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Abstract
We suggest a new random model for links based on meander diagrams and graphs.
We then prove that trivial links appear with vanishing probability in this model, no
link L is obtained with probability 1, and there is a lower bound for the number
of non-isotopic knots obtained for a fixed number of crossings. A random meander
diagram is obtained through matching pairs of parentheses, a well-studied problem in
combinatorics. Hence tools from combinatorics can be used to investigate properties
of random links in this model, and, moreover, of the respective 3-manifolds that are
link complements in 3-sphere. We use this for exploring geometric properties of a link
complement. Specifically, we give expected twist number of a link diagram and use it
to bound expected hyperbolic and simplicial volume of random links. The tools from
combinatorics that we use include Catalan and Narayana numbers, and Zeilberger’s
algorithm.

Keywords Random links · Knots · Meanders · Link complement · Hyperbolic volume

Mathematics Subject Classification 57K10 · 57K32 · 05C80

1 Introduction

In the recent years, there has been an increased interest in using probabilistic methods
in low-dimensional geometry and topology. A number of models for 3-manifolds
and links appeared, and were used to study their topological properties and various
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invariants. For example, Dunfield and Thurston [7] studied finite covers of random
3-manifolds, and Even-Zohar et al. [11] studied linking number and Casson invariants
in random petaluma model for knots. One of the benefits of using random models is
that they often allow one to check the typical behavior of an object (e.g. of a link)
beyond well-studied families. In this paper, we introduce a new model for links called
the random meander link model. For an overview of previously existing models for
random knots and links, we direct the reader to the exposition by Even-Zohar [8].

For our model, we use meander diagrams. Informally, a meander is a pair of curves
in the plane, where one curve is assumed to be a straight line and the other one
“meanders” back and forth over it. In a meander diagram, we assume that the ends
of these two curves are connected. The study of meanders dates back at least to
Poincaré’s work on dynamical systems on surfaces. Meanders naturally appear in
various areas of mathematics (see, for example, combinatorial study by Franz and
Earnshaw [12]), as well as in natural sciences. Every knot is known to have a meander
diagram [1, Thm. 1.2], and we generalize these diagrams so that every link has one
too. This is described in Sect. 2. It does not follow however that a random model that
produces various meander diagrams will produce all knots or links: indeed, many
distinct meander diagrams may represent isotopic (i.e. equivalent) links. We address
this separately, as explained below.

The first important question about any random link model is whether it produces
non-trivial links with high probability. The proof of this is often far from trivial. For
example, for a grid walk model, it was conjectured by Delbruck in 1961 that a random
knot Kn is knotted with high probability [5]. And only in 1988 and 1989, two proofs of
this appeared, one by Sumners andWhittington [29], and another by Pippenger [25]. It
was also conjectured that a different model, called a polygonal walk model, produces
unknotswith vanishing probability by Frischand andWasserman in 1961 [13]. The first
proof of this appeared in 1994, for Gaussian-steps polygons, due to Diao, Pippenger,
and Sumners [6]. For another, more recent random knot model, called petaluma model
for knots, the paper from 2018 by Even-Zohar, Hass, Linial and Nowik [9] is mostly
devoted to proving that the probability of obtaining every specific knot type decays
to zero as the number of petals grows. Yet another recent work by Chapman from
2017 [2] studies random planar diagram model and shows that such diagrams are
non-trivial with high probability. This list of such results is not exhaustive.

In Sects. 3 and 4, we prove that as the number of crossings in a link diagram grows,
we obtain a non-trivial knot or link with probability 1 in the random meander model.
This is the first main result of this paper, given in Theorem 4.5. While we use a pro-
grammed worksheet for Zielberger’s algorithm as a shortcut (which is mathematically
rigorous), the main part of the proof is theoretical rather than computer-assisted, and
relies on observations concerning topology of knots, graphs and combinatorics. In
particular, we show that a certain fragment (“a pierced circle”) appears in our random
meander link diagrams with high probability. This can be compared with Chapman’s
approach [2]: he shows that another fragment, similar to a trefoil, appears in random
planar diagrams with high probability as well. As a corollary, we also show that as the
number of crossings and components in a random diagram grows, no link is obtained
with probability 1 in our randommodel, and therefore themodel yields infinitelymany
non-isotopic links (Proposition 4.6). We proceed to give a lower bound on the number
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of distinct (up to isotopy) knots produced by our model for a fixed number of crossings
in Proposition 4.7.

In Sect. 5, we give an application of this randommodel to low-dimensional topology
by finding the expected number of twists in a random link diagram. This is Theorem
5.3. This number is related to geometric properties of the respective link complement
in 3-sphere, as is shown, for example, in the work on hyperbolic volume by Lack-
enby [15] and Purcell [27], or in the work on cusp volume by Lackenby and Purcell
[16]. Applying the former paper by Lackenby and its extension concerning simplicial
volume by Dasbach and Tsvietkova [4], we give bounds for the expected hyperbolic
or simplicial volume of links in Corollary 5.6, in the spirit of Obeidin’s observations
[22]. Together, Theorem 5.3 and Corollary 5.6 can be seen as the second main result
of the paper. We conclude with some open questions concerning hyperbolicity and
volume of random meander links.

One of the advantages of random meander link model is that constructing meander
diagrams corresponds in a certain way to a well-known combinatorial problem about
pairs of parentheseswhich are correctlymatched. Thus the number of randommeander
diagrams has a simple formula in terms of Catalan numbers. Moreover, topological
and diagrammatic properties of random meander links translate into combinatorial
identities, and can be investigated using tools from combinatorics. For example, to
prove that unlinks are rare, we use Poincaré’s theorem about recurrence relations, and
Zeilberg’s algorithm that finds a polynomial recurrence for hypergeometric identities.
Findingmathematical expectation for volume of a link complement involves summing
Narayana numbers, another well-known series. This is perhaps an unexpected way to
look at knot theory problems.

2 RandomMeander LinkModel

We begin by providing the background required to define our random model. The
following result is attributed to Gauss.

Theorem 2.1 [1, Thm. 1.2] Every knot has a projection that can be decomposed into
two sub-arcs such that each sub-arc never crosses itself.

By planar isotopy, one of these sub-arcs can be taken to be a subset of the x-axis,
which we will call the axis. The resulting diagram is called straight. The other sub-arc
we call the meander curve.We will call a segment of the meander curve between two
consecutive crossings an arc. The complementary axis is the x-axis minus the axis.
Then every arc that makes up the meander curve either crosses the complementary
axis or not. If an arc does not cross the complementary axis, we call it a contained
arc and if it does cross the complementary axis, it is an uncontained arc. A straight
diagram is said to be a meander diagram if there are no uncontained arcs. See Fig. 1.

For study of meander knots and links from the point of view of knot theory and
low-dimensional topology, see for example [14, 19, 21]. As we will see, variations of
the constructions that we describe below (meander knot, meander link, meander link
with multiple parallel strands) appeared in literature before, at times in a somewhat
different form, but this is the first time they are used for a randommodel. The following
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Fig. 1 Three diagrams of the figure-eight knot. On the left, the standard diagram; in the center, a straight
diagram; on the right, a meander diagram

(()())(())

()((()()))

Fig. 2 Left: two p-strings of length 5. Middle: the corresponding meander graph �9. Right: the random
meander link L9 obtained by adding crossing information string V9 = OOUUOOUOU to �9

fact was proved by Owad in [21], Theorem 2.8, and was known to Adams, Shinjo, and
Tanaka (see Fig. 2 in [1]).

Theorem 2.2 Every knot has a meander diagram.

A meander graph is the 4-valent planar graph obtained by replacing each crossing
of a meander diagram with a vertex. The graph’s edges are the upper semi-circles
above the axis, lower semi-circles below the axis, and every segment from a vertex
to a vertex along the axis. In addition, there can be an edge of the graph made up of
either the leftmost or the righmost segment of the axis and one semicircle, adjacent to
that segment. Such an edge may be a loop, i.e. its two vertex endpoints may coincide.
By a pair of parentheses we mean two parentheses, left and right: (). Further, we will
refer to any string of s pairs of parentheses as a p-string of length s. Put a collection
of upper semi-circles in correspondence with a p-string, as in Fig. 2, where a pair a is
inside the pair b if and only if the respective semicircle for a is inside the respective
semicircle for b. Do the same for lower semi-circles. To generate a random meander
graph, we will use two p-strings, each of length s.

Let �2s−1 be a meander graph generated with two p-strings of lengths s. The
crossing information string at each vertex is a word V2s−1 consisting of letters U and
O of length 2s − 1. The pair (�2s−1, V2s−1) defines a meander link L2s−1 as follows:
every letter in V2s−1 from left to right corresponds to either overpass (O) or underpass
(U ) of the axis of the diagram drawn instead of the vertices of �2s−1 from left to right.

Call the link component that contains the axis the axis component. All link crossings
are a part of this component. As a result, the other link components are unknots and
not linked with each other.

Now we generalize this construction. For every link component of L2s−1, take
r − 1 additional strands parallel to it. Instead of each crossing of L2s−1 we have
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UUOOUUOUO

OOUUOUUOU

UOOOOUUOO

Fig. 3 From left to right: an example of a graph �3, a graph �3
3, a crossing information string V 3

3 , and the

knot obtained as (�3
3 , V 3

3 )

r2 crossings in the new link. Substitute each of them by a vertex again. Denote the
resulting graph by �r

2s−1 and call it (r , 2s − 1)-meander graph. Denote the collection
of r words, where each word consists of r(2s − 1) letters O andU , by Vr

2s−1, and call
it (r , 2s − 1)-crossing information string.

The (r , 2s − 1)-meander link diagramor link is the link diagramor the link obtained
by adding the crossing information stringV r

2s−1 to the graph�r
2s−1 as above.Wedenote

the set of all (r , 2s − 1)-meander link diagrams for a given s and r by Lr
2s−1. Note

that one link can be in several such sets for different r , s.
An example of a meander graph, an (r , 2s − 1)-meander graph, a crossing infor-

mation string, and the (r , 2s − 1)-meander link diagram obtained from them is given
in Fig. 3.

A planar isotopy applied to a (r , 2s − 1)-meander link diagram transforms it into
a diagram called a potholder diagram in [10]. We therefore can reformulate Theorem
1.4 from [10] as follows.

Theorem 2.3 Any link has an (r , 2s − 1)-meander link diagram.

Theorem 2.3 means, in particular, that the set of all links is the same as the set of
(r , 2s − 1)-meander links for all natural r and s, up to link isotopy. If we set r = 1,

the set
∞⋃
s=1

L1
2s−1 contains the set of all knots by Theorem 2.1. It also contains some

links with more than one component: see Fig. 2 for an example of a link in this set.
For positive integers s and r , choose�r

2s−1 and V
r
2s−1 uniformly at random from the

set of all (r , 2s − 1)-meander graphs and the set all (r , 2s − 1)-crossing information
strings. The resulting (r , 2s − 1)-meander link diagram or link is called a random
(r , 2s − 1)-meander link diagram or link.

3 Links with Pierced Circles

Here and further we consider link complements in S3. When projected to a plane or
S2, certain fragments of a link diagram guarantee the the link is not trivial, i.e. is not
an unlink in S3. In meander link diagrams, we identify one such fragment below. Later
in this section, we will find the mathematical expectation of such a fragment being
present.

A pierced circle is a fragment of a meander graph or link depicted in Fig. 4. The
circle component has exactly two consecutive vertices or crossings on the axis. See
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1 2 3 4 5 6 7

a = 2 b1 = 2 b2 = 3
Fig. 4 From left to right: a pierced circle in a graph; the path graph P5; a graph fromA7(2) on the right

Fig. 2, middle and right, for an example of a meander graph and a meander link with
a pierced circle.

We will determine the expected number of pierced circles in a random meander
diagram.

Consider the path graph Pv , as in Fig. 4, middle. Label the vertices 1 through v from
left to right. A pierced circle is at position i if the left vertex of the circle is labeled i ,
1 ≤ i ≤ v − 1. We will count the number of ways to add k pierced circles to Pv so
that no two circles share a vertex. Let Av(k) be the collection of the resulting graphs,
with k pierced circles added.

Recall that the number of integer ordered partititons (or compositions) of a nonega-
tive integern into k natural numbers is the number ofways towriten asa1+a2+· · ·+ak
for some natural numbers a1, a2, . . . , ak ≥ 1. The quantity |Av(k)| can be seen as the
number of integer partititons of v into one non-negative integer, say a, and k integers
that are two or greater, say b1, b2, . . . , bk , where bi ≥ 2, as follows. The non-negative
integer a represents the number of vertices before the position of the first pierced
circle, which may be zero. Now label k pierced circles in Pv by 1, 2, . . . , k from left
to right. For m = 1, . . . , k − 1, the integer bm is determined by the pair of m-th and
(m + 1)-th consecutive circles in the graph Pv , say located at positions i and j , with
bm = |i − j |. And the last integer bk is the number of vertices from the position of
the last circle, say position q, to the end of the path graph, as v − q + 1. In Fig. 4 with
v = 7 and k = 2, we have a = 2, b1 = 2, b2 = 3, i.e. 7 = 2 + 2 + 3.

Lemma 3.1 There are
(
v−k
k

)
graphs in the set Av(k).

Proof Above, we observed that |Av(k)| is the number of ordered partitions of v into
a, b1, b2, . . . , bk where a ≥ 0 and bi ≥ 2. We relabel the summands by taking a
bijective function f that maps a �→ a1 − 1 and bi �→ ai+1 + 1 for i = 1, 2, . . . k.
Then ai ≥ 1 for all i . Using this relabeling, we have

v = (a1 − 1) + (a2 + 1) + (a3 + 1) + · · · + (ak+1 + 1)

v = a1 + a2 + · · · + ak+1 + k − 1

v − k + 1 = a1 + a2 + · · · + ak+1.

This an ordered partition of v−k+1 into k+1 natural numbers. But every such ordered
partititon corresponds to an ordered partition of v into a, b1, b2, . . . , bk , through the
bijection f . Hence the number of such ordered partititons is the same as the number
of ordered partitions of v into a, b1, b2, . . . , bk , and is equal to |Av(k)|. In general,
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the number of ordered partititons of a nonegative integer n into j natural numbers is(n−1
j−1

)
[28]. Therefore |Av(k)| = (

v−k
k

)
. ��

Recall that the Catalan number Cs = 1
s+1

(2s
s

)
counts the number of valid strings

of s pairs of parentheses [28], i.e. the number of p-strings of length s.
A p-string has s pairs of parentheses, so 2s positions for a parenthesis, which is

either left or right. We call a matched pair of parentheses next to each other, (), a
nesting. A nesting is at position i if the left parenthesis is at the i-th position in the
p-string. For example, consider the p-string of length 6: (())((()())). Replace
the parentheses that are not a part of any nesting with a dash: -()---()()--. We
see that the positions of three nestings in this p-string are 2, 7, and 9.

Lemma 3.2 Fix a p-string P of length s, s ≥ 2, with j nestings, j ≥ 0. Vary the
parentheses in P that do no belong to the nestings. The number of resulting p-strings
is Cs− j .

Note that each resulting p-string in the lemma contains nestings at the same
positions as P , but also possibly other nestings.

Proof Let the positions for the nestings in P be x1, x2, . . . , x j . Then there are 2(s− j)
parentheses that are not part of a nesting in P . We replace each of them with a dash,
as above.

Now choose a p-string P ′ of length s− j . Fill in the dashes of P by substituting the
parentheses of P ′, in the same order as in P ′. This gives a bijection between strings
of length s − j (like P ′), and the strings we are counting in the lemma statement. And
there are Cs− j distinct p-strings of length s − j . ��

Recall that a meander graph�1
2s−1 has no added parallel strands, and exactly 2s − 1

vertices of valence 4. Let the set of such graphs that have exactly k pierced circles be
denoted by Es(k), and let |Es(k)| = E(s, k).

Let Os(k) be a set of ordered triples

Os(k) = {(A, P, Q)|A ∈ A2s−1(k), and P, Q are p-strings of length s − k}.

Denote |Os(k)| = O(s, k).
We now establish an upper bound for the number E(s, k)

Lemma 3.3 Given s ≥ 1 and k for 0 ≤ k ≤ s,

(1) O(s, k) = (2s−k−1
k

)
(Cs−k)

2

(2) O(s, k) =
s∑

m=k

(m
k

)
E(s,m)

Proof For part (1), recall thatA2s−1(k) denotes the set of path graphs with 2s−1 ver-
tices and k pierced circles. The number of such graphs |A2s−1(k)| is given by Lemma
3.1, once we substitute v = 2s − 1 in the lemma statement, and it is |A2s−1(k)| =(2s−k−1

k

)
. Recall also that Os(k) is the Cartesian product of A2s−1(k), the set P of
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p-strings P of length s − k, and one more such set Q. Since |P| = |Q| = Cs−k by
Lemma 3.2, we obtain:

O(s, k) = |Os(k)| =
(
2s − k − 1

k

)

(Cs−k)
2. (1)

For part (2), consider a meander graph � = �1
2s−1 with exactly j ≥ k pierced

circles. We claim that O(s, k) counts � exactly
( j
k

)
times. Indeed, take a subgraph A

of � by leaving k of the j pierced circles of �, and the axis, and deleting all other
edges of �. The graph A is an element of As(k). There are exactly

( j
k

)
such distinct

subgraphs of �. For each such subgraph A, there is exactly one pair of p-strings of
length s − k that, combined with A, yields �. Thus there are

( j
k

)
elements of Os(k)

that all correspond to �. But the graphs like �, with k pierced circles, make up the
set Es(k), with |Es(k)| = E(s, k) by definition. Then for each m with k ≤ m ≤ s, we
sum all occurences of each such graph �, and obtain

O(s, k) = E(s, k) +
(
k + 1

k

)

E(s, k + 1) + · · · +
(
s

k

)

E(s, s) =
s∑

m=k

(
m

k

)

E(s,m).

��
Note that Lemma 3.3(2) implies that O(s, k) ≥ E(s, k), with equality when s = k.

We will also obtain a new relation between these quantities in the next lemma, that
will be useful for us later.

The following lemma will be useful in the next section.

Lemma 3.4 Given s ≥ 1 and k for 0 ≤ k ≤ s,

E(s, k) =
s∑

m=k

(−1)m+k
(
m

k

)

O(s,m).

Proof Rearrange Lemma 3.3(2) as follows:

E(s, k) = O(s, k) −
s∑

m=k+1

(
m

k

)

E(s,m). (2)

Apply strong induction on s − k for a fixed s, that is, we fix s and let k decrease:
k = s, s − 1, s − 2, . . . , 1, 0. As noted before the lemma, O(s, s) = E(s, s) = 0.
This is the base step.

Assuming the proposition statement holds for E(s, s), E(s, s−1), . . . , E(s, k+1),
we prove it for E(s, k). Plugging in the formula from the proposition statement into
Eq. (2), we obtain

E(s, k) = O(s, k) −
s∑

m=k+1

(
m

k

) s∑

j=m

(−1)m+ j
(
j

m

)

O(s, j).
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Via rearranging and regrouping, we then have the following:

E(s, k) = O(s, k) −
s∑

m=k+1

O(s,m)

(
m

k

)[
m∑

i=k+1

(−1)m−i
(
m − k

m − i

)]

. (∗)

The rearranging above is trivial, and we give full details, with sum expansions, in
Appendix, as Claim 6.1.

In the above formula, let t = m − i . Recall that the sum of alternating binomial

coefficients is zero, i.e.
m−k∑

t=0
(−1)t

(m−k
t

) = 0. Thus the inner sum on the right in (∗)
becomes

m−k−1∑

t=0

(−1)t
(
m − k

t

)

=
[
m−k∑

t=0

(−1)t
(
m − k

t

)]

− (−1)m−k
(
m − k

m − k

)

= (−1)m−k+1.

With this, (∗) is now

E(s, k) = O(s, k) −
s∑

m=k+1

(
m

k

)

O(s,m)
[
(−1)m−k+1

]
=

s∑

m=k

(−1)m+k
(
m

k

)

O(s,m).

��
Proposition 3.5 For a fixed s, the expected number of pierced circles in �1

2s−1 is

E = O(s,1)
C2
s

.

Proof For a random graph �1
2s−1, introduce an indicator random variable Xi that

takes the value 1 when a pierced circle appears at a position i in �1
2s−1, and value 0

otherwise. There are 2s − 2 possible positions for the pierced circle in a graph �1
2s−1

by construction. Note that the variables X1, X2, . . . X2s−2 are not independent: e.g. if
a pierced circle appearred at a position 1, it cannot appear at a position 2 in the same
graph.

We claim that the probability P(Xi = 1) = (Cs−1/Cs)
2. Indeed, the graph �1

2s−1
corresponds to two p-strings, and each string must have at least one nesting, at the
position i . By Lemma 3.2, the number of options for two distinct p-strings, with one
nesting each, is C2

s−1, and the number of options for any two distinct p-strings is C2
s .

Now by the linearity of expectation (see, for example, Chapter 18 of [17]), the
expectation of the number of pierced circles in �1

2s−1 is E = P(X1 = 1) + P(X2 =
1) + · · · + P(X2s−2 = 1) = (2s − 2)(Cs−1/Cs)

2. According to formula (1), (2s −
2)C2

s−1 = O(s, 1), and the expectation is E = O(s,1)
C2
s

.
��

From a straightforward simplification of the definitions, the expectation has the nice
closed form, O(s,1)

C2
s

= s3+s2−s−1
8s2−8s+2

. This asymptotically approaches s+2
8 from above for
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large s. In fact, by s = 6, the error between s+2
8 and O(s,1)

C2
s

is less than 0.013, and we

expect about one pierced circle.

4 Unlinks are Rare

A natural question to ask is whether the new model is likely to produce a non-trivial
link. Our goal now is to show that the random links generated in our model are
nontrivial. We will do this by first showing that as s → ∞ for a link �1

2s−1, the
number of corresponding link diagrams with no pierced circles is small compared to
the total number of diagrams.

A hypergeometric series is a series of the form
∑

tk , where the ratio of consecutive
terms tk+1

tk
is a rational function of k. To prove Proposition 4.3, we will consider such

series E(s,0)
C2
s

, which is the ratio of the number of meander graphs with no pierced

circles to all meander graphs for fixed s. We will obtain a recurrence relation for
E(s, 0). Once we have a recurrence relation, we can apply the following classic result
of Poincaré to show that this ratio becomes small, and therefore almost all meander
graphs have a pierced circle.

Suppose {un} is a number sequence for natural indices n. Consider a linear recur-
rence relation in k + 1 terms of this sequence for some fixed positive natural k, i.e.
α0,nun+k + α1,nun+k−1 + α2,nun+k−2 + · · · + αk,nun + c = 0. Here c and αi,n ∈ R

for i = 0, 1, . . . , k are coefficients, and the relation holds for all natural n. We can
assume α0,n = 1. In [26], such a relation is called a difference equation. It is called
homogeneous if the constant term c = 0. We will use the following theorem.

In what follows, u = (un, . . . , un+k).

Theorem 4.1 (Poincaré [26]) Suppose the coefficients αi,n for i = 1, 2, . . . , k, of a
linear homogeneous difference equation

un+k + α1,nun+k−1 + α2,nun+k−2 + · · · + αk,nun = 0 (3)

have limits limn→∞ αi,n = αi for i = 1, 2, . . . , k, and the roots λ1, . . . , λk of the
characteristic equation tk + α1tk−1 + · · · + αk = 0 have distinct absolute values.
Then for any solution u of Eq. (3), either un = 0 for all sufficiently large n or
limn→∞ un+1

un
= λi for some i .

Lemma 4.2 The sequence {E(s, 0)}∞s=1 satisfies the recurrence relation

3∑

k=0

Pk(s)E(s + k, 0) = 0,

with polynomials Pk given by

P0(s) = 2s3 + s2 − 8s + 5, P1(s) = −26s3 − 93s2 − 82s − 30,
P2(s) = −26s3 − 141s2 − 226s − 81, P3(s) = 2s3 + 17s2 + 40s + 16.
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Proof Thiswas verified using the computer algebra softwareMaple™[18] by applying
command Zeilberger from subpackage SumTools[Hypergeometric].

For a short explanation of Zeilberger’s algorithm, recall that we are looking for
a recurrence relation on E(s, 0). By Lemma 3.4, E(s, 0) = O(s, 0) − O(s, 1) +
O(s, 2) − · · · + (−1)s O(s, s). Recall also that O(s, k) = (2s−k−1

k

)
(Cs−k)

2 by for-
mula (1). The polynomials P0, P1, P2, P3 are obtained and verified using Zeilberger’s
Algorithm, described, for example, in [24]. In particular, the command Zeilberger
returns these polynomials and a certificate verifying the calculation. We will outline
the mathematics behind the command Zeilberger and the verification, to show
that this leads to a rigorous proof.

Using the Maple™ notation, the command Zeilberger takes as input the func-

tion T (s,m) = (−1)mO(s,m), so that E(s, 0) =
s∑

m=0
T (s,m). The command then

outputs the functions L and G, which we describe later. By x = x(s) the shift operator
is denoted, that is, a function x of s such that xT (s,m) = T (s+1,m). In our notation,
x(−1)mO(s,m) = (−1)mO(s + 1,m). One can solve for x without difficulty, but we
only need the existence of such x for the proof.

It is also important for the final simplification below thatwe can extend the definition
of E(s, 0) as follows. The sum E(s, 0) has summands that range fromm = 0 to s. We
can increase the number of summands by increasing the largest value of m. This will
not change E(s, 0), since the terms O(s,m) are zero if m ≥ s. Thus, in the remaining
part of the proof we may consider E(s, 0), E(s + 1, 0), E(s + 2, 0), and E(s + 3, 0)
to have summands up to m = s + 3. Then we obtain, using the shift operator x ,

3∑

k=0

Pk(s)E(s + k, 0) =
3∑

k=0

(

Pk(s)
s+3∑

m=0

(−1)mO(s + k,m)

)

=
s+3∑

m=0

(
3∑

k=0

Pk(s)(−1)mO(s + k,m)

)

=
s+3∑

m=0

(
3∑

k=0

xk Pk(s)(−1)mO(s,m)

)

=
s+3∑

m=0

(

(−1)mO(s,m)

3∑

k=0

xk Pk(s)

)

One part of the output of Zeilberger command is L = P0(s) + x P1(s) +
x2P2(s)+ x3P3(s) where Pk are the four explicit polynomials Zeilberger’s algorithm
provides us. The other part of the output is G, which denotes a function G(s,m) such
that L(T (s,m)) = G(s,m + 1) − G(s,m). We exclude the explicit expression for G
for brevity, but it is provided by Maple. See [20] for the explicit expression and the
details of the computation. The function G is what allows us to creatively telescope.
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In particular, for 0 ≤ m ≤ s + 3,

s+3∑

m=0

(

(−1)mO(s,m)

3∑

k=0

xk Pk(s)

)

=
s+3∑

m=0

(T (s,m)L)

=
s+3∑

m=0

(G(s,m + 1) − G(s,m))

= G(s, s + 4) − G(s, 0) = 0,

where the last equality follows from inspecting the explicit expression for G. ��
Now we have all the pieces for the next theorem.

Proposition 4.3 The ratio of (1, 2s − 1)-meander graphs without any pierced cir-
cles to all (1, 2s − 1)-meander graphs in the random meander model asymptotically
approaches zero, i.e. E(s,0)

C2
s

→ 0 as s → ∞.

Proof Let as = E(s,0)
C2
s

. We will use the ratio test for sequences and show that

lims→∞ as+1
as

< 1. It is straight forward to see that lims→∞ Cs
Cs+1

= lims→∞ s+2
2(2s+1) =

1
4 , and notice that

as+1

as
= E(s + 1, 0)C2

s

E(s, 0)C2
s+1

.

This allows us to reduce our problem to showing that

lim
s→∞

E(s + 1, 0)

E(s, 0)
< 16. (4)

We divide the recurrence relation from Lemma 4.2 by P3(s).

E(s + 3, 0) + P2(s)

P3(s)
E(s + 2, 0) + P1(s)

P3(s)
E(s + 1, 0) + P0(s)

P3(s)
E(s, 0) = 0.

The above is a linear homogeneous difference equation in us = E(s, 0) with
4 terms. We can apply Poincaré’s theorem to it, with α1,s = P2(s)

P3(s)
, α2,s = P1(s)

P3(s)
,

and α3,s = P0(s)
P3(s)

. Then, as defined in the statement of Poincaré’s theorem, αi =
lims→∞ αi,s and via basic calculus, we see α1 = −13, α2 = −13, and α3 = 1. Thus,
the characteristic equation of this recurrence is t3 − 13t2 − 13t + 1 = 0.

There are three real solutions to the characteristic equation, z = −1, 7 − 4
√
3 ≈

0.0718, and 7 + 4
√
3 ≈ 13.928, all of which are less than 16. Theorem 4.1 states

that lims→∞ E(s+1,0)
E(s,0) converges to zero or one of the solutions of the characteristic

equation, which verifies the inequality (4), finishing the proof. ��
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C

Fig. 5 The circle C meeting three parallel copies of the axis component. The top two are not linked with
other link components shown, while the bottom one is linked with C

Consider a single circle C in a diagram, with r horizontal strands crossing it, as in
Fig. 5. In our model, the r horizontal strands are parallel copies of a knot. The crossing
information is chosen at random.

Lemma 4.4 The component C, which is a circle in ameander link diagram, is unlinked
from other components in the (s, r)-random link with probability 1

2r .

Proof For an axis component, consider its two crossingswithC . There are four options
for the crossing information string for such a pair of crossings: (over, over), (over,
under), (under, over), and (under, under). Note thatC is unlinked from an axis compo-
nent if the axis component passes under C at both its crossings with C or passes over
C at both (see Fig. 5). Hence half of the options for the crossing information imply that
C and the axis component are not linked. Therefore, if there are r axis components,
the probability that all of them are unlinked from C is 1

2r . ��
The randommodel described above is easily modified to produce only links that are

alternating. Each (r , 2s−1)-meander graph yields the same number of alternating link
diagrams. Indeed, every link projection can be made into an alternating link diagram
with the correct choice of under and overpasses (i.e. of the crossing information).
Therefore, this is also true for any (r , 2s − 1)-meander graph. Moreover, there are
exactly two options for alternating crossing information once a meander graph is
given: choose an arbitrary graph vertex v, and connect two horizontal edges adjacent
to v by an underpass at v. This determines the first alternating link. The second link
is obtained by making an overpass between horizontal edges at v. Such a (restricted)
model that takes any meander graph together with a choice of alternating crossing
information is what we will refer to whenever we discuss random alternating links.

We can now state the main result of this section.

Theorem 4.5 Let L be a (r , 2s − 1)-random meander link. If L is alternating and s
tends to infinity, then L is nontrivial with probability one. If L has its crossings chosen
at random and s and r tend to infinity, then L is nontrivial with probability one.

Proof The first statement follows from Proposition 4.3, since an alternating link with a
pierced circle cannot be an unlink. Similarly in the second statement,we are guaranteed
there is a pierced circle as s → ∞. But with crossing information string chosen at
random, the circle might be unlinked from other link components. Letting r → ∞,
Lemma 4.4 ensures at least one pierced circle will be linked to an axis component. ��
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4.1 More on Distribution of Links in RandomMeander Model

We conclude this section with several further observations and questions about
obtaining different links and knots in this model.

The above theorem shows that the probability of obtaining an unlink in this random
model approaches zero as r , s grow. This is in fact true if we substitute the unlink by
another fixed link. For a link L , denote its number of components by tL . Note that if
L is an (r , 2s − 1)-random link, then r ≤ tL ≤ sr .

Proposition 4.6 For a given link K and a (r , 2s − 1)-random link L, the probability
that K and L are isotopic P(L = K ) → 0 as r → ∞.

Proof As tK is finite, there is some r > tK , and every (r , 2s − 1)-random link L has
more components than the chosen link K . ��

The above ensures that we can produce infinitely many distinct or non-isotopic
links using the random meander link model. It is also interesting how many distinct
links are created by using this model for every r , s. This can be answered for knots,
which only occur when r = 1.

Proposition 4.7 There are at least�(2.68n)distinctmeander prime knotswith (2n+1−
12) crossings.

Proof Suppose we have a knot K with crossing number c(K ). Denote the number
of crossings in (1, 2s − 1)-meander diagram of K by m(K ). Theorem 2.2 says that
every knot has a meander diagram. Moreover, for random meander knots, Theorem
3.2 and Proposition 3.4 in [21] combined yield m(K ) ≤ 4(2c(K )−1 − 1) − 8 =
4(2)c(K )−1−12 = 2c(K )+1−12. Therefore, once we generate meander knot diagrams
with at most 2n+1 − 12 crossings, we also generate all knots with n crossings. The
number of prime knots with n crossings was given by Welsch [31] and is at least
�(2.68n). ��

To make a similar observation for links (r > 1), a bound on the crossing number of
a meander link is needed in terms of the crossing number of a link. Then the number of
prime links with n crossings can be used similarly, which can also be found in Welsch
[31].

Question 4.8 Given an (r , 2s − 1)-meander link L with crossing number m(L), what
is an upper bound on the minimal crossing number c(L) of this link?

5 Expected Number of Twists and Expected Volume

In this section, we investigate some properties of links in our model. We find the
expected number of twists for our diagram. We give bounds on the mathematical
expectation for hyperbolic and simplicial volume of link complements.
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5.1 Expected Number of Twists in a Random Link Diagram

In Sect. 3, we discussed how Catalan numbers are related to strings of parentheses.
Consider (), an open parenthesis which is adjacent to its matching closed parenthesis
in a string. Now let us count the number of p-string of length n with exactly k such
substrings(). The number is theNarayana number, denoted by N (n, k). By definition,
n∑

k=1
N (n, k) = Cn . Explicitly, N (n, k) = 1

n

(n
k

)( n
k−1

)
. Note that there is always an

innermost pair of parentheses, so N (n, k) ≥ 1 for an integer k ∈ [1, n] and zero else.
For a more in depth discussion on Narayana Numbers, see Peterson [23]. We will also
use the fact that N (n, k) = N (n, n − k + 1). The following is well-known; since we
did not find the exact reference, we give one of possible short proofs.

Lemma 5.1 The expected number of nestings in a random p-string of length n is n+1
2 .

Proof We perform the straightforward calculation below.

E(# of () ) =
n∑

k=1

k
N (n, k)

Cn
= 1

2

[
n∑

k=1

k
N (n, k)

Cn
+

n∑

k=1

k
N (n, k)

Cn

]

= 1

2

[

1
N (n, 1)

Cn
+ 2

N (n, 2)

Cn
+ · · · + n

N (n, n)

Cn

+ n
N (n, n)

Cn
+ (n − 1)

N (n, n − 1)

Cn
+ · · · + 1

N (n, 1)

Cn

]

.

Since N (n, k) = N (n, n − k + 1) for k = 1, 2, . . . , n, the above is equal to

1

2

[

1
N (n, 1)

Cn
+ 2

N (n, 2)

Cn
+ · · · + n

N (n, n)

Cn

+ n
N (n, 1)

Cn
+ (n − 1)

N (n, 2)

Cn
+ · · · + 1

N (n, n)

Cn

]

= 1

2

[

(n + 1)
N (n, 1)

Cn
+ (n + 1)

N (n, 2)

Cn
+ · · · + (n + 1)

N (n, n)

Cn

]

= n + 1

2

[
Cn

Cn

]

= n + 1

2
.

��
Lemma 5.2 Given a link Lr

2s−1, the expected number of bigons is s + 1.

Proof A link Lr
2s−1, is created by a string of parentheses above the axis and below the

axis. By Lemma 5.1, the expected number of nestings is s+1
2 for each, and these are

independent, so we add. ��
Theorem 5.3 Let D be the diagram of an (r , 2s−1)-randommeander link in S3. Then
the expected number of twist regions is (2s − 1)r2 − s − 1. In particular, when r = 1,
the expected number of twist regions is s − 2.
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Proof Given a link diagram D with c crossings, b bigons, and t twist regions, the
number t = c − b. Together with Lemma 5.2, this observation yields

t = (2s − 1)r2 − (s + 1) = (2s − 1)r2 − s − 1.

Let r = 1 and we obtain t = s − 2. ��

5.2 Expected Hyperbolic and Simplicial Volume

We now apply this to obtain bounds on the mathematical expectation of volume for
links.

Theorem 5.4 (Lackenby [15], Agol-Thurston) Let D be a prime alternating diagram
of a hyperbolic link L in S3 with twist number t(D). Then

v3(t(D) − 2)/2 ≤ Volume(S3 − L) < 10v3(t(D) − 1),

where v3 is the volume of a regular hyperbolic ideal 3-simplex.

Remark 5.5 The above upper bound was originally proved for all hyperbolic links,
including non-alternating ones. It is also shown in [4] that it holds for simplicial
volume of non-hyperbolic links.

In the spirit of Obeidin’s observations on volume in another random link model
[22], we apply this to random meander links:

Corollary 5.6 Let L be a (r , 2s−1)-randommeander link in S3. Then themathematical
expectation for its volume, hyperbolic or simplicial, satisfies the upper bound:

E(Volume(S3 − L) ≤ 10v3((2s − 1)r2 − s − 3).

In particular, when r = 1, L has 2s − 1 crossings, and

E(Volume(S3 − L)) ≤ 10v3(s − 3).

Additionally, for any (r , 2s−1)-random alternating meander link L with r �= 1, and L
hyperbolic, the mathematical expectation for its hyperbolic volume satisfies the lower
bound:

v3((2s − 1)r2 − s − 5)/2 ≤ E(Volume(S3 − L)).

Proof Both upper an lower bounds follow fromTheorems 5.3 and 5.4, andRemark 5.5.
Note however that the lower bound in Theorem 5.4 is for prime alternating diagrams
only, while our model produces all alternating diagrams once the crossing information
is chosen correctly. We claim that every alternating (r , 2s − 1)-meander diagram is a
prime link diagram under two conditions: with r not equal to 1, and with no nugatory
self-crossings. Indeed, in the absence of nugatory self-crossings, there are at least four
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strands going out of every non-trivial tangle when there are r > 1 identical copies of
every strand, and hence the diagram is prime.

A nugatory crossing can only occur in the upper rightmost or bottom leftmost end
of a (r , 2s − 1)-meander graph. This happens when a nesting occurs at the leftmost
position on the top or at the rightmost position on the bottom. Such a link diagram is
not reduced. If the diagram is alternating, one can reduce it simply by removing the
nugatory self-crossings (untwisting it), and then count the remaining twists and apply
the lower volume bound from Theorem 5.4. To account for this potential untwisting,
we subtract 2 from the expected twist number in the lower bound: this results in the
constant − 5 in our lower bound, compared to − 3 in the bound of Theorem 5.4.

Also note that when we consider the restricted random model that produces only
alternating links, this does not change Lemma 5.2 and Theorem 5.3. Indeed, the
expected number of twists is computed there for meander graphs, not involving
crossing information, and hence is the same for this (restricted) model. ��

The above bounds are all linear in s and quadratic in r , but there are (2s − 1)r2

crossings in the links. Thus, we have linear bounds in the number of crossings for the
expected volume of a random meander link.

5.3 Some Related Questions

One of the difficulties with some random link and knot models is that they rarely
yield hyperbolic links. For example, links obtained using random walks in plane or
space are often composite, and cannot be hyperbolic by W. Thurston’s results [30].
At the same time, hyperbolic links are often the ones that posses deep geometric and
topological structure, and interesting properties. Hyperbolicity of random meander
links is therefore a natural question.

Question 5.7 What is the probability for an (r , 2s−1)-randommeander link diagram
to represent a hyperbolic link?What about the probability for the family of alternating
(r , 2s − 1)-random meander link diagrams?

One way of approaching the above question might be through tracking the presence
of certain fragments in meander diagrams and meander graphs, as we did above for
detecting unlinks. Note that a (1, 2s − 1)-meander link L with pierced circle C is a
satellite link and thus is not hyperbolic by [30]. Indeed, if C and the axis component
A are linked, there is an embedded essential torus T following A in the complement
of L . If C and A are not linked, L is a split link, and is also not hyperbolic.

Question 5.8 What fragments of a meander link diagram or meander graph guarantee
that the respective link complement in the 3-sphere is not hyperbolic? What is the
probability for each such fragment to appear?

We provide bounds for mathematical expectation for volume of links complements
above. In [3, 4], the upper bound for hyperbolic and simplicial volume from [15] is
refined based on differentiating between twists with 1, 2, 3, or at least 4 crossings. It
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is interesting whether one can find the probability of having such twists in (r , 2s−1)-
random meander link diagram and apply this to these volume bounds similarly to the
above.

Question 5.9 Can the upper bound for the mathematical expectation of the volume of
(r , 2s − 1)-random meander link complement be refined?

6 Appendix

Claim 6.1 With the notation as in the rest of the paper, the following holds:

E(s, k) = O(s, k) −
s∑

m=k+1

(
m

k

) s∑

j=m

(−1)m+ j
(
j

m

)

O(s, j)

= O(s, k) −
s∑

m=k+1

O(s,m)

(
m

k

) [
m∑

i=k+1

(−1)m−i
(
m − k

m − i

)]

Proof Starting with the first equality

E(s, k) = O(s, k) −
s∑

m=k+1

(
m

k

) s∑

j=m

(−1)m+ j
(
j

m

)

O(s, j),

expand the sums and group the terms with O(s, k), then with O(s, k + 1), then
O(s, k + 2), and so up to O(s, s). We obtain

E(s, k) = O(s, k) − O(s, k + 1)

(
k + 1

k

)

+O(s, k + 2)

[

−
(
k + 2

k

)

+
(
k + 1

k

)(
k + 2

k + 1

)]

+ ...

+O(s, s)

[

−
(
s

k

)

+
(
s − 1

k

)(
s

s − 1

)

− ...

∓
(
k + 2

k

)(
s

k + 2

)

±
(
k + 1

k

)(
s

k + 1

)]

.

Rewrite the latter expression using the summation notation for the sums next to
O(s, k + 1), O(s, k + 2),…, O(s, s):

E(s, k) = O(s, k) − O(s, k + 1)
k+1∑

i=k+1

(−1)k+1+i
(
i

k

)(
k + 1

i

)

−O(s, k + 2)
k+2∑

i=k+1

(−1)k+2+i
(
i

k

)(
k + 2

i

)
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−O(s, k + 3)
k+3∑

i=k+1

(−1)k+3+i
(
i

k

)(
k + 3

i

)

− · · · − O(s, s)
s∑

i=k+1

(−1)s+i
(
i

k

)(
s

i

)

= O(s, k)

−
s∑

m=k+1

O(s,m)

[
m∑

i=k+1

(−1)m+i
(
i

k

)(
m

i

)]

.

Using that
(i
k

)(m
i

) = (m
k

)(m−k
m−i

)
, we have

E(s, k) = O(s, k) −
s∑

m=k+1

O(s,m)

(
m

k

)[
m∑

i=k+1

(−1)m−i
(
m − k

m − i

)]

. (∗)
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