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1 | INTRODUCTION

| Yunrong Zhu?

Abstract

In this article, we propose, analyze and demonstrate a dynamic momentum
method to accelerate power and inverse power iterations with minimal compu-
tational overhead. The method can be applied to real diagonalizable matrices,
is provably convergent with acceleration in the symmetric case, and does not
require a priori spectral knowledge. We review and extend background results
on previously developed static momentum accelerations for the power iter-
ation through the connection between the momentum accelerated iteration
and the standard power iteration applied to an augmented matrix. We show
that the augmented matrix is defective for the optimal parameter choice. We
then present our dynamic method which updates the momentum parameter
at each iteration based on the Rayleigh quotient and two previous residuals.
We present convergence and stability theory for the method by considering a
power-like method consisting of multiplying an initial vector by a sequence of
augmented matrices. We demonstrate the developed method on a number of
benchmark problems, and see that it outperforms both the power iteration and
often the static momentum acceleration with optimal parameter choice. Finally,
we present and demonstrate an explicit extension of the algorithm to inverse

power iterations.

KEYWORDS

acceleration of convergence, dynamic parameter selection, eigenvector computation, extrapolation,
momentum method, power method

In recent years, there is a resurgence of interest in the power method, given its simplicity and ease of implementation.
This method to find the dominant eigenmode of a matrix can be applied in a variety of machine learning algorithms, such
as PCA, clustering, and low-rank matrix approximations (see References 1 and the references cited therein), PageRank,*®
and stability analysis of partial differential equations.’

There are a number of generalizations of the power method for large and often sparse systems that can be used to
compute extreme eigenvectors or blocks of eigenvectors, relying on matrix-vector multiplications rather than manipulat-
ing matrix entries. Among these are the Arnoldi iteration and its variants>®°; and for symmetric problems, the popular
locally optimal block preconditioned conjugate gradient (LOBPCG),'*!! and the related but more general inverse-free
preconditioned Krylov subspace methods.!?!* These methods all use the idea of iteratively projecting the problem onto a
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Krylov subspace of relatively small dimension where dense methods are used to solve a small eigenvalue problem. Addi-
tional methods close to this class include the Davidson'# and Jacobi-Davidson'> methods from computational chemistry
which use a similar idea, but introduce a preconditioner by which the vectors of the projection subspace are no longer
equivalent to a Krylov basis.

An alternate and complementary approach to accelerating eigenvector convergence in the power method is based
on extrapolation. The idea is to recombine the latest update with previous information to form the next iterate in an
approximation sequence. One of the best known methods in this class is Aitken’s acceleration®16(chapter9) yith extensions
to vector and e extrapolation methods including,>%!7-!8 to name a few. Recently, several new methods for accelerating the
power method with extrapolation have been developed, including, Reference 19 in which the power method is recast as
a non-stationary Richardson method; and Reference 20 which damps the largest subdominant eigenmodes to accelerate
convergence, and which introduces the idea of computing a dynamic extrapolation parameter based on a ratio of residuals.
A similar technique was used in Reference 21 to accelerate the Arnoldi iteration.

In Reference 22, a power method with an added momentum-type extrapolation term was introduced, based on the
well known heavy ball method of Reference 23. It was shown that this momentum term accelerates the convergence of
the power iteration for positive semidefinite matrices, and the optimal momentum parameter for the acceleration is given
by f = ﬂg /4 where 4, is the second largest magnitude eigenvalue of the matrix. A method to add a beneficial momentum
term without explicit knowledge of A, was proposed in Reference 22 as the Best Heavy Ball method, which relies on
multiple matrix-vector multiplications per iteration throughout the algorithm.

To improve upon this method, a delayed momentum power method (DMPower) was proposed in a more recent paper.!
The method involves a two-phase approach. The first is a premomentum phase consisting of standard power iterations
with inexact deflation, at a cost of three matrix-vector multiplies per iteration, to estimate both 4; and A,. The second
phase runs the method of Reference 22 with fixed momentum parameter f computed with the approximation to A, from
the first phase. An analysis is included of how many preliminary iterations are required to obtain a reliable approximation
to A,, based on a priori spectral knowledge.

In this article, we introduce a dynamic momentum method designed to accelerate the power iteration with minimal
additional cost per iteration. In the method proposed herein, the momentum parameter is updated at each iteration based
on the Rayleigh quotient and two previous residuals. Like the standard power iteration, this method requires only a single
matrix-vector multiplication per iteration. As we will see in Section 4, the introduced dynamic method outperforms not
only the power iteration, but also the static momentum method. We additionally show in Section 5 that the method is
beneficial when applied to a shifted inverse iteration.

We will consider matrix A € R™" with eigenvalues Ay, ... , 4, with [4;| > [42] > ... > |A,|. The results trivially gen-
eralize to the case where A, = 4, =--- =4, and |4;] > |Ar41| = ... > |4x]. As in Reference 20, our proposed method
dynamically updates parameters based on the detected convergence rate computed by the ratio of the last two residuals.

To fix notation, we can write the power iteration as

U1 = AN, Xea1 = By Uit Mg = [l |- 1)
The momentum method for the power iteration introduced in Reference 22, takes the form
U = AX — fh X1, X = R Uk, Pien = el ()

where f > 0 is the momentum parameter. As shown in Reference 22 and summarized in Section 2, an optimal choice of
pis /lg /4, where it is assumed that | A,| < | 4;]. Our proposed dynamic method based on iteration (2) takes the form

Us1 = A% — Bl X1, X = B Uksns B = [l - (3)

This method, described in Section 3, assigns the parameter f;, with minimal additional computation (and no additional
matrix-vector multiplies), producing a dynamically updated version of (2).

The remainder of this article is structured as follows. Sections 1.1 and 1.2 state the basic assumptions and reference
algorithms. In Section 2, we summarize convergence results for the “static” momentum method of Reference 22 through
the lens of the power iteration applied to an augmented matrix. While this approach was outlined in Reference 22, our
analysis goes a step further, showing that the augmented matrix is defective under the optimal parameter choice. In
Section 3 we present the main contributions of this article: our dynamic momentum Algorithm 3, and an analysis of
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its convergence and stability. Numerical results for the method are presented in Section 4. In Section 5, we present and
discuss Algorithm 5 to accelerate the shifted inverse iteration with momentum.

1.1 | Preliminaries

Our standard assumption throughout the article is the following.

Assumption 1. Suppose A € R™" is diagonalizable and the n eigenvalues of A satisfy [4;| > |42] > ... >
| An].

Under Assumption 1, let {¢1}1n=1 be a set of eigenvectors of A so that each (4, ¢) is an eigenpair of A.
In order to analyze the momentum method for A, which we will see is equivalent to a power iteration on an augmented
matrix, we will need to make a more general assumption on the augmented matrix.

Assumption 2. Suppose A € R™" and the n eigenvalues of A satisfy |A;| > |42] > ... > |44].

The key difference in Assumption 2 is the matrix is not necessarily diagonalizable. In this case we will still refer to the

eigenvectors as ¢1, ... , ¢, but will specify which if any are in fact generalized eigenvectors corresponding to a defective
eigenspace.

Throughout the article, || - || is the Euclidean or [, norm, induced by the [, inner-product denoted by (-, -).
1.2 | Reference algorithms

Next we state the power iteration (1) and the momentum iteration (2) in algorithmic form. The algorithm for the momen-
tum iteration will require a single preliminary power iteration, and the algorithm for the dynamic momentum method
to be introduced in Section 3 will require two preliminary power iterations.

The algorithm for the power iteration with momentum assumes knowledge of 4, to assign the parameter g = /lg /4
and implements the iteration (2).

Algorithm 1. Power iteration

Choose vy, set hg = |[vo|| and xo = h;'vg
Set V= AV()
fork > 0do
Set hg1 = ||Vl and xpyq = hl;l_lvk+1
Set Viyr = AXj
Set Vir1 = (Vir2, Xke1) and diyr = [[Vier2 — Vi1 X |l
STOP if ||y, || < tol
end for

Algorithm 2. Power iteration with momentum

Set f = A5/4
Do a single iteration of Algorithm 1 >k=0
fork >1do >k>1

Set uy1 = Vi1 — (B/hi)xk—1
Set hyy1 = |||l and Xy = h];l_luk+1
Set Viyz = AXiy1, Virr = Wie2, Xir1) and diyr = [[Viey2 — Vi1 X ||
STOP if [|djsy || < tol
end for
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2 | BACKGROUND: THE STATIC MOMENTUM METHOD

In this section we will review some results on Algorithm 2, the power iteration with momentum. To this end, we will
also review some standard supporting results on the power iteration, Algorithm 1, in both diagonalizable and defective
scenarios. These results will be useful to understand each step of the dynamic momentum method.

2.1 | Iteration (2) as a power iteration with an augmented matrix

As shown in Reference 22, the iteration (2) is equivalent to the first n rows of the standard power iteration (1) applied to

the augmented matrix
A —pI
Ay = ( > C))
I 0

To see this, consider the power iteration on Ay starting with X, in the first component (meaning the first n rows) and

Yo in the second, then writing
U Xi—1 AXp_1 — BYk—1
= Aﬂ = . (5)
Tk Yk-1 Xk—1

Normalizing each component by a scalar hy (to be discussed below) with x; = h;luk and yx = h;lzk = h;lxk_l yields the

iteration
U1 ) _ A, X\ _ (A% =By | _ [ Axe— Bl e . ©)
Zhe+1 Yk Xk Xy

The first component in (6) agrees with (2) if we choose hy = ||ux||. Although this is actually a semi-norm over the tuple
(uk, Zx), it is the most convenient choice for the sake of computing the Rayleigh quotient corresponding to the first
component at each iteration.

Hence the equivalence between iteration (2) and the power iteration given by (1) as applied to the augmented matrix
(4) holds, up to the chosen normalization factor.

Algorithm 2 explicitly performs this iteration starting with yo = 0 and = /lg /4, which we discuss further below.

The convergence of iteration (2) for general g € [0, /If /4, B # /Il.z /4,i=2, ... ,n, can be quantified in terms of the
convergence of the standard power iteration Algorithm 1. Under Assumption 1, this can be summarized as in Reference 8

(chapter 7) by
k k
) and 11 -ui =o(|2]). ™)

which follows by standard arguments from the expansion of initial iterate u, as a linear combination of the n eigenvectors
of A, namely uy = Y, ai¢;, by which

A

1

A

dist(span{xy},span{¢;}) = (9( 1
1

n a /1 k
Akuo=alﬂ§(¢1+§a—i<ﬁ> o ). (8)

In the case that Assumption 2 holds and A is not diagonalizable, that is, defective, the power iteration still converges
to the dominant eigenpair. This is the case for A; when g = A%/4 for any subdominant eigenvalue A of A, as we will see
in Proposition 1. For a general defective matrix A, if the eigenspace of 4, does not have a full set of eigenvectors then the
convergence is slow (like 1/k, where k is the iteration count), as shown for instance in Reference 16 (chapter 9). If, on the
other hand, Assumption 2 holds, A is defective, and the eigenspace for A; with J > 2 lacks a full set of eigenvectors, then
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the convergence of Algorithm 1 still agrees with (7), but only asymptotically. In particular, from Reference 16 (chapter 9),
if for | 45| < |41| we have A; = 4741 and the corresponding eigenspace has geometric multiplicity 1, then letting ¢, be a
generalized eigenvector with A¢y.1 = A;¢541 + ¢y, in place of (8) we have

g = a4 22 () +zn:ﬂ AW ©)
e E 0 7 L\ ).

1

Noting that (kA% /4%)/((k = )A%~2 /%) — 4; /4 as k — oo, we have the same asymptotic convergence rate as in the
non-defective case. This is important for the analysis of Algorithm 2 since as shown in the next proposition, the augmented
matrix A, is defective whenever g = 4% /4 for any eigenvalue A of A.

2.2 | Spectrum of the augmented matrix

By the equivalence between the first component of the power iteration on Az and Algorithm 2 as shown in (5)-(6), the
convergence rate of the momentum accelerated method of iteration (2) depends on ratio of the two largest magnitude
eigenvalues of A;. In order to understand the convergence properties of Algorithm 2 and later our dynamic version of this
method, the following proposition describes the spectral decomposition of A4 in terms of the eigenvalues and eigenvectors
of A.

Proposition 1. Suppose A satisfies Assumptionl. Then the 2n (counting multiplicity) eigenvalues of A, are
given by

pr=3 (A= VE=4), A€ (s ), (10)

In the case that 2> — 4f # 0, the eigenvectors of Ay corresponding to each eigenvalue y = A, are given by

where ¢ is the eigenvector of A corresponding to eigenvalue A.
In the case that f = A? /4 > 0, the matrix Ay is not diagonalizable. Moreover, if A is an eigenvalue of multi-
plicity m of A, then the eigenvalue u, = A/2 of Ay has algebraic multiplicity 2m and geometric multiplicity m.

We restrict our attention to § > 0 as iteration (2) reduces to (1) if # = 0. Before the proof of Proposition 1, we include
a corollary that follows immediately from its conclusions.

Corollary 1. If A satisfies Assumption 1 and p € (0, A2/4), then Ay as given by (4) satisfies Assumption 2.

Together, for symmetric matrices, Proposition 1 and Corollary 1 show that as the power iteration applied to the aug-
mented matrix Ay converges, the first component of the eigenvector converges to the dominant eigenvector of A for any
p € (0, ﬂf /4).If g = A2 /4 for anynonzero A = A, ... , Ay, then the matrix A, is defective, but courtesy of (9), the power iter-
ation will converge asymptotically at the same rate as in the diagonalizable case as given by (8), applied to the eigenvalues
OfA/).

Proof. The eigenvectors of Ay are related to the eigenvectors of A by noting that if ¢ is an eigenvector of A
with eigenvalue A then solving

Aﬂ(ﬂd)) = ;4("“’5), which reduces to <(W1 a ﬂ)d)) = y(#d)),
¢ ¢ up ¢

for u € C, yields the quadratic equation u? — Ay + p = 0. If § # A%/4, the 2n eigenvalues of A; are given by
(10), and the corresponding eigenvectors are given by (11).
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On the other hand, if g = 42/4 where A is an eigenvalue of A with algebraic multiplicity 1, then the
quadratic equation u? — Au + f = 0 has a repeated root u = A/2. To find the eigenvector(s) associated with u,
we can express the equation for null-vectors of Ay — uI as

(7 5)0)-0)

From the second component of the equation, u = gv. Applying this to the first component yields (A — gl )gv -

%Zv = 0, or Av = Av. This implies that v must be an eigenvector of A corresponding to eigenvalue A. Therefore,
the eigenspace for A, corresponding to the repeated eigenvalue 4 = 4/2 has dimension 1.
More generally, if A is an eigenvalue of algebraic and geometric multiplicity m > 1, then the argument

above can be applied to each eigenpair (4, (f)i), i=1,...,m, where {(f)};'z’ , is some basis for the eigenspace
corresponding to A. Then for # = A2/4, A, has an eigenvalue y = 1/2 with algebraic multiplicity 2m but with
geometric multiplicity m. [

From (10) of Proposition 1 we have three cases for each pair of eigenvalues of A4 corresponding to a real eigenvalue of
A, determined by the sign of the discriminant in (10). Define y, as the larger magnitude eigenvalue of A; corresponding
to eigenvalue A of A, and /i, as the smaller magnitude corresponding eigenvalue, in the case that y,  are real. If 4, _are
complex, define u; as having the positive imaginary component. Then . .

)22 > By = %(A +sign()VE =45 ), (12)

(2P =f ¢y = %ﬁ, (13)

(/22 < B i uy = +/Be®, with 6 = arctan(w / j—f - 1>, (14)

where (13) agrees with both (12) and (14) at # = (1/2)?, and is separately enumerated only for emphasis. In (14), it is
understood that § = x/2 when 4 = 0. Based on (14), we see § > A2/4 causes all real eigenvalues of A, to have equal

magnitude \/E

If A has complex eigenvalues, the complete set of eigenvalues can still be given by %(A + /A2 —4p ) applied to each
eigenvalue A of A, however the quantity in the square root may be complex.

We can now summarize the convergence properties of the standard power iteration (1) applied to the augmented
matrix Ay given by (4), hence iteration (2), for symmetric matrices A as follows. An alternate approach based on
Chebyshev polynomials shown for positive semidefinite matrices can be found in Reference 22.

Corollary 2. For 0 < < A2/4, the power iteration (1) implemented in Algorithm 1 applied to the augmented
matrix Ag of (4) for symmetric matrix A converges at the rate

2v/B 2 2
— VP R2/a< p< i2/4
N I R T ! (15)
| | 2V AEY 0<p<i2/4
|4 1+4/42—48
and asymptotically at the rate
A
K2, - 2] = ! with r = |4,/ A4, for p = A2/4. (16)

|”/11| Mfl|+ ,/13—4,6 1+v1-r2

The choice of f that optimizes the asymptotic convergence rateis f = /1% /4, for which the power iteration applied
to Ay and the power iteration with momentum Algorithm 2 applied to A converge asymptotically at the rate given

by (16).
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A comparison of p(r) vs. P for p(r) = r/(1 + /1 — r?), the rate given in (16). Left: p(r) compared with r?, for

p =1,2,3,4,6,10. Right: a detail plot of p(r) compared with r?, for p = 6, 10, 14, 20. The crossings between p(r) and r? are marked in each plot.

Asvisualized in Figure 1, the rate given by (16) is less than r for r € (0, 1), less than 3 for r € (0.786, 1), less than r* for
r € (0.878,1), and less than r° for r € (0.945, 1), etc. Hence the smaller the spectral gap in A, namely the closer r = |4,/ |
is to 1, the more beneficial it is to apply the acceleration.

Remark 1. Corollary 2 shows that the the power iteration applied to the augmented matrix A4 of (4) con-
verges to the dominant eigenpair (u,, w,) of A, at a faster rate then the power iteration applied to matrix A
converges to its dominant eigenpair (4, ¢). Proposition (1) shows that the dominant eigenvector of A is the
first component (the first n entries) of the dominant eigenvector of As for symmetric A. As the momentum
method (2) generates the first component of the power iteration for A (using a different normalization factor),
this method approximates the dominant eigenvector of A, and converges at the rate described in Corollary 2.
The dominant eigenvalue 4 of A can then be recovered by taking a Rayleigh quotient with the approximate
eigenvector. In practice the augmented matrix Ay is never formed, it is used here as a tool in the analysis of
iteration (2).

Proof. The main technicality in the proof of (15) is verifying that |fi; | < |u,|. Then from standard theory, for
example, Reference 8, the (asymptotic) rate of convergence to the eigenvector y; corresponding to u;, is given

by |44,/ 1.
Without loss of generality, suppose A; > 0. Then for any g € (0, 43/4), we have

A~ 1
M}lez(/ll— A%—4ﬂ>

By (12)-(14), we have |u,,| > \/E Hence to see that |fi; | < |u,,|, it suffices to show that |iy | < \/ﬁ This is
true since

The result (15) then follows directly from (12)—(14).
Next we show the asymptotic optimality of f = /15 /4. For this purpose, we consider the convergence rate
(15) as a function of g (for g # )é /4) defined as:

2VB
iyl +/2—4p
[4,144/ A2-4p
i+ 2—4p

/A< < A7/4,

h(p) =
0<p<Az/4
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FIGURE 2  Left: The ratio of eigenvalues u;_/u; and pu, /u, of the augmented matrix A, for A = diag(10 : —1 : —9) with g = 9%/4
(inner circle) and g = 9.9%/4 (outer circle). Right: convergence of the eigenmodes 1, y,, wy and wg, of the augmented matrix Ap for
A = diag(100 : -1 : 1) and f = 99%/4. All the subdominant modes converge at the same rate, but with increasing oscillation.

By direct calculation, we get h'(8) > 0 for f € (/15 /4, /1% /4), that is, the convergence rate is increasing with
respect to B. For g € (0, Ag /4), we have h/(B) < 0, so the convergence rate is decreasing on f. Hence by con-
tinuity, h(f) achieves a minimum at g = A; /4. We note that h(f) agrees with the convergence rate |u,, /u,, |
except when f = /lg /4. When g = /lg /4, the agreement is only asymptotic, that is |u;, /s, | = h(p). n

Two interesting observations follow from this analysis. First, as shown in Section 4, as well as in the numerical results
of Reference 22, iteration (3) with a well-chosen dynamically assigned sequence of parameters f, for which in general
P # /1% /4, can converge faster than the iteration (2) with the optimal parameter g = /1% /4. This can be explained by the
above analysis which shows the optimal parameter is only asymptotically optimal. Our results of Sections 4 and 5 show
that a close but inexact approximation to this parameter can give a better rate of convergence, at least in the preasymptotic
regime.

Second, for f € [ﬂg /4, 43 /4), except for u; and fi;, all the remaining 2n — 2 (complex) eigenvalues of A, (correspond-
ing to the eigenvalues A,, ... , 4, of A) have the same magnitude \//_3 according to (14). However, as the corresponding
eigenvalues /; of A with |4;| < |4;| decrease in magnitude, the argument 6 in (14) increases. This causes oscillatory con-
vergence at an increasing rate of oscillation for the subdominant modes. This is illustrated in Figure 2: the left plot shows
the ratio of eigenvalues y;_/u,, of A; plotted on the complex plane for # = 9°/4 (inner circle) and g = 9.92/4 (outer cir-
cle), where A = diag(10 : -1 —9). The right plot shows the magnitude of the 1st, 2nd, 8th, and 64th eigenmodes of the
power iteration Algorithm 1 applied to the augmented matrix A; for A = diag(100 : —1 : 1) with § = 99%/4. The plots
agree with the above analysis: the modes all decay at the same rate, but the modes of A4 corresponding to the eigenmodes
of A with smaller magnitude eigenvalues have larger imaginary parts, and their convergence is more oscillatory. The
above analysis also shows that if § > Af /4, then all eigenvalues of A; have the same magnitude. Therefore, if § > Af /4,
the augmented matrix Az does not satisfy Assumption 2, and neither the power iteration applied to A, nor iteration 2
applied to A, will converge.

3 | DYNAMIC MOMENTUM METHOD

We would like to use the acceleration of the momentum Algorithm 2, but without the a priori knowledge of 4,. A method
for determining an effective sequence of momentum parameters is presented in Reference 22 (algorithm 3), called the
Best Heavy Ball method. This method however requires five matrix-vector multiplications per iteration, as compared to
the single matrix-vector multiplication per iteration required by the standard power iteration Algorithm 1 or the momen-
tum accelerated power iteration?? presented here as Algorithm 2. This is improved upon in the DMPower algorithm of
Reference 1 which uses inexact deflation?*(¢hapter4) in a preliminary iteration to approximate 4,. However, the method is
sensitive to the approximation of 4,, and ensuring the approximation is good enough again requires a priori knowledge
of the spectrum. Additionally, the preliminary iteration is more computationally expensive, requiring 3 matrix-vector
multiplications per iteration.
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Algorithm 3. Dynamic momentum

Do two iterations of Algorithm 1 >k=0,1
Set r, = min{d,/d;, 1}
fork >2do >k>2

Set fi = v2r2/4
Set Ugr1 = Vg1 — (Br/Ii)Xi—1
Set hyy1 = ||ugs1 |l and xq = h;ilukﬂ
Set Vi = AXpy1, Virr = (ka5 Xer1) and digq = [[Visz — Vi1 X |
Update py = min{dis1/dx, 1} and rir = 2p/(1 + p})
STOP if || dysy || < tol
end for

Our approach for approximating the momentum parameter f = /15 /4 does not require any additional matrix-vector
multiplication per iteration. We obtain an expression for ry,1, as an approximation of r = |1,/ 4;| from the detected resid-
ual convergence rate px = di41/di by inverting the optimal convergence rate (16) for r in terms of p. This is justified in
Lemma 3. We then approximate A, by ry4; multiplied by the (computed) Rayleigh quotient approximation to 4;, which
yields the approximated momentum parameter fi. The resulting dynamic momentum algorithm is presented below.

Lemma 3 and Remark 3 in the next section show that assigning i1 by 141 = 2p1/(1 + pi), obtained by inverting the
asymptotic convergence rate (16) of the optimal parameter , gives a stable approximation to r and hence to . In fact, the
approximation becomes increasingly stable as r gets closer to unity.

The next remark describes the role of the subdominant eigenmodes in the residual.

Remark 2. The residual di as given in Algorithms 1-3 is given by dy = ||Axx — vkxk|| where the Rayleigh
quotient vy is given by (Axk, xi). Let x; = Z?zlal(k)dn where {ql)l};“=1 is the eigenbasis of A. Then

die = || Y (haO ) - Z(vw}%)” =1 2 = vaV ¢ ’ (17)
1=1 I=1 1=1
The detected convergence rate py is given by
n _ (k+1)
d_ ||E = e g .
e |2 g

We will consider the preasymptotic regime to be that in which 4; — v is not negligible in comparison to the
coefficients al(k), I > 1, which will be seen to decay. In the asymptotic regime, we have vy ~ 4; hence (18)
reduces for practical purposes to

k
”Z?:z(/ll - Vk+1)al( +1)¢z”
Pk =

~ HZ?:z(ﬂl—Vk)“z(k) (m” : (19)

In the usual analysis of the power iteration, coefficients al(kH) decay like 4;/4; at each iteration as in (8),
hence eventually (19) is dominated by the maximal such ratio 4,/4;. In contrast, in the case of the augmented
matrix Ay , for each of the eigenmodes with 12/4 < fi, each of the corresponding eigenvalues has the same
magnitude; and, as shown in (14) increasing imaginary parts as corresponding eigenvalues of A decrease.
Hence it is not necessarily the case that the second eigenmode will dominate (19) through most of the iteration.
The oscillation of the subdominant modes is the main reason we will see the sequence of convergence rates
pk fluctuate in the dynamic algorithm.

However, the stability of 7, with respect to px shown in Lemma 3 controls the oscillations in 7, with respect
to px, and substantially damps them in the case that » = |4, /4,] is close to unity. In this case there is a more
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substantial relative gap between the convergence rate for the second eigenmode and the higher frequency

modes, so long as some of the f§ satisfy i < 42/4, which is generally the case. Then the second eigenmode

(k)
l

Remark 4, where it will be shown that a;k) is controlled by the product of eigenvalues of the sequence of
augmented matrices Ag_corresponding to 4; of A. The differences in convergence behavior between smaller
and larger values of r are highlighted in Section 5.

does (eventually) tend to dominate the residual. A further discussion of the coefficients o, will be given in

The following subsection takes into account the nontrivial detail that the dynamic Algorithm 3 differs from a standard
power method in that a different augmented matrix Ay, is applied at each iteration.

3.1 | Convergence theory

In Section 2.1, we interpret the convergence of the momentum method with constant § as a power method applied to the
augmented matrix Az. However, this perspective no longer precisely holds for Algorithm 3 as the parameter fy is subject
to change at each step. Consequently, the corresponding augmented matrix Az _changes at each step as well. This presents
a significant challenge in the analysis of the dynamic momentum algorithm.

For ease of presentation, we next define some notation to be used throughout the remainder of this section. Let

a0 = (4 %) ang AV =4, = AT s
I 0 ’ I 0

where A© is the augmented matrix with § = 0. As in Section 1.1, let {¢y}_, be an eigenbasis of A, with corresponding
eigenvalues {4 }ln=1' For each eigenpair (4, ¢;) of A, denote (yf), wl(j)) the corresponding eigenpair of AY where Ml(i) is the
eigenvalue with larger magnitude defined in (12)—-(14). Then by (11)

)

j e

ll/l(]) = b
(]

fOI‘j Z 0 Wlth ﬂl(o) = ﬂl.

In the first technical lemma of this section we show the effect of applying a sequence of augmented matrices with
changing parameter f; to each eigenmode of A.

Lemma 1. Let A satisfy Assumptionl, let (A, ¢) be an eigenpair of A, and let u" be the corresponding eigenvalue
of AY, as in Proposition 1. Let 6 = u® — u®. Define P!(u) to be a product of i terms u®, where 1 < k < j, and
P(5) to be a product of i terms 5y, where 0 < k,p < j. Then

)] (0) ¢ : (O] S : @ 5 i i e
4040 ) = (TTH0 + Yo [T w0+ XP@P 0 5
1 k=1 =2

" . L (20)
e u®¢

R (an zmam—m)( . )
i=1 i=2

This lemma shows that applying the sequence of augmented matrices AV - - - A® to each eigenmode of A yields a
perturbation to multiplying the eigenmode of AY associated with eigenmode ¢ of A by u®u@ - - . 9. The higher-order
in 6 terms of (20) are given in a form that will be used in the next technical lemma. The P¥() notation is introduced to
state the relevant result without keeping track of the specific factors in each product.

Proof. The proof relies on two repeated calculations. First, for any «,

GG
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AUSTIN ET AL.

where 4@ := A. Second,

A(k) #(/)(l) =A(k) /’l(k)(,b +A(k) 5jk¢ =”(k) /"(k)d) +A(k) 6}k¢
¢ é 0 ¢ 0

where the last term in (22) is the result of (21).
Starting with (21), and proceeding to apply (22) we have

A(O) ) _ M(O)d) ’
0 @
A A<°>< ¢> _ ﬂ(1)<y(1)¢> + 6 ( M(O)qﬁ)’
0 ¢ ¢

@ @ ¢ u®¢ ¢
AD AW A<o>( = 4@ 0 + 6120 + o u® + 60sb01
0 ¢ ¢ ¢ ¢

2) ©)
= (4@ u +601u<2>)(” ¢¢) + (8121 +P2(5))<” ¢¢).

One more iteration reveals the form of the higher order terms.

3) (0)
A(3)A(2)A(1)A(0)< ?)) — (M(z)ll(l) + 501#(2)) <,U(3) <” ¢¢> + 65 <ﬂ ¢¢>>

)
¢
:(ﬁmﬁm(n+5m¢®<®+5u¢9(D+P%&PWD< - >

H®¢
+ (823u@ U + PASP(u) + P3(5)) s )

Now we may proceed inductively. Suppose

o0 ;=AU)-'~A(O)< ) (H'u(l) + 25" 1k H u + 27) (&P (u ))(M(:d))

i=1,i#k
1 . o ©
+ <5j—1JH/4“) + ZP’(cS)P"l(M)) (’“’ ¢d’>.
i=1 i=2

We will show

Jj+1 Jj+1 M(j+1)¢
o0+ = Hu(‘) + Zak w [T W+ ZP @GP )\

i=1,i#k

j J+l ©
< jij+1 H + Zpi(‘s)PHl_iﬂ)) <ﬂ¢¢>-

i=1 i=2

Wl LEY 11 of 24

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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The base step of the induction is satisfied by (26). For the inductive step, applying (22) to ATV ® yields

J Jj-1 J J-1
AFDPD = M(i+1){ <H”<i) + 251{_1’1{ H u® + Zpi(é)Pj—i(u)>

i=1 k=1 i=1,i#k i=2

L G+
+ <5j_1,;]'[u<‘> + ZP’(é)P’_l(M)) } (” ’ d’)
i=1 i=2

{ ,,+1<Hu<l> + Zak 1k H u® + ZP @P l(m)

i=1,i#k
Jj-1 J (0)
. . - ue¢
+50J+1<6j_u]'[u<” + ) PP ‘(u)) }( ’ >
i=1 i=2

which after multiplying though and combining the P(-) terms of like order agrees with (28). [

This establishes the result (20). The next step in the argument is to generalize the first component of the initial vector
used in Lemma 1 from a single eigenmode of A to a linear combination of eigenmodes of A, to arrive an an estimate
analogous to (8).

Lemma 2. Let A satisfy Assumptionl. Let 6;;x = “z(l) (k) . As in Lemma 1, define P'(u)) to be a product of i

terms yl(k), where 1 < k < j, and P(8)) to be a product of i terms O1ip, where 0 < k,p < j. Let uy = zlzlalq’)l,

linear combination of the eigenvectors of A. Then it holds that the product APAY=D ... A© <16°> satisfies

oo (3B

i
+ Y a P )] WP + Z—lpl(éz)Pj_l<ﬂ>‘/’z(}) 29)
i=1 =N M
j . )
+ Zalpj_l(ﬂl){‘l’io)pwl) + Za_lpl((Sl)P’_l (M—I>WI(O) }
=1 1= 41 1

Supposing additionally that yii) > O p for any ik, p =1, ... ,j,and l > 2, then as j increases, the product
AVATD ... AOy, aligns to a linear combination of q/ ) and w(o).

The proof shows additional detail on the (O(5) terms, as revealed in Lemma 1. This lemma shows that the product of the
sequence of matrices AV ... A© applied to a vector with a general first component, uy € R" and null second component
0 € R" aligns with a vector whose first component is the dominant eigenvector ¢, of A. It will be shown in Theorem 1 that
the convergence is similar to the power method with (4;/4,) as in (8) replaced by the product (y(l) )) / (/4(1) . uf)).
The appreciable difference in the convergence is from the contribution of the 6-scaled terms Wthh are in the directions of
the eigenvectors (’) and w(o) withl =1, ... ,n. As we will see in Theorem 1 and Remark 4, these terms will not interfere
with convergence or the asymptot1cally expected rate, due to the stability of the parameters f;, as shown in Lemma 3.

Proof. First by applying linearity and (20) we have

AD .. (0)< ) Zaz AD .. <0><¢l>

n j J-1 )
= Zm(Hul + Zézk 1k H '+ Zpi(51>7)f—i<m)> (“ l¢"”> (30)
=1 i=1

i=1,i#k i=2 I

n J- ) ) o 0)
+ Zm(éu-ul_[uf” + 27’1(51)7’1‘1(#1)> (” ’¢¢l>.
=1 i=1 i=2

1
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Now we will examine each term of (30).
We rewrite the first term in the right hand side of (30) as

S (1 o o (11 ) ot B2 (1120 o}

This is similar to (8) and displays convergence to y; so long as the other terms do not interfere. The second
term in the right hand side of (30) can be written as

lzfalgélk 1k< 11 /4“’)

i=1,i#k

- j i
. Hy

=za1< 1 M){m ol + 32 a( 1 W)w},
k=1 i=1,i#k i=1,i#k M1

which is an ((6) term where the factors of Mll) / y(l) multiplying the subdominant eigenmodes are one power
lower than in the dominant term (31). The higher order terms multiplying the eigenvectors of A? are

(32)

n Jj-1 Jj-1 n

. - ; - N a . - P
Y a Y PEP (g = Y a P ’(m){wl“)Pl(al) + 2 PP ’<f>wl“>}. (33)
=1 =2 i=2 1=2 "1 1

Next, we look at the terms of (30) multiplying the eigenvectors 1//(()0) of A©, The lowest order term is ©(8)
and is given by

n j-1 j-1 a j-1 M(i)

@ ) _ ] 0) l 1 0)
12:40151J—1,;(I_ 1| H, >— al<l 1I My ){51J—1JU/1 + a—15l,j—1,;<l 1|F>ll/l } (34)
= i= i= i= 1

Last we have the higher order terms

n J n
PP O _ g, p Opi(s Y pics Pf—f<ﬂ> © L 35
Z:‘a'(g‘ &) (m)) Zal (m){wl <1>+l§,a1 @GP 2 v (35)

Sweeping the results of the more detailed (32) into (33), and likewise (34) into (35) yields the result (29).
Finally, the alignment of the product (29) to a combination of u/}’) and 1//{0) follows from noting each ratio

(yl’)/y(’)) < 1 and applying the hypothesis ;4(’) > Siip foranyi,k,p=1, ... ,j,and [ > 2. "

The next lemma shows that if p is an e perturbation of p = |u/u1|, then ryy; is an € perturbation of r, where £ < 2¢
for p € (0,1), and € — 0 as p — 1. This means the smaller the spectral gap in A, the more stable the dynamic momentum

method becomes.
Lemma 3. Let p € (0,1) and consider € small enough so that (2pe + €%)/(1 + p?) < 1. Let py = p + € and define
T = 2p1/(1 + p}), as in Algorithm 3. Then
2(1 - p?)
A+ p22
The condition (2pe + €2)/(1 + p?) < 1 is satisfied for p € (0,1) by £ < 0.71.

Fesn =T +€+O(*) withe=¢ (36)

Proof. For r = |4,/ 41| the asymptotic convergence rate of iteration (2) is p = r(1 + V1 — r?)7}, as given by
(16), when g = /13 /4. Inverting this expression for r in terms of p yields

2p
14 p%

r= (37)
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14 of 24 Wl LEY AUSTIN ET AL.

Suppose the detected convergence rate px = di41/dy is an e perturbation of p, meaning px = p + €. Expanding
Yir1 = 2p1 /(1 + pi) in ¢ yields

2p + 2e
1+(p+e)2 1+(p+e)?

Tyl =

2p 1 2¢ 1

T 1|1 | T T 2| T e (38)
1+p2 1+p?
2 2p€ + €2

=2 (1-2EE L oed) ) + 2 1 0.

1+ p? 1+ p? 1+ p?
Applying (37) to (38) yields
1 2 A~ 2 ~ 1
a1 =r{l1+el=—=r) ) +0E)=r+e+0E"), wheree=rel = —r ). (39)

P P

Applying (37) to (39) yields the result (36), by which £ < 2¢ for p € (0,1), and € < ¢ for p € (0.486,1),0r r €
(0.786, 1). Moreover as r getting closer to unity, the approximation becomes more stable, with £ < 0.161 - ¢ for
r € (0.99,1) and € < 0.0468 - £ for r € (0.999, 1). n

The stability of fx = (rvi)?/4 in Algorithm 3 is inherited directly from the stability of ry, once v sufficiently converges
to 11 .

Remark 3. Another way to view how close fi is to f = fop = /lg /4 with respect to r, and p, viewed as
perturbations of r and p is to consider p; written as

ry1+¢e/r?
Pr = )
1+v1-r2(1+¢/r?)

for some & with —r> <& <1 -1 Applying rey1 = 2p/(1 + p7) we then have rgyy = rv/1+¢/r2, by which
P =r*(1 + e/rz)vi+l/4. For viy1 & A this yields

A2 A2
2 1
X —+e—,
ﬁk+1 4 4

which shows how perturbations ri with respect to r result in perturbations to f with respect to .

Now we can summarize the results of this section in a convergence theorem.

(k)

> and let ug = > 1L.a;¢;, a linear combination of

Theorem 1. Let A satisfy Assumption 1. Let §;;x = Ml(i) — U
the eigenvectors of A.
If A is symmetric then fi < A7/4 for all k. Then (29) holds and Algorithm 3 converges to the dominant

eigenpair.
Here we proceed by assuming generically that none of the g take a value of exactly equal to A?/4 for any eigenvalue

A of A. This is a reasonable assumption due both to floating point arithmetic, and that as shown in Lemma 3, the f only
converge to /lg /4 asr — 1, and we are always in the circumstance that r < 1.

Proof. By the definitions of p; and ry, we have ri < 1. Since v is the Rayleigh quotient with approximate
eigenvector x4, and symmetric 4, it follows that g, < A2/4.

We will start by developing bounds on the ,uf) and the 6;; x, and in the process will verify the final hypothesis
of Lemma 2 by verifying |6, x| < max{ |;41(i)|, | yl(k)l}. We will also see that &;;x — 0 as f; — fx — 0 for each 4;.
Consider 4 = 4; # 0. There are three cases we need to consider. Without loss of generality, suppose f; > fk.
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(i) If 22/4 > f; then 4" and ¥

are given by (12), and |y(1)| e [|Al/2,]|4]] forl=2

, n. Since we have

B < A7/4 we have Iu(l)l € (JA411/2, | A11]- To bound &y we have

i A
w1 = i - vizang | < 2

It is clear from continuity and (40) that §;;x — 0 as f; —

b))+ ... |.
(i) If /4 < B;, B < A2/4 then ,u(’) and ”z(

how, yielding |6;;| = |(fi —

satisfies

k
< Ul < 11°). (40)

Pr — 0. We can also expand to first order to see

are given by (14), and we have | y(l)l = \/E In this case 6

(1) k)l _ |\/_1 /1— 22/(4B;) — \/E‘/l — 22/(4B) ’ Iﬂ[z)l (41)

From continuity and (41) it is clear that §;;x — 0 as fix — f; = 0. Expanding (41) to first order to see how,

yields |u” — p| =

(iii) If fr < /12 /4 < B;, then we have

O_ 0 _ A 2
Ml ﬂl _5+5 A

by which | — 1| = v/ = b <

|(VB = VB — 22/8) + ... |.

(AL
(2+2\/’1

VB = 11P.

Combining with the above results, we have |6y ,| < max{ |,ul(k)|, |/41(p)| },forany Lk,p=1, ... ,j.

) = 1Vap— 72 - VP =g,

We now have by Lemma 2 that as j increases, the product AVAU=D ... A© <l:)°> aligns with a linear combi-

nation of u/ ) and y/(o)

X+1\ 1 [ Un
Yi+1 i Zj+1

where h; = ||uj||. Applying (29) to (42), we have

()2 ) 2

I

()2

D P (uy)

Asin Section 2.1, we now analyze the convergence of Algorithm 3 by the convergence of

)‘ " (Hh )AU)AU‘l)-~-A(°)(L;O>, (42)
J

)

{ )p(5)+2“’73(5)7ﬂ ‘<” )w, } (43)

+ <1j!hli>;alpf-i(u1){ 0)7) 5y + 2 zp(5 Vpi- l< >Wl(0)}.

Distributing through the normalization factors in (43) yields

Uj1 a ] H(l) (]) a / ”l(l) (,)
J 1
== +

i—1 .
Lya <Pf“(ﬂ1)><
= ho i

~

n
i) ami a
vy PG+ ) —
=2

n .
) Pi(s .
y P + Y ——— @) P"l<ﬂ>wf°) :
s hy M

Pi(6))
J
! Hk:j—i+1h'k

i—i M (0)
pi-i
<m >"’l (44)

k=j—i+1
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By the arguments above, (Z ) >ahgns with a linear combination of w ) and y/(O) both of which have first
s+

components in the direction of ¢; . This further shows that the Rayleigh quotient v, = (Ax,xx) — 41, by which
the residual (17) converges to zero. n

We conclude this section with a heuristic discussion of the coefficients of each eigenmode that appear in the residual,
as per Remark 2.

Remark 4. By Theorem 1, the Rayleigh quotient vy converges to 4;. As in Remark 2, we consider the asymp-
totic regime where v, & 4;, so that the ratio between consecutive residuals py is well approximated by

j+1
||Z?=2(ﬂl - Vj+1)011(]+ )d’l”

T, = val (45)
H

From (45), and the definition of the eigenvectors of the augmented matrix in (11), the coefficients al("ﬂ), [>2
are given by

i=1

a0 = H’“ { <Hu“’>+Z(ﬂ?)+1>Pf—l<ul>Pl(5l>+Pf(&)} (46)

We next make the argument that the first term inside the brackets in (46) dominates the others.

From Theorem 1, each 6;; satisfies |6;;x| < max{yl(‘), ,ul(k)} Referring to the proof of Lemma 1, each of
the factors of 6;;x have either the form 6;,-1 or 60, where p ranges from 1 to j + 1. As per the discussion in
Theorem 1, the terms of the form 6;,_1 , go to zero as the f, — § = 43/4. By Lemma 3, considering the detected
convergence rate pi as a perturbation of the theoretically optimal rate p, the computed approximation ry; to
r = |4/ A1] is restricted to a tighter interval about » when r is closer to one. By this argument, and Remark 3,
Pr+1 is restricted to a small interval around f (smaller as r getting closer to 1). So as j increases, terms with of
the form 6;;_; ; become negligible. By these arguments, each of the terms under the sum of (46) should be of
equal order or less than the first term, and as j increases, additional terms under the sum should be essentially
negligible.

By inspecting the proof of Lemma 1, the final term in (46) can be seen to be 601610 - - - 610. By the same
arguments above, this term should also be of equal order or less than the first, although 6, is not in general
expected to become neghglble asj increases. In conclusion, the coefficients a(’) are dominated by the products

of the eigenvalues /4 ,i=1, ... ,].

4 | NUMERICAL RESULTS

In this section, we include four suites of tests comparing the introduced dynamic momentum method Algorithm 3 with
the power method Algorithm 1 and the static momentum method with optimal g = A% /4 as in Algorithm 2. We include
additional comparisons in the first three test suites with the delayed momentum power method (DMPOW)! (@lgorithm 1) 1py
the last test suite we include comparisons with Algorithm 2 with the parameter f replaced by small perturbations above
and below the optimal value.

In our implementation of DMPOW we do not assume any spectral knowledge, and we consider 20, 100, and 500
preliminary power iterations with deflation in the preliminary stage to determine an approximation of 4,. As each of the
preliminary iterations contains 3 matrix-vector multiplications, that number where it is reported exceeds the number of
total iterations for DMPOW as it includes both stages of the algorithm. The other methods tested each require one matrix-
vector multiply per iteration. We found we were able to improve the performance of DMPOW by choosing wy, which is
the the initial approximation to the second eigenvector, to be orthogonal to u, (denoted g, in Reference 1). We used this
technique in DMPOW for all reported results.
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All tests were performed in Matlab R2023b running on an Apple MacBook Air with 24GB of memory, 8 core CPU with
8 core GPU. Throughout this section, each iteration was run to a maximum of 2000 iterations or a residual tolerance of
107'2. We include tests started from the fixed initial iterateup = (1 1 --- 1)T so that the results can be reproduced, as
well as tests starting from random initial guesses via u0 = (rand(n,1)-0.5) ;.To run Algorithm 2 which requires
knowledge of 4,, we recovered the first two eigenvalues using eigs (A, 2) . We emphasize that we did this for comparison
purposes only, and that our interest is in developing effective methods that do not require any a priori information of the
spectrum.

4.1 | Testsuite1l

Our first test suite consists of three symmetric positive definite (SPD) benchmark problems. All three matrices have
similar values of r ~ 0.999. This first is a diagonal matrix included for its transparency. The second matrix Kuu is used as
a benchmark in Reference 21. The third, Muu features 4, = 4;, so we demonstrate replacing A, with A; in Algorithm 2.
Our dynamic Algorithm 3 works as expected without modification.

Matrix 1: A = diag(1000 : —1 : 1). This matrix is a standard benchmark with r = 0.999.

Matrix 2: A = Kuu from Reference 25, with n = 7102. This matrix has leading eigenvalues 4, = 54.0821 and
Ay = 53.9817, with r = 0.9981.

Matrix 3: A = Muu from Reference 25, with n = 7102. This matrix has leading eigenvalues 4, = 1073 x 0.8399,
A = 1073 x 0.8398 and A3 = 1073 x 0.8391. Using eigs, 4; and A, agreed to 1074, and Algorithm 2 did not
converge using f = 13/4. The results shown use § = A3/4, as 13 is the second largest eigenvalue for this
matrix. Taking in this case r = A3/ 4, yields r = 0.9992.

Figure 3 shows iteration count vs. the residual norm using Algorithm 1, DMPOW with 20, 100 and 500 prelimi-
nary iterations, Algorithm 2, and Algorithm 3. Each iteration was started with the initial up = (1 1 --- l)T. The

preliminary iterations of DMPOW were started with wy = (— 11 -1 1-- ~)T, so that wy is orthogonal to ug. In
the first two cases, we see the dynamic method Algorithm 3 converges at approximately the same asymptotic rate
as Algorithm 2, though in the second case the latter has an extended preasymptotic regime. The three DMPOW
instances work essentially as they should for Matrix 1 and Matrix 2, where the approximation of A, from the defla-
tion method, hence the approximation of f,; = /1% /4 improves as the preliminary iterations are increased. For Matrix
1 DMPOW with 500 preliminary iterations does appear to achieve the optimal convergence rate. In Matrix 3 on
the right, only the dynamic method Algorithm 3 achieves a steady optimal convergence rate. Algorithm 2 initially
stalls then achieves a good but suboptimal rate. DMPOW with 500 preliminary iterations achieves an apparently opti-
mal but oscillatory convergence rate, with sub-optimal rates with 100 and 20 preliminary iterations. The oscillatory
behavior of DMPOW suggests that the approximation to A, is greater than A,, hence all subdominant modes are
oscillatory, via (12).

—+—Power —+—Power —+—Power

100 -2~ DMPOW(20) -=DMPOW@0) || 10-51 -2~ DMPOW(20)
e DMPOW(100) ® e DMPOW(100) e DMPOW(100)
E - DMPOW(500) £ ~<-DMPOW(500) | £ - DMPOW(500)
8 ~=-Optimal t 2 \ |-=Optimal t ] 2 = Optimal t
c ptimal momen n c 5 ptimal momen e ptimal momen N
© 5 - Dynamic moment w 10 { Dynamic moment || © |~=Dynamic moment |
S 10 - ] - 4 S <
e e} °
[72] [72] [72]
o o g 110"

1010 107
500 1000 1500 2000 ' 500 1000 1500 2000 500 1000 1500 2000
iterations iterations iterations

FIGURE 3 Convergence of the residual by iteration count for the three matrices in test suite 1, using Algorithm 1, DMPOW with 20, 100
and 500 preliminary iterations, Algorithm 2, and Algorithm 3. Left: Matrix 1, diag(1000 : —1 : 1); center: Matrix 2, Kuu; right: Matrix 3, Muu.
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TABLE 1 Minimum and maximum number of matrix-vector multiplies to residual convergence for 100 runs of the power method
(Algorithm 1), DMPOW run with 20, 100, and 500 preliminary iterations, the power iteration with optimal momentum (Algorithm 2) and
the power iteration with dynamic momentum (Algorithm 3), applied to Matrix 4-Matrix 7.

Matrix 4 Matrix 5 Matrix 6 Matrix 7
Method min max min max min max min max
Power 247 359 1088 1583 2000 2000 2000 2000
DMPOW(20) 125 746 197 655 2040 2040 2040 2040
DMPOW(100) 340 376 415 1735 1281 2200 1318 2200
DMPOW(500) 1503 1503 1575 1626 1767 3000 1970 3000
p= 15/4 71 86 152 179 241 288 550 640
Dynamic g 66 96 133 175 255 652 470 612

Note: Each run used a randomly generated initial vector.

4.2 | Testsuite 2

The second test suite consists of four matrices. The first three are symmetric indefinite and the fourth is SPD with
increasing gaps between the smaller eigenvalues.

Matrix4: A =ash292 from Reference 25, with n = 292. This matrix has leading eigenvalues 4; = 9.1522 and
Ar = 8.3769, with r = 0.9153. It is symmetric indefinite.

Matrix 5: A = bcspwr06 from Reference 25, with n = 1454. This matrix has leading eigenvalues 4; = 5.6195 and
Ay = 5.5147, with r = 0.9814. It is symmetric indefinite.

Matrix 6: A = diag(linspace(—99,100,200)). This matrix has n = 200, 4; = 100, 4,3 = +99, and r = 0.99. It is
included to test the sensitivity to positive and negative leading subdominant eigenvalues.

Matrix 7: A = diag(10—1logspace(0, 1,200)). This matrix has n = 200, 4; = 9, 1, = 8.9884, and r = 0.999. It is
included to test the sensitivity to increasing gaps between smaller eigenvalues.

Results of the experiments with the second set of matrices is shown in Table 1. We see that the dynamic Algorithm 3
shows more sensitivity to initial vector than does the static algorithm with optimal parameter 2 in the indefinite cases, and
particularly for the highly indefinite Matrix 6. From the results for Matrix 7, we see that increasing the spacing between
the smaller eigenvalues does not cause increased sensitivity to uy. We can also see that Algorithms 2 and 3 significantly
outperform the others on all tests in this suite.

4.3 | Testsuite 3

For the third test suite, we generated 100 symmetric matrices with unit diagonal, and quasi-randomly generated normally
distributed off-diagonals with mean zero and standard deviation one,viav = ones(n,1); vl = randn(n-1,1);
A = diag(v,0) + diag(vl,1l) + diag(vl,-1) ;.For each matrix, we checked the ratio r = |1,/4;]|. Over the
100 matrices, the values of r ranged from 0.7944 to 0.9996, with mean value 0.9491 and standard deviation 0.0455. Each
run was started with the initial iterate uy = (1 1 - 1)T.

Table 2 shows the results. While Algorithm 2 with optimal fixed § has the lowest minimal number of iterations over
100 runs, dynamic Algorithm 3 has the lowest mean and maximum iteration count. For these two methods the iteration
count is the same as the reported number of matrix-vector multiplies. On the other hand, DMPOW with 20, 100, and 500
preliminary iterations each had at least one run that did not terminate after 2000 total iterations (preliminary included),
and all three of the DMPOW methods had a substantially higher minimum number of matrix-vector multiplies than
either the optimal or dynamic methods.
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TABLE 2 The number of matrix-vector multiplies and terminal residual for 100 runs of the power method (Algorithm 1), DMPOW run
with 20, 100 and 500 preliminary iterations, the power iteration with optimal momentum (Algorithm 2) and the power iteration with
dynamic momentum (Algorithm 3).

Matrix-vector multiplies Terminal residual

Method mean std. dev. min max min max

Power 905.42 658.728 96 2000 8.74e-13 4.89e-04
DMPOW(20) 439.15 528.614 101 2040 6.31e-13 4.43e-04
DMPOW(100) 498.3 295.655 302 2200 2.15e-13 7.95e-12
DMPOW(500) 1600.55 196.335 1502 3000 1.78e-13 4.96e-06
p= /1%/4 162.22 160.065 40 1183 6.02e-13 9.99e-13
Dynamic g 150.15 133.842 63 949 5.66e-13 1.00e-12

Note: Each run used pseudo-randomly generated tridiagonal matrix v = ones(n,1); vl = randn(n-1,1); A = diag(v,0) + diag(vl,1) +
diag(v1,-1) ;,and the same initial vector ug = (1 1 --- l)T.
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FIGURE 4 Convergence of the residual by iteration count for the three matrices in test suite 4, using Algorithm 1, Algorithm 2 with
B = Bopt = A3/4, with f = min{1.01 X By, (347 + 42)/16}, B = 0.99 X B, and and Algorithm 3. Left: Matrix 8, Si5H12; center: Matrix 9,
ss1; right: Matrix 10, thermomech_TC.

4.4 | Testsuite4

In this fourth suite of tests, we consider three problems of varying structure and scale, and which have eigenvalues of
varying magnitudes. The dynamic momentum Algorithm 3 is tested against the power method 1, the static momen-
tum Algorithm 2 with optimal parameter § = Ag /4, and perturbations thereof, f_ = 0.99 X f,;, and f, = min{1.01 X
Popt» (342 + 42)/16}. The parameters f, and f_ are within 1% of f,, but do not exceed 47 /4, which as per Section 2 would
prevent convergence.

Matrix 8: A = Si5H12 from Reference 25, with n = 19,896. This matrix has leading eigenvalues 4; =58.5609 and
Ay = 58.4205, with r = 0.998. It is symmetric indefinite.

Matrix 9: A = ss1 from Reference 25, with n= 205,282. This matrix has leading eigenvalues 4; = 1.3735 and
Ay = 1.3733, with r = 0.9998. It is nonsymmetric.

Matrix 10: A = thermomech TC, with n = 102,158. This matrix has leading eigenvalues 4; = 0.03055 and
Ay = 0.03047, with r = 0.9975. It is SPD.

Convergence of the residual in each case is shown in Figure 4. Each of the tests was started from the initial vector
Upg = (1 1 - l)T. The results show the dynamic method 3 is not sensitive to the scaling of the eigenvalues which
vary in each of the examples. The results also show a better rate of convergence with g, than with g_, but at the cost of
a potentially extended preasymptotic regime. For ss1 (Matrix 9) shown in the center plot, the dynamic method shows
some initial oscillations but does not suffer for the extended asymptotic regime that f,,; and f, experience.
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5 | DYNAMIC MOMENTUM METHOD FOR INVERSE ITERATION

As an immediate extension of Algorithm 3, this section explores the application of the dynamic momentum method to
accelerate the shifted inverse power iteration. The shifted inverse iteration is a well-known and powerful technique in
the numerical solution of eigenvalue problems. A review of the method including its history, theory and implementation
can be found in Reference 26. By appropriately choosing shifting parameters, the inverse iteration with shift can be used
to identify any targeted eigenpair. When a good approximation of the targeted eigenvalue is available, the method is
remarkably efficient. As the inverse iteration with shift ¢ is equivalent to applying the power iteration on the matrix
(A — oD)7! (with the same eigenvectors as those of A), the analysis carried out in Section 3.1 is directly applicable to the
Algorithm 5 below.

Each step of the inverse iteration involves solving a linear system. For a fixed shift, one can perform a factorization
of the shifted matrix before the iterative loop to save some computational cost. Unlike updating the shift to attain faster
convergence, applying a momentum acceleration does not require a re-factorization of the matrix. As shown below, the
momentum accelerated algorithm substantially reduces the number of iterations to convergence, particularly for sub-
optimal shifts. Presumably, the use of a sub-optimal shift indicates the user does not have a good approximation of the
target eigenvalue, by which the user is unlikely to have a good approximation of the second eigenvalue of the shifted
system. Hence the automatic assignment of the extrapolation parameter f is essential for this method to be practical. For-
tunately, as seen below, the proposed method with dynamic g is comparable to or outperforms the optimal parameter in
each case tested. Numerical experiments below illustrate the improved efficiency, particularly with the dynamic strategy.

In our implementation of DMPOW in this section we terminated the preliminary iterations in the deflation stage
when the target (second) eigenvalue achieved a given relative tolerance, that is in the notation of Reference 1, |(y; —
Hj-1)/ pj| < 107". We show results using n = 1, 2,4. We implemented DMPOW as a shifted inverse iteration as follows,
referring to the implementation given in Reference 1 (algorithm 1): We replaced the multiplication by A in line 2 with a
multiplication by (A — ¢I)~!, implemented as a solve of the LU-factored system, and the multiplication by A — P in line
6 with a multiplication by (4 — 6I)7!, again implemented as a solve of the factored system, and a multiplication by P. We
replaced the multiplication by A in line 8 to compute the Rayleigh quotient corresponding to the second eigenvalue as
a multiplication by A — oI. We did this rather than multiplying by (A — 6I)~! to reduce the number of system solves per
iteration from three to two, with little to no effect on the total iteration count.

Just as Algorithm 3 requires two preliminary power iterations, the dynamic momentum strategy for the inverse itera-
tion requires two preliminary inverse iterations. For tests in this section, we ran iterations to a residual tolerance of 10713
or a maximum of 2000 iteration. In this section we also numerically verify the stability of the extrapolation parameter g
as shown in Lemma 3 and Remark 3.

The dynamically accelerated version of Algorithm 4 follows.

In Table 3 we show results for accelerating the inverse iteration used to recover the largest eigenvalue of the matrix A =
diag(1000 : —1 : 1). We test shifts ¢ = {999.75, ... ,1064}, chosen with increasing distance from the target eigenvalue
A1 = 1000 to see how much a suboptimal shift can be made up for with the extrapolation.

We see the dynamic momentum method and the “optimal” fixed momentum parameter give the best performance,
with the dynamic method converging in fewer iterations as the shift increases away from the target eigenvalue. The
performance of the DMPOW iteration is intermediate between the base inverse iteration and the dynamical momentum
method.

Algorithm 4. Inverse power iteration

Choose vy and shift ¢, set hy = |[vo|| and xo = h Lo

Compute (A — ol) = LU > Compute LU factors of A — o1
Solve Ly = xo and Uv; =y
for k > 0do

Set g1 = [|Vis1 |l and Xy = hl;l_lvk+1
Solve Ly = X431 and Uvgyp, =y
Set Vir1 = (Vir2, Xke1) and diyr = [[Vier2 — Vi1 X |l
STOP if ||di41 ]| < tol
end for
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Algorithm 5. Dynamic momentum for inverse iteration

Do two iterations of Algorithm 4 >k=0,1
Set r = min{dz/dl, 1}
fork > 2 do >k>2

Set fx = virﬁ/4
Set Ug1 = Vg1 — (Br/hi)Xi—1
Set hy1 = ||ugs1ll and x4 = h];l_luk+1
Solve Ly = xi41 and Uvg,, =y
Set viy1 = (Vs Xier1) and di1 = [V — Vi1 X |l
Update pi = min{di1/dx, 1} andris = 2p/(1 + p})
STOP if [|djs1 || < tol
end for

TABLE 3 Number of system solves using the shifted inverse iteration to find the largest eigenvalue with fixed and dynamic momentum
for the matrix A = diag(n : —1 : 1), with n = 1000.

c p=0 dynpy Bopt Bom(107Y) Bom(107%) Bom(10~%)
999.75 33 21 23 (4.44e-1) 25 (4.60e-1) 29 (4.45¢-1) 32 (4.44e-1)
1000.25 23 17 18 (1.60e-1) 21 (1.59%-1) 22 (1.60e-1) 25 (1.60e-1)
1000.5 32 23 22(1.11e-1) 26 (1.11e-1) 26 (1.11e-1) 31 (1.11e-1)
1001 49 e 29 (6.25¢-2) 32 (6.39%-2) 32 (6.39%-2) 40 (6.25¢-2)
1004 142 55 52 (1.00e-2) 56 (1.02¢-2) 58 (1.03¢-2) 80 (1.00e-2)
1016 478 88 95 (8.65¢-4) 215 (7.43¢-4) 134 (8.52¢-4) 120 (8.73¢-4)
1064 1691 163 175 (5.92e-5) 841 (4.55¢-5) 525 (5.47¢-5) 239 (5.93¢-5)

Note: The optimal fixed extrapolation parameters f,; = 1/(4(4; — 6)?) are shown after the number of solves in the Pop: column, and the dynamically chosen
parameter f is set as in Algorithm 5. The last three columns, fpy(10™"), n = 1, 2,4 contain the number of system solves for DMPOW, where the preliminary
deflation stage is terminated after the target eigenvalue reaches the relative tolerance of 107". The parameter is shown after the number of solves. Each iteration
is started from v, = (1 1 - 1) T, and run to a residual tolerance of 10712,

Compared with the base Algorithm 4, Algorithm 5 with dynamically chosen f not only reduces the number of itera-
tions for each given shift, it also achieves a better iteration count with shifts more than twice as far away from the target
eigenvalue. This shows Algorithm 5 reduces the sensitivity to the shift in the standard inverse iteration.

Figure 5 shows the extrapolation parameters f for three different shifts ¢ as shown in Table 3. The left plot shows { f }
for ¢ = 1001. Denoting the eigenvalues of (A — ¢I)"' as {4;},i =1, ... ,n,wehave A, = —1,and 1, = —1/2so thatr = 0.5.
In this case fi oscillates above and below fp;. For fic < Bopt, 1, is non-oscillatory by (12), but each of the eigenvalues with
7 /4 < p is oscillatory, and each decays at a slightly faster rate than 1, by (14). As per Lemma 3, the approximation of r
by the detected convergence rate py is stable, but the oscillations in ry;; are not necessarily damped with respect to the
detected py. For fx > Pop:, all subdominant modes are oscillatory and decay at the same rate by (14), and the stability of
Fie+1 With respect to py still holds.

For the center plot in Figure 5, o = 1016 so that » ~ 0.94; and in the right plot ¢ = 1064 so that r ~ 0.98.

In both of these cases, Lemma 3 shows that r,; is stable with respect to py, and the difference between r, and r is
damped in comparison to the difference between the detected px and p; and moreso in the plot on the right.

Notably for the center figure with r &~ 0.94, i converges to f,; to within 10, and for the right plot with r ~ 0.98, f
converges to fop to within 107°.

This demonstrates how r, approaches r as r approaches one, as described in Lemma 3.

In Table 4 we show the results of a similar experiment to recover the smallest eigenvalue of the matrix A = diag(1000 :
—1 : 1). We test shifts ¢ = {1.25,0.75,0.5,0, -1, -4, —8,—16, —32}, a range of shifts with increasing distance from the
target eigenvalue 4, = 1. Our results are similar to the largest eigenvalue case of Table 3.
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FIGURE 5 Behavior of §, with respect to f,,; for representative examples from Table 3, illustrating that f stabilizes closer to f,; in
agreement with Lemma 3 as r — 1. Left: ¢ = 1001, for which r = 0.5. Center: ¢ = 1016, for which r =~ 0.94. Right: ¢ = 1064 for which r =~ 0.98.

TABLE 4 Number of system solves using the shifted inverse iteration to find the smallest eigenvalue with fixed and dynamic
momentum for the matrix A = diag(n : —1 : 1), with n = 1000.

c p=0 dynpy Bopt Bon(1071) Bonr(1072) Bon (1074
1.25 33 21 23 (4.44e-1) 25 (4.60e-1) 29 (4.45¢-1) 32 (4.44e-1)
0.75 23 i 17 (1.60e-1) 21 (1.5%-1) 22 (1.60e-1) 25 (1.60e-1)
0 49 33 29 (6.25€e-2) 32 (6.39e-2) 32(6.39¢-2) 40 (6.25€e-2)
-1 81 46 39 (2.78¢-2) 41 (2.89%-2) 42 (2.86¢-2) 57 (2.78¢-2)
—4 171 58 57 (6.94¢-3) 59 (6.97¢-3) 64 (7.10e-3) 89 (6.95¢-3)
-8 286 70 74 (2.50e-3) 119 (2.32¢-3) 78 (2.52¢-3) 120 (2.50e-3)
_16 505 91 97 (7.72¢-4) 229 (6.58¢-4) 143 (7.57¢-4) 124 (7.79¢-4)
_32 922 123 130 (2.16¢-4) 444 (1.73¢-4) 288 (2.03¢-4) 177 (2.17e-4)

Note: The optimal fixed extrapolation parameters f,, = 1/(4(4,_1 — 6)*) are shown after the number of solves in the f,,, column, and the dynamically chosen
parameter Sy is set as in Algorithm 5. The last three columns, fp)(10™"), n = 1, 2,4 contain the number of system solves for DMPOW, where the preliminary
deflation stage is terminated after the target eigenvalue reaches the relative tolerance of 107". The parameter is shown after the number of solves. Each iteration
is started from v, = (1 j 1) T, and run to a residual tolerance of 10~1°.
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FIGURE 6 Residual convergence for representative examples from Table 4, illustrating the improvement in convergence for the
optimal and dynamic momentum acceleration for a variety of shifts. Left: ¢ = 1.25, for which r = 1/3. Center: ¢ = 0, for which r = 0.5. Right:
o = —8 for which r = 0.9.
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We see the ratio between the number of iterations in the dynamic method and the inverse iteration decreases as the
the shift increases. For instance, as the shift ranges between 0 and —32, the corresponding ratio between the number
of dynamic momentum iterations and inverse iterations without momentum decreases monotonically from 0.67 to 0.13.
In each case tested, the dynamic method is either comparable to or better than the momentum method with optimal
shift, and outperforms all of the DMPOW iterations. Figure 6 shows convergence plots for ¢ = 1.25,6 = 0 and ¢ = -8,
providing a visualization of the improved convergence rates from the dynamic Algorithm 5.

These examples illustrate the gain in convergence from this practical and low-cost acceleration method.

6 | CONCLUSION

In this article, we introduced and analyzed a one-step extrapolation method to accelerate convergence of the power
iteration for real, diagonalizable matrices, and proved convergence to the dominant eigenpair with acceleration in the
symmetric case.

The method is based on the momentum method for the power iteration introduced in Reference 22, and requires a
single matrix-vector multiply per iteration. Unlike the method of Reference 22 and other recent variants such as Refer-
ence 1, the presently introduced technique gives a dynamic update of the key extrapolation parameter at each iteration,
and does not require any a priori knowledge of the spectrum.

We first reviewed some results on the analysis of a static method of the form introduced in Reference 22, by considering
the power iteration applied to an augmented matrix. Our analysis goes beyond that shown in the original article, revealing
that the augmented matrix is defective for the optimal parameter choice, which explains why slower convergence is
expected in the preasymptotic regime. We then analyzed our dynamic method showing both stability of the dynamic
extrapolation parameter and convergence of the method.

In the last two sections we numerically demonstrated the efficiency of the introduced dynamic Algorithm 3 as applied
to power and inverse iterations. We demonstrated that Algorithm 3 often outperforms the original static method with the
optimal parameter choice as given in Algorithm 2. We further showed Algorithm 3 performs favorably in comparison
to the method of Reference 1, which generally accelerates the power iteration but does not exceed the performance of
Algorithm 2. Finally, we showed that the introduced dynamic method is a useful tool to accelerate inverse power itera-
tions, and can be used to converge in as few iterations as having a shift twice as close to the target eigenvalue, and without
significant additional computational complexity. Future work will include the development of an analogous method
applied to (preconditioned) Krylov subspace projection methods as in References 11-13,21 to efficiently recover multiple
eigenpairs.
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