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Abstract

In this article, we propose, analyze and demonstrate a dynamic momentum

method to accelerate power and inverse power iterations with minimal compu-

tational overhead. The method can be applied to real diagonalizable matrices,

is provably convergent with acceleration in the symmetric case, and does not

require a priori spectral knowledge. We review and extend background results

on previously developed static momentum accelerations for the power iter-

ation through the connection between the momentum accelerated iteration

and the standard power iteration applied to an augmented matrix. We show

that the augmented matrix is defective for the optimal parameter choice. We

then present our dynamic method which updates the momentum parameter

at each iteration based on the Rayleigh quotient and two previous residuals.

We present convergence and stability theory for the method by considering a

power-like method consisting of multiplying an initial vector by a sequence of

augmented matrices. We demonstrate the developed method on a number of

benchmark problems, and see that it outperforms both the power iteration and

often the static momentum acceleration with optimal parameter choice. Finally,

we present and demonstrate an explicit extension of the algorithm to inverse

power iterations.
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1 INTRODUCTION

In recent years, there is a resurgence of interest in the power method, given its simplicity and ease of implementation.

This method to find the dominant eigenmode of amatrix can be applied in a variety of machine learning algorithms, such

as PCA, clustering, and low-rankmatrix approximations (see References 1 and the references cited therein), PageRank,2–6

and stability analysis of partial differential equations.7

There are a number of generalizations of the power method for large and often sparse systems that can be used to

compute extreme eigenvectors or blocks of eigenvectors, relying on matrix-vector multiplications rather than manipulat-

ing matrix entries. Among these are the Arnoldi iteration and its variants3,8,9; and for symmetric problems, the popular

locally optimal block preconditioned conjugate gradient (LOBPCG),10,11 and the related but more general inverse-free

preconditioned Krylov subspace methods.12,13 These methods all use the idea of iteratively projecting the problem onto a
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Krylov subspace of relatively small dimension where dense methods are used to solve a small eigenvalue problem. Addi-

tional methods close to this class include the Davidson14 and Jacobi–Davidson15 methods from computational chemistry

which use a similar idea, but introduce a preconditioner by which the vectors of the projection subspace are no longer

equivalent to a Krylov basis.

An alternate and complementary approach to accelerating eigenvector convergence in the power method is based

on extrapolation. The idea is to recombine the latest update with previous information to form the next iterate in an

approximation sequence. One of the best knownmethods in this class is Aitken’s acceleration8,16(chapter 9), with extensions

to vector and ÿ extrapolation methods including,2,6,17,18 to name a few. Recently, several newmethods for accelerating the

power method with extrapolation have been developed, including, Reference 19 in which the power method is recast as

a non-stationary Richardson method; and Reference 20 which damps the largest subdominant eigenmodes to accelerate

convergence, andwhich introduces the idea of computing a dynamic extrapolation parameter based on a ratio of residuals.

A similar technique was used in Reference 21 to accelerate the Arnoldi iteration.

In Reference 22, a power method with an added momentum-type extrapolation term was introduced, based on the

well known heavy ball method of Reference 23. It was shown that this momentum term accelerates the convergence of

the power iteration for positive semidefinite matrices, and the optimal momentum parameter for the acceleration is given

by ÿ = ÿ2
2
∕4 where ÿ2 is the second largest magnitude eigenvalue of the matrix. A method to add a beneficial momentum

term without explicit knowledge of ÿ2 was proposed in Reference 22 as the Best Heavy Ball method, which relies on

multiple matrix-vector multiplications per iteration throughout the algorithm.

To improve upon thismethod, a delayedmomentumpowermethod (DMPower)was proposed in amore recent paper.1

The method involves a two-phase approach. The first is a premomentum phase consisting of standard power iterations

with inexact deflation, at a cost of three matrix-vector multiplies per iteration, to estimate both ÿ1 and ÿ2. The second

phase runs the method of Reference 22 with fixed momentum parameter ÿ computed with the approximation to ÿ2 from

the first phase. An analysis is included of howmany preliminary iterations are required to obtain a reliable approximation

to ÿ2, based on a priori spectral knowledge.

In this article, we introduce a dynamic momentum method designed to accelerate the power iteration with minimal

additional cost per iteration. In themethod proposed herein, themomentum parameter is updated at each iteration based

on the Rayleigh quotient and two previous residuals. Like the standard power iteration, this method requires only a single

matrix-vector multiplication per iteration. As we will see in Section 4, the introduced dynamic method outperforms not

only the power iteration, but also the static momentum method. We additionally show in Section 5 that the method is

beneficial when applied to a shifted inverse iteration.

We will consider matrix A ∈ Rn×n with eigenvalues ÿ1, … , ÿn with |ÿ1| > |ÿ2| ≥ … ≥ |ÿn|. The results trivially gen-
eralize to the case where ÿ1 = ÿ2 = · · · = ÿr and |ÿr| > |ÿr+1| ≥ … ≥ |ÿn|. As in Reference 20, our proposed method

dynamically updates parameters based on the detected convergence rate computed by the ratio of the last two residuals.

To fix notation, we can write the power iteration as

uk+1 = Axk, xk+1 = h−1
k+1

uk+1, hk+1 = ‖uk+1‖. (1)

The momentum method for the power iteration introduced in Reference 22, takes the form

uk+1 = Axk − ÿh−1
k
xk−1, xk+1 = h−1

k+1
uk+1, hk+1 = ‖uk+1‖, (2)

where ÿ > 0 is the momentum parameter. As shown in Reference 22 and summarized in Section 2, an optimal choice of

ÿ is ÿ2
2
∕4, where it is assumed that |ÿ2| < |ÿ1|. Our proposed dynamic method based on iteration (2) takes the form

uk+1 = Axk − ÿkh
−1
k
xk−1, xk+1 = h−1

k+1
uk+1, hk+1 = ‖uk+1‖. (3)

This method, described in Section 3, assigns the parameter ÿk with minimal additional computation (and no additional

matrix-vector multiplies), producing a dynamically updated version of (2).

The remainder of this article is structured as follows. Sections 1.1 and 1.2 state the basic assumptions and reference

algorithms. In Section 2, we summarize convergence results for the <static= momentummethod of Reference 22 through

the lens of the power iteration applied to an augmented matrix. While this approach was outlined in Reference 22, our

analysis goes a step further, showing that the augmented matrix is defective under the optimal parameter choice. In

Section 3 we present the main contributions of this article: our dynamic momentum Algorithm 3, and an analysis of
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its convergence and stability. Numerical results for the method are presented in Section 4. In Section 5, we present and

discuss Algorithm 5 to accelerate the shifted inverse iteration with momentum.

1.1 Preliminaries

Our standard assumption throughout the article is the following.

Assumption 1. Suppose A ∈ Rn×n is diagonalizable and the n eigenvalues of A satisfy |ÿ1| > |ÿ2| ≥ … ≥

|ÿn|.
Under Assumption 1, let {ÿl}

n
l=1

be a set of eigenvectors of A so that each (ÿl, ÿl) is an eigenpair of A.

In order to analyze themomentummethod forA, whichwewill see is equivalent to a power iteration on an augmented

matrix, we will need to make a more general assumption on the augmented matrix.

Assumption 2. Suppose A ∈ Rn×n and the n eigenvalues of A satisfy |ÿ1| > |ÿ2| ≥ … ≥ |ÿn|.
The key difference in Assumption 2 is the matrix is not necessarily diagonalizable. In this case we will still refer to the

eigenvectors as ÿ1, … , ÿn, but will specify which if any are in fact generalized eigenvectors corresponding to a defective

eigenspace.

Throughout the article, || ⋅ || is the Euclidean or l2 norm, induced by the l2 inner-product denoted by (⋅ , ⋅).

1.2 Reference algorithms

Next we state the power iteration (1) and themomentum iteration (2) in algorithmic form. The algorithm for themomen-

tum iteration will require a single preliminary power iteration, and the algorithm for the dynamic momentum method

to be introduced in Section 3 will require two preliminary power iterations.

The algorithm for the power iteration with momentum assumes knowledge of ÿ2 to assign the parameter ÿ = ÿ2
2
∕4

and implements the iteration (2).

Algorithm 1. Power iteration

Choose v0, set h0 = ‖v0‖ and x0 = h−10 v0
Set v1 = Av0
for k ≥ 0 do

Set hk+1 = ‖vk+1‖ and xk+1 = h−1
k+1

vk+1
Set vk+2 = Axk+1
Set ÿk+1 = (vk+2, xk+1) and dk+1 = ‖vk+2 − ÿk+1xk+1‖
STOP if ‖dk+1‖< tol

end for

Algorithm 2. Power iteration with momentum

Set ÿ = ÿ2
2
∕4

Do a single iteration of Algorithm 1 ⊳ k = 0

for k ≥ 1 do ⊳ k ≥ 1

Set uk+1 = vk+1 − (ÿ∕hk)xk−1
Set hk+1 = ‖uk+1‖ and xk+1 = h−1

k+1
uk+1

Set vk+2 = Axk+1, ÿk+1 = (vk+2, xk+1) and dk+1 = ‖vk+2 − ÿk+1xk+1‖
STOP if ‖dk+1‖< tol

end for
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2 BACKGROUND: THE STATIC MOMENTUM METHOD

In this section we will review some results on Algorithm 2, the power iteration with momentum. To this end, we will

also review some standard supporting results on the power iteration, Algorithm 1, in both diagonalizable and defective

scenarios. These results will be useful to understand each step of the dynamic momentum method.

2.1 Iteration (2) as a power iteration with an augmented matrix

As shown in Reference 22, the iteration (2) is equivalent to the first n rows of the standard power iteration (1) applied to

the augmented matrix

Aÿ =

(
A −ÿI

I 0

)
. (4)

To see this, consider the power iteration on Aÿ starting with x0 in the first component (meaning the first n rows) and

y0 in the second, then writing

(
uk

zk

)
= Aÿ

(
xk−1

yk−1

)
=

(
Axk−1 − ÿyk−1

xk−1

)
. (5)

Normalizing each component by a scalar hk (to be discussed below) with xk = h−1
k
uk and yk = h−1

k
zk = h−1

k
xk−1 yields the

iteration

(
uk+1

zk+1

)
= Aÿ

(
xk

yk

)
=

(
Axk − ÿyk

xk

)
=

(
Axk − ÿh−1

k
xk−1

xk

)
. (6)

The first component in (6) agrees with (2) if we choose hk = ‖uk‖. Although this is actually a semi-norm over the tuple

(uk, zk), it is the most convenient choice for the sake of computing the Rayleigh quotient corresponding to the first

component at each iteration.

Hence the equivalence between iteration (2) and the power iteration given by (1) as applied to the augmented matrix

(4) holds, up to the chosen normalization factor.

Algorithm 2 explicitly performs this iteration starting with y0 = 0 and ÿ = ÿ2
2
∕4, which we discuss further below.

The convergence of iteration (2) for general ÿ ∈ [0, ÿ21∕4), ÿ ≠ ÿ2
i
∕4, i = 2, … ,n, can be quantified in terms of the

convergence of the standard power iteration Algorithm 1. Under Assumption 1, this can be summarized as in Reference 8

(chapter 7) by

dist(span{xk}, span{ÿ1}) = 

(||||
ÿ2
ÿ1

||||
k)

, and |ÿ1 − ÿk| = 

(||||
ÿ2
ÿ1

||||
k)

, (7)

which follows by standard arguments from the expansion of initial iterate u0 as a linear combination of the n eigenvectors

of A, namely u0 =
∑n

l=1alÿl, by which

Aku0 = a1ÿ
k
1

(
ÿ1 +

n∑
l=2

al
a1

(
ÿl
ÿ1

)k

ÿl

)
. (8)

In the case that Assumption 2 holds and A is not diagonalizable, that is, defective, the power iteration still converges

to the dominant eigenpair. This is the case for Aÿ when ÿ = ÿ2∕4 for any subdominant eigenvalue ÿ of A, as we will see

in Proposition 1. For a general defective matrix A, if the eigenspace of ÿ1 does not have a full set of eigenvectors then the

convergence is slow (like 1∕k, where k is the iteration count), as shown for instance in Reference 16 (chapter 9). If, on the

other hand, Assumption 2 holds, A is defective, and the eigenspace for ÿJ with J ≥ 2 lacks a full set of eigenvectors, then
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the convergence of Algorithm 1 still agrees with (7), but only asymptotically. In particular, from Reference 16 (chapter 9),

if for |ÿJ| < |ÿ1| we have ÿJ = ÿJ+1 and the corresponding eigenspace has geometric multiplicity 1, then letting ÿJ+1 be a

generalized eigenvector with AÿJ+1 = ÿJÿJ+1 + ÿJ , in place of (8) we have

Aku0 = a1ÿ
k
1

(
ÿ1 +

aJ+1
a1

(
kÿk−1

J

ÿk1

)
ÿJ +

n∑
l=2

al
a1

(
ÿl
ÿ1

)k

ÿl

)
. (9)

Noting that (kÿk−1
J

∕ÿk1)∕((k − 1)ÿk−2
J

∕ÿk−11 ) → ÿJ∕ÿ1 as k → ∞, we have the same asymptotic convergence rate as in the

non-defective case. This is important for the analysis ofAlgorithm2 since as shown in the next proposition, the augmented

matrix Aÿ is defective whenever ÿ = ÿ2∕4 for any eigenvalue ÿ of A.

2.2 Spectrum of the augmented matrix

By the equivalence between the first component of the power iteration on Aÿ and Algorithm 2 as shown in (5)–(6), the

convergence rate of the momentum accelerated method of iteration (2) depends on ratio of the two largest magnitude

eigenvalues ofAÿ . In order to understand the convergence properties of Algorithm 2 and later our dynamic version of this

method, the following proposition describes the spectral decomposition ofAÿ in terms of the eigenvalues and eigenvectors

of A.

Proposition 1. Suppose A satisfies Assumption1. Then the 2n (counting multiplicity) eigenvalues of Aÿ are

given by

ÿÿ± =
1

2

(
ÿ ±

√
ÿ2 − 4ÿ

)
, ÿ ∈ {ÿ1, … , ÿn}. (10)

In the case that ÿ2 − 4ÿ ≠ 0, the eigenvectors of Aÿ corresponding to each eigenvalue ÿ = ÿÿ± are given by

ÿÿ± =

(
(ÿÿ±)ÿ

ÿ

)
, (11)

where ÿ is the eigenvector of A corresponding to eigenvalue ÿ.

In the case that ÿ = ÿ2∕4 > 0, the matrix Aÿ is not diagonalizable. Moreover, if ÿ is an eigenvalue of multi-

plicity m of A, then the eigenvalue ÿÿ = ÿ∕2 of Aÿ has algebraic multiplicity 2m and geometric multiplicity m.

We restrict our attention to ÿ > 0 as iteration (2) reduces to (1) if ÿ = 0. Before the proof of Proposition 1, we include

a corollary that follows immediately from its conclusions.

Corollary 1. If A satisfies Assumption 1 and ÿ ∈ (0, ÿ21∕4), then Aÿ as given by (4) satisfies Assumption 2.

Together, for symmetric matrices, Proposition 1 and Corollary 1 show that as the power iteration applied to the aug-

mented matrix Aÿ converges, the first component of the eigenvector converges to the dominant eigenvector of A for any

ÿ ∈ (0, ÿ21∕4). If ÿ = ÿ2∕4 for any nonzero ÿ = ÿ2, … , ÿn, then thematrixAÿ is defective, but courtesy of (9), the power iter-

ation will converge asymptotically at the same rate as in the diagonalizable case as given by (8), applied to the eigenvalues

of Aÿ .

Proof. The eigenvectors of Aÿ are related to the eigenvectors of A by noting that if ÿ is an eigenvector of A

with eigenvalue ÿ then solving

Aÿ

(
ÿÿ

ÿ

)
= ÿ

(
ÿÿ

ÿ

)
, which reduces to

(
(ÿÿ − ÿ)ÿ

ÿÿ

)
= ÿ

(
ÿÿ

ÿ

)
,

for ÿ ∈ C, yields the quadratic equation ÿ2 − ÿÿ + ÿ = 0. If ÿ ≠ ÿ2∕4, the 2n eigenvalues of Aÿ are given by

(10), and the corresponding eigenvectors are given by (11).
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On the other hand, if ÿ = ÿ2∕4 where ÿ is an eigenvalue of A with algebraic multiplicity 1, then the

quadratic equation ÿ2 − ÿÿ + ÿ = 0 has a repeated root ÿ = ÿ∕2. To find the eigenvector(s) associated with ÿ,

we can express the equation for null-vectors of Aÿ − ÿI as

(
A −

ÿ

2
I −

ÿ2

4
I

I −
ÿ

2
I

)(
u

v

)
=

(
0

0

)
.

From the second component of the equation, u =
ÿ

2
v. Applying this to the first component yields (A −

ÿ

2
I) ÿ

2
v −

ÿ2

4
v = 0, or Av = ÿv. This implies that vmust be an eigenvector of A corresponding to eigenvalue ÿ. Therefore,

the eigenspace for Aÿ corresponding to the repeated eigenvalue ÿ = ÿ∕2 has dimension 1.

More generally, if ÿ is an eigenvalue of algebraic and geometric multiplicity m > 1, then the argument

above can be applied to each eigenpair (ÿ, ÿ̂i), i = 1, … ,m, where {ÿ̂}m
i=1

is some basis for the eigenspace

corresponding to ÿ. Then for ÿ = ÿ2∕4, Aÿ has an eigenvalue ÿ = ÿ∕2 with algebraic multiplicity 2m but with

geometric multiplicitym. ▪

From (10) of Proposition 1 we have three cases for each pair of eigenvalues of Aÿ corresponding to a real eigenvalue of

A, determined by the sign of the discriminant in (10). Define ÿÿ as the larger magnitude eigenvalue of Aÿ corresponding

to eigenvalue ÿ of A, and ÿ̂ÿ as the smaller magnitude corresponding eigenvalue, in the case that ÿÿ± are real. If ÿÿ± are

complex, define ÿÿ as having the positive imaginary component. Then

(ÿ∕2)2 ≥ ÿ ∶ ÿÿ =
1

2

(
ÿ + sign(ÿ)

√
ÿ2 − 4ÿ

)
, (12)

(ÿ∕2)2 = ÿ ∶ ÿÿ =
1

2
ÿ, (13)

(ÿ∕2)2 ≤ ÿ ∶ ÿÿ =
√
ÿeÿÿ , with ÿ = arctan

(√
4ÿ

ÿ2
− 1

)
, (14)

where (13) agrees with both (12) and (14) at ÿ = (ÿ∕2)2, and is separately enumerated only for emphasis. In (14), it is

understood that ÿ = ÿ∕2 when ÿ = 0. Based on (14), we see ÿ ≥ ÿ21∕4 causes all real eigenvalues of Aÿ to have equal

magnitude
√
ÿ.

If A has complex eigenvalues, the complete set of eigenvalues can still be given by 1

2

(
ÿ ±

√
ÿ2 − 4ÿ

)
, applied to each

eigenvalue ÿ of A, however the quantity in the square root may be complex.

We can now summarize the convergence properties of the standard power iteration (1) applied to the augmented

matrix Aÿ given by (4), hence iteration (2), for symmetric matrices A as follows. An alternate approach based on

Chebyshev polynomials shown for positive semidefinite matrices can be found in Reference 22.

Corollary 2. For 0 < ÿ < ÿ21∕4, the power iteration (1) implemented in Algorithm 1 applied to the augmented

matrix Aÿ of (4) for symmetric matrix A converges at the rate

|ÿÿ2 |
|ÿÿ1 |

=

⎧⎪⎪«⎪⎪¬

2
√
ÿ

|ÿ1|+
√

ÿ21−4ÿ
, ÿ2

2
∕4 < ÿ < ÿ21∕4

|ÿ2|+
√

ÿ2
2
−4ÿ

|ÿ1|+
√

ÿ21−4ÿ
, 0 ≤ ÿ < ÿ2

2
∕4,

(15)

and asymptotically at the rate

|ÿÿ2 |
|ÿÿ1 |

→

|ÿ2|
|ÿ1| +

√
ÿ21 − 4ÿ

=
r

1 +
√
1 − r2

, with r = |ÿ2∕ÿ1|, for ÿ = ÿ22∕4. (16)

The choice of ÿ that optimizes the asymptotic convergence rate is ÿ = ÿ2
2
∕4, for which the power iteration applied

to Aÿ and the power iteration withmomentumAlgorithm 2 applied to A converge asymptotically at the rate given

by (16).
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F IGURE 1 A comparison of ÿ(r) vs. rp for ÿ(r) = r∕(1 +
√
1 − r2), the rate given in (16). Left: ÿ(r) compared with rp, for

p = 1, 2, 3, 4, 6, 10. Right: a detail plot of ÿ(r) compared with rp, for p = 6, 10, 14, 20. The crossings between ÿ(r) and rp are marked in each plot.

As visualized in Figure 1, the rate given by (16) is less than r for r ∈ (0, 1), less than r3 for r ∈ (0.786, 1), less than r4 for

r ∈ (0.878, 1), and less than r6 for r ∈ (0.945, 1), etc. Hence the smaller the spectral gap inA, namely the closer r = |ÿ2∕ÿ1|
is to 1, the more beneficial it is to apply the acceleration.

Remark 1. Corollary 2 shows that the the power iteration applied to the augmented matrix Aÿ of (4) con-

verges to the dominant eigenpair (ÿÿ, ÿÿ) of Aÿ at a faster rate then the power iteration applied to matrix A

converges to its dominant eigenpair (ÿ, ÿ). Proposition (1) shows that the dominant eigenvector of A is the

first component (the first n entries) of the dominant eigenvector of Aÿ for symmetric A. As the momentum

method (2) generates the first component of the power iteration forAÿ (using a different normalization factor),

this method approximates the dominant eigenvector of A, and converges at the rate described in Corollary 2.

The dominant eigenvalue ÿ of A can then be recovered by taking a Rayleigh quotient with the approximate

eigenvector. In practice the augmented matrix Aÿ is never formed; it is used here as a tool in the analysis of

iteration (2).

Proof. Themain technicality in the proof of (15) is verifying that |ÿ̂ÿ1 | < |ÿÿ2 |. Then from standard theory, for

example, Reference 8, the (asymptotic) rate of convergence to the eigenvectorÿ1 corresponding to ÿÿ1 is given

by |ÿÿ2∕ÿÿ1 |.
Without loss of generality, suppose ÿ1 > 0. Then for any ÿ ∈ (0, ÿ21∕4), we have

ÿ̂ÿ1 =
1

2

(
ÿ1 −

√
ÿ21 − 4ÿ

)
.

By (12)–(14), we have |ÿÿ2 | ≥
√
ÿ. Hence to see that |ÿ̂ÿ1 | < |ÿÿ2 |, it suffices to show that |ÿ̂ÿ1 | ≤

√
ÿ. This is

true since

√
ÿ − ÿ̂ÿ1 =

√
ÿ −

ÿ1
2

+

√
ÿ21
4

− ÿ =

√
ÿ1
2

−
√
ÿ

(√
ÿ1
2

+
√
ÿ −

√
ÿ1
2

−
√
ÿ

)
≥ 0.

The result (15) then follows directly from (12)–(14).

Next we show the asymptotic optimality of ÿ = ÿ2
2
∕4. For this purpose, we consider the convergence rate

(15) as a function of ÿ (for ÿ ≠ ÿ2
2
∕4) defined as:

h(ÿ) =

⎧
⎪⎪«⎪⎪¬

2
√
ÿ

|ÿ1|+
√

ÿ21−4ÿ
, ÿ2

2
∕4 < ÿ < ÿ21∕4,

|ÿ2|+
√

ÿ2
2
−4ÿ

|ÿ1|+
√

ÿ21−4ÿ
, 0 < ÿ ≤ ÿ2

2
∕4.
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F IGURE 2 Left: The ratio of eigenvalues ÿÿ+
∕ÿÿ1

and ÿÿ−
∕ÿÿ1

of the augmented matrix Aÿ for A = diag(10 ∶ −1 ∶ −9) with ÿ = 92∕4

(inner circle) and ÿ = 9.92∕4 (outer circle). Right: convergence of the eigenmodes ÿ1, ÿ2, ÿ8 and ÿ64 of the augmented matrix Aÿ for

A = diag(100 ∶ −1 ∶ 1) and ÿ = 992∕4. All the subdominant modes converge at the same rate, but with increasing oscillation.

By direct calculation, we get h′(ÿ) > 0 for ÿ ∈ (ÿ2
2
∕4, ÿ21∕4), that is, the convergence rate is increasing with

respect to ÿ. For ÿ ∈ (0, ÿ2
2
∕4), we have h′(ÿ) < 0, so the convergence rate is decreasing on ÿ. Hence by con-

tinuity, h(ÿ) achieves a minimum at ÿ = ÿ2
2
∕4. We note that h(ÿ) agrees with the convergence rate |ÿÿ2∕ÿÿ1 |

except when ÿ = ÿ2
2
∕4. When ÿ = ÿ2

2
∕4, the agreement is only asymptotic, that is |ÿÿ2∕ÿÿ1 | → h(ÿ). ▪

Two interesting observations follow from this analysis. First, as shown in Section 4, as well as in the numerical results

of Reference 22, iteration (3) with a well-chosen dynamically assigned sequence of parameters ÿk, for which in general

ÿk ≠ ÿ2
2
∕4, can converge faster than the iteration (2) with the optimal parameter ÿ = ÿ2

2
∕4. This can be explained by the

above analysis which shows the optimal parameter is only asymptotically optimal. Our results of Sections 4 and 5 show

that a close but inexact approximation to this parameter can give a better rate of convergence, at least in the preasymptotic

regime.

Second, for ÿ ∈ [ÿ2
2
∕4, ÿ21∕4), except for ÿÿ1 and ÿ̂ÿ1 all the remaining 2n − 2 (complex) eigenvalues of Aÿ (correspond-

ing to the eigenvalues ÿ2, … , ÿn of A) have the same magnitude
√
ÿ according to (14). However, as the corresponding

eigenvalues ÿj of A with |ÿj| < |ÿ2| decrease in magnitude, the argument ÿ in (14) increases. This causes oscillatory con-
vergence at an increasing rate of oscillation for the subdominant modes. This is illustrated in Figure 2: the left plot shows

the ratio of eigenvalues ÿÿ±∕ÿÿ1 of Aÿ plotted on the complex plane for ÿ = 92∕4 (inner circle) and ÿ = 9.92∕4 (outer cir-

cle), where A = diag(10 ∶ −1 ∶ −9). The right plot shows the magnitude of the 1st, 2nd, 8th, and 64th eigenmodes of the

power iteration Algorithm 1 applied to the augmented matrix Aÿ for A = diag(100 ∶ −1 ∶ 1) with ÿ = 992∕4. The plots

agree with the above analysis: the modes all decay at the same rate, but the modes ofAÿ corresponding to the eigenmodes

of A with smaller magnitude eigenvalues have larger imaginary parts, and their convergence is more oscillatory. The

above analysis also shows that if ÿ ≥ ÿ21∕4, then all eigenvalues of Aÿ have the same magnitude. Therefore, if ÿ ≥ ÿ21∕4,

the augmented matrix Aÿ does not satisfy Assumption 2, and neither the power iteration applied to Aÿ , nor iteration 2

applied to A, will converge.

3 DYNAMIC MOMENTUM METHOD

Wewould like to use the acceleration of the momentumAlgorithm 2, but without the a priori knowledge of ÿ2. A method

for determining an effective sequence of momentum parameters is presented in Reference 22 (algorithm 3), called the

Best Heavy Ball method. This method however requires five matrix-vector multiplications per iteration, as compared to

the single matrix-vector multiplication per iteration required by the standard power iteration Algorithm 1 or the momen-

tum accelerated power iteration22 presented here as Algorithm 2. This is improved upon in the DMPower algorithm of

Reference 1 which uses inexact deflation24(chapter 4) in a preliminary iteration to approximate ÿ2. However, the method is

sensitive to the approximation of ÿ2, and ensuring the approximation is good enough again requires a priori knowledge

of the spectrum. Additionally, the preliminary iteration is more computationally expensive, requiring 3 matrix-vector

multiplications per iteration.
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Algorithm 3. Dynamic momentum

Do two iterations of Algorithm 1 ⊳ k = 0, 1

Set r2 = min{d2∕d1, 1}

for k ≥ 2 do ⊳ k ≥ 2

Set ÿk = ÿ2
k
r2
k
∕4

Set uk+1 = vk+1 − (ÿk∕hk)xk−1
Set hk+1 = ‖uk+1‖ and xk+1 = h−1

k+1
uk+1

Set vk+2 = Axk+1, ÿk+1 = (vk+2, xk+1) and dk+1 = ‖vk+2 − ÿk+1xk+1‖
Update ÿk = min{dk+1∕dk, 1} and rk+1 = 2ÿk∕(1 + ÿ2

k
)

STOP if ‖dk+1‖< tol

end for

Our approach for approximating the momentum parameter ÿ = ÿ2
2
∕4 does not require any additional matrix-vector

multiplication per iteration. We obtain an expression for rk+1, as an approximation of r = |ÿ2∕ÿ1| from the detected resid-

ual convergence rate ÿk = dk+1∕dk by inverting the optimal convergence rate (16) for r in terms of ÿ. This is justified in

Lemma 3. We then approximate ÿ2 by rk+1 multiplied by the (computed) Rayleigh quotient approximation to ÿ1, which

yields the approximated momentum parameter ÿk. The resulting dynamic momentum algorithm is presented below.

Lemma 3 and Remark 3 in the next section show that assigning rk+1 by rk+1 = 2ÿk∕(1 + ÿ2
k
), obtained by inverting the

asymptotic convergence rate (16) of the optimal parameter ÿ, gives a stable approximation to r and hence to ÿ. In fact, the

approximation becomes increasingly stable as r gets closer to unity.

The next remark describes the role of the subdominant eigenmodes in the residual.

Remark 2. The residual dk as given in Algorithms 1–3 is given by dk = ‖Axk − ÿkxk‖ where the Rayleigh

quotient ÿk is given by (Axk, xk). Let xk =
∑n

l=1ÿ
(k)

l
ÿl where {ÿl}

n
l=1

is the eigenbasis of A. Then

dk =
‖‖‖‖‖

n∑
l=1

(ÿlÿ
(k)

l
ÿl) −

n∑
l=1

(ÿkÿ
(k)

l
ÿl)

‖‖‖‖‖
=

‖‖‖‖‖

n∑
l=1

(ÿl − ÿk)ÿ
(k)

l
ÿl

‖‖‖‖‖
. (17)

The detected convergence rate ÿk is given by

ÿk =
dk+1
dk

=

‖‖‖
∑n

l=1(ÿl − ÿk+1)ÿ
(k+1)

l
ÿl
‖‖‖

‖‖‖
∑n

l=1(ÿl − ÿk)ÿ
(k)

l
ÿl
‖‖‖

. (18)

We will consider the preasymptotic regime to be that in which ÿ1 − ÿk is not negligible in comparison to the

coefficients ÿ(k)

l
, l > 1, which will be seen to decay. In the asymptotic regime, we have ÿk ≈ ÿ1 hence (18)

reduces for practical purposes to

ÿk ≈

‖‖‖
∑n

l=2(ÿl − ÿk+1)ÿ
(k+1)

l
ÿl
‖‖‖

‖‖‖
∑n

l=2(ÿl − ÿk)ÿ
(k)

l
ÿl
‖‖‖

. (19)

In the usual analysis of the power iteration, coefficients ÿ(k+1)

l
decay like ÿl∕ÿ1 at each iteration as in (8),

hence eventually (19) is dominated by themaximal such ratio ÿ2∕ÿ1. In contrast, in the case of the augmented

matrix Aÿk , for each of the eigenmodes with ÿ2∕4 < ÿk, each of the corresponding eigenvalues has the same

magnitude; and, as shown in (14) increasing imaginary parts as corresponding eigenvalues of A decrease.

Hence it is not necessarily the case that the second eigenmodewill dominate (19) throughmost of the iteration.

The oscillation of the subdominant modes is the main reason we will see the sequence of convergence rates

ÿk fluctuate in the dynamic algorithm.

However, the stability of rk with respect to ÿk shown in Lemma 3 controls the oscillations in rk with respect

to ÿk, and substantially damps them in the case that r = |ÿ2∕ÿ1| is close to unity. In this case there is a more

 1
0
9
9
1
5
0
6
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/n

la.2
5
8
4
 b

y
 S

ara P
o
llo

ck
 - U

n
iv

ersity
 O

f F
lo

rid
a , W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/1

0
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



10 of 24 AUSTIN et al.

substantial relative gap between the convergence rate for the second eigenmode and the higher frequency

modes, so long as some of the ÿk satisfy ÿk < ÿ2
2
∕4, which is generally the case. Then the second eigenmode

does (eventually) tend to dominate the residual. A further discussion of the coefficients ÿ(k)

l
will be given in

Remark 4, where it will be shown that ÿ(k)

l
is controlled by the product of eigenvalues of the sequence of

augmented matrices Aÿk corresponding to ÿl of A. The differences in convergence behavior between smaller

and larger values of r are highlighted in Section 5.

The following subsection takes into account the nontrivial detail that the dynamic Algorithm 3 differs from a standard

power method in that a different augmented matrix Aÿk is applied at each iteration.

3.1 Convergence theory

In Section 2.1, we interpret the convergence of the momentummethod with constant ÿ as a power method applied to the

augmented matrix Aÿ . However, this perspective no longer precisely holds for Algorithm 3 as the parameter ÿk is subject

to change at each step. Consequently, the corresponding augmentedmatrixAÿk changes at each step as well. This presents

a significant challenge in the analysis of the dynamic momentum algorithm.

For ease of presentation, we next define some notation to be used throughout the remainder of this section. Let

A(0) =

(
A 0

I 0

)
, and A(j) = Aÿj =

(
A −ÿjI

I 0

)
, j ≥ 1,

where A(0) is the augmented matrix with ÿ = 0. As in Section 1.1, let {ÿl}
n
l=1

be an eigenbasis of A, with corresponding

eigenvalues {ÿl}
n
l=1
. For each eigenpair (ÿl, ÿl) of A, denote (ÿ

(j)

l
, ÿ

(j)

l
) the corresponding eigenpair of A(j) where ÿ

(j)

l
is the

eigenvalue with larger magnitude defined in (12)–(14). Then by (11)

ÿ
(j)

l
=

(
ÿ(j)ÿl

ÿl

)
,

for j ≥ 0 with ÿ
(0)

l
= ÿl.

In the first technical lemma of this section we show the effect of applying a sequence of augmented matrices with

changing parameter ÿj to each eigenmode of A.

Lemma 1. Let A satisfy Assumption1, let (ÿ, ÿ) be an eigenpair of A, and let ÿ(j) be the corresponding eigenvalue

of A(j), as in Proposition 1. Let ÿik = ÿ(i) − ÿ(k). Define  i(ÿ) to be a product of i terms ÿ(k), where 1 ≤ k ≤ j, and

 i(ÿ) to be a product of i terms ÿkp, where 0 ≤ k, p ≤ j. Then

A(j) · · ·A(0)

(
ÿ

0

)
=

(
j∏
i=1

ÿ(i) +

j−1∑
k=1

ÿk−1,k

j∏
i=1,i≠k

ÿ(i) +

j−1∑
i=2

 i(ÿ) j−i(ÿ)

)(
ÿ(j)ÿ

ÿ

)

+

(
ÿj−1,j

j−1∏
i=1

ÿ(i) +

j∑
i=2

 i(ÿ) j−i(ÿ)

)(
ÿ(0)ÿ

ÿ

)
.

(20)

This lemma shows that applying the sequence of augmented matrices A(j) · · ·A(0) to each eigenmode of A yields a

perturbation to multiplying the eigenmode of A(j) associated with eigenmode ÿ of A by ÿ(1)ÿ(2) · · ·ÿ(j). The higher-order

in ÿ terms of (20) are given in a form that will be used in the next technical lemma. The  i() notation is introduced to

state the relevant result without keeping track of the specific factors in each product.

Proof. The proof relies on two repeated calculations. First, for any ÿ, ÿ

Aÿ

(
ÿÿ

0

)
=

(
A −ÿI

I 0

)(
ÿÿ

0

)
= ÿ

(
ÿÿ

ÿ

)
= ÿ

(
ÿ(0)ÿ

ÿ

)
, (21)
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where ÿ(0) ∶= ÿ. Second,

A(k)

(
ÿ(j)ÿ

ÿ

)
= A(k)

(
ÿ(k)ÿ

ÿ

)
+ A(k)

(
ÿjkÿ

0

)
= ÿ(k)

(
ÿ(k)ÿ

ÿ

)
+ A(k)

(
ÿjkÿ

0

)

= ÿ(k)

(
ÿ(k)ÿ

ÿ

)
+ ÿjk

(
ÿ(0)ÿ

ÿ

)
,

(22)

where the last term in (22) is the result of (21).

Starting with (21), and proceeding to apply (22) we have

A(0)

(
ÿ

0

)
=

(
ÿ(0)ÿ

ÿ

)
, (23)

A(1)A(0)

(
ÿ

0

)
= ÿ(1)

(
ÿ(1)ÿ

ÿ

)
+ ÿ01

(
ÿ(0)ÿ

ÿ

)
, (24)

A(2)A(1)A(0)

(
ÿ

0

)
= ÿ(2)ÿ(1)

(
ÿ(2)ÿ

ÿ

)
+ ÿ12ÿ

(1)

(
ÿ(0)ÿ

ÿ

)
+ ÿ01ÿ

(2)

(
ÿ(2)ÿ

ÿ

)
+ ÿ02ÿ01

(
ÿ(0)ÿ

ÿ

)

=
(
ÿ(2)ÿ(1) + ÿ01ÿ

(2)
)(ÿ(2)ÿ

ÿ

)
+

(
ÿ12ÿ

(1) + 2(ÿ)
)(ÿ(0)ÿ

ÿ

)
.

(25)

One more iteration reveals the form of the higher order terms.

A(3)A(2)A(1)A(0)

(
ÿ

0

)
=

(
ÿ(2)ÿ(1) + ÿ01ÿ

(2)
)(

ÿ(3)

(
ÿ(3)ÿ

ÿ

)
+ ÿ23

(
ÿ(0)ÿ

ÿ

))

+
(
ÿ12ÿ

(1) + 2(ÿ)
)(

ÿ(3)

(
ÿ(3)ÿ

ÿ

)
+ ÿ03

(
ÿ(0)ÿ

ÿ

))

=
(
ÿ(3)ÿ(2)ÿ(1) + ÿ01ÿ

(3)ÿ(2) + ÿ12ÿ
(3)ÿ(1) + 2(ÿ)(ÿ)

)(ÿ(3)ÿ

ÿ

)

+
(
ÿ23ÿ

(2)ÿ(1) + 2(ÿ)(ÿ) + 3(ÿ)
)(ÿ(0)ÿ

ÿ

)
.

(26)

Now we may proceed inductively. Suppose

Φ(j) ∶= A(j) · · ·A(0)

(
ÿ

0

)
=

(
j∏
i=1

ÿ(i) +

j−1∑
k=1

ÿk−1,k

j∏
i=1,i≠k

ÿ(i) +

j−1∑
i=2

 i(ÿ) j−i(ÿ)

)(
ÿ(j)ÿ

ÿ

)

+

(
ÿj−1,j

j−1∏
i=1

ÿ(i) +

j∑
i=2

 i(ÿ) j−i(ÿ)

)(
ÿ(0)ÿ

ÿ

)
.

(27)

We will show

Φ(j+1) =

(
j+1∏
i=1

ÿ(i) +

j∑
k=1

ÿk−1,k

j+1∏
i=1,i≠k

ÿ(i) +

j∑
i=2

 i(ÿ) j+1−i(ÿ)

)(
ÿ(j+1)ÿ

ÿ

)

+

(
ÿj,j+1

j∏
i=1

ÿ(i) +

j+1∑
i=2

 i(ÿ) j+1−iÿ)

)(
ÿ(0)ÿ

ÿ

)
.

(28)
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The base step of the induction is satisfied by (26). For the inductive step, applying (22) to A(j+1)Φ(j) yields

A(j+1)Φ(j) = ÿ(j+1)

{(
j∏
i=1

ÿ(i) +

j−1∑
k=1

ÿk−1,k

j∏
i=1,i≠k

ÿ(i) +

j−1∑
i=2

 i(ÿ) j−i(ÿ)

)

+

(
ÿj−1,j

j−1∏
i=1

ÿ(i) +

j∑
i=2

 i(ÿ) j−i(ÿ)

)}(
ÿ(j+1)ÿ

ÿ

)

+

{
ÿj,j+1

(
j∏
i=1

ÿ(i) +

j−1∑
k=1

ÿk−1,k

j∏
i=1,i≠k

ÿ(i) +

j−1∑
i=2

 i(ÿ) j−i(ÿ)

)

+ÿ0,j+1

(
ÿj−1,j

j−1∏
i=1

ÿ(i) +

j∑
i=2

 i(ÿ) j−i(ÿ)

)}(
ÿ(0)ÿ

ÿ

)
,

which after multiplying though and combining the (⋅) terms of like order agrees with (28). ▪

This establishes the result (20). The next step in the argument is to generalize the first component of the initial vector

used in Lemma 1 from a single eigenmode of A to a linear combination of eigenmodes of A, to arrive an an estimate

analogous to (8).

Lemma 2. Let A satisfy Assumption1. Let ÿl,i,k = ÿ
(i)

l
− ÿ

(k)

l
. As in Lemma 1, define  i(ÿl) to be a product of i

terms ÿ(k)

l
, where 1 ≤ k ≤ j, and  i(ÿl) to be a product of i terms ÿl,k,p, where 0 ≤ k, p ≤ j. Let u0 =

∑n
l=1alÿl, a

linear combination of the eigenvectors of A. Then it holds that the product A(j)A(j−1) · · ·A(0)

(
u0
0

)
satisfies

A(j)A(j−1) · · ·A(0)

(
u0

0

)
= a1

(
j∏
i=1

ÿ
(i)
1

){
ÿ

(j)
1 +

n∑
l=2

al
a1

(
j∏
i=1

ÿ
(i)

l

ÿ
(i)
1

)
ÿ

(j)

l

}

+

j−1∑
i=1

a1
j−i(ÿ1)

{
ÿ

(j)
1  i(ÿ1) +

n∑
l=2

al
a1

 i(ÿl)
j−i

(
ÿl

ÿ1

)
ÿ

(j)

l

}

+

j∑
i=1

a1
j−i(ÿ1)

{
ÿ

(0)
1  i(ÿ1) +

n∑
l=2

al
a1

 i(ÿl)
j−i

(
ÿl

ÿ1

)
ÿ

(0)

l

}
.

(29)

Supposing additionally that ÿ(i)
1 > ÿl,k,p for any i, k, p = 1, … , j, and l ≥ 2, then as j increases, the product

A(j)A(j−1) · · ·A(0)u0 aligns to a linear combination of ÿ
(j)
1 and ÿ (0)

1 .

The proof shows additional detail on the(ÿ) terms, as revealed in Lemma 1. This lemma shows that the product of the

sequence of matrices A(j) … A(0) applied to a vector with a general first component, u0 ∈ Rn and null second component

0 ∈ Rn aligns with a vector whose first component is the dominant eigenvectorÿ1 ofA. It will be shown in Theorem 1 that

the convergence is similar to the power method with (ÿl∕ÿ1)
j as in (8) replaced by the product (ÿ(1)

l
· · ·ÿ

(j)

l
)∕(ÿ

(1)
1 · · ·ÿ

(j)
1 ).

The appreciable difference in the convergence is from the contribution of the ÿ-scaled terms which are in the directions of

the eigenvectors ÿ
(j)

l
and ÿ (0)

l
, with l = 1, … ,n. As we will see in Theorem 1 and Remark 4, these terms will not interfere

with convergence or the asymptotically expected rate, due to the stability of the parameters ÿi, as shown in Lemma 3.

Proof. First by applying linearity and (20) we have

A(j) · · ·A(0)

(
u0

0

)
=

n∑
l=1

alA
(j) · · ·A(0)

(
ÿl

0

)

=

n∑
l=1

al

(
j∏
i=1

ÿ
(i)

l
+

j−1∑
k=1

ÿl,k−1,k

j∏
i=1,i≠k

ÿ
(i)

l
+

j−1∑
i=2

 i(ÿl)
j−i(ÿl)

)(
ÿ
(j)

l
ÿl

ÿl

)

+

n∑
l=1

al

(
ÿl,j−1,j

j−1∏
i=1

ÿ
(i)

l
+

j∑
i=2

 i(ÿl)
j−i(ÿl)

)(
ÿ
(0)

l
ÿl

ÿl

)
.

(30)
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Now we will examine each term of (30).

We rewrite the first term in the right hand side of (30) as

n∑
l=1

al

(
j∏
i=1

ÿ
(i)

l

)
ÿ

(j)

l
= a1

(
j∏
i=1

ÿ
(i)
1

){
ÿ

(j)
1 +

n∑
l=2

al
a1

(
j∏
i=1

ÿ
(i)

l

ÿ
(i)
1

)
ÿ

(j)

l

}
. (31)

This is similar to (8) and displays convergence to ÿ1 so long as the other terms do not interfere. The second

term in the right hand side of (30) can be written as

n∑
l=1

al

j−1∑
k=1

ÿl,k−1,k

(
j∏

i=1,i≠k

ÿ
(i)

l

)
ÿ

(j)

l

=

j−1∑
k=1

a1

(
j∏

i=1,i≠k

ÿi1

){
ÿ1,k−1,kÿ

(j)
1 +

n∑
l=2

al
a1

ÿl,k−1,k

(
j∏

i=1,i≠k

ÿ
(i)

l

ÿ
(i)
1

)
ÿ

(j)

l

}
,

(32)

which is an (ÿ) term where the factors of ÿ(i)

l
∕ÿ

(i)
1 multiplying the subdominant eigenmodes are one power

lower than in the dominant term (31). The higher order terms multiplying the eigenvectors of A(j) are

n∑
l=1

al

j−1∑
i=2

 i(ÿl)
j−i(ÿl)ÿ

(j)

l
=

j−1∑
i=2

a1
j−i(ÿ1)

{
ÿ

(j)
1  i(ÿ1) +

n∑
l=2

al
a1

 i(ÿl)
j−i

(
ÿl

ÿ1

)
ÿ

(j)

l

}
. (33)

Next, we look at the terms of (30) multiplying the eigenvectors ÿ (0)
0 of A(0). The lowest order term is (ÿ)

and is given by

n∑
l=1

alÿl,j−1,j

(
j−1∏
i=1

ÿ
(i)

l

)
= a1

(
j−1∏
i=1

ÿ
(i)
1

){
ÿ1,j−1,jÿ

(0)
1 +

al
a1

ÿl,j−1,j

(
j−1∏
i=1

ÿ
(i)

l

ÿ
(i)
1

)
ÿ

(0)

l

}
. (34)

Last we have the higher order terms

n∑
l=1

al

(
j∑
i=2

 i(ÿl)
j−i(ÿl)

)
ÿ

(0)

l
=

j∑
i=2

a1
j−i(ÿ1)

{
ÿ

(0)
1  i(ÿ1) +

n∑
l=1

al
a1

 i(ÿl)
j−i

(
ÿl

ÿ1

)
ÿ

(0)

l

}
. (35)

Sweeping the results of the more detailed (32) into (33), and likewise (34) into (35) yields the result (29).

Finally, the alignment of the product (29) to a combination of ÿ
(j)
1 and ÿ

(0)
1 follows from noting each ratio

(ÿ
(i)

l
∕ÿ

(i)
1 ) < 1 and applying the hypothesis ÿ(i)

1 > ÿl,k,p for any i, k, p = 1, … , j, and l ≥ 2. ▪

The next lemma shows that if ÿk is an ÿ perturbation of ÿ = |ÿ2∕ÿ1|, then rk+1 is an ÿ̂ perturbation of r, where ÿ̂ < 2ÿ

for ÿ ∈ (0, 1), and ÿ̂ → 0 as ÿ → 1. This means the smaller the spectral gap in A, the more stable the dynamic momentum

method becomes.

Lemma 3. Let ÿ ∈ (0, 1) and consider ÿ small enough so that (2ÿÿ + ÿ2)∕(1 + ÿ2) < 1. Let ÿk = ÿ + ÿ and define

rk+1 = 2ÿk∕(1 + ÿ2
k
), as in Algorithm 3. Then

rk+1 = r + ÿ̂ + (ÿ2) with ÿ̂ = ÿ
2(1 − ÿ2)

(1 + ÿ2)2
. (36)

The condition (2ÿÿ + ÿ2)∕(1 + ÿ2) < 1 is satisfied for ÿ ∈ (0, 1) by ÿ < 0.71.

Proof. For r = |ÿ2∕ÿ1| the asymptotic convergence rate of iteration (2) is ÿ = r(1 +
√
1 − r2)−1, as given by

(16), when ÿ = ÿ2
2
∕4. Inverting this expression for r in terms of ÿ yields

r =
2ÿ

1 + ÿ2
. (37)
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Suppose the detected convergence rate ÿk = dk+1∕dk is an ÿ perturbation of ÿ, meaning ÿk = ÿ + ÿ. Expanding

rk+1 = 2ÿk∕(1 + ÿ2
k
) in ÿ yields

rk+1 =
2ÿ

1 + (ÿ + ÿ)2
+

2ÿ

1 + (ÿ + ÿ)2

=
2ÿ

1 + ÿ2

»
¼¼½

1

1 + 2ÿÿ+ÿ2

1+ÿ2

¾
¿¿À
+

2ÿ

1 + ÿ2

»
¼¼½

1

1 + 2ÿÿ+ÿ2

1+ÿ2

¾
¿¿À

=
2ÿ

1 + ÿ2

(
1 −

2ÿÿ + ÿ2

1 + ÿ2
+ (ÿ2)

)
+

2ÿ

1 + ÿ2
+ (ÿ2).

(38)

Applying (37) to (38) yields

rk+1 = r

(
1 + ÿ

(
1

ÿ
− r

))
+ (ÿ2) = r + ÿ̂ + (ÿ2), where ÿ̂ = rÿ

(
1

ÿ
− r

)
. (39)

Applying (37) to (39) yields the result (36), by which ÿ̂ < 2ÿ for ÿ ∈ (0, 1), and ÿ̂ < ÿ for ÿ ∈ (0.486, 1), or r ∈

(0.786, 1). Moreover as r getting closer to unity, the approximation becomes more stable, with ÿ̂ < 0.161 ⋅ ÿ for

r ∈ (0.99, 1) and ÿ̂ < 0.0468 ⋅ ÿ for r ∈ (0.999, 1). ▪

The stability of ÿk = (rkÿk)2∕4 in Algorithm 3 is inherited directly from the stability of rk, once ÿk sufficiently converges

to ÿ1.

Remark 3. Another way to view how close ÿk is to ÿ = ÿopt = ÿ2
2
∕4 with respect to rk and ÿk viewed as

perturbations of r and ÿ is to consider ÿk written as

ÿk =
r
√
1 + ÿ∕r2

1 +
√
1 − r2(1 + ÿ∕r2)

,

for some ÿ with −r2 < ÿ < 1 − r2. Applying rk+1 = 2ÿk∕(1 + ÿ2
k
) we then have rk+1 = r

√
1 + ÿ∕r2, by which

ÿk+1 = r2(1 + ÿ∕r2)ÿ2
k+1

∕4. For ÿk+1 ≈ ÿ1 this yields

ÿk+1 ≈
ÿ2
2

4
+ ÿ

ÿ21
4
,

which shows how perturbations rk with respect to r result in perturbations to ÿk with respect to ÿ.

Now we can summarize the results of this section in a convergence theorem.

Theorem 1. Let A satisfy Assumption 1. Let ÿl,i,k = ÿ
(i)

l
− ÿ

(k)

l
, and let u0 =

∑n
l=1ajÿj, a linear combination of

the eigenvectors of A.

If A is symmetric then ÿk < ÿ21∕4 for all k. Then (29) holds and Algorithm 3 converges to the dominant

eigenpair.

Here we proceed by assuming generically that none of the ÿk take a value of exactly equal to ÿ2∕4 for any eigenvalue

ÿ of A. This is a reasonable assumption due both to floating point arithmetic, and that as shown in Lemma 3, the ÿk only

converge to ÿ2
2
∕4 as r → 1, and we are always in the circumstance that r < 1.

Proof. By the definitions of ÿk and rk, we have r2k ≤ 1. Since ÿk is the Rayleigh quotient with approximate

eigenvector xk+1 and symmetric A, it follows that ÿk < ÿ21∕4.

Wewill start by developing bounds on theÿ(i)

l
and the ÿl,i,k, and in the processwill verify the final hypothesis

of Lemma 2 by verifying |ÿl,i,k| ≤ max{|ÿ(i)

l
|, |ÿ(k)

l
|}. We will also see that ÿl,i,k → 0 as ÿi − ÿk → 0 for each ÿl.

Consider ÿ = ÿl ≠ 0. There are three cases we need to consider. Without loss of generality, suppose ÿi ≥ ÿk.
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(i) If ÿ2∕4 ≥ ÿi then ÿ
(i)

l
and ÿ

(k)

l
are given by (12), and |ÿ(i)

l
| ∈ [|ÿ|∕2, |ÿ|] for l = 2, … ,n. Since we have

ÿ < ÿ21∕4 we have |ÿ(i)
1 | ∈ (|ÿ1|∕2, |ÿ1|]. To bound ÿl,i,k we have

|ÿ(i)

l
− ÿ

(k)

l
| = |ÿ|

2
|||
√
1 − 4ÿi∕ÿ2 −

√
1 − 4ÿk∕ÿ2

||| <
|ÿ|
2

≤ |ÿ(i)

l
| < |ÿ(k)

l
|. (40)

It is clear from continuity and (40) that ÿl,i,k → 0 as ÿi − ÿk → 0. We can also expand to first order to see

how, yielding |ÿl,i,k| = |(ÿi − ÿk) + … |.
(ii) If ÿ2∕4 ≤ ÿi, ÿk < ÿ21∕4 then ÿ

(i)

l
and ÿ

(k)

l
are given by (14), and we have |ÿ(i)

l
| = √

ÿi. In this case ÿl,i,k
satisfies

|ÿ(i)

l
− ÿ

(k)

l
| = |||

√
ÿi
√
1 − ÿ2∕(4ÿi) −

√
ÿk
√
1 − ÿ2∕(4ÿk)

||| ≤
√
ÿi = |ÿ(i)

l
|. (41)

From continuity and (41) it is clear that ÿl,i,k → 0 as ÿk − ÿi → 0. Expanding (41) to first order to see how,

yields |ÿ(i)

l
− ÿ

(k)

l
| = |(√ÿi −

√
ÿk)(1 − ÿ2∕8) + … |.

(iii) If ÿk ≤ ÿ2∕4 ≤ ÿi, then we have

ÿ
(i)

l
− ÿ

(k)

l
=

ÿ

2
+
1

2

√
ÿ2 − 4ÿi −

(
ÿ

2
+
1

2

√
ÿ2 − 4ÿk

)
=
i

2

√
4ÿi − ÿ2 −

1

2

√
ÿ2 − 4ÿk,

by which |ÿ(i)

l
− ÿ

(k)

l
| = √

ÿi − ÿk ≤
√
ÿi = |ÿ(i)

l
|.

Combining with the above results, we have |ÿl,k,p| ≤ max{|ÿ(k)

l
|, |ÿ(p)

l
|}, for any l, k, p = 1, … , j.

We nowhave by Lemma 2 that as j increases, the productA(j)A(j−1) · · ·A(0)

(
u0
0

)
aligns with a linear combi-

nation ofÿ
(j)
1 andÿ (0)

1 . As in Section 2.1, we now analyze the convergence of Algorithm3 by the convergence of

(
xj+1

yj+1

)
=

1

hj+1

(
uj+1

zj+1

)
=

1

hj+1

(
j∏
i=0

h−1i

)
A(j)A(j−1) · · ·A(0)

(
u0

0

)
, (42)

where hj = ‖‖uj‖‖. Applying (29) to (42), we have
(
uj+1

zj+1

)
=
a1
h0

(
j∏
i=1

ÿ
(i)
1

hi

){
ÿ

(j)
1 +

n∑
l=2

al
a1

(
j∏
i=1

ÿ
(i)

l

ÿ
(i)
1

)
ÿ

(j)

l

}

+

(
j∏
i=0

1

hi

)
j−1∑
i=1

a1
j−i(ÿ1)

{
ÿ

(j)
1  i(ÿ1) +

n∑
l=2

al
a1

 i(ÿl)
j−i

(
ÿl

ÿ1

)
ÿ

(j)

l

}

+

(
j∏
i=0

1

hi

)
j∑
i=1

a1
j−i(ÿ1)

{
ÿ

(0)
1  i(ÿ1) +

n∑
l=2

al
a1

 i(ÿl)
j−i

(
ÿl

ÿ1

)
ÿ

(0)

l

}
.

(43)

Distributing through the normalization factors in (43) yields

(
uj+1

zj+1

)
=
a1
h0

(
j∏
i=1

ÿ
(i)
1

hi

){
ÿ

(j)
1 +

n∑
l=2

al
a1

(
j∏
i=1

ÿ
(i)

l

ÿ
(i)
1

)
ÿ

(j)

l

}

+

j−1∑
i=1

a1
h0

(
 j−i(ÿ1)∏j−i

k=1
hk

)⎧⎪«⎪¬
ÿ

(j)
1  i(ÿ1) +

n∑
l=2

al
a1

»
¼¼½

 i(ÿl)∏j

k=j−i+1
hk

¾
¿¿À
 j−i

(
ÿl

ÿ1

)
ÿ

(j)

l

«⎪¬⎪­

+

j∑
i=1

a1
h0

(
 j−i(ÿ1)∏j−i

k=1
hk

)⎧
⎪«⎪¬
ÿ

(0)
1  i(ÿ1) +

n∑
l=2

al
a1

»¼¼½
 i(ÿl)∏j

k=j−i+1
hk

¾¿¿À
 j−i

(
ÿl

ÿ1

)
ÿ

(0)

l

«
⎪¬⎪­
.

(44)
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By the arguments above,

(
uj+1
zj+1

)
aligns with a linear combination of ÿ

(j)
1 and ÿ (0)

1 , both of which have first

components in the direction ofÿ1. This further shows that theRayleigh quotient ÿk = (Axk, xk) → ÿ1, bywhich

the residual (17) converges to zero. ▪

We conclude this section with a heuristic discussion of the coefficients of each eigenmode that appear in the residual,

as per Remark 2.

Remark 4. By Theorem 1, the Rayleigh quotient ÿk converges to ÿ1. As in Remark 2, we consider the asymp-

totic regime where ÿk ≈ ÿ1, so that the ratio between consecutive residuals ÿk is well approximated by

ÿj ≈

‖‖‖
∑n

l=2(ÿl − ÿj+1)ÿ
(j+1)

l
ÿl
‖‖‖

‖‖‖
∑n

l=2(ÿl − ÿj)ÿ
(j)

l
ÿl
‖‖‖

. (45)

From (45), and the definition of the eigenvectors of the augmented matrix in (11), the coefficients ÿ
(j+1)

l
, l ≥ 2

are given by

ÿ
(j+1)

l
=

al∏j+1

i=0
hi

{
ÿ
(j)

l

(
j∏
i=1

ÿ
(i)

l

)
+

j−1∑
i=1

(ÿ
(j)

l
+ 1) j−i(ÿl)

i(ÿl) +  j(ÿl)

}
. (46)

We next make the argument that the first term inside the brackets in (46) dominates the others.

From Theorem 1, each ÿl,i,k satisfies |ÿl,i,k| ≤ max{ÿ(i)

l
, ÿ

(k)

l
}. Referring to the proof of Lemma 1, each of

the factors of ÿl,i,k have either the form ÿl,p−1,p or ÿl,0,p, where p ranges from 1 to j + 1. As per the discussion in

Theorem1, the terms of the form ÿl,p−1,p go to zero as the ÿk → ÿ = ÿ2
2
∕4. By Lemma3, considering the detected

convergence rate ÿk as a perturbation of the theoretically optimal rate ÿ, the computed approximation rk+1 to

r = |ÿ2∕ÿ1| is restricted to a tighter interval about r when r is closer to one. By this argument, and Remark 3,
ÿk+1 is restricted to a small interval around ÿ (smaller as r getting closer to 1). So as j increases, terms with of

the form ÿl,j−1,j become negligible. By these arguments, each of the terms under the sum of (46) should be of

equal order or less than the first term, and as j increases, additional terms under the sum should be essentially

negligible.

By inspecting the proof of Lemma 1, the final term in (46) can be seen to be ÿl,0,1ÿl,0,2 · · · ÿl,0,j. By the same

arguments above, this term should also be of equal order or less than the first, although ÿl,0,j is not in general

expected to become negligible as j increases. In conclusion, the coefficients ÿ
(j)

l
are dominated by the products

of the eigenvalues ÿ(i)

l
, i = 1, … , j.

4 NUMERICAL RESULTS

In this section, we include four suites of tests comparing the introduced dynamic momentum method Algorithm 3 with

the power method Algorithm 1 and the static momentum method with optimal ÿ = ÿ2
2
∕4 as in Algorithm 2. We include

additional comparisons in the first three test suites with the delayed momentum power method (DMPOW)1(algorithm 1). In

the last test suite we include comparisons with Algorithm 2 with the parameter ÿ replaced by small perturbations above

and below the optimal value.

In our implementation of DMPOW we do not assume any spectral knowledge, and we consider 20, 100, and 500

preliminary power iterations with deflation in the preliminary stage to determine an approximation of ÿ2. As each of the

preliminary iterations contains 3 matrix-vector multiplications, that number where it is reported exceeds the number of

total iterations for DMPOWas it includes both stages of the algorithm. The other methods tested each require onematrix-

vector multiply per iteration. We found we were able to improve the performance of DMPOW by choosing w0, which is

the the initial approximation to the second eigenvector, to be orthogonal to u0 (denoted q0 in Reference 1). We used this

technique in DMPOW for all reported results.
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AUSTIN et al. 17 of 24

All tests were performed inMatlab R2023b running on anAppleMacBookAir with 24GB ofmemory, 8 core CPUwith

8 core GPU. Throughout this section, each iteration was run to a maximum of 2000 iterations or a residual tolerance of

10−12. We include tests started from the fixed initial iterate u0 =
(
1 1 · · · 1

)T
so that the results can be reproduced, as

well as tests starting from random initial guesses via u0 = (rand(n,1)-0.5);. To run Algorithm 2 which requires

knowledge of ÿ2, we recovered the first two eigenvalues usingeigs(A,2).We emphasize that we did this for comparison

purposes only, and that our interest is in developing effective methods that do not require any a priori information of the

spectrum.

4.1 Test suite 1

Our first test suite consists of three symmetric positive definite (SPD) benchmark problems. All three matrices have

similar values of r ≈ 0.999. This first is a diagonal matrix included for its transparency. The second matrix Kuu is used as

a benchmark in Reference 21. The third, Muu features ÿ2 = ÿ1, so we demonstrate replacing ÿ2 with ÿ3 in Algorithm 2.

Our dynamic Algorithm 3 works as expected without modification.

Matrix 1: A = diag(1000 ∶ −1 ∶ 1). This matrix is a standard benchmark with r = 0.999.

Matrix 2: A = Kuu from Reference 25, with n = 7102. This matrix has leading eigenvalues ÿ1 = 54.0821 and

ÿ2 = 53.9817, with r = 0.9981.

Matrix 3: A = Muu from Reference 25, with n = 7102. This matrix has leading eigenvalues ÿ1 = 10−3 × 0.8399,

ÿ2 = 10−3 × 0.8398 and ÿ3 = 10−3 × 0.8391. Using eigs, ÿ1 and ÿ2 agreed to 10
−14, and Algorithm 2 did not

converge using ÿ = ÿ2
2
∕4. The results shown use ÿ = ÿ2

3
∕4, as ÿ3 is the second largest eigenvalue for this

matrix. Taking in this case r = ÿ3∕ÿ1 yields r = 0.9992.

Figure 3 shows iteration count vs. the residual norm using Algorithm 1, DMPOW with 20, 100 and 500 prelimi-

nary iterations, Algorithm 2, and Algorithm 3. Each iteration was started with the initial u0 =
(
1 1 · · · 1

)T
. The

preliminary iterations of DMPOW were started with w0 =
(
− 1 1 −1 1 · · ·

)T
, so that w0 is orthogonal to u0. In

the first two cases, we see the dynamic method Algorithm 3 converges at approximately the same asymptotic rate

as Algorithm 2, though in the second case the latter has an extended preasymptotic regime. The three DMPOW

instances work essentially as they should for Matrix 1 and Matrix 2, where the approximation of ÿ2 from the defla-

tion method, hence the approximation of ÿopt = ÿ2
2
∕4 improves as the preliminary iterations are increased. For Matrix

1 DMPOW with 500 preliminary iterations does appear to achieve the optimal convergence rate. In Matrix 3 on

the right, only the dynamic method Algorithm 3 achieves a steady optimal convergence rate. Algorithm 2 initially

stalls then achieves a good but suboptimal rate. DMPOW with 500 preliminary iterations achieves an apparently opti-

mal but oscillatory convergence rate, with sub-optimal rates with 100 and 20 preliminary iterations. The oscillatory

behavior of DMPOW suggests that the approximation to ÿ2 is greater than ÿ2, hence all subdominant modes are

oscillatory, via (12).

F IGURE 3 Convergence of the residual by iteration count for the three matrices in test suite 1, using Algorithm 1, DMPOWwith 20, 100

and 500 preliminary iterations, Algorithm 2, and Algorithm 3. Left: Matrix 1, diag(1000 ∶ −1 ∶ 1); center: Matrix 2, Kuu; right: Matrix 3, Muu.
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TABLE 1 Minimum and maximum number of matrix-vector multiplies to residual convergence for 100 runs of the power method

(Algorithm 1), DMPOW run with 20, 100, and 500 preliminary iterations, the power iteration with optimal momentum (Algorithm 2) and

the power iteration with dynamic momentum (Algorithm 3), applied to Matrix 4–Matrix 7.

Matrix 4 Matrix 5 Matrix 6 Matrix 7

Method min max min max min max min max

Power 247 359 1088 1583 2000 2000 2000 2000

DMPOW(20) 125 746 197 655 2040 2040 2040 2040

DMPOW(100) 340 376 415 1735 1281 2200 1318 2200

DMPOW(500) 1503 1503 1575 1626 1767 3000 1970 3000

ÿ = ÿ2
2
∕4 71 86 152 179 241 288 550 640

Dynamic ÿ 66 96 133 175 255 652 470 612

Note: Each run used a randomly generated initial vector.

4.2 Test suite 2

The second test suite consists of four matrices. The first three are symmetric indefinite and the fourth is SPD with

increasing gaps between the smaller eigenvalues.

Matrix 4: A = ash292 from Reference 25, with n = 292. This matrix has leading eigenvalues ÿ1 = 9.1522 and

ÿ2 = 8.3769, with r = 0.9153. It is symmetric indefinite.

Matrix 5: A = bcspwr06 from Reference 25, with n = 1454. This matrix has leading eigenvalues ÿ1 = 5.6195 and

ÿ2 = 5.5147, with r = 0.9814. It is symmetric indefinite.

Matrix 6: A = diag(linspace(−99,100, 200)). This matrix has n = 200, ÿ1 = 100, ÿ2,3 = ±99, and r = 0.99. It is

included to test the sensitivity to positive and negative leading subdominant eigenvalues.

Matrix 7: A = diag(10−logspace(0, 1,200)). This matrix has n = 200, ÿ1 = 9, ÿ2 = 8.9884, and r = 0.999. It is

included to test the sensitivity to increasing gaps between smaller eigenvalues.

Results of the experiments with the second set of matrices is shown in Table 1. We see that the dynamic Algorithm 3

showsmore sensitivity to initial vector than does the static algorithmwith optimal parameter 2 in the indefinite cases, and

particularly for the highly indefinite Matrix 6. From the results for Matrix 7, we see that increasing the spacing between

the smaller eigenvalues does not cause increased sensitivity to u0. We can also see that Algorithms 2 and 3 significantly

outperform the others on all tests in this suite.

4.3 Test suite 3

For the third test suite, we generated 100 symmetricmatrices with unit diagonal, and quasi-randomly generated normally

distributed off-diagonals with mean zero and standard deviation one, via v = ones(n,1); v1 = randn(n-1,1);

A = diag(v,0) + diag(v1,1) + diag(v1,-1);. For each matrix, we checked the ratio r = |ÿ2∕ÿ1|. Over the
100 matrices, the values of r ranged from 0.7944 to 0.9996, with mean value 0.9491 and standard deviation 0.0455. Each

run was started with the initial iterate u0 =
(
1 1 · · · 1

)T
.

Table 2 shows the results. While Algorithm 2 with optimal fixed ÿ has the lowest minimal number of iterations over

100 runs, dynamic Algorithm 3 has the lowest mean and maximum iteration count. For these two methods the iteration

count is the same as the reported number of matrix-vector multiplies. On the other hand, DMPOWwith 20, 100, and 500

preliminary iterations each had at least one run that did not terminate after 2000 total iterations (preliminary included),

and all three of the DMPOW methods had a substantially higher minimum number of matrix-vector multiplies than

either the optimal or dynamic methods.
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TABLE 2 The number of matrix-vector multiplies and terminal residual for 100 runs of the power method (Algorithm 1), DMPOW run

with 20, 100 and 500 preliminary iterations, the power iteration with optimal momentum (Algorithm 2) and the power iteration with

dynamic momentum (Algorithm 3).

Matrix-vector multiplies Terminal residual

Method mean std. dev. min max min max

Power 905.42 658.728 96 2000 8.74e-13 4.89e-04

DMPOW(20) 439.15 528.614 101 2040 6.31e-13 4.43e-04

DMPOW(100) 498.3 295.655 302 2200 2.15e-13 7.95e-12

DMPOW(500) 1600.55 196.335 1502 3000 1.78e-13 4.96e-06

ÿ = ÿ2
2
∕4 162.22 160.065 40 1183 6.02e-13 9.99e-13

Dynamic ÿ 150.15 133.842 63 949 5.66e-13 1.00e-12

Note: Each run used pseudo-randomly generated tridiagonal matrix v = ones(n,1); v1 = randn(n-1,1); A = diag(v,0) + diag(v1,1) +

diag(v1,-1);, and the same initial vector u0 =
(
1 1 · · · 1

)T
.

F IGURE 4 Convergence of the residual by iteration count for the three matrices in test suite 4, using Algorithm 1, Algorithm 2 with

ÿ = ÿopt = ÿ2
2
∕4, with ÿ = min{1.01 × ÿopt, (3ÿ

2
1 + ÿ2

2
)∕16}, ÿ = 0.99 × ÿopt, and and Algorithm 3. Left: Matrix 8, Si5H12; center: Matrix 9,

ss1; right: Matrix 10, thermomech_TC.

4.4 Test suite 4

In this fourth suite of tests, we consider three problems of varying structure and scale, and which have eigenvalues of

varying magnitudes. The dynamic momentum Algorithm 3 is tested against the power method 1, the static momen-

tum Algorithm 2 with optimal parameter ÿ = ÿ2
2
∕4, and perturbations thereof, ÿ− = 0.99 × ÿopt, and ÿ+ = min{1.01 ×

ÿopt, (3ÿ21 + ÿ2
2
)∕16}. The parameters ÿ+ and ÿ− are within 1% of ÿopt, but do not exceed ÿ21∕4, which as per Section 2 would

prevent convergence.

Matrix 8: A = Si5H12 from Reference 25, with n = 19,896. This matrix has leading eigenvalues ÿ1 =58.5609 and

ÿ2 = 58.4205, with r = 0.998. It is symmetric indefinite.

Matrix 9: A = ss1 from Reference 25, with n= 205,282. This matrix has leading eigenvalues ÿ1 = 1.3735 and

ÿ2 = 1.3733, with r = 0.9998. It is nonsymmetric.

Matrix 10: A = thermomech_TC, with n = 102,158. This matrix has leading eigenvalues ÿ1 = 0.03055 and

ÿ2 = 0.03047, with r = 0.9975. It is SPD.

Convergence of the residual in each case is shown in Figure 4. Each of the tests was started from the initial vector

u0 =
(
1 1 · · · 1

)T
. The results show the dynamic method 3 is not sensitive to the scaling of the eigenvalues which

vary in each of the examples. The results also show a better rate of convergence with ÿ+ than with ÿ−, but at the cost of

a potentially extended preasymptotic regime. For ss1 (Matrix 9) shown in the center plot, the dynamic method shows

some initial oscillations but does not suffer for the extended asymptotic regime that ÿopt and ÿ+ experience.
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5 DYNAMIC MOMENTUM METHOD FOR INVERSE ITERATION

As an immediate extension of Algorithm 3, this section explores the application of the dynamic momentum method to

accelerate the shifted inverse power iteration. The shifted inverse iteration is a well-known and powerful technique in

the numerical solution of eigenvalue problems. A review of the method including its history, theory and implementation

can be found in Reference 26. By appropriately choosing shifting parameters, the inverse iteration with shift can be used

to identify any targeted eigenpair. When a good approximation of the targeted eigenvalue is available, the method is

remarkably efficient. As the inverse iteration with shift ÿ is equivalent to applying the power iteration on the matrix

(A − ÿI)−1 (with the same eigenvectors as those of A), the analysis carried out in Section 3.1 is directly applicable to the

Algorithm 5 below.

Each step of the inverse iteration involves solving a linear system. For a fixed shift, one can perform a factorization

of the shifted matrix before the iterative loop to save some computational cost. Unlike updating the shift to attain faster

convergence, applying a momentum acceleration does not require a re-factorization of the matrix. As shown below, the

momentum accelerated algorithm substantially reduces the number of iterations to convergence, particularly for sub-

optimal shifts. Presumably, the use of a sub-optimal shift indicates the user does not have a good approximation of the

target eigenvalue, by which the user is unlikely to have a good approximation of the second eigenvalue of the shifted

system.Hence the automatic assignment of the extrapolation parameter ÿk is essential for thismethod to be practical. For-

tunately, as seen below, the proposed method with dynamic ÿk is comparable to or outperforms the optimal parameter in

each case tested. Numerical experiments below illustrate the improved efficiency, particularly with the dynamic strategy.

In our implementation of DMPOW in this section we terminated the preliminary iterations in the deflation stage

when the target (second) eigenvalue achieved a given relative tolerance, that is in the notation of Reference 1, |(ÿj −
ÿj−1)∕ÿj| < 10−n. We show results using n = 1, 2, 4. We implemented DMPOW as a shifted inverse iteration as follows,

referring to the implementation given in Reference 1 (algorithm 1): We replaced the multiplication by A in line 2 with a

multiplication by (A − ÿI)−1, implemented as a solve of the LU-factored system, and the multiplication by A − P in line

6 with a multiplication by (A − ÿI)−1, again implemented as a solve of the factored system, and a multiplication by P. We

replaced the multiplication by A in line 8 to compute the Rayleigh quotient corresponding to the second eigenvalue as

a multiplication by A − ÿI. We did this rather than multiplying by (A − ÿI)−1 to reduce the number of system solves per

iteration from three to two, with little to no effect on the total iteration count.

Just as Algorithm 3 requires two preliminary power iterations, the dynamic momentum strategy for the inverse itera-

tion requires two preliminary inverse iterations. For tests in this section, we ran iterations to a residual tolerance of 10−15

or a maximum of 2000 iteration. In this section we also numerically verify the stability of the extrapolation parameter ÿk
as shown in Lemma 3 and Remark 3.

The dynamically accelerated version of Algorithm 4 follows.

In Table 3we show results for accelerating the inverse iteration used to recover the largest eigenvalue of thematrixA =

diag(1000 ∶ −1 ∶ 1). We test shifts ÿ = {999.75, … , 1064}, chosen with increasing distance from the target eigenvalue

ÿ1 = 1000 to see how much a suboptimal shift can be made up for with the extrapolation.

We see the dynamic momentum method and the <optimal= fixed momentum parameter give the best performance,

with the dynamic method converging in fewer iterations as the shift increases away from the target eigenvalue. The

performance of the DMPOW iteration is intermediate between the base inverse iteration and the dynamical momentum

method.

Algorithm 4. Inverse power iteration

Choose v0 and shift ÿ, set h0 = ‖v0‖ and x0 = h−10 v0
Compute (A − ÿI) = LU ⊳ Compute LU factors of A − ÿI

Solve Ly = x0 and Uv1 = y

for k ≥ 0 do

Set hk+1 = ‖vk+1‖ and xk+1 = h−1
k+1

vk+1
Solve Ly = xk+1 and Uvk+2 = y

Set ÿk+1 = (vk+2, xk+1) and dk+1 = ‖vk+2 − ÿk+1xk+1‖
STOP if ‖dk+1‖< tol

end for
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Algorithm 5. Dynamic momentum for inverse iteration

Do two iterations of Algorithm 4 ⊳ k = 0, 1

Set r2 = min{d2∕d1, 1}

for k ≥ 2 do ⊳ k ≥ 2

Set ÿk = ÿ2
k
r2
k
∕4

Set uk+1 = vk+1 − (ÿk∕hk)xk−1
Set hk+1 = ‖uk+1‖ and xk+1 = h−1

k+1
uk+1

Solve Ly = xk+1 and Uvk+2 = y

Set ÿk+1 = (vk+2, xk+1) and dk+1 = ‖vk+2 − ÿk+1xk+1‖
Update ÿk = min{dk+1∕dk, 1} andrk+1 = 2ÿk∕(1 + ÿ2

k
)

STOP if ‖dk+1‖< tol

end for

TABLE 3 Number of system solves using the shifted inverse iteration to find the largest eigenvalue with fixed and dynamic momentum

for the matrix A = diag(n ∶ −1 ∶ 1), with n = 1000.

ÿ ÿ = 0 dynÿk ÿopt ÿDM(10−1) ÿDM(10−2) ÿDM(10−4)

999.75 33 21 23 (4.44e-1) 25 (4.60e-1) 29 (4.45e-1) 32 (4.44e-1)

1000.25 23 17 18 (1.60e-1) 21 (1.59e-1) 22 (1.60e-1) 25 (1.60e-1)

1000.5 32 23 22 (1.11e-1) 26 (1.11e-1) 26 (1.11e-1) 31 (1.11e-1)

1001 49 33 29 (6.25e-2) 32 (6.39e-2) 32 (6.39e-2) 40 (6.25e-2)

1004 142 55 52 (1.00e-2) 56 (1.02e-2) 58 (1.03e-2) 80 (1.00e-2)

1016 478 88 95 (8.65e-4) 215 (7.43e-4) 134 (8.52e-4) 120 (8.73e-4)

1064 1691 163 175 (5.92e-5) 841 (4.55e-5) 525 (5.47e-5) 239 (5.93e-5)

Note: The optimal fixed extrapolation parameters ÿopt = 1∕(4(ÿ2 − ÿ)2) are shown after the number of solves in the ÿopt column, and the dynamically chosen

parameter ÿk is set as in Algorithm 5. The last three columns, ÿDM(10
−n),n = 1, 2, 4 contain the number of system solves for DMPOW, where the preliminary

deflation stage is terminated after the target eigenvalue reaches the relative tolerance of 10−n. The parameter is shown after the number of solves. Each iteration

is started from v0 =
(
1 1 · · · 1

)T
, and run to a residual tolerance of 10−15.

Compared with the base Algorithm 4, Algorithm 5 with dynamically chosen ÿk not only reduces the number of itera-

tions for each given shift, it also achieves a better iteration count with shifts more than twice as far away from the target

eigenvalue. This shows Algorithm 5 reduces the sensitivity to the shift in the standard inverse iteration.

Figure 5 shows the extrapolation parameters ÿk for three different shifts ÿ as shown in Table 3. The left plot shows {ÿk}

for ÿ = 1001. Denoting the eigenvalues of (A − ÿI)−1 as {ÿ̃i}, i = 1, … ,n, we have ÿ̃1 = −1, and ÿ̃2 = −1∕2 so that r = 0.5.

In this case ÿk oscillates above and below ÿopt. For ÿk < ÿopt, ÿ̃2 is non-oscillatory by (12), but each of the eigenvalues with

ÿ̃
2
∕4 < ÿ is oscillatory, and each decays at a slightly faster rate than ÿ̃2 by (14). As per Lemma 3, the approximation of r

by the detected convergence rate ÿk is stable, but the oscillations in rk+1 are not necessarily damped with respect to the

detected ÿk. For ÿk > ÿopt, all subdominant modes are oscillatory and decay at the same rate by (14), and the stability of

rk+1 with respect to ÿk still holds.

For the center plot in Figure 5, ÿ = 1016 so that r ≈ 0.94; and in the right plot ÿ = 1064 so that r ≈ 0.98.

In both of these cases, Lemma 3 shows that rk+1 is stable with respect to ÿk, and the difference between rk and r is

damped in comparison to the difference between the detected ÿk and ÿ; and moreso in the plot on the right.

Notably for the center figure with r ≈ 0.94, ÿk converges to ÿopt to within 10
−4, and for the right plot with r ≈ 0.98, ÿk

converges to ÿopt to within 10
−5.

This demonstrates how rk approaches r as r approaches one, as described in Lemma 3.

In Table 4 we show the results of a similar experiment to recover the smallest eigenvalue of thematrixA = diag(1000 ∶

−1 ∶ 1). We test shifts ÿ = {1.25, 0.75, 0.5, 0,−1,−4,−8,−16,−32}, a range of shifts with increasing distance from the

target eigenvalue ÿn = 1. Our results are similar to the largest eigenvalue case of Table 3.
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F IGURE 5 Behavior of ÿk with respect to ÿopt for representative examples from Table 3, illustrating that ÿk stabilizes closer to ÿopt in

agreement with Lemma 3 as r → 1. Left: ÿ = 1001, for which r = 0.5. Center: ÿ = 1016, for which r ≈ 0.94. Right: ÿ = 1064 for which r ≈ 0.98.

TABLE 4 Number of system solves using the shifted inverse iteration to find the smallest eigenvalue with fixed and dynamic

momentum for the matrix A = diag(n ∶ −1 ∶ 1), with n = 1000.

ÿ ÿ = 0 dynÿk ÿopt ÿDM(10−1) ÿDM(10−2) ÿDM(10−4)

1.25 33 21 23 (4.44e-1) 25 (4.60e-1) 29 (4.45e-1) 32 (4.44e-1)

0.75 23 17 17 (1.60e-1) 21 (1.59e-1) 22 (1.60e-1) 25 (1.60e-1)

0 49 33 29 (6.25e-2) 32 (6.39e-2) 32 (6.39e-2) 40 (6.25e-2)

−1 81 46 39 (2.78e-2) 41 (2.89e-2) 42 (2.86e-2) 57 (2.78e-2)

−4 171 58 57 (6.94e-3) 59 (6.97e-3) 64 (7.10e-3) 89 (6.95e-3)

−8 286 70 74 (2.50e-3) 119 (2.32e-3) 78 (2.52e-3) 120 (2.50e-3)

−16 505 91 97 (7.72e-4) 229 (6.58e-4) 143 (7.57e-4) 124 (7.79e-4)

−32 922 123 130 (2.16e-4) 444 (1.73e-4) 288 (2.03e-4) 177 (2.17e-4)

Note: The optimal fixed extrapolation parameters ÿopt = 1∕(4(ÿn−1 − ÿ)2) are shown after the number of solves in the ÿopt column, and the dynamically chosen

parameter ÿk is set as in Algorithm 5. The last three columns, ÿDM(10
−n),n = 1, 2, 4 contain the number of system solves for DMPOW, where the preliminary

deflation stage is terminated after the target eigenvalue reaches the relative tolerance of 10−n. The parameter is shown after the number of solves. Each iteration

is started from v0 =
(
1 1 · · · 1

)T
, and run to a residual tolerance of 10−15.

F IGURE 6 Residual convergence for representative examples from Table 4, illustrating the improvement in convergence for the

optimal and dynamic momentum acceleration for a variety of shifts. Left: ÿ = 1.25, for which r = 1∕3. Center: ÿ = 0, for which r = 0.5. Right:

ÿ = −8 for which r = 0.9.
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We see the ratio between the number of iterations in the dynamic method and the inverse iteration decreases as the

the shift increases. For instance, as the shift ranges between 0 and −32, the corresponding ratio between the number

of dynamic momentum iterations and inverse iterations without momentum decreases monotonically from 0.67 to 0.13.

In each case tested, the dynamic method is either comparable to or better than the momentum method with optimal

shift, and outperforms all of the DMPOW iterations. Figure 6 shows convergence plots for ÿ = 1.25, ÿ = 0 and ÿ = −8,

providing a visualization of the improved convergence rates from the dynamic Algorithm 5.

These examples illustrate the gain in convergence from this practical and low-cost acceleration method.

6 CONCLUSION

In this article, we introduced and analyzed a one-step extrapolation method to accelerate convergence of the power

iteration for real, diagonalizable matrices, and proved convergence to the dominant eigenpair with acceleration in the

symmetric case.

The method is based on the momentum method for the power iteration introduced in Reference 22, and requires a

single matrix-vector multiply per iteration. Unlike the method of Reference 22 and other recent variants such as Refer-

ence 1, the presently introduced technique gives a dynamic update of the key extrapolation parameter at each iteration,

and does not require any a priori knowledge of the spectrum.

We first reviewed some results on the analysis of a staticmethod of the form introduced inReference 22, by considering

the power iteration applied to an augmentedmatrix. Our analysis goes beyond that shown in the original article, revealing

that the augmented matrix is defective for the optimal parameter choice, which explains why slower convergence is

expected in the preasymptotic regime. We then analyzed our dynamic method showing both stability of the dynamic

extrapolation parameter and convergence of the method.

In the last two sections we numerically demonstrated the efficiency of the introduced dynamic Algorithm 3 as applied

to power and inverse iterations. We demonstrated that Algorithm 3 often outperforms the original static method with the

optimal parameter choice as given in Algorithm 2. We further showed Algorithm 3 performs favorably in comparison

to the method of Reference 1, which generally accelerates the power iteration but does not exceed the performance of

Algorithm 2. Finally, we showed that the introduced dynamic method is a useful tool to accelerate inverse power itera-

tions, and can be used to converge in as few iterations as having a shift twice as close to the target eigenvalue, and without

significant additional computational complexity. Future work will include the development of an analogous method

applied to (preconditioned) Krylov subspace projection methods as in References 11–13,21 to efficiently recover multiple

eigenpairs.
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