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ABSTRACT

The orbits of some warm Jupiters are highly inclined (20°-50°) to those of their exterior companions. Comparable misalignments
are inferred between the outer and inner portions of some transition discs. These large inclinations may originate from planet—
planet and planet—disc secular resonances that sweep across interplanetary space as parent discs disperse. The maximum factor
by which a seed mutual inclination can be amplified is of the order of the square root of the angular momentum ratio of the
resonant pair. We identify those giant planet systems (e.g. Kepler-448 and Kepler-693) that may have crossed a secular resonance,
and estimate the required planet masses and semimajor axes in transition discs needed to warp their innermost portions (e.g.
in CQ Tau). Passage through an inclination secular resonance could also explain the hypothesized large mutual inclinations in

apsidally-orthogonal warm Jupiter systems (e.g. HD 147018).

Key words: planets and satellites: dynamical evolution and stability — planets and satellites: formation —planet—disc interac-

tions — protoplanetary discs.

1 INTRODUCTION

Most planetary systems are flat (e.g. Winn & Fabrycky 2015; Zhu &
Dong 2021), but some are not. In addition to large stellar obliquities
measured for single planets using the Rossiter—McLaughlin effect
(e.g. Albrecht, Dawson & Winn 2022; Dong & Foreman-Mackey
2023; Siegel, Winn & Albrecht 2023), large mutual inclinations
between planets have been suspected or confirmed. Dawson &
Chiang (2014) proposed that certain warm Jupiters are inclined by
imye A 40° relative to exterior super-Jupiter companions, based on
their relative apsidal orientations. Transit duration variations imply
substantial misalignments in the warm Jupiter systems Kepler-448
(imut = 207177, Masuda 2017), Kepler-693 (imu = 5375, Masuda
2017), Kepler-108 (ipmy = 2474, Mills & Fabrycky 2017), and
WASP-148 (i = 21Jj50, Almenara et al. 2022). The inclination
between a cold Jupiter and inner super-Earth in 7 Men is astromet-
rically constrained to lie between 49° < i, < 131° (Xuan & Wyatt
2020).

Some protoplanetary discs also exhibit large misalignments/warps.
More than a dozen transitional discs (defined as having large cavities)
are observed in scattered light to be shadowed by circumstellar
material closer to their host stars (Benisty et al. 2022). Azimuthally
extended shadows are cast by close-in discs inclined by ~10° relative
to their outer discs (e.g. Stolker et al. 2016; Debes et al. 2017; Stolker
et al. 2017; Muro-Arena et al. 2020), while narrow, diametrically
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opposed shadows are cast by the nodes of more highly inclined inner
discs (~30°-90°; e.g. Marino, Perez & Casassus 2015; Benisty et al.
2017; Long et al. 2017; Casassus et al. 2018; Pinilla et al. 2018;
Uyama et al. 2020; Ginski et al. 2021). Supporting evidence for
misaligned discs comes from interferometric imaging (e.g. Kluska
et al. 2020; GRAVITY Collaboration et al. 2021; Bohn et al. 2022)
and CO kinematics (e.g. Casassus et al. 2015; Loomis et al. 2017;
Mayama et al. 2018; Pérez et al. 2018; Bi et al. 2020; Kraus et al.
2020).

One mechanism for exciting inclinations is secular resonance.
When two bodies precess nodally at the same rate, angular momen-
tum can be efficiently transferred between them, lifting one orbit
while lowering the other and amplifying i, in the net. Analogously,
when apsidal precession rates match, eccentricities can change dra-
matically. Two planets can be driven through a secular resonance by
their parent protoplanetary disc; as disc material depletes, planetary
precession frequencies change, and can momentarily match. Secular
resonance crossings driven by the depletion of the solar nebula
may have excited the inclinations and eccentricities of the terrestrial
planets, asteroids, and Kuiper belt objects (e.g. Ward, Colombo &
Franklin 1976; Heppenheimer 1980; Ward 1981; Nagasawa & Ida
2000; Nagasawa, Tanaka & Ida 2000; Nagasawa, Ida & Tanaka 2001,
2002; Hahn 2003; Zheng, Lin & Kouwenhoven 2017).! Extrasolar
versions of this scenario have also been invoked to explain warm
Jupiter eccentricities (e.g. Nagasawa, Lin & Ida 2003; Petrovich,

1Of course, direct gravitational scatterings (close encounters) can also play a
role; see, e.g. Nesvorny (2018) and Broz et al. (2021).
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Wu & Ali-Dib 2019; Teyssandier & Lai 2019) and spin-orbit
misalignments of hot Jupiters (e.g. Lubow & Martin 2016; Martin
etal. 2016; Spalding & Batygin 2017; Vick, Su & Lai 2023) and sub-
Neptunes (Petrovich et al. 2020; Epstein-Martin, Becker & Batygin
2022). Petrovich et al. (2020) showed how a secular resonance
between a gas giant and an interior sub-Neptune, both embedded
in a decaying disc, could lift the sub-Neptune onto a polar orbit (i,
~ 90°).

We extend the works of Petrovich et al. (2020) and others by
studying how the mutual inclinations of giant planets embedded in
decaying transitional discs can be amplified by secular resonance
passage. Our motivation includes misaligned giant planet systems
like Kepler-448 and Kepler-693 (Masuda 2017), and the proposed
class of mutually inclined, apsidally orthogonal warm Jupiters
(Dawson & Chiang 2014). We also investigate how an inner disc
can be tilted out of the plane of an outer disc by the action of an
intermediary, gap-opening planet. Here, we build upon the disc-
tilting calculations of Owen & Lai (2017) to study the parameter
space occupied by transition discs shadowed by low-mass inner
discs (Francis & van der Marel 2020; van der Marel et al. 2021).
Section 2 lays out the basic theory for how a secular resonance
crossing can excite the inclination and eccentricity of an inner warm
Jupiter (Section 2.1), and the inclination of an inner disc (Section
2.2). Section 3 revisits the Dawson & Chiang (2014) hypothesis
and updates the observed distribution of apsidal angles to see what
might be inferred about mutual inclinations (Section 3.1), and then
examines how introducing the stellar spin and mass quadrupole
affects our general results (Section 3.2). Section 4 summarizes and
connects further with the observations.

2 INCLINATION AND ECCENTRICITY
EXCITATION FROM OUTER DISC MASS-LOSS

Consider a planet inside the cavity of a disc. The planet’s longitude
of pericentre & and longitude of ascending node €2 precess at rates
proportional to the disc’s mass. As the disc’s mass decreases, the
magnitudes of the precession frequencies |zr| and || decrease as
well. If multiple bodies reside inside the cavity — a pair of planets,
or a planet and an inner disc — their precession frequencies can be
tuned down such that their respective apsidal or nodal longitudes
align, or anti-align, for extended periods of time. As the bodies pass
through such symmetric orbital configurations, angular momentum is
transferred efficiently between them, with potentially large changes
in eccentricity and inclination.

2.1 Two planets in a transition disc

We consider two planets surrounded by an outer disc. The disc’s
mass is prescribed to decrease with time. We compute the dynamical
evolution in two ways, first using the Laplace—Lagrange secular
equations (Section 2.1.1), and then with an N-body simulation
(Sections 2.1.2-2.1.3).

2.1.1 Laplace-Lagrange theory

Planet eccentricities e, pericentre longitudes =, inclinations i, and
nodal longitudes €2 evolve according to

d€1

= sin A 1
dr €2812 w M
dez
— == sin A 2
dar €1821 w 2
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where subscripts 1 and 2 denote the inner and outer planet, Aw =
wy — w1, AQ =, — Q,and s = ZSin%i. The planet-induced
precession frequencies are

Gmymaa,  y (a
=——"—b — 9
fl2 a%Ll 3/2 @ )
Gm1m2a1 2) a
=——""b — 10
812 ang 2\ &, (10)
o=ty - an
21 = I, 12, 821 = nglz,

for gravitational constant G, planet mass m, semimajor axis a
(conserved in this secular theory), leading-order angular momentum
Ly = my+/GM,a, stellar mass M,, and Laplace coefficient b (Mur-
ray & Dermott 2000; Pu & Lai 2018). The disc-induced precession
frequency of planet £ is

Gmpay [ 2nX(r), a4y ([
where we assume the disc’s surface density profile follows
t
£ = 20, (13)
T out?

with a disc mass that decays exponentially with time
mqy(t) = mdoeft/’d. (14)

Note that for now we do not include the back-reaction of the
planets onto the disc; this restriction is relaxed in our N-body
calculation in Section 2.1.2. The equations are solved using the
scipy.integrate.odeint integrator in python.

Fig. 1 displays an example evolution for two giant planets with
m; = 1 m;y and m, = 10 my, located at ¢; = 0.8 au and a, = 3.2au
from a star of mass M, = M. Initial eccentricities and inclinations
are ey, 10 = 0.02, and ey, i»o = 0.1, and initial longitudes are @ 0,
@20, 210, 220 = 0. For the disc, mgg = 0.1 Mg, rip = 4.2au, roy =
150 au, and 74 = 1 Myr. Such a my value is comparable to disc mass
estimates for Class 0/I sources (e.g. Jgrgensen et al. 2009; Tobin et al.
2015; Segura-Cox et al. 2018; Andersen et al. 2019), and necessary
for a secular resonance crossing for our giant planet parameters. Over
the course of the integration, as disc mass my decreases, we see e;
and i; amplify at the expense of e, and i,. The changes are fastest
when Aw =~ 7w and AQ & 7. The apsidal and nodal anti-alignments
are prolonged by the matching of frequencies @r; with @, and
with Qz‘

Looking more closely at these precession frequencies, we see
from equations (3)—(4) and (7)—(8) that they are each composed of
two terms. One contribution to the frequency depends on the degree
of misalignment, either Az or A; this planet—planet interaction
frequency oscillates rapidly and attains large values, positive or
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Figure 1. Secular resonance crossing of two planets inside a decaying transition disc, computed with the N-body code REBOUND (Rein & Liu 2012), and
separately with Laplace-Lagrange theory (equations 1-8). The inner planet’s parameters are {mi, ai, ejo, ij0} = {1 my, 0.8 au, 0.02, 0.02} (with subscript 0
denoting initial conditions, and the reference plane equal to the initial plane of the transition disc), and the outer planet’s parameters are {m>, az, €2, i2o} =
{10my, 3.2 au, 0.1, 0.1}. Modelled as a point mass in the N-body simulation, the disc has {mgo, aqgo} = {0.22 Mg, 14.3 au}, while in our Laplace-Lagrange
treatment, the disc has {mgo, rin, rout} = (0.1 Mg, 4.2 au, 150 au); these parameters yield similar times of resonance crossing when apsides and nodes are anti-
aligned (Aw ~ AQ ~ 180°). As computed using Laplace—Lagrange theory, the maximum eccentricity and inclination (equations 21 and 22) of the inner planet
are shown as black horizontal dotted lines, while dot—dashed blue and orange lines are solutions from an analytic model for secular resonance passage assuming
anti-aligned apses and nodes (the ‘—’ branches of equations A4 and AS5). For the N-body data on zr and €2, dark blue and orange curves are time-averaged
over a moving window of duration 18 kyr, while for the corresponding Laplace-Lagrange data, dashed curves are non-oscillatory contributions to precession
frequencies (equations 15—18). Vertical dotted red lines mark when these non-oscillatory frequencies match and the secular resonance is crossed.

negative, whenever eccentricity or inclination become small. By
contrast, the other non-oscillatory frequencies

dzm

—_— = 15
ar | Si2 + fia (15)

dw'z

— = 16
a | Sa1+ faa (16)

de,

O = —(f12 + f1a) (17)

[ non—osc
dQ
- = —(far + fa0) (18)

change much more gradually with time as the outer disc loses mass.
These slowly varying frequencies, plotted as dashed curves in Fig. 1,
cross at a time marked with a vertical red dotted line. At this moment
of ‘secular resonance crossing’, mean eccentricities and inclinations
change fastest.

We can place bounds on how much eccentricities and inclinations
grow by examining the constants of motion admitted by equations
(1)—(2) and (5)-(6):

1 2 1 2
ELlel + ELge2 = constant (19)
1 1 2
ELlsl + ELZSZ = constant. (20)

When the outer planet has much more angular momentum than the
inner (L, > L, as is the case in Fig. 1), the maximum eccentricity
and inclination that can be attained by the inner planet depend on the
outer planet’s initial conditions:

L,
€1, max = ?e2O
1
. .1 L2 . 1 .
i1 max = 28in . sin 5120 .
1

Fig. 1 demonstrates that e; and i; come close to their respective
maxima after the secular resonance crossing. Appendix A and
Section 2.1.3 explore in more detail why L, > L; and passage through
anti-aligned states are preferred for inclination and eccentricity
excitation.

@n

(22)

2.1.2 N-body

We solve the same problem as above (two planets inside a decaying
outer disc) now using the REBOUND N-body code outfitted with the
IAS15 integrator (Rein & Spiegel 2015). The outer disc is modelled
as a point particle whose mass my decays exponentially with time
constant t; = 1 Myr; to effect this, we use the REBOUNDx routine
modify mass (Kostov et al. 2016; Tamayo et al. 2020) setting
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mass_loss = —t4. The initial disc mass of 0.22M and initial
semimajor axis of ag = 14.3 au are chosen to yield a secular resonance
crossing time comparable to that in our Laplace—Lagrange solution
above (~0.7 Myr). Modelled as a point particle just like the planets,
the disc has an eccentricity e4 and inclination iy that are free to vary;
in practice they do not deviate much from their initial values of 0, as
the disc contains the lion’s share of the system’s angular momentum
(this assumption eventually breaks down as my decreases to zero,
resulting in a slight increase in eq and iy at late times ¢ 22 5 Myr, not
plotted).

Fig. 1 shows that the N-body solution broadly matches the
Laplace-Lagrange solution — e; and i; increase while e, and i,
decrease as a result of a secular resonance crossing. In the N-body
evolution, the magnitude of the changes in eccentricity and inclinaton
are more muted, apsidal and nodal anti-alignments between planets
1 and 2 are more short-lived, and precession frequencies match only
momentarily and not at all after the secular resonance is crossed.

By modelling the disc as a particle in our N-body simulation,
we neglect how planets excite and interact with waves in the disc
(e.g. Goldreich & Tremaine 1980; Tanaka & Ward 2004). Most
relevant to our study are long-wavelength apsidal and nodal waves
that can exchange angular momentum with a planet (Goldreich &
Sari 2003). Our N-body particle treatment does allow for angular
momentum exchange between the disc and planets, but neglects how
that exchange depends on the wave nature of apsidal and nodal
disturbances in the disc.

2.1.3 Parameter space exploration (N-body)

In Fig. 2, we explore how changing the angular momenta of the
outer planet + disc (while keeping L, > L;) and separately, the disc
depletion time, affect the eccentricity and inclination evolution of
the inner planet in our N-body runs. As the outer bodies’ angular
momenta are increased, the final i; increases as well, respecting
i1, max- A similar trend plays out for e;. We also see that the excitation
of e; and i; do not much depend on #4, presumably as long as the
decay time exceeds the secular oscillation periods (e.g. fp;', fzj,l).
Note, however, how the shortest decay times sampled in Fig. 2 yield
the largest i;.

Fig. 3 explores the evolution when the outer planet’s initial
eccentricity ey and inclination i, are set to higher values. Outcomes
are largely the same as before, except for the run where e < i (first
column), where an eccentricity secular resonance is not encountered,
and the final e; does not respect e; max as derived from Laplace—
Lagrange. What happens instead is that i; grows to values > 40°, large
enough for e; to trade off with i, in a Lidov—Kozai resonance (not
captured by Laplace—Lagrange) — see how the periastron argument
w; starts to librate near the Kozai fixed points of £90° and eventually
locks onto 90°.

We have focused so far on the case where the outer planet has
more angular momentum than the inner. We find that when the
angular momentum ratio is flipped, the planets do not cross a secular
resonance. When L, > L,, the planet—planet precession frequencies
fi2 < fa1 (equation 11). Meanwhile, the planet—disc frequencies
satisfy fig < foq since the exterior planet lies closer to the cavity
edge (equation (12)). Hence, the magnitudes of the non-oscillatory
nodal and apsidal precession frequencies of the outer planet, f
+ fad, always stay higher than those of the inner planet, fi, +
f1a, and there is never a crossing (equations 15-18). Fig. 4 plots
a sample L, < L; integration where {m,, a;} = {10m;y, 1.6 au} and
{m,, a,} = {1 my, 3.2 au}. The system does not pass into or out of
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Figure 2. Parameter space exploration for simulations with two planets + a
decaying outer disc. All runs shown here use REBOUND, with {m, a1} =
{1 my, 0.8 au}, ejp = ij0 = 0.02, and ex¢ = ip0 = 0.1, the same parameters as in
Fig. 1. Left-hand panels: effects of varying the angular momentum of the outer
planet (and concomitantly the outer disc). In order of increasing angular mo-
mentum: {my, az, mqo, aqgo } = {5my, 3.2au, 0.20 Mg, 17.2 au} (red), {5 my,
6.4au,0.12Mg, 42.8 au} (purple), {10 my, 3.2 au, 0.22 Mg, 14.3 au} (blue),
and {10 my, 6.4 au, 0.14 Mg, 35.3 au} (green), with 74 = 1 Myr. Dotted lines
denote €1, max and i max as computed using equations (21) and (22). Right-
hand panels: effects of varying the disc decay time. In order of decreasing
decay time: g = 1 Myr (blue), 0.3 Myr (green), 0.1 Myr (red), and 0.03 Myr
(purple), with {m2, az, mqo, ago} = {10my, 3.2 au, 0.22 Mg, 14.3 au}.

an aligned or anti-aligned state; in this particular example, it starts
and stays within an aligned state, and the planet eccentricities and
inclinations do not change much. Appendix A explains this result in
greater detail.

2.2 Inner disc and planet in a transition disc cavity

Here, we replace the inner planet of Section 2.1 with a disc. We
now have two discs, one interior to a planet and another exterior.
Rigid precession of either disc is assumed to be enforced by some
collective effect, e.g. bending waves (e.g. Lubow & Ogilvie 2000;
Nealon et al. 2018; Zanazzi & Lai 2018a; Zhu 2019) or disc self-
gravity (e.g. Zanazzi & Lai 2017; Batygin 2018). As with the outer
disc, the inner disc loses mass; the inner disc’s angular momentum
can become small relative to the planet’s, enabling the excitation of
large mutual inclination (equation 22). To more accurately model
large inclinations, we replace the Laplace-Lagrange equations of
Section 2.1.1 with the vector formalism of Lai & Pu (2017), which
accounts for how nodal precession rates depend on inclination (see
also the appendix of Zanazzi & Lai 2017). These vector equations are
designed to model well-separated masses, and are thus appropriately
applied to large transition disc cavities far removed from their inner
discs (e.g. Francis & van der Marel 2020; Bohn et al. 2022). For
simplicity, we fix the eccentricities of all masses to be zero, but
account for back-reaction by allowing the outer disc inclination to
freely evolve.
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Figure 3. Similar to Fig. 1, showing N-body simulations of two planets + a decaying outer disc, and varying the initial eccentricity ezp, and
initial inclination iy of the outer planet as indicated above each column. Remaining planet and disc parameters are {mi,a;,ma, asz, myo, ado} =
{1 mj, 0.8 au, 10my, 3.2 au, 0.22 Mg, 14.3au} and ijp = ejo = 0.02. In the left column, the system captures into the Lidov—Kozai resonance where the
argument of pericentre w| = @ — 2 librates about 90°, and e; does not respect e, max as given by (21) from Laplace-Lagrange theory.
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Figure 4. Similar to Fig. 1, showing simulations of two planets + a decaying outer disc, but now with the outer planet having less angular momentum than
the inner: {my, a1, ma, ax} = {10my, 1.6 au, 1 my, 3.2 au}. Initial eccentricities and inclinations are ejg = ijp = 0.1 and exg = izp = 0.02, and disc parameters
are identical to those in Fig. 1. In the Laplace-Lagrange solution, the non-oscillatory precession frequencies of the two planets never match (dashed curves;
equations (15)-18), no secular resonance is crossed, and eccentricities and inclinations do not undergo large changes aside from the outer planet’s secular
oscillations. A qualitatively similar evolution plays out in the N-body calculation. Note how the planets are apsidally and nodally aligned from start to finish but

do not much change their eccentricities or inclinations; see Appendix A.

The orbit normals of the inner disc (i 1), planet (i p)» and outer disc
(i 2) obey:

di foa s s S s
(Ttl = fipU - lp)Ay xIp) + fralli-l)A 1 x1) (23)
di, fa s fa s
o Sl xly) + frollp-12)Tp, x15) (24)
di, fa o a S s
e L) xly) + fop(La-lp)(Tax1p). (25)
The precession frequencies are given by:
1 [ 2nGEymyr? oy (11
fo=1- ) Tplbg/)z (ap) dry (26)
Tl.in p
1 72,0ut 2 GY
o= [ T, ("P) dr, @
LP 2,in r2
r2,0ut 71,00t 4 26T
fio = / Gy Yo ) <“> dridr 28)
12,in T1.in
L, p L,
= =2 = — 2
fpl Lpf1p7 f2p szp27 f21 szlz, ( 9)

where the inner disc of radial coordinate r; extends from ry i, to 71, out,
and similarly for the outer disc. The planet’s angular momentum
(to leading order) is L, = my/GM.,a, for planet mass m, and
semimajor axis ap, stellar mass M,, and gravitational constant G.
The inner and outer disc surface density profiles are assumed to
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follow:
t t
S = 0 sy = O (30)
2f7'[rl,0utrl 27Tr2,outr2
for disc masses
M) = 8% ma(e),  ma(r) = mage ™, 31)
2,out

where § is a free parameter that measures how much lower the
inner disc surface density is relative to the outer (where the latter is
extrapolated to the same inner disc radius; see section 3.3 and fig.
5 of Francis & van der Marel 2020). For ry iy < 71, ou and ry in <
72, out» the (leading-order) disc angular momenta are:

2

Li() = gml(t)\/ GM,riou (32)
2

Ly(1) = gmz(t)\/ GM.ryou (33)

Fig. 5 plots three sample integrations of equations (23)—(25) for
different choices of a, = {12,20} auand § = {2 x 1073,2 x 1072},
values motivated by observations of material inside the cavities of
transitional discs (e.g. Ubeira Gabellini et al. 2019; Francis & van
der Marel 2020; Portilla-Revelo et al. 2023). The annular extent
of the inner disc is taken to be {rj i, 71,0u} = {0.03, 5} au, and for
the outer disc {ryin, 72.0uc} = {30, 200} au. In all cases, the inner and
outer discs are assumed initially co-planar, and the planet has an
initial seed inclination of iyo = 3°. We see that i; amplifies when the
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Figure 5. Secular evolution of a planet (subscript p) sandwiched between a decaying inner disc (subscript 1) and decaying exterior disc (subscript 2),
calculated using the vector equations of Section 2.2. Parameters are {tq, m20, Mp, I'1,in» 7'1,0uts 72,in» 72,0ut} = {1 Myr, 0.2 Mg, Smy, 0.03 au, 5 au, 30 au, 200 au},
with each column corresponding to {ap, §} = {12au, 2 x 1072} (left), {12au, 2 x 1073} (middle), and {20au, 2 x 1073} (right), respectively, where § =
(m1/m2)(r2, out/T1,0ut) (equation 31; see also fig. 9 of Francis & van der Marel 2020 for observationally inferred values of §). The analytic prediction for the inner
disc inclination ij ,, (equation 36 and text below equation (38)) agrees well with the numerically computed i, except for the simulation in the right column
where secular resonance (§2; ~ Qp) cannot be maintained because the planet’s angular momentum exceeds that of the outer disc.

nodal precession rate of the inner disc:

Qi >~ — fipcosi; — fiocosi 34)
matches that of the planet:
Qp >~ — fo1cosit — fra, (35)

where we have taken the reference plane to be perpendicular to the
initial I, approximated i p and I, to be constant and nearly parallel
(as Fig. 5 confirms), and kept only the non-oscillatory contributions
to the frequencies (dropping the dependence of €; and Qp on the
relative nodes). The nodal frequencies €2; and Qp can track one
another for some time; see especially the middle column of Fig. 5.
Setting ©; = Qp gives an analytic estimate for i; during resonance
lock:

f2p
Jip— fo + fi2
As fo, — 0, i1, an — 90° (Petrovich et al. 2020).
We can also derive a maximum i; as we did in Section 2.1. From

equations (23) and (24) and di, /dt = 0 (back-reaction on the outer
disc neglected), we have

COS iy an A (36)

Li(1 —cosi;)+ Ly(1 —cosip) > constant (37)
which yields

] 2sin”! Ly sin L (38)
i ~ — sin =i

1,max L1 2 po

when L; < L. This result is identical to equation (22) as derived
using Laplace—Lagrange. Equation (36) holds when f5, < fip, — fp1 +

Sz and iy an < i1, max. We can piece together a more complete analytic
solution for i; by setting i; ., = 0 When fo, > fi, — fp1 + fi2, and
further setting iy an(f) = i1, max(fc), Where t is the time when 7 ,, first
crosses i max- We see from Fig. 5 that i) ,, so constructed agrees
well with the full solutions shown in the left and middle columns. If
the planet’s angular momentum exceeds that of the outer disc when
secular resonance is first encountered (i.e.if L, > L, when 21 ~ 2,,),
secular resonance locks cannot be sustained, and equation (36) is a
poor predictor of #; (right column).

One can rearrange equation (38) to estimate the minimum planet
mass required to tilt the inner disc:

/2 .21
2 I'1,0ut / s Ell,max
mp > Mpmin = ;M | —— —

39
3 ap sin? Jip (39

Fig. 6 plots my miy as a function of a, and m,. Take for example an
inner disc having mass m; 2 0.01 my on scales of 7y o = Sau. A
planet at a, = 10-50 au with mass m, 2 0.3 m; can tilt such an inner
disc from 3° to 30°, provided they are surrounded by an outer disc

dominating the angular momentum budget.

3 EXTENSIONS

3.1 Forming inclined, apsidally-orthogonal planetary systems

Dawson & Chiang (2014, hereafter DC14) identified a subset of
warm Jupiters whose sky-projected arguments of pericentre wgy, 1
differed from those of their exterior giant-planet companions by
[Awgy| = |0y, 1 — @y, 2] A 90°. Although wgy is technically a
sky-projected angle (between the orbit’s eccentricity vector and the

MNRAS 527, 7203-7216 (2024)
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Figure 6. Minimum planet mass mp min required to tilt the inner disc by
i1, max = 30° (equation 39), as a function of the inner disc mass m; and
the planet semimajor axis ap,, assuming {r{ ou, ipo} = {5au, 3°}. See also
Fig. 12, which shows that this minimum planet mass satisfies observational
constraints in the transition disc hosted by CQ Tau.

vector from the star to the orbit’s ascending node on the sky plane;
see, e.g. fig. 1 of Chiang, Tabachnik & Tremaine 2001), DC14 found
that |Awgy| is a good proxy for |[Aw| = @, — @], the angle
between the eccentricity vectors of two orbits. Thus, |Awgy| =~ 90°
points to planet pairs with near-orthogonal apsides. Such pairs were
argued by DC14 to have mutual inclinations of ~40°, in contrast to
apsidally-aligned (] Awqy| ~ 0°) and anti-aligned (] Awgy| =~ 180°)
pairs argued to be more nearly co-planar (e.g. Chiang, Tabachnik &
Tremaine 2001; Nagasawa, Lin & Ida 2003; Petrovich, Wu & Ali-Dib
2019).

Fig. 7 updates fig. 1 of DC14, showing | Awgy| for systems known
to have two (and only two) planets with measured radial velocities or
transit timing variations, taken from the NASA Exoplanet Archive
(77 percent), the Exoplanet Encyclopedia (18 percent), and the
Exoplanet Orbit Database (5 per cent). The clustering of systems with
|Awgy| 7~ 90° noted by DC14 is no longer apparent.” The histogram
of | Awgy| on the right-hand panel shows a fairly smooth continuum,
with a mild preference for apsidal alignment over anti-alignment by
a factor of ~2-3.

What mutual inclinations do these | Awgyy |’s imply? To investigate
this question, we integrate the secular equations of motion for two
eccentric planets, systematically varying the initial mutual inclination
imut, 0 and examining its effect on the phase-mixed distributions of
Aw = |w, — @] (Which we use as a proxy for Awgy, following
DC14). We use equations (17)—(20) of Liu, Mufioz & Lai (2015),
which can accommodate large eccentricities and inclinations and
incorporate general relativistic precession for the inner planet (e.g.
Eggleton & Kiseleva-Eggleton 2001). Parameters/initial conditions
are chosen to be representative of giant planet pairs with radial
VClOCity data: {ml, ai, 610} = {lmJ, 0.2 au, 03}, {mz, ar, 620}

2DC14 drew the data for their fig. 1 from the Exoplanet Orbit Database (EOD)
only; the systems they highlighted as apsidally orthogonal are shown in red
in Fig. 7, with updated parameters. When we also restrict our sample to the
EOD, we see evidence for the same clustering of | Awsky| near 90° that they
reported. It is only when we add the data from the NASA Exoplanet Archive
and the Exoplanet Encyclopedia that the clustering goes away.

MNRAS 527, 7203-7216 (2024)

= {3my, 1.0au, 0.3}, Q0 — Q2o = 180°, and wj and w9 drawn
uniformly from 0 to 27t

The distributions of |Az | after 1 Myr, parametrized by ipy, o, are
shown in Fig. 8. We see that the |Aer| distributions corresponding
to nearly co-planar systems, having a factor-of-2 preference for
alignment over anti-alignment when iy, o < 20°, seem to fit the
observed distribution of |Awgy| (as shown in Fig. 7) best. We
conclude that the statistical evidence presented by DC14 for a
population of highly inclined, apsidally-orthogonal giant-planet pairs
no longer exists.

None the less, it is still possible that a given individual system
observed today to be apsidally orthogonal has a ~40° mutual incli-
nation, following the dynamics described by DC14 whereby | Awqy|
lingers near 90° as it oscillates about 180°. We now ask whether the
large mutual inclination presumed for such configurations may have
originated from a secular resonance crossing driven by a decaying
outer disc. We take as a case study, one of the systems highlighted by
DC14, HD 147018. To decide whether a crossing may have occurred,
we literally integrate the system backwards in time, starting the
calculation at + = 8 Myr (the present day), ending at + = 0, and
prescribing the outer disc to increase up to a mass of mg9 = 0.5 M.
The disc is otherwise modelled the same way as in Section 2.1,
for assumed parameters ri, = 3.3 au, ro, = 150 au, and 74 = 1 Myr.
We have verified that the system is time-reversible by integrating
forwards and backwards and achieving consistent results. We use
again Liu, Mufioz & Lai (2015) to model the secular interaction of
two planets and include general relativistic precession for the inner
planet. The contributions to planet precession from the disc are given
by:

dj o

% = fraJixla (40)
ke

dek . A

? .y = _fkd (ZekXJk — eled) (41)

(e.g. Pu & Lai 2018; Petrovich, Wu & Ali-Dib 2019). Here, i
is the unit-vector orbit normal (subscript d for disc, and k for
planet k), e is the eccentricity vector of magnitude e pointing in
the direction of pericentre, and j = +/1 — 2. The frequency fig
is given by equation (12), for = (Li/Lqa)fra, Lx = myg~/ G M,ay, and
Lq = (2/3)ma/G M,roy. The disc evolves according to:
diy - o
’r = falaxj; + faolax j,. (42)
Fig. 9 displays the results of the back-integration of HD 147018,
assumed to have a present-day mutual inclination of iy, = 39°.
The system may indeed have once crossed a secular resonance that
increased ipy by a factor of ~3. In this scenario, the inclination i, of
the outer planet needs to have been ~10-15° in the past; this value
agrees with that estimated by inverting equation (22):

L, 1
i20.e = 2sin”"! ( f‘ sinzimm> ~ 12° (43)
2

shown as a dashed line in Fig. 9 for iy, = 39°. By contrast, the
eccentricities do not change as much; e; in the past needs to have been
about as large as its present-day value of 0.47. Thus, our scenario
of a decaying outer disc does not explain the origin of the large
eccentricities in HD 147018.
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Figure 7. The degree of apsidal alignment in two-planet systems with radial velocity or transit timing data, as measured by the difference in sky-projected
arguments of pericentre, | Awsky| = |@sky, 1 — Wsky, 2|. Data are taken from the NASA Exoplanet Archive, Exoplanet Encyclopedia, and Exoplanet Orbit Database,
selecting only systems where eccentricities are larger than zero with greater than 20 confidence, and one-sided 1o errors on wsky, are less than 40° (similar
cuts were made by Dawson & Chiang 2014). No cut on planet mass or semimajor axis is made for this figure, but we have verified that our conclusions are
unchanged if we consider only giant planets, or if we include only planets with @ > 0.1 au to exclude hot Jupiters (data not shown). The six red points are the
same six warm Jupiter systems proposed by Dawson & Chiang (2014) to constitute a distinct class of apsidally misaligned (| Awsky| &~ 90°), highly inclined
pairs. The data as a whole no longer support such a claim, as can be seen in the histogram of | Awsky| on the right, which shows no obvious clustering around
[Awgky| ~ 90°, and instead appears more consistent with most if not all pairs having small mutual inclinations — compare with Fig. 8.

3.2 Stellar spin

We consider here how accounting for the host stellar spin and
quadrupole moment changes the dynamics of secular resonance
crossing. Mostly, we find that it does not fit our parameter space.

3.2.1 Star + planet interactions

For a planet to substantively tilt the spin axis of a star, at least two
conditions need to be satisfied. First, the planet’s orbital angular
momentum L, = m/GM,a, should be larger than the stellar spin
angular momentum S = k, M, R2<,. For our parameters,

N Imy\ /lau\"* /3d M, \'?/ R, \?
=11 (=) (= = ,(44)
Lp mp ap P,( IMQ 2R®

where Q, = 271/P, is the star’s rotation frequency, P, is the star’s
rotation period, and the angular momentum constant k, >~ 0.2 for
a fully convective body (e.g. Chandrasekhar 1939; Lai, Rasio &
Shapiro 1993). For a, < lau, S 2 L, and the planet cannot control
the star’s tilt. For a, 2 1au, we run up against the second condition
that the precession frequency of the star driven by the planet

f. =22x%x107° E My lﬂ 3de —1
w =2 gyr (45)
P,, lmJ ap

be shorter than the precession frequency of the planet; otherwise
the planet orbit normal would vary too rapidly to coherently tilt the
stellar spin axis (e.g. Lai 2014; Zanazzi & Lai 2018b). In evaluating
Jfip» we have taken the star’s second gravitational moment to be J, =
kq Q?/(GM,/R?), with ky >~ 0.09 (e.g. Lai, Rasio & Shapiro 1993).
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40000 —-_:l:._j_,::_'_'_l_l_
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Figure 8. The distribution of |Aw | = |, — @ | sampled from 200 two-

planet systems, integrated using eqs. (17)—(20) of Liu, Mufioz & Lai (2015)
over 1 Myr. The inner planet has {m;, a1} = {1my, 0.2au} and the outer
planet has {my, a,} = {3my, 1.0au}. Initial mutual inclinations are as
labelled, with initial nodes 219 and €2p0 anti-aligned, initial arguments of
pericentre drawn randomly over the interval [0, 271], and initial eccentricities
sett0 0.3. For iy, 0 < 20°, the Az distribution decreases monotonically from
alignment to anti-alignment in a way that resembles the observed distribution
of | Awgky| shown in Fig. 7.

For our parameters, typical values of Qp (see Figs 1 and 3 for Q, and
2,) exceed f,p.

What about the converse torque exerted by the oblate star on the
planet, conceivably important when S > L,? The planet’s precession

MNRAS 527, 7203-7216 (2024)
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Figure 9. The mutual inclination between HD 147018b and ¢ hypothesized
by DC14 to be ~39° today could have arisen from a secular resonance
crossing driven by a decaying outer disc. The evolution shown is the result
of a backwards-integration starting at + = 8 Myr with ‘initial’ conditions
from DC14 — {M,, my, my, ay, az, eis, e, i1, bof, Wif, War, Qif, Log}
= {0.92Mg, 2.1 my, 6.6 my, 0.24 au, 1.9au, 0.47, 0.13, 35.6°, 3.4°, 66°,
136.9°, 0°, 180°} — augmented with a disc of mass mq = 0.5 Mg exp(—t/t4)
and having parameters {rin, rou fa} = {3.3 au, 150 au, 1 Myr}. The system
may have originated with a mutual inclination of izg esc & 12° (equation
43), crossed a secular resonance that amplified i; at the expense of i, and
settled into apsidal libration with Aww = @, — @ lingering near £90°
(DC14). However, this formation scenario does not explain the origin of the
eccentricities in HD 147018b and ¢, which do not change much from their
large present-day values.

frequency forced by the star is:

3d 2 1 7/2 M,, 1/2 R,, 2
foe=2.4x107° (—) <ﬂ) ( ) <7> degyr".
P* ap 1 M@ 1 R@

(46)

For a, 2 0.1 au, f;, is lower than precession frequencies driven by
planet—planet interactions (see, e.g. @r, 2 in Figs 1 and 3). Thus the
planets generally affect one another more than they are affected by
the star.

MNRAS 527, 7203-7216 (2024)
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Figure 10. Similar to Fig. 5 showing the secular evolution of an inner
disc + planet + outer disc, but now including the torque from the star’s
mass quadrupole for the stellar rotation periods P, indicated. Other model
parameters are {M.,, m20, 8, r1 in» F1, out> 72, in> 72, 0ut» Mp, ap} = {2Mg,
0.2Mgp, 8 x 10_3, 0.03 au, 8au, 20au, 200au, 5my, 16au}. For our
parameters, including the stellar torque does not qualitatively change how
the inner disc’s inclination may be excited by an exterior planet. As the inner
disc’s precession rate €] becomes increasingly dominated by the star (f}, >
fip), the secular resonance is crossed earlier (compare right column to left).

3.2.2 Star + inner disc interactions

Our modelled inner disc typically has an angular momentum L; =
(2/3)m1\/GM,r| oy that is less than that of the star S. This fact,
together with the inner disc extending down to small stellocentric
radii, opens up the possibility that the star controls the precession
rate of the inner disc. To the equations modelling the interaction
between the inner disc, planet, and outer disc (equations 23-25), we
add the contribution from the star to the evolution of the inner disc’s
orbit normal I 1

di A

o = D, @7
where the unit stellar spin vector § evolves according to:

ds A X

—| = fu@-1)s§xI 48
., fa@-1)§xI, (48)

with precession frequencies

1 [Mow 3nGM,R*J, S
fla=— e 2= 4, (49)
Ll Flin rl

_h 50
ftl - ?flr- ( )

The effects of the star on the planet (exterior to the inner disc) and
outer disc are small and neglected.

Fig. 10 shows the resultant evolution for two values of P,. We see
that inner disc inclinations i; become excited by a secular resonance
much as they did when stellar spin was ignored (Fig. 5). The star can
increase substantially the nodal precession rate of the inner disc

Q) >~ — fi,cosi| — fipcosii — fircosi (51

but the main consequence is just to cause the secular resonance to
be crossed earlier (compare right and left columns of Fig. 10). Our
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analytic estimate (36) for iy when Q= Qp becomes revised to

f2p
St fip — for + fi2
Further setting, as we did in Section 2.2, i} 4 (f) = i1, max(Zc), Where
t. is the time when iy ,, first crosses i max (equation 38), predicts to
within a factor of 2 the actual ;.

(52)

COS I an ~

4 SUMMARY AND DISCUSSION

We have investigated the secular dynamics of two giant planets
encircled by a transition disc undergoing mass loss. We have also
considered what happens when we replace the inner planet with a
disc that is assumed to precess rigidly. We find that:

(i) When the outer planet’s angular momentum exceeds the inner
planet’s, the planets can cross nodal and apsidal secular resonances as
the disc disperses. These crossings can magnify the orbital inclination
of the inner planet relative to the outer planet and the inner planet’s
eccentricity. The magnification factor is of order the square root of the
ratio of the outer to inner planet’s angular momentum (equations 21
and 22). For typical massive two-planet systems, the magnification
factor is on the order of a few (Fig. 3). Thus, for example, generating
a ~40° mutual inclination may require a seed inclination of up to
~10° (more on actual systems below). Whether or not a secular
resonance is crossed depends in part on the outer disc mass; the
crossings simulated in our work rely on outer disc masses initially
comparable to the host stellar mass (similar to Class 0/1 sources, e.g.
Jgrgensen et al. 2009; Tobin et al. 2015; Segura-Cox et al. 2018;
Andersen et al. 2019).

(ii) Inner discs of the kind observed to reside within the cavities of
transitional discs have such low mass (Ubeira Gabellini et al. 2019;
Francis & van der Marel 2020; Portilla-Revelo et al. 2023) and, by
extension, low angular momentum that their inclinations relative to
an exterior planet are more easily amplified by secular resonance. A
seed mutual inclination of ~3° can grow to ~30°-90° (Fig. 5). This
scenario may explain the tilted inner discs inferred to cast shadows
on outer transition discs (e.g. Benisty et al. 2022; Bohn et al. 2022;
more on actual such systems below).

(iii) Planet pairs discovered through radial velocity measurements
exhibit widely varying degrees of apsidal alignment, from aligned
to anti-aligned and everything in between (Fig. 7). The apsidal
distribution appears roughly consistent with such pairs predomi-
nantly residing on nearly co-planar orbits, with mutual inclinations
<20°. Contrary to Dawson & Chiang (2014), we find no statistical
evidence for a separate population of pairs on more highly inclined,
apsidally-orthogonal orbits. Such orbits can still exist in principle
and might describe individual systems like HD 147018. This system’s
hypothesized large mutual inclination, but not its large eccentricities,
may originate from a secular resonance crossing driven by a decaying
outer disc.

(iv) The scenarios we have explored are largely insensitive to the
host star’s spin, and vice versa. Thus, when the inclination of an inner
planet or inner disc is excited, the stellar spin axis does not follow
suit; we expect large stellar obliquities.

We close our study by connecting to additional observed systems.
Given the angular momentum ratio of a two-planet system, equation
(43) estimates the seed inclination i,y needed to produce a final
mutual inclination ip,. Fig. 11 plots iny, versus iy for systems with
measured mutual inclinations. Kepler-448, Kepler-693, and w Men
are good candidates for disc-driven, secular excitation of their current
inclinations, as they require relatively modest values of iy < 10° (see
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Figure 11. The seed inclination of outer planet ipo required to generate the
observed mutual inclination iy (equation 43). The brown dotted line traces
i20 = Imut- Systems like 7 Men (Xuan & Wyatt 2020), Kepler-448, and
Kepler-693 (Masuda 2017) have large angular momentum ratios Lp/L; and
can therefore leverage small iy into large im,: using a secular resonance.
Other systems like WASP-148 (Almenara et al. 2022) and v Andromedae
(McArthur et al. 2010) have angular momentum ratios closer to unity and are
therefore poor candidates for the secular amplification of mutual inclination.
See text for discussion of the HD 3167 system (Bourrier et al. 2021) that we
hypothesize harbours a distant massive companion. We do not plot KOI-984
(Sun et al. 2022) because the mass and orbital period of the outer companion
seem too uncertain; nor do we plot Kepler-108 (Mills & Fabrycky 2017)
because its angular momentum ratio Lp/L; < 1.

also Petrovich et al. 2020). In contrast, because angular momentum
ratios are near unity in WASP-148 and v Andromedae, a secular
resonance can do little to magnify the systems’ mutual inclinations
(20 =~ imu)- A more promising way to generate their inclinations
may be planet—planet scattering (e.g. Chatterjee et al. 2008; Juri¢ &
Tremaine 2008; Barnes et al. 2011; Anderson, Lai & Pu 2020).

The HD 3167 system is particularly puzzling. The planets HD 3167
b and c are transiting sub-Neptunes with orbital periods Py, = 0.96d
and 29.8d, respectively. The inner member of the pair is nearly
coplanar with the host star’s equator, and the outer member is inclined
by imu ~ 103° (Dalal et al. 2019; Bourrier et al. 2021). Although a
secular resonance can magnify the mutual inclination between these
two planets by a factor of ~4 (Fig. 11), HD 3167 c does not have
enough angular momentum to also tilt the star (equation 44). A
possible solution would be to have a massive distant companion (as
yet unobserved) tilt the protoplanetary disc that formed HD 3167
¢, leaving HD 3167 b unaffected because of its close proximity to
the spinning star (Section 3.2.2). In this scenario, we would also
expect the other non-transiting sub-Neptunes in HD 3167 (Bonomo
et al. 2023), e (P, = 96.6d) and perhaps also d (Poy, = 8.4d), to
be approximately co-planar with c.

Other candidates for secular excitation of inclinations include
Kepler-56, a system containing two planets of mass 0.07 m; and
0.56 m; and periods 10.5d and 21.4d, whose orbits are co-planar
with each other but inclined relative to the host star’s equator by
~45° (Huber et al. 2013). A third body detected from radial velocity

MNRAS 527, 7203-7216 (2024)
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Figure 12. Constraints on the mass of a companion forming within the CQ
Tau transition disc. Red solid line plots the companion’s maximum mass
mp, im at a given location given coronograph non-detections (Uyama et al.
2020; van der Marel et al. 2021). The blue solid line marks the estimated
inner cavity edge r in (Ubeira Gabellini et al. 2019), while the light blue box
encloses the estimated mass m,, st and semimajor axis of a planet that can
carve the disc cavity (Ubeira Gabellini et al. 2019). Black dashed line denotes
the minimum companion mass (11, min, €quation (39)) needed to misalign the
inner disc by i; = 44° (Bohn et al. 2022), for my ~ 2.9my, 12, out ~ 56 au,
and 8 ~ 1072 (Ubeira Gabellini et al. 2019), and ipop = 3° and ry ou =
1 au assumed arbitrarily. Since mp, min < Mp, est» the putative companion can
misalign the inner disc and generate CQ Tau’s shadows.

observations, with mass m sini = 5.6 m; and period 1000d (Otor
etal. 2016), may have tilted the disc that formed the inner two planets.
Another potential application of secular resonance is presented by
the warm Jupiter TOI-1859b, hosted by a star with a projected
obliquity of A =~ 39° (Dong et al. 2023). An exterior companion
larger than a few Jupiter masses (not yet observed), driven by a
protoplanetary disc to precess at the right rate, could have misaligned
TOI-1895b.

CQ Tau hosts a transition disc with diametrically-opposed shadows
(Uyama et al. 2020), thought to be cast by an inner disc inclined by
44° (Bohn et al. 2022). Masses of both the inner and outer discs
can be estimated from CO emission, and the mass and location of a
planet interior to the disc cavity are constrained from coronagraphic
observations and the need to shepherd the cavity edge (Ubeira
Gabellini et al. 2019; Uyama et al. 2020; van der Marel et al. 2021).
The constraints on the planet are plotted in Fig. 12 (data coloured blue
and red), and are completely compatible with a planet that can tilt the
inner disc by 44° (black dashed line). The planet mass needed to tilt
the inner disc scales linearly with the inner disc mass (equation 39);
the latter could be underestimated by nearly two orders of magnitude
and still be consistent with our scenario of secular resonance
crossing.
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APPENDIX A: SWEEPING SECULAR
RESONANCE MODEL

We construct a model for a sweeping secular resonance using
Laplace-Lagrange theory. We assume the nodal and apsidal pre-
cession periods are much shorter than the disc depletion time #4.
Equations (3)—(4) and (7)—(8) describe how Aw = w, — @ and
AQ = Q, — Q; evolve:

dA
T =ar- (gzli1 - glze—2> cos Aw (A1)

dt e ey

dAQ s K

—— =-Af+ (m—l - m—z) cos AQ, (A2)
dr 52 S1

where

Af = fa+ faa— fi12 — fia (A3)

equals the difference between the two planets’ non-oscillatory pre-
cession frequencies (equations 15-18). For our decaying transition
disc scenario, Af starts positive and decreases with time. Equations
(1)=(2) and (5)—(6) imply that eccentricities and inclinations are
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Figure Al. The inclination ratio s1/s2 versus Aflf>; (equation AS) for the
nodally aligned (4, red) and anti-aligned (—, purple) modes. Top panel:
aligned and anti-aligned solutions for L/L; = 5, 1, and 0.2 (solid, dashed,
and dotted lines, respectively). The solutions are symmetric about the critical
value s1/s2/a5=0 = ~/L2/L1 (equation A6, solid circles). Bottom panel:
comparing the full Laplace-Lagrange integrations in Fig. 1 (solid purple,
Ly/Ly > 1) and Fig. 4 (solid red, Lp/L; < 1) to their respective anti-aligned
(purple dot—dashed) and aligned (red dot—dashed) tracks. Time advances from
right to left. The detuning frequency parameter Af does not cross zero when
Ly/Ly < 1, forestalling large changes to s1/s>.

constant when apses and nodes are either aligned (Aw, AQ2 = 0) or
anti-aligned (Aw, AQ = ). Alignment (4) or anti-alignment (—)
is enforced when

2l :1 <M>2+4L2iAf (A4)
e, 2 821 Ly g
Sl (M)2+4L2iAf (AS5)
sply 2 S Ly fn

derived by setting (A1)—(A2) to zero. Combining (A4)—(AS) with
the conserved quantities (19)—(20) — a.k.a. the angular momentum
deficit — yields ey, e, 51, and s, in apsidal/nodal lock. Notice e;/e; |+
and s1/s,|+ have the same value when Af = 0:

_ [k (A6)
Af=0 B L, )

From hereon, we focus on how inclinations evolve; analogous
statements apply for eccentricities. The top panel of Fig. A1 shows
s1/s2|x versus Af. In the beginning (r = 0), Af > 0. Which of the
aligned or anti-aligned solutions is relevant depends on L,/L, and
the initial conditions (including the initial s0/s,9 and the nodes).
As long as Af changes slowly, the system tends to move along a
single 4 or — track (in reality, oscillating about the track when nodal

(2]

€

§1

Af=0 52
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oscillations are non-zero). As Af decreases, s;/s;|+ decreases and
s1/s2| - increases, with s,/s, changing most rapidly when Af crosses
zero (secular resonance passage). Because the angular momentum
deficit is conserved, the relative Sy = %Lks,f values determine how
the two orbits exchange inclination. The inner planet’s inclination
s1 will amplify most (at the expense of the outer planet’s s,) upon
secular resonance passage along an anti-aligned track, for Sjp <
Sy initially and Sj¢ > Sy in the final state — equivalently, when
S10/520 < ~/L2/Ly < s1¢/52¢. The various examples given through-
out this paper of mutual inclination excitation by secular resonance
passage follow this anti-aligned, L,/L, > 1 track —a sample evolution
taken from Fig. 1 is plotted in the bottom panel of Fig. Al.

In principle, mutual inclination excitation is also possible by
following an L,/L; < 1, aligned (+) track to decrease s; and amplify
5. But in practice, as explained at the end of Section 2.1.3, Af never
crosses zero when L,/L; < 1 in our decaying outer disc scenario, and
therefore large changes to s,/s, do not materialize. This is confirmed
by the red trajectory, taken from Fig. 4, plotted in the bottom panel
of Fig. Al.
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