datasets. Table 3 lists the comparative results. On CIFAR-
100, we observed that our approach achieves the best standard
accuracy of 67.5%, outperforming the best competitor (i.e., LAS-
AWP) by 3.4%. Meanwhile, our method achieves the best robustness
of 36.9%, 35.1%, and 35.4% under the attack of AutoAttack, A3, and
PF-A3, respectively. This confirms that our approach can achieve a
decent standard accuracy and robustness when being generalized
to the dataset with large classes. On the Tiny-ImageNet dataset,
both our approach and the baseline methods experience a decrease
in performance. However, our proposed method still achieves the
highest standard accuracy of 49.7%, which outperforms the best
baseline (i.e., FAT), by 2.6%. Moreover, all baselines suffer from a
poor robustness on the Tiny-ImageNet dataset (i.e., < 20.0%), while
our approach maintains a decent robustness of 22.6%, 21.4%, and
20.9% under the attack of AutoAttack, A3, and PF-A3, respectively.

Performance Stability. We next conduct experiments on CIFAR-
10, CIFAR-100, and Tiny-ImageNet to evaluate the performance
stability under different scales of datasets and different types of
adaptive attacks. We compare our approach with three baselines,
i.e., FAT, Sub-AT, and LAS-AWP. Figures 4a, 4b, 4c and 4d illustrate
the comparative results of standard accuracy, as well as robustness
against AutoAttack, A3, and PF-A3, respectively. We have three
discoveries. First, as depicted in Figure 4a, our approach (i.e., the
pink line) achieves the best standard accuracies of 90.3%, 67.5%,
and 49.7% under CIFAR-10, CIFAR-100, and Tiny-ImageNet, re-
spectively. The empirical evidence verifies that our approach can
maintain superior standard accuracy when generalized to large
datasets. Second, on all three datasets, our approach achieves the
best robustness under all adaptive attacks, as shown in Figures 4b,
4c and 4d. Take the robustness results under PF-A3 (i.e., Figure 4d)
for example, our proposed masked adaptive ensemble achieves the
robustness of 44.7%, 35.4%, and 20.9% on CIFAR-10, CIFAR-100,
and Tiny-ImageNet, respectively. These results outperform those
of LAS-AWP (i.e., the blue line), which is the best baseline, by 3.1%,
4.1%, and 3.5%, respectively. Third, when scaling up the dataset
from CIFAR-10 to Tiny-ImageNet, our approach suffers from the
least robustness degradation of 22.7%, 23.1%, and 23.8% under the
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Table 1: Model Details used in our design

Model Layer Hidden Size Head MLP Size Parameters
Detector ViT-Tiny 12 192 3 768 7.8M
Clean Encoder 12 384 3 1536 21.3M
Classifier Adv Encoder 12 384 3 1536 21.3M
Decoder 8 192 768 3.6M
90 FAT 45 FAT 45 = FAT 45 FAT
+— Sub-AT +— Sub-AT - +— Sub-AT +— Sub-AT
= Lasawe 40 o LasAwp 40 — LAsAwP 40 — LAsAwr
;f” \\\ . Ours s B Ours & 1 Ours @35 Ours
g7 N ‘é.w - éso > 30
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- 20 20 20
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CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet CIFAR-10 CIFAR-100 Tiny-ImageNet
Different Datasets Different Datasets Different Datasets Different Datasets
(a) Standard Accuracy (b) Under AutoAttack (c) Under A3 attack (d) Under PF-A3 attack

Figure 4: Performance stability under different datasets and different adaptive attacks.

Table 2: Overall comparative results of standard accuracy and
adversarial robustness on CIFAR-10 under attack constraints
of € = 4/255 and of € = 8/255, with best results shown in bold

q ‘ Standard ‘ Robustness ( € = 4/255) ‘ Robustness ( € = 8/255)

Metho A
‘ ccuracy ‘ AutoAttack A3 PF-A3 ‘AutoAttack A3 PF-A3
PGD-AT 83.7 45.1 434 435 41.5 40.3 409
TRADES 84.9 46.6 435 43.6 41.5 40.7 403
FAT 85.2 43.8 42.1 434 40.7 39.8 38.9
Sub-AT 84.5 47.4 46.9 45.1 43.3 43.6 42.2
LAS-AWP 86.8 46.9 45.0 47.7 44.0 434 43.6
Ours | 903 | 498 495 48.1| 453 445 447
Table 3: Overall comparisons on CIFAR-100 and Tiny-
ImageNet, with best results shown in bold
Method | CIFAR-100 \ Tiny-ImageNet
it"mdard AutoAttack A3 proal | Standard . attack A3 pRa’
ccuracy Accuracy
PGD-AT 62.5 31.9 31.5 31.1 429 17.2 16.4 16.8
TRADES 61.8 32.5 313 31.6 44.1 15.2 14.7 14.1
FAT 63.2 30.2 29.2 28.6 47.1 14.1 13.3 129
Sub-AT 63.8 345 328 322 456 17.6 162 168
LAS-AWP | 64.1 334 331 339 452 19.4 173 174
Ours | 675 36.9 351 354 | 497 22.6 214 209

attack of AutoAttack, A3, and PF-A3, respectively. These results
confirm that in terms of robustness, our approach enjoys the best
performance stability upon scaling up to large datasets.

5.3 Ablation Studies on Our Classifier

Pre-training: Contrastive Loss. We qualitatively and quantita-
tively exhibit the impact of our proposed loss, i.e., Eq. (9), on learning
visual representations. We first present the qualitative evaluations.
Specifically, we reconstruct masked adversarial examples and com-
pare reconstruction quality by utilizing our approach with/without
the contrastive loss (CL) in SImCLR [8]. Figure 5 illustrates the quali-
tative results. For images on each row, from left to right, are original
adversarial example, the masked input, the image generated by our

Table 4: Ablation studies on the classifier, including (a) the
contrastive loss (CL) in pre-training stage and (b) the adaptive
ensemble (AE) in fine-tuning stage

d‘ Standard ‘ Robustness d‘ Standard ‘ Robustness

Metho Metho

‘Accuracy‘ A3 PEA3 ‘Accuracy‘ A3 PEA3
w/oCL| 746 [357 342 w/o AE| 819 [389 394
w/ CL 79.5 41.8 42.6 w/ AE 90.3 445 447

(a) Pre-training (b) Fine-tuning

approach without the CL (i.e., w/o CL), and the image reconstructed
by our approach with the CL (i.e., w/ CL). We observed that when
using the CL, our approach always achieves a better reconstruction
quality; See the 3rd (and 7th) column versus the 4th (and 8th) col-
umn. Besides, we discovered that our approach (w/o CL), in some
cases, reconstructs adversarial examples with poor quality; See the
3rd and 7th columns in the last row. By contrast, our method (w/ CL)
still achieves a high reconstruction quality on these examples; See
the 4th and 8th columns in the last row. These results demonstrate
that our proposed loss can boost the performance when learning
visual representations from adversarial examples.

Next, we conduct experiments on CIFAR-10 for quantitatively
evaluating visual representations by using the linear probing ac-
curacy. Specifically, we consider the standard accuracy as well as
the robustness under the attack of A3 and PF-A3. Table 4a presents
the experimental results. We observed that by utilizing the con-
trastive loss, our approach achieves performance improvement of
4.9%, 6.1%, and 8.4% on standard accuracy, robustness against A3,
and robustness against PF-A3, respectively. These empirical results
demonstrate the necessity and importance of our proposed loss for
learning high-quality visual representations.

Fine-tuning: Adaptive Ensemble. Here, we conduct experiments
to show the impact of our adaptive ensemble on the standard ac-
curacy and the robustness. Table 4b lists the experimental results
with/without our adaptive ensemble. Note that we employ the
naive average ensemble when conducting experiments without
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Figure 5: Comparison of the reconstruction quality from masked adversarial examples by employing our approach with/without
the contrastive loss, denoted as our approach (w/ CL) and our approach (w/o CL), respectively. From left to right are the original
adversarial example, the masked input, reconstruction by our approach (w/o CL), and reconstruction by our approach (w/ CL),

respectively.

our adaptive ensemble. From Table 4b, we observed that our adap-
tive ensemble significantly benefits the standard accuracy, with
8.4% performance improvement. Meanwhile, it boosts adversarial
robustness against A3 by 5.6% and against PF-A3 by 5.3%. This is be-
cause the adaptive factor p estimated by our detector can adaptively
adjust the proportion of visual representations from clean and ad-
versarial encoders, thereby significantly boosting the classification
performance.

Fine-tuning: Masking Ratio. We conduct experiments on CIFAR-
10 to explore how different masking ratios affect the performance
of our approach during the finetuning. 12 groups of masking ratios
are taken into account, ranging from 25% to 80%. Note that in the
pre-training, we directly set the masking ratio to 75% by following
MAE [20]; hence, no similar ablation study is required. Here, we
consider the trade-off between standard accuracy and robustness
(under A% and PF-A3 attacks).

Figures 6a and 6b illustrate experimental results. In Figure 6a,
we observed that increasing the masking ratio negatively affects
standard accuracy (i.e., the grey line) in all scenarios. In contrast,
when the masking ratio is small (i.e., < 50%), a larger masking ratio
benefits robustness against A* (i.e., the blue line). But when the
masking ratio is greater than 50%, increasing the masking ratio
hurts this robustness. This is because a small subset of masked
patches can eliminate the adversarial effect of adversarial attacks,
while a large subset of masked patches would prevent our classifier
from accurate classification. Clearly, our approach achieves the best
trade-off on the masking ratio of 45%, with standard accuracy of
90.3% and robustness against A% of 44.5%.

Similarly, Figure 6b depicts robustness against PF-A% (i.e., the
pink line) under different masking ratios. We also include standard
accuracy (similar to Figure 6a) for a better illustration of the trade-
off. Obviously, when the masking ratio equals 45%, our approach

30 40 50 60 70 50 30 40 50 60 70 80
Masking Ratio (%) Masking Ratio (%)

(a) Under A3 attack (b) Under PF-A3 attack

Figure 6: Illustration of how different masking ratios in the
finetuning affect the performance.

achieves the best trade-off, with standard accuracy of 90.3% and
robustness of 44.7%. Based on the above discussion, we set our
masking ratio to 45% to ensure the best trade-off between standard
accuracy and robustness (under adaptive attacks).

5.4 Evaluating Our Detector

In this section, we conduct experiments on CIFAR-10 for comparing
our detector with four detection baselines, i.e., Odds [60], NIC [51],
GAT [88], and JTLA [58]. Three aforementioned adaptive attacks
under two small attack constraints, i.e., € = 2/255 and € = 4/255,
are used for evaluating detection accuracy. Table 5 lists the detec-
tion accuracy values under different attack methods. We observed
that our detector achieves the best detection accuracy under all
scenarios. Specifically, our approach achieves the best detection
accuracy of 99.4% under the attack constraint of € = 4/255 (see the
5th column). Decreasing the attack constraint to 2/255 increases
the detection difficulty, with our approach still maintaining the
superior detection accuracy of 95.8% (see the 4th column) in the
worst case. Besides, our detector outperforms all baselines, with
the detection accuracy improvements ranging from 1.8% (i.e., 95.9%
vs. 94.1%, see the 3rd column) to 6.3% (i.e., 96.4% vs. 90.1%, see the
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Table 5: Comparisons of detection accuracy on CIFAR-10
under different adaptive attacks with best results shown in
bold

‘Attack Constraint ( € = 2/255 )‘Attack Constraint ( € = 4/255)

Method

|AutoAttack A% PF-A®  |AutoAttack A3 PF-A3
0dds 9.1 906 912 948 943 949
NIC 931 925 944 958 956 964
GAT 926 938 930 9.0 958 956
JILA | 943 941 939 956 964  96.2
Ours | 964 959 958 | 994 987 989

Table 6: Ablation studies on our detector

Method |  A® PF-A®
w/o GB 92.3 91.9
w/o MSA 92.9 92.8
Ours | 987 98.9

2nd column). The statistical evidence exhibits that our two new
designs for the detector, i.e., the new Multi-head Self-Attention
(MSA) mechanism and the proposed loss function, are effective for
exposing adversarial perturbation, rendering our detector to better
defend against adaptive attacks.

5.5 Ablation Studies on Our Detector

MSA on the Detection Accuracy. Here, we empirically show
how our developed MSA mechanism affects the detection accuracy
under the attack of A3 and PF-A3. We consider two scenarios. First,
we remove the Guided Backpropagation (GB) variant to validate
whether it benefits the detection of adversarial examples, denoted
as “w/o GB”. Second, we discard our proposed MSA and instead
naively add two sets of patch embeddings respectively from the
clean image and the GB variant, denoted as “w/o MSA”. Table 6 lists
the experimental results. We discovered that simply adding two
sets of patch embeddings only marginally improves the detection
accuracy of 0.6% (or 0.9%) under the A3 (or PF-A3) attack (see “w/o
GB” vs. “w/o MSA”). Equipped with our MSA mechanism, in sharp
contrast, the Guided Backpropagation technique can significantly
benefit the detection task, with the detection accuracy improvement
of 6.4% (or 7.0%) under the A3 (or PF-A3) attack (see “w/o GB” vs.
“Ours”). These results confirm that (i) the Guided Backpropagation
technique can help expose adversarial perturbation and (ii) our
proposed MSA can significantly boost the detector’s robustness
against adaptive attacks.

SNN Loss on Visual Representations. Here, we reveal the effect
of our proposed loss, i.e., Eq. (6), on detecting adversarial examples.
We consider how our detector with or without the Soft-Nearest
Neighbors (SNN) loss affects the resulting representation space. In
particular, we employ t-SNE visualization [77] on 200 clean images
randomly sampled from CIFAR-10 and 200 adversarial examples
generated either by the A3 attack or by the PF-A3 attack. Figures 7a
and 7b depict the results by using the A3 attack, while Figures 7c
and 7d present the results by employing the PF-A3 attack. We ob-
served that without the SNN loss, the representations for clean
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Figure 7: t-SNE visualization on CIFAR-10 by using our detec-
tor with/without SNN loss. For each experiment, we perform
t-SNE visualization on 200 clean images and 200 adversarial
examples generated either by the A3 attack, i.e., (a) and (b),
or by the PF-A3 attack, i.e., (c) and (d).

images and adversarial examples are highly entangled; see Fig-
ures 7a and 7c. In sharp contrast, by minimizing the SNN loss, the
representations for clean images and adversarial examples are mu-
tually isolated, as shown in Figures 7b and 7d, making adversarial
examples detectable.

6 CONCLUSION

This article has proposed a novel Vison Transformers (ViT) archi-
tecture, including a detector and a classifier, which are bridged by a
newly developed adaptive ensemble. This ViT architecture enables
us to boost adversarial training to defend against adaptive attacks,
and to achieve a better trade-off between standard accuracy and
robustness. Our key idea includes introducing a novel Multi-head
Self-Attention (MSA) mechanism to expose adversarial perturba-
tions for better detection and employing two decoders to extract
visual representations respectively from clean images and adver-
sarial examples so as to reduce the negative effect of adversarial
training on standard accuracy. Meanwhile, our adaptive ensemble
lowers potential adversarial effects upon encountering adversar-
ial examples by masking out a random subset of image patches
across input data. Extensive experiments have been conducted for
evaluation, showing that our solutions significantly outperform
their state-of-the-art counterparts in terms of standard accuracy
and robustness.
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