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A B S T R A C T 
The orbits of some warm Jupiters are highly inclined (20 ◦–50 ◦) to those of their exterior companions. Comparable misalignments 
are inferred between the outer and inner portions of some transition discs. These large inclinations may originate from planet–
planet and planet–disc secular resonances that sweep across interplanetary space as parent discs disperse. The maximum factor 
by which a seed mutual inclination can be amplified is of the order of the square root of the angular momentum ratio of the 
resonant pair. We identify those giant planet systems (e.g. Kepler-448 and Kepler-693) that may have crossed a secular resonance, 
and estimate the required planet masses and semimajor axes in transition discs needed to warp their innermost portions (e.g. 
in CQ Tau). Passage through an inclination secular resonance could also explain the hypothesized large mutual inclinations in 
apsidally-orthogonal warm Jupiter systems (e.g. HD 147018). 
Key words: planets and satellites: dynamical evolution and stability – planets and satellites: formation – planet–disc interac- 
tions – protoplanetary discs. 

1  I N T RO D U C T I O N  
Most planetary systems are flat (e.g. Winn & F abryck y 2015 ; Zhu & 
Dong 2021 ), but some are not. In addition to large stellar obliquities 
measured for single planets using the Rossiter–McLaughlin effect 
(e.g. Albrecht, Dawson & Winn 2022 ; Dong & Foreman-Mackey 
2023 ; Siegel, Winn & Albrecht 2023 ), large mutual inclinations 
between planets have been suspected or confirmed. Dawson & 
Chiang ( 2014 ) proposed that certain warm Jupiters are inclined by 
i mut ≈ 40 ◦ relative to exterior super-Jupiter companions, based on 
their relative apsidal orientations. Transit duration variations imply 
substantial misalignments in the warm Jupiter systems Kepler-448 
( i mut = 20 + 17 

−12 ◦, Masuda 2017 ), Kepler-693 ( i mut = 53 + 7 
−9 ◦, Masuda 

2017 ), Kepler-108 ( i mut = 24 + 11 
−8 ◦

, Mills & F abryck y 2017 ), and 
WASP-148 ( i mut = 21 + 5 

−5 ◦, Almenara et al. 2022 ). The inclination 
between a cold Jupiter and inner super-Earth in π Men is astromet- 
rically constrained to lie between 49 ◦ < i mut < 131 ◦ (Xuan & Wyatt 
2020 ). 

Some protoplanetary discs also exhibit large misalignments/warps. 
More than a dozen transitional discs (defined as having large cavities) 
are observed in scattered light to be shadowed by circumstellar 
material closer to their host stars (Benisty et al. 2022 ). Azimuthally 
extended shadows are cast by close-in discs inclined by ∼10 ◦ relative 
to their outer discs (e.g. Stolker et al. 2016 ; Debes et al. 2017 ; Stolker 
et al. 2017 ; Muro-Arena et al. 2020 ), while narrow, diametrically 
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opposed shadows are cast by the nodes of more highly inclined inner 
discs ( ∼30 ◦–90 ◦; e.g. Marino, Perez & Casassus 2015 ; Benisty et al. 
2017 ; Long et al. 2017 ; Casassus et al. 2018 ; Pinilla et al. 2018 ; 
Uyama et al. 2020 ; Ginski et al. 2021 ). Supporting evidence for 
misaligned discs comes from interferometric imaging (e.g. Kluska 
et al. 2020 ; GRAVITY Collaboration et al. 2021 ; Bohn et al. 2022 ) 
and CO kinematics (e.g. Casassus et al. 2015 ; Loomis et al. 2017 ; 
Mayama et al. 2018 ; P ́erez et al. 2018 ; Bi et al. 2020 ; Kraus et al. 
2020 ). 

One mechanism for exciting inclinations is secular resonance. 
When two bodies precess nodally at the same rate, angular momen- 
tum can be efficiently transferred between them, lifting one orbit 
while lowering the other and amplifying i mut in the net. Analogously, 
when apsidal precession rates match, eccentricities can change dra- 
matically. Two planets can be driven through a secular resonance by 
their parent protoplanetary disc; as disc material depletes, planetary 
precession frequencies change, and can momentarily match. Secular 
resonance crossings driven by the depletion of the solar nebula 
may have excited the inclinations and eccentricities of the terrestrial 
planets, asteroids, and Kuiper belt objects (e.g. Ward, Colombo & 
Franklin 1976 ; Heppenheimer 1980 ; Ward 1981 ; Nagasawa & Ida 
2000 ; Nagasawa, Tanaka & Ida 2000 ; Nagasawa, Ida & Tanaka 2001 , 
2002 ; Hahn 2003 ; Zheng, Lin & Kouwenho v en 2017 ). 1 Extrasolar 
versions of this scenario have also been invoked to explain warm 
Jupiter eccentricities (e.g. Nagasawa, Lin & Ida 2003 ; Petrovich, 
1 Of course, direct gravitational scatterings (close encounters) can also play a 
role; see, e.g. Nesvorn ́y ( 2018 ) and Bro ̌z et al. ( 2021 ). 
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Wu & Ali-Dib 2019 ; Teyssandier & Lai 2019 ) and spin-orbit 
misalignments of hot Jupiters (e.g. Lubow & Martin 2016 ; Martin 
et al. 2016 ; Spalding & Batygin 2017 ; Vick, Su & Lai 2023 ) and sub- 
Neptunes (Petrovich et al. 2020 ; Epstein-Martin, Becker & Batygin 
2022 ). Petrovich et al. ( 2020 ) showed how a secular resonance 
between a gas giant and an interior sub-Neptune, both embedded 
in a decaying disc, could lift the sub-Neptune onto a polar orbit ( i mut 
≈ 90 ◦). 

We extend the works of Petrovich et al. ( 2020 ) and others by 
studying how the mutual inclinations of giant planets embedded in 
decaying transitional discs can be amplified by secular resonance 
passage. Our moti v ation includes misaligned giant planet systems 
like Kepler-448 and Kepler-693 (Masuda 2017 ), and the proposed 
class of mutually inclined, apsidally orthogonal warm Jupiters 
(Dawson & Chiang 2014 ). We also investigate how an inner disc 
can be tilted out of the plane of an outer disc by the action of an 
intermediary, gap-opening planet. Here, we build upon the disc- 
tilting calculations of Owen & Lai ( 2017 ) to study the parameter 
space occupied by transition discs shadowed by low-mass inner 
discs (Francis & van der Marel 2020 ; van der Marel et al. 2021 ). 
Section 2 lays out the basic theory for how a secular resonance 
crossing can excite the inclination and eccentricity of an inner warm 
Jupiter (Section 2.1 ), and the inclination of an inner disc (Section 
2.2 ). Section 3 revisits the Dawson & Chiang ( 2014 ) hypothesis 
and updates the observed distribution of apsidal angles to see what 
might be inferred about mutual inclinations (Section 3.1 ), and then 
examines how introducing the stellar spin and mass quadrupole 
affects our general results (Section 3.2 ). Section 4 summarizes and 
connects further with the observations. 
2  INCLINATION  A N D  ECCENTRICITY  
E X C I TAT I O N  F RO M  O U T E R  DISC  MASS-LOSS  
Consider a planet inside the cavity of a disc. The planet’s longitude 
of pericentre # and longitude of ascending node $ precess at rates 
proportional to the disc’s mass. As the disc’s mass decreases, the 
magnitudes of the precession frequencies | #̇ | and | ̇$| decrease as 
well. If multiple bodies reside inside the cavity – a pair of planets, 
or a planet and an inner disc – their precession frequencies can be 
tuned down such that their respective apsidal or nodal longitudes 
align, or anti-align, for extended periods of time. As the bodies pass 
through such symmetric orbital configurations, angular momentum is 
transferred efficiently between them, with potentially large changes 
in eccentricity and inclination. 
2.1 Two planets in a transition disc 
We consider two planets surrounded by an outer disc. The disc’s 
mass is prescribed to decrease with time. We compute the dynamical 
evolution in two ways, first using the Laplace–Lagrange secular 
equations (Section 2.1.1 ), and then with an N -body simulation 
(Sections 2.1.2 –2.1.3 ). 
2.1.1 Laplace–La grang e theory 
Planet eccentricities e , pericentre longitudes # , inclinations i , and 
nodal longitudes $ evolve according to 
d e 1 
d t = e 2 g 12 sin %# (1) 
d e 2 
d t = −e 1 g 21 sin %# (2) 

d # 1 
d t = ( f 12 + f 1d ) − g 12 e 2 

e 1 cos %# (3) 
d # 2 
d t = ( f 21 + f 2d ) − g 21 e 1 

e 2 cos %# (4) 
d s 1 
d t = −f 12 s 2 sin %$ (5) 
d s 2 
d t = f 21 s 1 sin %$ (6) 
d $1 
d t = −( f 12 + f 1d ) + f 12 s 2 

s 1 cos %$ (7) 
d $2 
d t = −( f 21 + f 2d ) + f 21 s 1 

s 2 cos %$, (8) 
where subscripts 1 and 2 denote the inner and outer planet, %# = 
# 2 − # 1 , %$ = $2 − $1 , and s = 2 sin 1 2 i. The planet-induced 
precession frequencies are 
f 12 = Gm 1 m 2 a 1 

a 2 2 L 1 b (1) 
3 / 2 (a 1 

a 2 
)

(9) 
g 12 = Gm 1 m 2 a 1 

a 2 2 L 1 b (2) 
3 / 2 (a 1 

a 2 
)

(10) 
f 21 = L 1 

L 2 f 12 , g 21 = L 1 
L 2 g 12 , (11) 

for gravitational constant G , planet mass m , semimajor axis a 
(conserved in this secular theory), leading-order angular momentum 
L k = m k √ 

GM " a , stellar mass M " , and Laplace coefficient b (Mur- 
ray & Dermott 2000 ; Pu & Lai 2018 ). The disc-induced precession 
frequency of planet k is 
f kd = Gm k a k 

L k 
∫ r out 

r in 2 π&( r) 
r b (1) 

3 / 2 (a k 
r 
)

d r, (12) 
where we assume the disc’s surface density profile follows 
&( t , r) = m d ( t ) 

πr out r , (13) 
with a disc mass that decays exponentially with time 
m d ( t) = m d0 e −t/t d . (14) 
Note that for now we do not include the back-reaction of the 
planets onto the disc; this restriction is relaxed in our N -body 
calculation in Section 2.1.2 . The equations are solved using the 
scipy.integrate.odeint integrator in python . 

Fig. 1 displays an example evolution for two giant planets with 
m 1 = 1 m J and m 2 = 10 m J , located at a 1 = 0.8 au and a 2 = 3.2 au 
from a star of mass M " = M &. Initial eccentricities and inclinations 
are e 10 , i 10 = 0.02, and e 20 , i 20 = 0.1, and initial longitudes are # 10 , 
# 20 , $10 , $20 = 0. For the disc, m d0 = 0.1 M &, r in = 4.2 au, r out = 
150 au, and t d = 1 Myr. Such a m d0 value is comparable to disc mass 
estimates for Class 0/I sources (e.g. Jørgensen et al. 2009 ; Tobin et al. 
2015 ; Segura-Cox et al. 2018 ; Andersen et al. 2019 ), and necessary 
for a secular resonance crossing for our giant planet parameters. Over 
the course of the integration, as disc mass m d decreases, we see e 1 
and i 1 amplify at the expense of e 2 and i 2 . The changes are fastest 
when %# ≈ π and %$ ≈ π. The apsidal and nodal anti-alignments 
are prolonged by the matching of frequencies #̇ 1 with #̇ 2 , and $̇1 
with $̇2 . 

Looking more closely at these precession frequencies, we see 
from equations ( 3 )–( 4 ) and ( 7 )–( 8 ) that they are each composed of 
two terms. One contribution to the frequency depends on the degree 
of misalignment, either %# or %$; this planet–planet interaction 
frequency oscillates rapidly and attains large v alues, positi ve or 
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Figure 1. Secular resonance crossing of two planets inside a decaying transition disc, computed with the N -body code REBOUND (Rein & Liu 2012 ), and 
separately with Laplace–Lagrange theory (equations 1 –8 ). The inner planet’s parameters are { m 1 , a 1 , e 10 , i 10 } = { 1 m J , 0 . 8 au , 0 . 02 , 0 . 02 } (with subscript 0 
denoting initial conditions, and the reference plane equal to the initial plane of the transition disc), and the outer planet’s parameters are { m 2 , a 2 , e 20 , i 20 } = 
{ 10 m J , 3 . 2 au , 0 . 1 , 0 . 1 } . Modelled as a point mass in the N -body simulation, the disc has { m d0 , a d0 } = { 0 . 22 M &, 14 . 3 au } , while in our Laplace–Lagrange 
treatment, the disc has { m d0 , r in , r out } = (0 . 1 M &, 4 . 2 au , 150 au ); these parameters yield similar times of resonance crossing when apsides and nodes are anti- 
aligned ( %# ≈ %$ ≈ 180 ◦). As computed using Laplace–Lagrange theory, the maximum eccentricity and inclination (equations 21 and 22 ) of the inner planet 
are shown as black horizontal dotted lines, while dot–dashed blue and orange lines are solutions from an analytic model for secular resonance passage assuming 
anti-aligned apses and nodes (the ‘ −’ branches of equations A4 and A5 ). For the N -body data on #̇ and $̇, dark blue and orange curves are time-averaged 
o v er a moving window of duration 18 kyr, while for the corresponding Laplace–Lagrange data, dashed curves are non-oscillatory contributions to precession 
frequencies (equations 15 –18 ). Vertical dotted red lines mark when these non-oscillatory frequencies match and the secular resonance is crossed. 
ne gativ e, whenev er eccentricity or inclination become small. By 
contrast, the other non-oscillatory frequencies 
d # 1 
d t 

∣∣∣∣
non −osc = f 12 + f 1d (15) 

d # 2 
d t 

∣∣∣∣
non −osc = f 21 + f 2d (16) 

d $1 
d t 

∣∣∣∣
non −osc = −( f 12 + f 1d ) (17) 

d $2 
d t 

∣∣∣∣
non −osc = −( f 21 + f 2d ) (18) 

change much more gradually with time as the outer disc loses mass. 
These slowly varying frequencies, plotted as dashed curves in Fig. 1 , 
cross at a time marked with a vertical red dotted line. At this moment 
of ‘secular resonance crossing’, mean eccentricities and inclinations 
change fastest. 

We can place bounds on how much eccentricities and inclinations 
grow by examining the constants of motion admitted by equations 
( 1 )–( 2 ) and ( 5 )–( 6 ): 
1 
2 L 1 e 2 1 + 1 

2 L 2 e 2 2 = constant (19) 
1 
2 L 1 s 2 1 + 1 

2 L 2 s 2 2 = constant . (20) 

When the outer planet has much more angular momentum than the 
inner ( L 2 ' L 1 , as is the case in Fig. 1 ), the maximum eccentricity 
and inclination that can be attained by the inner planet depend on the 
outer planet’s initial conditions: 
e 1 , max ( 

√ 
L 2 
L 1 e 20 (21) 

i 1 , max ( 2 sin −1 ( √ 
L 2 
L 1 sin 1 

2 i 20 
) 

. (22) 
Fig. 1 demonstrates that e 1 and i 1 come close to their respective 
maxima after the secular resonance crossing. Appendix A and 
Section 2.1.3 explore in more detail why L 2 > L 1 and passage through 
anti-aligned states are preferred for inclination and eccentricity 
excitation. 
2.1.2 N-body 
We solve the same problem as abo v e (two planets inside a decaying 
outer disc) now using the REBOUND N -body code outfitted with the 
IAS15 integrator (Rein & Spiegel 2015 ). The outer disc is modelled 
as a point particle whose mass m d decays exponentially with time 
constant t d = 1 Myr; to effect this, we use the REBOUNDx routine 
modify mass (Kostov et al. 2016 ; Tamayo et al. 2020 ) setting 
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mass loss = −t d . The initial disc mass of 0.22 M & and initial 
semimajor axis of a d = 14.3 au are chosen to yield a secular resonance 
crossing time comparable to that in our Laplace–Lagrange solution 
abo v e ( ∼0.7 Myr). Modelled as a point particle just like the planets, 
the disc has an eccentricity e d and inclination i d that are free to vary; 
in practice they do not deviate much from their initial values of 0, as 
the disc contains the lion’s share of the system’s angular momentum 
(this assumption eventually breaks down as m d decreases to zero, 
resulting in a slight increase in e d and i d at late times t ! 5 Myr , not 
plotted). 

Fig. 1 shows that the N -body solution broadly matches the 
Laplace–Lagrange solution – e 1 and i 1 increase while e 2 and i 2 
decrease as a result of a secular resonance crossing. In the N -body 
evolution, the magnitude of the changes in eccentricity and inclinaton 
are more muted, apsidal and nodal anti-alignments between planets 
1 and 2 are more short-lived, and precession frequencies match only 
momentarily and not at all after the secular resonance is crossed. 

By modelling the disc as a particle in our N -body simulation, 
we neglect how planets excite and interact with waves in the disc 
(e.g. Goldreich & Tremaine 1980 ; Tanaka & Ward 2004 ). Most 
rele v ant to our study are long-wavelength apsidal and nodal waves 
that can exchange angular momentum with a planet (Goldreich & 
Sari 2003 ). Our N -body particle treatment does allow for angular 
momentum exchange between the disc and planets, but neglects how 
that exchange depends on the wave nature of apsidal and nodal 
disturbances in the disc. 
2.1.3 Parameter space exploration ( N -body) 
In Fig. 2 , we explore how changing the angular momenta of the 
outer planet + disc (while keeping L 2 > L 1 ) and separately, the disc 
depletion time, affect the eccentricity and inclination evolution of 
the inner planet in our N -body runs. As the outer bodies’ angular 
momenta are increased, the final i 1 increases as well, respecting 
i 1, max . A similar trend plays out for e 1 . We also see that the excitation 
of e 1 and i 1 do not much depend on t d , presumably as long as the 
decay time exceeds the secular oscillation periods (e.g. f −1 

12 , f −1 
2 d ). 

Note, ho we ver, ho w the shortest decay times sampled in Fig. 2 yield 
the largest i 1 . 

Fig. 3 explores the evolution when the outer planet’s initial 
eccentricity e 20 and inclination i 20 are set to higher values. Outcomes 
are largely the same as before, except for the run where e 20 < i 20 (first 
column), where an eccentricity secular resonance is not encountered, 
and the final e 1 does not respect e 1, max as derived from Laplace–
Lagrange. What happens instead is that i 1 grows to values ! 40 ◦, large 
enough for e 1 to trade off with i 1 in a Lidov–Kozai resonance (not 
captured by Laplace–Lagrange) – see how the periastron argument 
ω 1 starts to librate near the Kozai fixed points of ±90 ◦ and eventually 
locks onto 90 ◦. 

We have focused so far on the case where the outer planet has 
more angular momentum than the inner. We find that when the 
angular momentum ratio is flipped, the planets do not cross a secular 
resonance. When L 1 > L 2 , the planet–planet precession frequencies 
f 12 < f 21 (equation 11 ). Meanwhile, the planet–disc frequencies 
satisfy f 1d < f 2d since the exterior planet lies closer to the cavity 
edge (equation ( 12 )). Hence, the magnitudes of the non-oscillatory 
nodal and apsidal precession frequencies of the outer planet, f 21 
+ f 2d , al w ays stay higher than those of the inner planet, f 12 + 
f 1d , and there is never a crossing (equations 15 –18 ). Fig. 4 plots 
a sample L 2 < L 1 integration where { m 1 , a 1 } = { 10 m J , 1 . 6 au } and 
{ m 2 , a 2 } = { 1 m J , 3 . 2 au } . The system does not pass into or out of 

Figure 2. Parameter space exploration for simulations with two planets + a 
decaying outer disc. All runs shown here use REBOUND , with { m 1 , a 1 } = 
{ 1 m J , 0 . 8 au } , e 10 = i 10 = 0.02, and e 20 = i 20 = 0.1, the same parameters as in 
Fig. 1 . Left-hand panels : effects of varying the angular momentum of the outer 
planet (and concomitantly the outer disc). In order of increasing angular mo- 
mentum: { m 2 , a 2 , m d0 , a d0 } = { 5 m J , 3 . 2 au , 0 . 20 M &, 17 . 2 au } (red), { 5 m J , 
6 . 4 au , 0 . 12 M &, 42 . 8 au } (purple), { 10 m J , 3 . 2 au , 0 . 22 M &, 14 . 3 au } (blue), 
and { 10 m J , 6 . 4 au , 0 . 14 M &, 35 . 3 au } (green), with t d = 1 Myr . Dotted lines 
denote e 1, max and i 1, max as computed using equations ( 21 ) and ( 22 ). Right- 
hand panels : effects of varying the disc decay time. In order of decreasing 
decay time: t d = 1 Myr (blue), 0 . 3 Myr (green), 0 . 1 Myr (red), and 0 . 03 Myr 
(purple), with { m 2 , a 2 , m d0 , a d0 } = { 10 m J , 3 . 2 au , 0 . 22 M &, 14 . 3 au } . 
an aligned or anti-aligned state; in this particular example, it starts 
and stays within an aligned state, and the planet eccentricities and 
inclinations do not change much. Appendix A explains this result in 
greater detail. 
2.2 Inner disc and planet in a transition disc cavity 
Here, we replace the inner planet of Section 2.1 with a disc. We 
now have two discs, one interior to a planet and another exterior. 
Rigid precession of either disc is assumed to be enforced by some 
collecti ve ef fect, e.g. bending waves (e.g. Lubow & Ogilvie 2000 ; 
Nealon et al. 2018 ; Zanazzi & Lai 2018a ; Zhu 2019 ) or disc self- 
gravity (e.g. Zanazzi & Lai 2017 ; Batygin 2018 ). As with the outer 
disc, the inner disc loses mass; the inner disc’s angular momentum 
can become small relative to the planet’s, enabling the excitation of 
large mutual inclination (equation 22 ). To more accurately model 
large inclinations, we replace the Laplace–Lagrange equations of 
Section 2.1.1 with the vector formalism of Lai & Pu ( 2017 ), which 
accounts for how nodal precession rates depend on inclination (see 
also the appendix of Zanazzi & Lai 2017 ). These vector equations are 
designed to model well-separated masses, and are thus appropriately 
applied to large transition disc cavities far remo v ed from their inner 
discs (e.g. Francis & van der Marel 2020 ; Bohn et al. 2022 ). For 
simplicity, we fix the eccentricities of all masses to be zero, but 
account for back-reaction by allowing the outer disc inclination to 
freely evolve. 
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Figure 3. Similar to Fig. 1 , showing N -body simulations of two planets + a decaying outer disc, and varying the initial eccentricity e 20 , and 
initial inclination i 20 of the outer planet as indicated abo v e each column. Remaining planet and disc parameters are { m 1 , a 1 , m 2 , a 2 , m d0 , a d0 } = 
{ 1 m J , 0 . 8 au , 10 m J , 3 . 2 au , 0 . 22 M &, 14 . 3 au } and i 10 = e 10 = 0.02. In the left column, the system captures into the Lidov–Kozai resonance where the 
argument of pericentre ω 1 = # 1 − $1 librates about 90 ◦, and e 1 does not respect e 1, max as given by ( 21 ) from Laplace–Lagrange theory. 
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Figure 4. Similar to Fig. 1 , showing simulations of two planets + a decaying outer disc, but now with the outer planet having less angular momentum than 
the inner: { m 1 , a 1 , m 2 , a 2 } = { 10 m J , 1 . 6 au , 1 m J , 3 . 2 au } . Initial eccentricities and inclinations are e 10 = i 10 = 0.1 and e 20 = i 20 = 0.02, and disc parameters 
are identical to those in Fig. 1 . In the Laplace–Lagrange solution, the non-oscillatory precession frequencies of the two planets never match (dashed curves; 
equations ( 15 )–18 ), no secular resonance is crossed, and eccentricities and inclinations do not under go lar ge changes aside from the outer planet’s secular 
oscillations. A qualitatively similar evolution plays out in the N -body calculation. Note how the planets are apsidally and nodally aligned from start to finish but 
do not much change their eccentricities or inclinations; see Appendix A . 

The orbit normals of the inner disc ( ̂ l 1 ), planet ( ̂ l p ), and outer disc 
( ̂ l 2 ) obey: 
d ̂ l 1 
d t = f 1p ( ̂ l 1 ·ˆ l p )( ̂ l 1 ×ˆ l p ) + f 12 ( ̂ l 1 ·ˆ l 2 )( ̂ l 1 ×ˆ l 2 ) (23) 
d ̂ l p 
d t = f p1 ( ̂ l p ·ˆ l 1 )( ̂ l p ×ˆ l 1 ) + f p2 ( ̂ l p ·ˆ l 2 )( ̂ l p ×ˆ l 2 ) (24) 
d ̂ l 2 
d t = f 21 ( ̂ l 2 ·ˆ l 1 )( ̂ l 2 ×ˆ l 1 ) + f 2p ( ̂ l 2 ·ˆ l p )( ̂ l 2 ×ˆ l p ) . (25) 

The precession frequencies are given by: 
f 1p = 1 

L 1 
∫ r 1 , out 

r 1 , in 2 πG& 1 m p r 2 1 
a 2 p b (1) 

3 / 2 ( r 1 
a p 

)
d r 1 (26) 

f p2 = 1 
L p 

∫ r 2 , out 
r 2 , in 2 πG& 2 m p a p 

r 2 b (1) 
3 / 2 (a p 

r 2 
)

d r 2 (27) 
f 12 = 1 

L 1 
∫ r 2 , out 

r 2 , in 
∫ r 1 , out 

r 1 , in 4 π2 G& 1 & 2 r 2 1 
r 2 b (1) 

3 / 2 ( r 1 
r 2 
)

d r 1 d r 2 (28) 
f p1 = L 1 

L p f 1p , f 2p = L p 
L 2 f p2 , f 21 = L 1 

L 2 f 12 , (29) 
where the inner disc of radial coordinate r 1 extends from r 1, in to r 1, out , 
and similarly for the outer disc. The planet’s angular momentum 
(to leading order) is L p = m p √ 

GM " a p for planet mass m p and 
semimajor axis a p , stellar mass M " , and gravitational constant G . 
The inner and outer disc surface density profiles are assumed to 

follow: 
& 1 ( t, r 1 ) = m 1 ( t) 

2 πr 1 , out r 1 , & 2 ( t, r 2 ) = m 2 ( t) 
2 πr 2 , out r 2 (30) 

for disc masses 
m 1 ( t) = δ r 1 , out 

r 2 , out m 2 ( t ) , m 2 ( t ) = m 20 e −t/t d , (31) 
where δ is a free parameter that measures how much lower the 
inner disc surface density is relative to the outer (where the latter is 
extrapolated to the same inner disc radius; see section 3.3 and fig. 
5 of Francis & van der Marel 2020 ). For r 1, in ) r 1, out and r 2, in )
r 2, out , the (leading-order) disc angular momenta are: 
L 1 ( t) = 2 

3 m 1 ( t) √ 
GM " r 1 , out (32) 

L 2 ( t) = 2 
3 m 2 ( t) √ 

GM " r 2 , out . (33) 
Fig. 5 plots three sample integrations of equations ( 23 )–( 25 ) for 

different choices of a p = { 12, 20 } au and δ = { 2 × 10 −3 , 2 × 10 −2 } , 
v alues moti v ated by observ ations of material inside the cavities of 
transitional discs (e.g. Ubeira Gabellini et al. 2019 ; Francis & van 
der Marel 2020 ; Portilla-Revelo et al. 2023 ). The annular extent 
of the inner disc is taken to be { r 1 , in , r 1 , out } = { 0 . 03 , 5 } au , and for 
the outer disc { r 2 , in , r 2 , out } = { 30 , 200 } au . In all cases, the inner and 
outer discs are assumed initially co-planar, and the planet has an 
initial seed inclination of i p0 = 3 ◦. We see that i 1 amplifies when the 
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Figure 5. Secular evolution of a planet (subscript p) sandwiched between a decaying inner disc (subscript 1) and decaying exterior disc (subscript 2), 
calculated using the vector equations of Section 2.2 . Parameters are { t d , m 20 , m p , r 1 , in , r 1 , out , r 2 , in , r 2 , out } = { 1 Myr , 0 . 2 M &, 5 m J , 0 . 03 au , 5 au , 30 au , 200 au } , 
with each column corresponding to { a p , δ} = { 12 au , 2 × 10 −2 } (left), { 12 au , 2 × 10 −3 } (middle), and { 20 au , 2 × 10 −3 } (right), respectively, where δ ≡
( m 1 / m 2 )( r 2, out / r 1, out ) (equation 31 ; see also fig. 9 of Francis & van der Marel 2020 for observationally inferred values of δ). The analytic prediction for the inner 
disc inclination i 1, an (equation 36 and text below equation ( 38 )) agrees well with the numerically computed i 1 , except for the simulation in the right column 
where secular resonance ( ̇$1 ≈ $̇p ) cannot be maintained because the planet’s angular momentum exceeds that of the outer disc. 
nodal precession rate of the inner disc: 
$̇1 ( −f 1p cos i 1 − f 12 cos i 1 (34) 
matches that of the planet: 
$̇p ( −f p1 cos i 1 − f p2 , (35) 
where we have taken the reference plane to be perpendicular to the 
initial ˆ l 2 , approximated ˆ l p and ˆ l 2 to be constant and nearly parallel 
(as Fig. 5 confirms), and kept only the non-oscillatory contributions 
to the frequencies (dropping the dependence of $̇1 and $̇p on the 
relative nodes). The nodal frequencies $̇1 and $̇p can track one 
another for some time; see especially the middle column of Fig. 5 . 
Setting $̇1 = $̇p gives an analytic estimate for i 1 during resonance 
lock: 
cos i 1 , an ≈ f 2p 

f 1p − f p1 + f 12 . (36) 
As f 2p → 0, i 1, an → 90 ◦ (Petrovich et al. 2020 ). 

We can also derive a maximum i 1 as we did in Section 2.1 . From 
equations ( 23 ) and ( 24 ) and d ̂ l 2 / d t = 0 (back-reaction on the outer 
disc neglected), we have 
L 1 (1 − cos i 1 ) + L p (1 − cos i p ) ( constant (37) 
which yields 
i 1 , max ( 2 sin −1 ( √ 

L p 
L 1 sin 1 

2 i p0 
) 

(38) 
when L 1 ) L p . This result is identical to equation ( 22 ) as derived 
using Laplace–Lagrange. Equation ( 36 ) holds when f 2p < f 1p − f p1 + 

f 12 and i 1, an < i 1, max . We can piece together a more complete analytic 
solution for i 1 by setting i 1, an = 0 when f 2p ≥ f 1p − f p1 + f 12 , and 
further setting i 1, an ( t ) = i 1, max ( t c ), where t c is the time when i 1, an first 
crosses i 1, max . We see from Fig. 5 that i 1, an so constructed agrees 
well with the full solutions shown in the left and middle columns. If 
the planet’s angular momentum exceeds that of the outer disc when 
secular resonance is first encountered (i.e. if L p ! L 2 when $̇1 ≈ $̇p ), 
secular resonance locks cannot be sustained, and equation ( 36 ) is a 
poor predictor of i 1 (right column). 

One can rearrange equation ( 38 ) to estimate the minimum planet 
mass required to tilt the inner disc: 
m p > m p , min = 2 

3 m 1 ( r 1 , out 
a p 

)1 / 2 sin 2 1 
2 i 1 , max 

sin 2 1 
2 i p0 . (39) 

Fig. 6 plots m p, min as a function of a p and m 1 . Take for example an 
inner disc having mass m 1 ! 0.01 m J on scales of r 1, out = 5 au. A 
planet at a p = 10–50 au with mass m p ! 0.3 m J can tilt such an inner 
disc from 3 ◦ to 30 ◦, pro vided the y are surrounded by an outer disc 
dominating the angular momentum budget. 
3  EXTENSI ONS  
3.1 Forming inclined, apsidally-orthogonal planetary systems 
Dawson & Chiang ( 2014 , hereafter DC14 ) identified a subset of 
warm Jupiters whose sky-projected arguments of pericentre ω sky, 1 
differed from those of their exterior giant-planet companions by 
| %ω sky | ≡ | ω sky, 1 − ω sky, 2 | ≈ 90 ◦. Although ω sky is technically a 
sky-projected angle (between the orbit’s eccentricity vector and the 
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Figure 6. Minimum planet mass m p, min required to tilt the inner disc by 
i 1, max = 30 ◦ (equation 39 ), as a function of the inner disc mass m 1 and 
the planet semimajor axis a p , assuming { r 1 , out , i p0 } = { 5 au , 3 ◦} . See also 
Fig. 12 , which shows that this minimum planet mass satisfies observational 
constraints in the transition disc hosted by CQ Tau. 
vector from the star to the orbit’s ascending node on the sky plane; 
see, e.g. fig. 1 of Chiang, Tabachnik & Tremaine 2001 ), DC14 found 
that | %ω sky | is a good proxy for | %# | = | # 2 − # 1 | , the angle 
between the eccentricity vectors of two orbits. Thus, | %ω sky | ≈ 90 ◦
points to planet pairs with near-orthogonal apsides. Such pairs were 
argued by DC14 to have mutual inclinations of ∼40 ◦, in contrast to 
apsidally-aligned ( | %ω sky | ≈ 0 ◦) and anti-aligned ( | %ω sky | ≈ 180 ◦) 
pairs argued to be more nearly co-planar (e.g. Chiang, Tabachnik & 
Tremaine 2001 ; Nagasawa, Lin & Ida 2003 ; Petrovich, Wu & Ali-Dib 
2019 ). 

Fig. 7 updates fig. 1 of DC14 , showing | %ω sky | for systems known 
to have two (and only two) planets with measured radial velocities or 
transit timing variations, taken from the NASA Exoplanet Archive 
(77 per cent), the Exoplanet Encyclopedia (18 per cent), and the 
Exoplanet Orbit Database (5 per cent). The clustering of systems with 
| %ω sky | ≈ 90 ◦ noted by DC14 is no longer apparent. 2 The histogram 
of | %ω sky | on the right-hand panel shows a fairly smooth continuum, 
with a mild preference for apsidal alignment o v er anti-alignment by 
a factor of ∼2–3. 

What mutual inclinations do these | %ω sky | ’s imply? To investigate 
this question, we integrate the secular equations of motion for two 
eccentric planets, systematically varying the initial mutual inclination 
i mut, 0 and examining its effect on the phase-mixed distributions of 
%# = | # 2 − # 1 | (which we use as a proxy for %ω sky , following 
DC14 ). We use equations (17)–(20) of Liu, Mu ̃ noz & Lai ( 2015 ), 
which can accommodate large eccentricities and inclinations and 
incorporate general relativistic precession for the inner planet (e.g. 
Eggleton & Kisele v a-Eggleton 2001 ). Parameters/initial conditions 
are chosen to be representative of giant planet pairs with radial 
velocity data: { m 1 , a 1 , e 10 } = { 1 m J , 0 . 2 au , 0.3 } , { m 2 , a 2 , e 20 } 
2 DC14 drew the data for their fig. 1 from the Exoplanet Orbit Database (EOD) 
only; the systems they highlighted as apsidally orthogonal are shown in red 
in Fig. 7 , with updated parameters. When we also restrict our sample to the 
EOD, we see evidence for the same clustering of | %ω sky | near 90 ◦ that they 
reported. It is only when we add the data from the NASA Exoplanet Archive 
and the Exoplanet Encyclopedia that the clustering goes away. 

= { 3 m J , 1 . 0 au , 0.3 } , $20 − $10 = 180 ◦, and ω 10 and ω 20 drawn 
uniformly from 0 to 2 π. 

The distributions of | %# | after 1 Myr, parametrized by i mut, 0 , are 
shown in Fig. 8 . We see that the | %# | distributions corresponding 
to nearly co-planar systems, having a factor-of-2 preference for 
alignment o v er anti-alignment when i mut, 0 ! 20 ◦, seem to fit the 
observed distribution of | %ω sky | (as shown in Fig. 7 ) best. We 
conclude that the statistical evidence presented by DC14 for a 
population of highly inclined, apsidally-orthogonal giant-planet pairs 
no longer exists. 

None the less, it is still possible that a given individual system 
observed today to be apsidally orthogonal has a ∼40 ◦ mutual incli- 
nation, following the dynamics described by DC14 whereby | %ω sky | 
lingers near 90 ◦ as it oscillates about 180 ◦. We now ask whether the 
large mutual inclination presumed for such configurations may have 
originated from a secular resonance crossing driven by a decaying 
outer disc. We take as a case study, one of the systems highlighted by 
DC14 , HD 147018. To decide whether a crossing may have occurred, 
we literally integrate the system backwards in time, starting the 
calculation at t = 8 Myr (the present day), ending at t = 0, and 
prescribing the outer disc to increase up to a mass of m d0 = 0 . 5 M &. 
The disc is otherwise modelled the same way as in Section 2.1 , 
for assumed parameters r in = 3 . 3 au , r out = 150 au , and t d = 1 Myr. 
We hav e v erified that the system is time-rev ersible by inte grating 
forwards and backwards and achieving consistent results. We use 
again Liu, Mu ̃ noz & Lai ( 2015 ) to model the secular interaction of 
two planets and include general relativistic precession for the inner 
planet. The contributions to planet precession from the disc are given 
by: 
d j k 
d t 

∣∣∣∣
kd = f kd j k ×ˆ l d (40) 

d e k 
d t 

∣∣∣∣
kd = −f kd (2 e k × j k − e k ×ˆ l d ) (41) 

(e.g. Pu & Lai 2018 ; Petrovich, Wu & Ali-Dib 2019 ). Here, ˆ l 
is the unit-vector orbit normal (subscript d for disc, and k for 
planet k ), e is the eccentricity vector of magnitude e pointing in 
the direction of pericentre, and j = √ 

1 − e 2 ̂  l . The frequency f k d 
is given by equation ( 12 ), f d k = ( L k / L d ) f k d , L k = m k √ 

GM " a k , and 
L d = (2 / 3) m d √ 

GM " r out . The disc evolves according to: 
d ̂ l d 
d t = f d1 ̂  l d × j 1 + f d2 ̂  l d × j 2 . (42) 

Fig. 9 displays the results of the back-integration of HD 147018, 
assumed to have a present-day mutual inclination of i mut = 39 ◦. 
The system may indeed have once crossed a secular resonance that 
increased i mut by a factor of ∼3. In this scenario, the inclination i 2 of 
the outer planet needs to have been ∼10–15 ◦ in the past; this value 
agrees with that estimated by inverting equation ( 22 ): 
i 20 , est ( 2 sin −1 ( √ 

L 1 
L 2 sin 1 

2 i mut 
) 

≈ 12 ◦ (43) 
shown as a dashed line in Fig. 9 for i mut = 39 ◦. By contrast, the 
eccentricities do not change as much; e 1 in the past needs to have been 
about as large as its present-day value of 0.47. Thus, our scenario 
of a decaying outer disc does not explain the origin of the large 
eccentricities in HD 147018. 
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Figure 7. The degree of apsidal alignment in two-planet systems with radial velocity or transit timing data, as measured by the difference in sky-projected 
arguments of pericentre, | %ω sky | = | ω sky, 1 − ω sky, 2 | . Data are taken from the NASA Exoplanet Archiv e, Exoplanet Enc yclopedia, and Exoplanet Orbit Database, 
selecting only systems where eccentricities are larger than zero with greater than 2 σ confidence, and one-sided 1 σ errors on ω sky, are less than 40 ◦ (similar 
cuts were made by Dawson & Chiang 2014 ). No cut on planet mass or semimajor axis is made for this figure, but we have verified that our conclusions are 
unchanged if we consider only giant planets, or if we include only planets with a > 0.1 au to exclude hot Jupiters (data not shown). The six red points are the 
same six warm Jupiter systems proposed by Dawson & Chiang ( 2014 ) to constitute a distinct class of apsidally misaligned ( | %ω sky | ≈ 90 ◦), highly inclined 
pairs. The data as a whole no longer support such a claim, as can be seen in the histogram of | %ω sky | on the right, which shows no obvious clustering around 
| %ω sky | ≈ 90 ◦, and instead appears more consistent with most if not all pairs having small mutual inclinations – compare with Fig. 8 . 
3.2 Stellar spin 
We consider here how accounting for the host stellar spin and 
quadrupole moment changes the dynamics of secular resonance 
crossing. Mostly, we find that it does not fit our parameter space. 
3.2.1 Star + planet interactions 
For a planet to substantively tilt the spin axis of a star, at least two 
conditions need to be satisfied. First, the planet’s orbital angular 
momentum L p = m p √ 

GM " a p should be larger than the stellar spin 
angular momentum S = k " M " R 2 " $" . For our parameters, 
S 
L p = 1 . 1 (1 m J 

m p 
)(

1 au 
a p 

)1 / 2 (3 d 
P " 

)(
M " 

1 M &
)1 / 2 (

R " 
2 R &

)2 
, (44) 

where $" = 2 π/ P " is the star’s rotation frequency, P " is the star’s 
rotation period, and the angular momentum constant k " ( 0.2 for 
a fully conv ectiv e body (e.g. Chandrasekhar 1939 ; Lai, Rasio & 
Shapiro 1993 ). For a p " 1 au , S ! L p and the planet cannot control 
the star’s tilt. For a p ! 1 au , we run up against the second condition 
that the precession frequency of the star driven by the planet 
f " p = 2 . 2 × 10 −5 (3 d 

P " 
)(

m p 
1 m J 

)(
1 au 
a p 

)3 
deg yr −1 (45) 

be shorter than the precession frequency of the planet; otherwise 
the planet orbit normal would vary too rapidly to coherently tilt the 
stellar spin axis (e.g. Lai 2014 ; Zanazzi & Lai 2018b ). In e v aluating 
f " p , we have taken the star’s second gravitational moment to be J 2 = 
k q $2 

" / ( GM " /R 3 " ), with k q ( 0.09 (e.g. Lai, Rasio & Shapiro 1993 ). 

Figure 8. The distribution of | %# | = | # 2 − # 1 | sampled from 200 two- 
planet systems, integrated using eqs. (17)–(20) of Liu, Mu ̃ noz & Lai ( 2015 ) 
o v er 1 Myr. The inner planet has { m 1 , a 1 } = { 1 m J , 0 . 2 au } and the outer 
planet has { m 2 , a 2 } = { 3 m J , 1 . 0 au } . Initial mutual inclinations are as 
labelled, with initial nodes $10 and $20 anti-aligned, initial arguments of 
pericentre drawn randomly over the interval [0, 2 π], and initial eccentricities 
set to 0.3. For i mut, 0 ! 20 ◦, the %# distribution decreases monotonically from 
alignment to anti-alignment in a way that resembles the observed distribution 
of | %ω sky | shown in Fig. 7 . 
For our parameters, typical values of $̇p (see Figs 1 and 3 for $̇1 and 
$̇2 ) exceed f " p . 

What about the converse torque e x erted by the oblate star on the 
planet, concei v ably important when S > L p ? The planet’s precession 
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Figure 9. The mutual inclination between HD 147018b and c hypothesized 
by DC14 to be ∼39 ◦ today could have arisen from a secular resonance 
crossing driven by a decaying outer disc. The evolution shown is the result 
of a backwards-integration starting at t = 8 Myr with ‘initial’ conditions 
from DC14 – { M " , m 1 , m 2 , a 1 , a 2 , e 1f , e 2f , i 1f , i 2f , ω 1f , ω 2f , $1f , $2f } 
= { 0 . 92 M &, 2.1 m J , 6 . 6 m J , 0 . 24 au , 1 . 9 au , 0.47, 0.13, 35.6 ◦, 3.4 ◦, 66 ◦, 
136.9 ◦, 0 ◦, 180 ◦} – augmented with a disc of mass m d = 0 . 5 M & exp ( −t/t d ) 
and having parameters { r in , r out , t d } = { 3 . 3 au , 150 au , 1 Myr } . The system 
may have originated with a mutual inclination of i 20, est ≈ 12 ◦ (equation 
43 ), crossed a secular resonance that amplified i 1 at the expense of i 2 , and 
settled into apsidal libration with %# = # 2 − # 1 lingering near ±90 ◦
( DC14 ). Ho we ver, this formation scenario does not explain the origin of the 
eccentricities in HD 147018b and c, which do not change much from their 
large present-day values. 

frequency forced by the star is: 
f p " =2 . 4 ×10 −5 (3 d 

P " 
)2 (1 au 

a p 
)7 / 2 (

M " 
1 M &

)1 / 2 (
R " 

1 R &
)2 

deg yr −1 . 
(46) 

For a p ! 0 . 1 au , f p " is lower than precession frequencies driven by 
planet–planet interactions (see, e.g. #̇ , $̇ in Figs 1 and 3 ). Thus the 
planets generally affect one another more than they are affected by 
the star. 

Figure 10. Similar to Fig. 5 showing the secular evolution of an inner 
disc + planet + outer disc, but now including the torque from the star’s 
mass quadrupole for the stellar rotation periods P " indicated. Other model 
parameters are { M " , m 20 , δ, r 1, in , r 1, out , r 2, in , r 2, out , m p , a p } = { 2 M &, 
0 . 2 M &, 8 × 10 −3 , 0 . 03 au , 8 au , 20 au , 200 au , 5 m J , 16 au } . For our 
parameters, including the stellar torque does not qualitatively change how 
the inner disc’s inclination may be excited by an exterior planet. As the inner 
disc’s precession rate $̇1 becomes increasingly dominated by the star ( f 1 " ! 
f 1p ), the secular resonance is crossed earlier (compare right column to left). 
3.2.2 Star + inner disc interactions 
Our modelled inner disc typically has an angular momentum L 1 = 
(2 / 3) m 1 √ 

GM " r 1 , out that is less than that of the star S . This fact, 
together with the inner disc extending down to small stellocentric 
radii, opens up the possibility that the star controls the precession 
rate of the inner disc. To the equations modelling the interaction 
between the inner disc, planet, and outer disc (equations 23 –25 ), we 
add the contribution from the star to the evolution of the inner disc’s 
orbit normal ˆ l 1 : 
d ̂ l 1 
d t 

∣∣∣∣
1 " = f 1 " ( ̂ l 1 ·ˆ s ) ̂ l 1 ×ˆ s , (47) 

where the unit stellar spin vector ˆ s evolves according to: 
d ̂ s 
d t 

∣∣∣∣
" 1 = f " 1 ( ̂ s ·ˆ l 1 ) ̂ s ×ˆ l 1 (48) 

with precession frequencies 
f 1 " = 1 

L 1 
∫ r 1 , out 

r 1 , in 3 πGM " R 2 " J 2 & 1 
r 2 1 d r 1 (49) 

f " 1 = L 1 
S f 1 " . (50) 

The effects of the star on the planet (exterior to the inner disc) and 
outer disc are small and neglected. 

Fig. 10 shows the resultant evolution for two values of P " . We see 
that inner disc inclinations i 1 become excited by a secular resonance 
much as they did when stellar spin was ignored (Fig. 5 ). The star can 
increase substantially the nodal precession rate of the inner disc 
$̇1 ( −f 1 " cos i 1 − f 1p cos i 1 − f 12 cos i 1 (51) 
but the main consequence is just to cause the secular resonance to 
be crossed earlier (compare right and left columns of Fig. 10 ). Our 
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analytic estimate ( 36 ) for i 1 when $̇1 = $̇p becomes revised to 
cos i 1 , an ≈ f 2p 

f 1 " + f 1p − f p1 + f 12 . (52) 
Further setting, as we did in Section 2.2 , i 1, an ( t ) = i 1, max ( t c ), where 
t c is the time when i 1, an first crosses i 1, max (equation 38 ), predicts to 
within a factor of 2 the actual i 1 . 
4  SU M M A RY  A N D  DISCUSSION  
We hav e inv estigated the secular dynamics of two giant planets 
encircled by a transition disc undergoing mass loss. We have also 
considered what happens when we replace the inner planet with a 
disc that is assumed to precess rigidly. We find that: 

(i) When the outer planet’s angular momentum exceeds the inner 
planet’s, the planets can cross nodal and apsidal secular resonances as 
the disc disperses. These crossings can magnify the orbital inclination 
of the inner planet relative to the outer planet and the inner planet’s 
eccentricity. The magnification factor is of order the square root of the 
ratio of the outer to inner planet’s angular momentum (equations 21 
and 22 ). For typical massive two-planet systems, the magnification 
factor is on the order of a few (Fig. 3 ). Thus, for example, generating 
a ∼40 ◦ mutual inclination may require a seed inclination of up to 
∼10 ◦ (more on actual systems below). Whether or not a secular 
resonance is crossed depends in part on the outer disc mass; the 
crossings simulated in our work rely on outer disc masses initially 
comparable to the host stellar mass (similar to Class 0/I sources, e.g. 
Jørgensen et al. 2009 ; Tobin et al. 2015 ; Segura-Cox et al. 2018 ; 
Andersen et al. 2019 ). 

(ii) Inner discs of the kind observed to reside within the cavities of 
transitional discs have such low mass (Ubeira Gabellini et al. 2019 ; 
Francis & van der Marel 2020 ; Portilla-Revelo et al. 2023 ) and, by 
extension, low angular momentum that their inclinations relative to 
an exterior planet are more easily amplified by secular resonance. A 
seed mutual inclination of ∼3 ◦ can grow to ∼30 ◦–90 ◦ (Fig. 5 ). This 
scenario may explain the tilted inner discs inferred to cast shadows 
on outer transition discs (e.g. Benisty et al. 2022 ; Bohn et al. 2022 ; 
more on actual such systems below). 

(iii) Planet pairs disco v ered through radial v elocity measurements 
exhibit widely varying degrees of apsidal alignment, from aligned 
to anti-aligned and everything in between (Fig. 7 ). The apsidal 
distribution appears roughly consistent with such pairs predomi- 
nantly residing on nearly co-planar orbits, with mutual inclinations 
! 20 ◦. Contrary to Dawson & Chiang ( 2014 ), we find no statistical 
evidence for a separate population of pairs on more highly inclined, 
apsidally-orthogonal orbits. Such orbits can still exist in principle 
and might describe individual systems like HD 147018. This system’s 
hypothesized large mutual inclination, but not its large eccentricities, 
may originate from a secular resonance crossing driven by a decaying 
outer disc. 

(iv) The scenarios we hav e e xplored are largely insensitive to the 
host star’s spin, and vice versa. Thus, when the inclination of an inner 
planet or inner disc is excited, the stellar spin axis does not follow 
suit; we expect large stellar obliquities. 

We close our study by connecting to additional observed systems. 
Given the angular momentum ratio of a two-planet system, equation 
( 43 ) estimates the seed inclination i 20 needed to produce a final 
mutual inclination i mut . Fig. 11 plots i mut versus i 20 for systems with 
measured mutual inclinations. K epler-448, K epler-693, and π Men 
are good candidates for disc-driv en, secular e xcitation of their current 
inclinations, as they require relatively modest values of i 20 ! 10 ◦ (see 

Figure 11. The seed inclination of outer planet i 20 required to generate the 
observed mutual inclination i mut (equation 43 ). The brown dotted line traces 
i 20 = i mut . Systems like π Men (Xuan & Wyatt 2020 ), Kepler-448, and 
Kepler-693 (Masuda 2017 ) have large angular momentum ratios L 2 / L 1 and 
can therefore leverage small i 20 into large i mut using a secular resonance. 
Other systems like WASP-148 (Almenara et al. 2022 ) and ν Andromedae 
(McArthur et al. 2010 ) have angular momentum ratios closer to unity and are 
therefore poor candidates for the secular amplification of mutual inclination. 
See text for discussion of the HD 3167 system (Bourrier et al. 2021 ) that we 
hypothesize harbours a distant massive companion. We do not plot KOI-984 
(Sun et al. 2022 ) because the mass and orbital period of the outer companion 
seem too uncertain; nor do we plot Kepler-108 (Mills & F abryck y 2017 ) 
because its angular momentum ratio L 2 / L 1 < 1. 
also Petrovich et al. 2020 ). In contrast, because angular momentum 
ratios are near unity in WASP-148 and ν Andromedae, a secular 
resonance can do little to magnify the systems’ mutual inclinations 
( i 20 ( i mut ). A more promising way to generate their inclinations 
may be planet–planet scattering (e.g. Chatterjee et al. 2008 ; Juri ́c & 
Tremaine 2008 ; Barnes et al. 2011 ; Anderson, Lai & Pu 2020 ). 

The HD 3167 system is particularly puzzling. The planets HD 3167 
b and c are transiting sub-Neptunes with orbital periods P orb = 0 . 96 d 
and 29.8 d, respectively. The inner member of the pair is nearly 
coplanar with the host star’s equator, and the outer member is inclined 
by i mut ≈ 103 ◦ (Dalal et al. 2019 ; Bourrier et al. 2021 ). Although a 
secular resonance can magnify the mutual inclination between these 
two planets by a factor of ∼4 (Fig. 11 ), HD 3167 c does not have 
enough angular momentum to also tilt the star (equation 44 ). A 
possible solution would be to have a massive distant companion (as 
yet unobserved) tilt the protoplanetary disc that formed HD 3167 
c, leaving HD 3167 b unaffected because of its close proximity to 
the spinning star (Section 3.2.2 ). In this scenario, we would also 
expect the other non-transiting sub-Neptunes in HD 3167 (Bonomo 
et al. 2023 ), e ( P orb = 96 . 6 d) and perhaps also d ( P orb = 8 . 4 d), to 
be approximately co-planar with c. 

Other candidates for secular excitation of inclinations include 
Kepler-56, a system containing two planets of mass 0 . 07 m J and 
0 . 56 m J and periods 10 . 5 d and 21 . 4 d, whose orbits are co-planar 
with each other but inclined relative to the host star’s equator by 
∼45 ◦ (Huber et al. 2013 ). A third body detected from radial velocity 
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Figure 12. Constraints on the mass of a companion forming within the CQ 
Tau transition disc. Red solid line plots the companion’s maximum mass 
m p, lim at a given location given coronograph non-detections (Uyama et al. 
2020 ; van der Marel et al. 2021 ). The blue solid line marks the estimated 
inner cavity edge r 2, in (Ubeira Gabellini et al. 2019 ), while the light blue box 
encloses the estimated mass m p, est and semimajor axis of a planet that can 
carve the disc cavity (Ubeira Gabellini et al. 2019 ). Black dashed line denotes 
the minimum companion mass ( m p, min , equation ( 39 )) needed to misalign the 
inner disc by i 1 = 44 ◦ (Bohn et al. 2022 ), for m 2 ∼ 2.9 m J , r 2, out ∼ 56 au, 
and δ ∼ 10 −2 (Ubeira Gabellini et al. 2019 ), and i p0 = 3 ◦ and r 1, out = 
1 au assumed arbitrarily. Since m p, min < m p, est , the putative companion can 
misalign the inner disc and generate CQ Tau’s shadows. 
observations, with mass m sin i = 5 . 6 m J and period 1000 d (Otor 
et al. 2016 ), may have tilted the disc that formed the inner two planets. 
Another potential application of secular resonance is presented by 
the warm Jupiter TOI-1859b, hosted by a star with a projected 
obliquity of λ ≈ 39 ◦ (Dong et al. 2023 ). An exterior companion 
larger than a few Jupiter masses (not yet observ ed), driv en by a 
protoplanetary disc to precess at the right rate, could have misaligned 
TOI-1895b. 

CQ Tau hosts a transition disc with diametrically-opposed shadows 
(Uyama et al. 2020 ), thought to be cast by an inner disc inclined by 
44 ◦ (Bohn et al. 2022 ). Masses of both the inner and outer discs 
can be estimated from CO emission, and the mass and location of a 
planet interior to the disc cavity are constrained from coronagraphic 
observations and the need to shepherd the cavity edge (Ubeira 
Gabellini et al. 2019 ; Uyama et al. 2020 ; van der Marel et al. 2021 ). 
The constraints on the planet are plotted in Fig. 12 (data coloured blue 
and red), and are completely compatible with a planet that can tilt the 
inner disc by 44 ◦ (black dashed line). The planet mass needed to tilt 
the inner disc scales linearly with the inner disc mass (equation 39 ); 
the latter could be underestimated by nearly two orders of magnitude 
and still be consistent with our scenario of secular resonance 
crossing. 
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APPEN D IX  A :  SWEEPING  SECULAR  
R E S O NA N C E  M O D E L  
We construct a model for a sweeping secular resonance using 
Laplace–Lagrange theory. We assume the nodal and apsidal pre- 
cession periods are much shorter than the disc depletion time t d . 
Equations ( 3 )–( 4 ) and ( 7 )–( 8 ) describe how %# = # 2 − # 1 and 
%$ = $2 − $1 evolve: 
d %# 

d t = %f − (
g 21 e 1 

e 2 − g 12 e 2 
e 1 
)

cos %# (A1) 
d %$

d t = −%f + (f 21 s 1 
s 2 − f 12 s 2 

s 1 
)

cos %$, (A2) 
where 
%f = f 21 + f 2d − f 12 − f 1d (A3) 
equals the difference between the two planets’ non-oscillatory pre- 
cession frequencies (equations 15 –18 ). For our decaying transition 
disc scenario, % f starts positive and decreases with time. Equations 
( 1 )–( 2 ) and ( 5 )–( 6 ) imply that eccentricities and inclinations are 

Figure A1. The inclination ratio s 1 / s 2 versus % f / f 21 (equation A5 ) for the 
nodally aligned ( + , red) and anti-aligned ( −, purple) modes. Top panel : 
aligned and anti-aligned solutions for L 2 / L 1 = 5, 1, and 0.2 (solid, dashed, 
and dotted lines, respectively). The solutions are symmetric about the critical 
value s 1 /s 2 | %f = 0 = √ 

L 2 /L 1 (equation A6 , solid circles). Bottom panel : 
comparing the full Laplace–Lagrange integrations in Fig. 1 (solid purple, 
L 2 / L 1 > 1) and Fig. 4 (solid red, L 2 / L 1 < 1) to their respective anti-aligned 
(purple dot–dashed) and aligned (red dot–dashed) tracks. Time advances from 
right to left. The detuning frequency parameter % f does not cross zero when 
L 2 / L 1 < 1, forestalling large changes to s 1 / s 2 . 
constant when apses and nodes are either aligned ( %# , %$ = 0) or 
anti-aligned ( %# , %$ = π ). Alignment ( + ) or anti-alignment ( −) 
is enforced when 
e 1 
e 2 
∣∣∣∣
±

= 1 
2 
 
 √ (

%f 
g 21 

)2 
+ 4 L 2 

L 1 ± %f 
g 21 

 
 (A4) 

s 1 
s 2 
∣∣∣∣
±

= 1 
2 
 
 √ (

%f 
f 21 

)2 
+ 4 L 2 

L 1 ± %f 
f 21 

 
 (A5) 

derived by setting ( A1 )–( A2 ) to zero. Combining ( A4 )–( A5 ) with 
the conserved quantities ( 19 )–( 20 ) – a.k.a. the angular momentum 
deficit – yields e 1 , e 2 , s 1 , and s 2 in apsidal/nodal lock. Notice e 1 / e 2 | ±
and s 1 / s 2 | ± have the same value when % f = 0: 
e 1 
e 2 
∣∣∣∣
%f = 0 = s 1 

s 2 
∣∣∣∣
%f = 0 = 

√ 
L 2 
L 1 . (A6) 

From hereon, we focus on how inclinations evolve; analogous 
statements apply for eccentricities. The top panel of Fig. A1 shows 
s 1 / s 2 | ± versus % f . In the beginning ( t = 0), % f > 0. Which of the 
aligned or anti-aligned solutions is rele v ant depends on L 2 / L 1 and 
the initial conditions (including the initial s 10 / s 20 and the nodes). 
As long as % f changes slowly, the system tends to mo v e along a 
single + or − track (in reality, oscillating about the track when nodal 
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oscillations are non-zero). As % f decreases, s 1 / s 2 | + decreases and 
s 1 / s 2 | − increases, with s 1 / s 2 changing most rapidly when % f crosses 
zero (secular resonance passage). Because the angular momentum 
deficit is conserved, the relati ve S k = 1 

2 L k s 2 k v alues determine ho w 
the two orbits exchange inclination. The inner planet’s inclination 
s 1 will amplify most (at the expense of the outer planet’s s 2 ) upon 
secular resonance passage along an anti-aligned track, for S 10 < 
S 20 initially and S 1f > S 2f in the final state – equi v alently, when 
s 10 /s 20 < √ 

L 2 /L 1 < s 1f /s 2f . The various examples given through- 
out this paper of mutual inclination excitation by secular resonance 
passage follow this anti-aligned, L 2 / L 1 > 1 track – a sample evolution 
taken from Fig. 1 is plotted in the bottom panel of Fig. A1 . 

In principle, mutual inclination excitation is also possible by 
following an L 2 / L 1 < 1, aligned ( + ) track to decrease s 1 and amplify 
s 2 . But in practice, as explained at the end of Section 2.1.3 , % f never 
crosses zero when L 2 / L 1 < 1 in our decaying outer disc scenario, and 
therefore large changes to s 1 / s 2 do not materialize. This is confirmed 
by the red trajectory, taken from Fig. 4 , plotted in the bottom panel 
of Fig. A1 . 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 

© 2023 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/7203/7303298 by guest on 08 August 2025


