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Abstract. We study mean-field control problems in discrete-time under the infinite horizon average cost opti-
mality criteria. We focus on both the finite population and the infinite population setups. We show the existence of
a solution to the average cost optimality equation (ACOE) and the existence of optimal stationary Markov policies
for finite population problems under (i) a minorization condition that provides geometric ergodicity on the collec-
tive state process of the agents, and (ii) under standard Lipschitz continuity assumptions on the stage-wise cost and
transition function of the agents when the Lipschitz constant of the transition function satisfies a certain bound. For
the infinite population problem, we establish the existence of a solution to the ACOE, and the existence of optimal
policies under the continuity assumptions on the cost and the transition functions. Finally, we relate the finite popu-
lation and infinite population control problems: (i) we prove that the optimal value of the finite population problem
converges to the optimal value of the infinite population problem as the number of agents grows to infinity; (ii) we
show that the accumulation points of the finite population optimal solution corresponds to an optimal solution for
the infinite population problem, and finally (iii), we show that one can use the solutions of the infinite population
problem for the finite population problem symmetrically across the agents to achieve near optimal performance when
the population is sufficiently large.

1. Introduction. We focus on optimal control of a team problem where the agents are
only correlated through the so-called mean-field term, i.e. the distribution of the states of all
agents. We aim to analyze the optimal control problem under the infinite horizon average cost
criteria in discrete time.

The dynamics of the model are presented as follows: suppose that N agents (decision
makers or controllers) act cooperatively to minimize a cost function, and the agents share a
common state and an action space denoted by X ⊂ Rl and U ⊂ Rm for some l,m < ∞.
For any time step t, and agent i ∈ {1, . . . , N} we have

xi
t+1 = f(xi

t, u
i
t, µxt , w

i
t, w

0
t )

for a measurable function f , where {wi
t} denotes the i.i.d. idiosyncratic noise process, and

{w0
t } denotes the i.i.d. common noise process. Furthermore, µx denotes the distribution of

the agents on the state space X such that for a given joint state x := {x1, . . . , xN} ∈ XN

µx :=
1

N

N∑
i=1

δxi .

Equivalently, for a given realization of the common noise, w0
t , the next state of the agent

i is determined by some stochastic kernel T w0
t (·|xi

t, u
i
t, µxt) such that

Pr

(
Xi

t+1 ∈ B

∣∣∣∣ (Xj , U j)[0,t] = (xj , uj)[0,t], ∀j = 1, . . . , N

)
=

∫ ∫
B

T w0
t (dxi

t+1|xi
t, u

i
t, µxt)Pr(dw0

t ), B ∈ B(X), t ∈ N, (1.1)

that is, the conditional probability distribution of the state of some agent i, given the state and
action history of all agents, depends only on the most recent state and action of agent i, and
the state distribution of other agents by conditioning on the realizations of the common noise.
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For the remainder of the paper, by an abuse of notation, we will sometimes also denote
the dynamics in terms of the vector state and action variables, x = (x1, . . . , xN ), and u =
(u1, . . . , uN ), and vector noise variables w = (w0, w1, . . . , wN ) such that

xt+1 = f(xt,ut,wt).

At each time stage t, each agent receives a cost determined by a measurable stage-wise
cost function c : X ×U × PN (X) → R, where PN (X) is the set of all empirical measures
on X constructed using N dimensional state vectors. That is, at time t, agent i observes the
cost

c(xi
t, u

i
t, µxt).

For the initial formulation, every agent is assumed to know the state and action variables
of every other agent. We define an admissible policy for an agent i, as a sequence of functions
γi := {γi

t}t, where γi
t is a U-valued (possibly randomized) function which is measurable

with respect to the σ-algebra generated by

It = {x0, . . . ,xt,u0, . . . ,ut−1}.

Accordingly, an admissible team policy, is defined as γ := {γ1, . . . , γN}, where γi is an
admissible policy for the agent i. In other words, agents share the complete information.

The objective of the agents is to minimize the following infinite horizon average cost
function

JN
∞(x0, γ) := lim sup

T→∞

1

T

T−1∑
t=0

Eγ [c(Xt,Ut)]

where

c(xt,ut) :=
1

N

N∑
i=1

c(xi
t, u

i
t, µxt).

The optimal cost is defined by

JN,∗
∞ (x0) := inf

γ∈Γ
JN
∞(x0, γ) (1.2)

where Γ denotes the set of all admissible team policies.
We note that the value function that is achieved when agents share full information, as

presented here, will be taken to be our reference point for simpler information structures.

1.1. Literature Review. Multi-agent systems attract attention due to their application
flexibility to real world problems. Many problems that can be modeled as a multi-agent sys-
tem may be intractable to model as a single agent system. Although they offer a practically
rich and relevant model, the mathematical analysis is much more challenging compared to the
single agent systems in general. The dynamics we consider in this paper represents a class of
multi-agent systems which we will refer to as mean-field type multi-agent problems. For the
mean-field type multi-agent systems, the population is homogeneous and weakly interacting
such that the dynamics of each agent depends on the other agents only through the state distri-
bution of all the other agents. The motivation of this formulation comes from systems where
the effect of a single agent on the whole system is minimal (which is usually the case for large
population systems). The mathematical tractability of the mean-field systems mainly relies on
the observation that this weak coupling between the agents disappears through propagation
of chaos.
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If agents are non-cooperative, the mean-field systems in general are studied under mean-
filed game theory. If the agents are cooperative, these problems are referred to as mean-field
control. Mean-field game theory has been introduced independently by [39, 42]. There has
been a great progress and a significant number of publications since then. For some of the
work that has been done since, we cite [31, 18, 14, 55, 38, 3, 25, 28, 34, 46, 54, 49, 50] and
references therein for mean-field game theory studies both in continuous and discrete time.

For the cooperative case, i.e. for mean-field control, similarly, there have been a number
of studies dealing with structural as well as computational and learning-related methods. See
[12, 23, 22, 43, 47, 19, 29, 11, 13, 10, 52, 51, 53, 40, 27, 45, 44, 20, 32, 33, 4] and the
references therein for the study of the dynamic programming principle, learning methods, and
justification of the exchangeability of agents for large (possibly infinite) agent team settings.

We note that most of the papers we have cited so far deal with either the finite horizon or
the infinite horizon discounted cost criteria. The standard tools used to study these problems
mostly involve the dynamic programming principle or the contraction property of the Bellman
operator via the discount factor. However, the analysis of the infinite horizon average cost
optimality criteria requires significantly different tools than the ones used in the study of
finite horizon or discounted cost criteria. For the average cost criteria, one usually needs
certain stability (or ergodicity) properties of the controlled process, to ensure the existence of
a solution.

There are several works studying the mean-field game problems, i.e. the non-cooperative
case, in continuous time under infinite horizon average cost criteria, see [26, 17, 5, 8, 21, 24,
30]. We note that in the game problems, as the agents are self interested, it is relatively more
direct to decouple the agents with respect to their cost. However, the same is not true for the
mean-field control problems as the goal is the minimization of the social optima and thus the
agents are coupled via their common cost functions as well. Furthermore, the state measure
flow can be viewed as an exogenous flow for the game problems, and thus the stability and the
ergodicity of the agent state processes can be analyzed separately. For the control problems,
the stability of the state measure flow itself needs to be analyzed.

For continuous time mean-field control problems, we refer the reader to [1, 7] for the
ergodic control of Mckean-Vlasov dynamics. [1] studies a class of team control problems
where the dynamics of the agents does not depend on the mean-field term, however, the
stage-wise cost function of the problem is dependent on the distribution of the states of the
agents. In particular, the agent dynamics are coupled only through the control. The authors
establish the precise relationship between the finite population team problem, and the infinite
population control problem, where the agents are decoupled and can use feedback policies
with their local states. [7] considers a general model where the mean-field term can affect the
dynamics via drift and diffusion. The authors do not consider the finite population problem
and work directly with the limiting McKean-Vlasov dynamics, and show the existence of
the unique viscosity solution for the ergodic control problem under a class of deterministic
control functions which are assumed to be Lipschitz continuous in state and the mean-field
term.

In discrete-time, the number of studies that focus on the average-cost optimality criteria
for mean-field problems is limited compared to the continuous-time studies. Furthermore,
most of the existing work focuses on the mean-field game problems. [48, 2, 16, 57, 56]
are among the papers which study ergodic mean-field game problems in discrete time. [57]
considers mean-field game problems with discrete spaces. [16, 56] establish mean-field equi-
libria using the ergodicity properties of the agent state process under a mixing type condition
on the agent dynamics. [16] also assumes that the dynamics do not depend on the mean-field
of the agent states. [48, 2] provide value iteration algorithms for mean-field game problems
where the convergence of these iterations are shown to the mean-field equilibria under certain
minorization and mixing type conditions on the agent dynamics. We note that the papers that
focus on the game setup aim to establish the mean field equilibria. Therefore, they are able
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to use the ergodicity properties of the dynamics by using stationary policies for the agents
(independent of the mean-field term) under minorization conditions on the transition kernel.
However, for mean-field control problems, the focus is mainly on establishing the existence
of the global optimal performance for the team problem. In particular, the resulting mea-
sure valued control problem requires the use of policies that depend on the mean-field term
(empirical distribution of the states). Hence, the minorization condition by itself may not be
sufficient to establish the convergence to the stationary distributions of the collective agent
states. Hence, in this paper, we make use of weak continuity assumptions on the agent dy-
namics without needing the ergodicity or minorization assumptions on the state process to
establish the existence of optimal stationary and Markov policies.

Finally, to our knowledge, the only paper that deals with the discrete-time mean-field
control problems under average cost (reward) criteria is [9]. In [9], existence of optimal sta-
tionary Markov policies has been established through the average cost optimality inequality.
It is assumed that the difference between the optimal value of any two initial points is uni-
formly bounded over all initial points and discount factors. This assumption is usually not
easy to verify using conditions on the primitive system components. Furthermore, in [9], two
special cases are considered, namely (i) when the cost function only depends on the mean-
field term and the dynamics are independent of the mean-field term, and there is no common
noise (ii) when the cost functions only depend on the mean-field term (transitions can depend
on the mean field term) and the admissible policies are Lipschitz continuous in the mean-
field term. It is shown that the dynamic optimization problem reduces to a static optimization
problem under either of these special settings.

Contributions. Our contributors are itemized as follows:
• In Section 2, we focus on the finite population control problem.

– In Section 2.2, we establish the existence of a solution to the average cost
optimality equation (ACOE) and the existence of optimal stationary Markov
policies under a minorization condition on the agent dynamics (Assumption
2.1). We also provide a relative value iteration algorithm and its convergence
with a convergence rate. However, the convergence speed diminishes as the
number of agents grows and the convergence may even fail for the infinite
population problems.

– In Section 2.3, we show the existence of a solution to the ACOE and the exis-
tence of optimal policies without the mixing (or minorization) condition. In-
stead, we work with the standard continuity conditions used to study mean-
field control problems. Namely, we assume that the stage-wise cost function
and the agent transition function are Lipschitz continuous, and the state and
action spaces are compact (see Assumption 2.2). We note that avoiding the use
of strong ergodicity assumptions (e.g. Assumption 2.1) on the state process is
a significant relaxation.

• In Section 3, we focus on the infinite population control problem, which can be
modeled as a measure valued single agent control problem. Even though the problem
can be seen as a Markov decision process (MDP), the standard tools used to study the
average cost optimality criteria fail for the measure valued mean-field MDP problem
(see Remark 3.1 for more detail). Hence, we utilize different tools:

– In Section 3.2, we show that Assumption 2.2, that is the continuity of the tran-
sitions and the stage-wise cost function, is also sufficient for the infinite popu-
lation problem to establish the existence of ACOE and the existence of optimal
policies.

• Finally, in Section 4, we focus on the relationship between the finite population and
the infinite population control problems.

– In Section 4.1 we show that the optimal average cost value of the finite pop-
ulation problem converges to the optimal average cost value of the infinite

4



population problem as the number of agents grows to infinity.
– In Section 4.2, we show that the limit points of the convergent subsequences

of the measure flow for the finite population problem (as N grows) correspond
to an optimal measure flow for the infinite population problem.

– In Section 4.3, we first provide an example that shows that the optimal policies
for the finite population setting may have to be personalized and asymmetric.
We then establish the near optimality of the symmetric policies designed for
the infinite population problem, when they are used for the finite population
problem under the discounted cost criteria, for sufficiently large N . We finally
show that if the discount factor β is sufficiently close to 1, then this symmetric
policy will achieve near optimal performance under the ergodic cost criteria as
well.

1.2. Metrics for Probability Measures. For the analysis of the technical results, we
will make use of different distance notions for probability measures; total variation distance
and the Wasserstein metric.

For some Polish, a separable completely metrizable topological space X and for proba-
bility measures µ, ν ∈ P(X), the total variation metric is given by

∥µ− ν∥TV = 2 sup
B∈B(X)

|µ(B)− ν(B)| = sup
f :∥f∥∞≤1

∣∣∣∣∫ f(x)µ(dx)−
∫

f(x)ν(dx)

∣∣∣∣ ,
where the supremum is taken over all measurable real valued f such that ∥f∥∞ =
supx∈X |f(x)| ≤ 1.

The other distance notion we will use in the paper is the Kantorovich-Rubinstein dis-
tance. For two probability measures µ, ν ∈ P(X), the Kantorovich-Rubinstein distance
between them can be written as

W1(µ, ν) = sup
∥f∥Lip≤1

∣∣∣∣∫ f(x)µ(dx)−
∫

f(x)ν(dx)

∣∣∣∣
where ∥f∥Lip denotes the minimal Lipschitz constant of f . We note that this distance notion
is equivalent to first order Wasserstein metric via the Kantorovich-Rubinstein duality. For the
rest of the paper, we will sometimes refer to this metric as the Wasserstein distance.

2. Ergodic Control of Finite Populations. For the rest of the paper, we will analyze
the problem by considering the controlled process to be the state distribution of the agents,
rather than the state vector of the agents.

In this section, we will define an MDP for the distribution of the agents, where the control
actions are the joint distribution of the state and action vectors of the agents.

We let the state space to be Z = PN (X) which is the set of all empirical measures on X
that can be constructed using the state vectors of N -agents. In other words, for a given state
vector x = {x1, . . . , xN}, we consider µx ∈ PN (X) to be the new state variable of the team
control problem.

The admissible set of actions for some state µ ∈ Z , is denoted by U(µ), where

U(µ) = {Θ ∈ PN (U×X)|Θ(U, ·) = µ(·)}, (2.1)

that is, the set of actions for a state µ, is the set of all joint empirical measures on X × U
whose marginal on X coincides with µ.

We equip the state space Z , and the action sets U(µ), with the first order Wasserstein
distance W1.

In order to define the transition model for this centralized MDP, we note that the empirical
distributions of the agents’ states of the original team problem induces a controlled Markov
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chain. In particular, for some set B ∈ B(Z), we can write

Pr(µt+1 ∈ B|µt, . . . µ0,Θt, . . . ,Θ0)

=

∫
xt,ut∈XN×UN

Pr(µt+1 ∈ B|xt,ut)Pr(dxt,dut|µt, . . . µ0,Θt, . . . ,Θ0).

For any µxt,ut = Θt, and µxt = µt, the inside term can be written as

Pr(µt+1 ∈ B|xt,ut) =

∫
1{µf(xt,ut,µxt ,wt)

∈B}P (dwt)

where P (·) is the probability measure governing the idiosyncratic and the common noise
processes, and wt is the noise vector with length N + 1.

If any two pairs (xt,ut), (x
′
t,u

′
t) have the same empirical distribution Θt, then they

can be viewed as reordered versions of each other. Furthermore, since the dynamics are
identical for every agent, i.e. since the agent are exchangeable, for some wt, and xt+1 =
f(xt,ut, µxtwt), where µxt+1 = µt+1, by reordering wt, one can construct some w′

t such
that x′

t+1 = f(x′
t,u

′
t, µxt ,w

′
t), where x′

t+1 is just a reordered version of xt+1, and in
particular µxt+1 = µx′

t+1
.

Since the idiosyncratic noises are identically distributed for every agent, as a result of the
above discussion, for any two pairs (xt,ut), (x

′
t,u

′
t) with the same empirical distribution

Θt,

Pr(µt+1 ∈ B|xt,ut) = Pr(µt+1 ∈ B|x′
t,u

′
t).

Therefore, the empirical distributions of the agents’ states µt, and of the joint state and
actions Θt define a controlled Markov chain such that

Pr(µt+1 ∈ B|µt, . . . µ0,Θt, . . . ,Θ0) = Pr(µt+1 ∈ B|µt,Θt)

:= η(B|µt,Θt) (2.2)
= Pr(µt+1 ∈ B|xt,ut), for any (xt,ut) : µ(xt,ut) = Θt

where η(·|µ,Θ) ∈ P(PN (X)) is the transition kernel of the centralized measure valued MDP,
which is induced by the dynamics of the team problem.

We define the stage-wise cost function k(µ,Θ) by

k(µ,Θ) :=

∫
c(x, u, µ)Θ(du, dx) =

1

N

N∑
i=1

c(xi, ui, µ). (2.3)

Thus, we have an MDP with state space Z , action space ∪µ∈ZU(µ), transition kernel η
and the stage-wise cost function k.

We define the set of admissible policies for this measured valued MDP as a sequence of
functions g = {g0, g1, g2, . . . } such that at every time t, gt is measurable with respect to the
σ-algebra generated by the information variables

It = {µ0, . . . , µt,Θ0, . . . ,Θt−1}.

We denote the set of all admissible control policies by G for the measure valued MDP.
In particular, we define the infinite horizon average expected cost function under a policy

g by

KN
∞(µ0, g) = lim sup

T→∞

1

T

T−1∑
t=0

Eη
µ0

[k(µt,Θt)] .
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We also define the optimal cost by

KN,∗
∞ (µ0) = inf

g∈G
KN

∞(µ0, g). (2.4)

REMARK 2.1. We note that the measure valued control problem considered in this sec-
tion, and the original team control problem are equivalent. Any admissible policy for the
original team problem can be realized as an admissible policy for the measure valued MDP
problem, vice versa, and they achieve the same accumulated expected cost. In particular, the
optimal value of two problems coincide. For further discussion see [10, 9].

2.1. Average Cost Optimality Equation for the Measure Valued MDP for Finite
Populations. The average cost optimality equation (ACOE) is a common tool to analyze the
optimality of the average cost criteria for MDPs. In particular for the model described in the
last section, the ACOE is given by

j∗ + h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ,Θ)

)
, (2.5)

for some h ∈ B(PN (X)) where B(PN (X)) denotes the set of bounded and measurable
functions on PN (X) and some constant j∗ where U(µ) denotes the set of admissible actions
for the empirical distribution µ. If a solution to the ACOE exists, that is if there exists some
j∗ and h that satisfy the ACOE, then the optimal value function is given by the constant j∗.
We present the following result for completeness and for future references:

THEOREM 2.1. [35] Suppose there exists h ∈ B(PN (X)) and some constant j∗ such
that

j∗ + h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ,Θ)

)
,

we then have
(i) for any initial point µ ∈ PN (X), the constant j∗ is the optimal infinite horizon

average cost, that is

j∗ = KN,∗
∞ (µ) = inf

g∈G
KN

∞(µ, g)

for every µ ∈ PN (X).
(ii) If there exists a policy g∗ ∈ G achieving the minimum on the right hand side for

every µ, then this stationary policy is an optimal policy for the average infinite
horizon cost problem; that is, if g∗ satisfies

j∗ + h(µ) = k(µ, g∗(µ)) +

∫
PN (X)

h(µ1)η(dµ1|µ, g∗(µ))

then KN
∞(µ, g∗) = KN,∗

∞ (µ).
Thus, if one can guarantee the existence of a solution to the ACOE (2.5), for the N -

population measure valued MDP, existence of an optimal stationary policy for the distribution
of the population can also be shown under appropriate measurable selection conditions. We
will establish the existence of a solution to the ACOE under two different sets of assumptions.
For the first case, we will assume a minorization condition on the dynamics of the agents,
which will in turn give us a mixing type result for the state vector of all agents. For the
second case, we will assume that the cost and transition functions of the agents are Lipschitz
continuous without assuming the minorization condition.

REMARK 2.2. We note that the solution to the ACOE may not be unique; it is clear that
j∗ is unique to the problem as it is equal to the optimal value; however, there may be several
h that satisfy the ACOE. In fact any shifted version of h, e.g. h′ = h+M for some M < ∞
will also satisfy the ACOE.

7



2.2. Existence of a Solution to ACOE under Minorization and Geometric Ergod-
icity. We introduce a relative value iteration approach that converges to the ACOE in (2.5).
Define the operator T : B(PN (X)) → B(PN (X)) such that for v ∈ B(PN (X))

Tv(µ) := inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

v(µ1)η(dµ1|µ,Θ)

)
, (2.6)

Using this, we now define a relative operator, T0 : B(PN (X)) → B(PN (X)), such that for
some fixed µ0 ∈ PN (X)

T0v(µ) := Tv(µ)− Tv(µ0). (2.7)

In what follows, we focus on the contraction property of the relative operator T0.
Recall the stochastic kernel (see (1.1)), T w0

(·|xi
t, u

i
t, µxt) ∈ P(X) for the agent dynam-

ics.
ASSUMPTION 2.1. There exists a non-trivial measure π(·) ∈ B(X) with π(X) > 0,

and there exists measurable set B ∈ B(W) with positive probability, P (B) > 0, such that
for any xi

t, u
i
t, µxt we have

T w0

(·|xi
t, u

i
t, µxt) ≥ π(·)

for all w0 ∈ B.
THEOREM 2.2. Under Assumption 2.1, we have that

∥T k
0 v0 − h∥∞ → 0

for any v0 ∈ B(PN (X)) and for some h ∈ B(PN (X)), where T k
0 denotes the operator T0

defined by (2.7) applied k-times. Furthermore, h satisfies the following ACOE

j∗ + h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ,Θ)

)
.

Proof. We define the span semi-norm for a function f such that

∥f∥sp := sup
x

f(x)− inf
x

f(x).

We will show that the operator T0 is a contraction under the span semi-norm.
Let f, g be measurable functions and µ, µ′ ∈ PN (X). Then by the definition of T0, we

can write:

| (T0f(µ)− T0g(µ))− (T0f(µ
′)− T0g(µ

′)) |
= |(Tf(µ)− Tf(µ0))− (Tg(µ)− Tg(µ0))− (Tf(µ′)− Tf(µ0)) + (Tg(µ′)− Tg(µ0))|
= |(Tf(µ)− Tg(µ))− (Tf(µ′)− Tg(µ′))|

=

∣∣∣∣∣ inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

f(µ1)η(dµ1|µ,Θ)

)
− inf

Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

g(µ1)η(dµ1|µ,Θ)

)
−

(
inf

Θ∈U(µ′)

(
k(µ′,Θ) +

∫
PN (X)

f(µ1)η(dµ1|µ′,Θ)

)
8



− inf
Θ∈U(µ′)

(
k(µ′,Θ) +

∫
PN (X)

g(µ1)η(dµ1|µ′,Θ)

))∣∣∣∣∣.
Assume now without loss of generality that the first difference is greater than the second
difference, and denote the ϵ-near achieving (since the existence of the minimizers is not guar-
anteed) action selections by Θf ,Θg,Θf

0 ,Θ
g
0 respectively in the order of the terms in the

equation. We can then find an upper-bound as:

|(Tf(µ)− Tg(µ))− (Tf(µ′)− Tg(µ′))|

≤
(
k(µ,Θg) +

∫
PN (X)

f(µ1)η(dµ1|µ,Θg)− k(µ,Θg)−
∫
PN (X)

g(µ1)η(dµ1|µ,Θg)

)
−
(
k(µ′,Θ′

f ) +

∫
PN (X)

f(µ1)η(dµ1|µ′,Θ′
f )− k(µ′,Θ′

f )−
∫
PN (X)

g(µ1)η(dµ1|µ′,Θ′
f )

)
+ ϵ

≤
∫
PN (X)

f(µ1)− g(µ1)η(dµ1|µ,Θg)−
∫
PN (X)

f(µ1)− g(µ1)η(dµ1|µ′,Θ′
f ) + ϵ.

(2.8)

For any µ, µ′ ∈ PN (X) and any Θ ∈ U(µ),Θ′ ∈ U(µ′) there exists state and action vectors
x,x′,u,u′ such that µx = µ, µx′ = µ′ and µ(x,u) = Θ, µ(x′,u′) = Θ′. Furthermore,
following the definition of η (see (2.2)), we have that for any A ∈ B(PN (X))

η(A|µ,Θ) = Pr(µ1 ∈ A|x,u) = Pr({x1 ∈ X : µx1 ∈ A}|x,u)
η(A|µ′,Θ′) = Pr(µ1 ∈ A|x′,u′) = Pr({x1 ∈ X : µx1 ∈ A}|x′,u′). (2.9)

Note that XN and UN are equipped with the product topology, and the vector state process
xt ∈ XN is also a controlled Markov chain, where the control variables are ut ∈ UN are
simply the action vector variables. We write the transition kernel of the vector state process
as P (xt+1 ∈ ·|xt,ut).

Consider π(·) ∈ P(X) from Assumption 2.1, we define the product measure πN (·) ∈
P(XN ) using π(·), that is, for any rectangular set E = E1× · · ·×EN where E1, . . . , EN ⊂
X, we have that

πN (E) = π(E1)× · · · × π(EN ).

Furthermore, using the conditional independence of the agent states, xj for j = 1, . . . , N ,
given x,u (or given xj , uj , µx), and given the common noise realization we can also write
that

P (x1 ∈ E|x,u) =
∫ N∏

j=1

T w0

(xj
1 ∈ Ej |xj , uj , µx)P (dw0)

Consider a general measurable set A ∈ B(XN ), which can be written as a countable
union of disjoint rectangular sets, say {Ei}i, such that ∪iE

i = A. We can then write

P (x1 ∈ A|x,u) =
∑
i

P (Ei|x,u) =
∑
i

∫ N∏
j=1

T w0

(Ei
j |xj , uj , µx)P (dw0)

≥
∑
i

N∏
j=1

π(Ei
j)P (B) = P (B)

∑
i

πN (Ei) = P (B)πN (A).

9



Note that by construction, πN (·) is a non-trivial measure, and furthermore, πN (XN ) =

π(X)N < 1. We denote by P̂ (·|x,u) := P (·|x,u) − P (B)πN (·). Going back to (2.8)
and denoting h(µ) := f(µ)− g(µ), we write(∫

PN (X)

f(µ1)− g(µ1)η(dµ1|µ,Θg)−
∫
PN (X)

f(µ1)− g(µ1)η(dµ1|µ′,Θ′
f )

)
+ ϵ

=

∫
h(µx1)P (dx1|x,ug)−

∫
h(µx1)P (dx1|x′,u′

f ) + ϵ

=

∫
h(µx1)P̂ (dx1|x,ug)−

∫
h(µx1)P̂ (dx1|x′,u′

f ) + ϵ

≤ sup
µ

h(µ)P̂ (XN |x,ug)− inf
µ

h(µ)P̂ (XN |x′,u′
f ) + ϵ

≤ ∥f − g∥sp
(
1− P (B)πN (XN )

)
+ ϵ.

Since µ, µ′ and ϵ are arbitrary, taking ϵ → 0 shows that T0 is a contraction under the span
norm. Hence, using an extended version of Banach Fixed Point Theorem under the span semi-
norm, one can show that there exists a h such that ∥T0h−h∥sp = 0. Note that the fixed point
theorem is used under the span semi-norm which is a pseudo metric. Hence, the fixed point is
only unique under the quotient space that is defined by the equivalent classes of functions that
are invariant under constant shifts. However, for the original space of functions, there might
be several fixed points. In other words, any function v∗ such that T0h(µ) − h(µ) = C for
some constant C < ∞ for all µ, is a fixed point of the operator T0 under the span semi-norm.
We can also write this as

h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ,Θ)

)
− inf

Θ∈U(µ0)

(
k(µ0,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ0,Θ)

)
+ C.

Note that T0 is constructed so that T k
0 v0(µ0) = 0 for all k. Hence, the fixed point also

satisfies h(µ0) = 0. For the above equation, we then must have that C = 0. Therefore,
among the span-norm equivalent set of functions that T k

0 converges to under the span semi-
norm, for the one with h(µ0) = 0, we have convergence under the uniform norm as well.
That is ∥T k

0 v0 − h∥∞ → 0, for any v0 ∈ B(Pn(X)), such that h(µ0) = 0 and it satisfies the
following

h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ,Θ)

)
− inf

Θ∈U(µ0)

(
k(µ0,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ0,Θ)

)
which is in the form of ACOE with

j∗ = inf
Θ∈U(µ0)

(
k(µ0,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ0,Θ)

)
.

REMARK 2.3. Assumption 2.1 requires that under a set of positive probability on the
common noise, an agent can go to a subset of the state space X, with positive probability
decided by the measure π no matter what the current state, action, and the empirical measure
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are. Note that π does not have to be a probability measure. However, if π(X) < 1, then
the contraction constant 1− P (B)π(X)N we use in the proof goes to 1 as N grows. This
suggests that for large (or infinite) populations, Theorem 2.2 no longer has a useful conclu-
sion. One way to avoid this problem is to require π to be a probability measure. In other
words, if there exists a measurable set B with positive probability, P (B) > 0, such that for
any xi

t, u
i
t, µxt we have

T w0

(·|xi
t, u

i
t, µxt) = π(·)

for all w0 ∈ B where π is a probability measure, then Theorem 2.2 will still provide a
contraction constant, uniform over the population N . This condition can be thought of as
resetting the distribution of every agent to π under certain common noise realizations. This
is clearly a strong assumption, and maybe an artificial one. Thus, in the following we will
use a different set of assumptions for the analysis of ACOE which will be valid for large (and
infinite) population problems as well.

REMARK 2.4. Assumption 2.1, we use in this section, is also a sufficient condition
for geometric ergodicity of the vector state process of the team under stationary policies.
Consider two team state processes under the same policy γ where one starts from some π̂0

and the other starts from π0. Denote by πγ
t ∈ P(XN ) and π̂γ

t ∈ P(XN ) the marginal
distributions of the state vectors at time t. One can show that under Assumption 2.1

∥πγ
t+1 − π̂γ

t+1∥TV ≤ α∥πγ
t+1 − π̂γ

t+1∥TV (2.10)

where α = (1 − P (B)π(X)N ) < 1. In particular, one can use this relation to show that πγ
t

is a Cauchy sequence, and thus converges to some πγ under the total variation metric, since
P(XN ) is complete under total variation. The limit point πγ is the invariant measure of the
vector state process under the stationary team policy γ. Furthermore, using (2.10), one can
also show that for any starting distribution of agents

∥πγ
t+1 − πγ∥TV ≤ 2αt

with α = (1−P (B)π(X)N ) < 1. Therefore, Assumption 2.1 implies the geometric ergodicity
of the vector state process of the team.

2.3. Existence of a Solution to the ACOE and Optimal Policies under Continuity of
Transition and Cost Functions. We have shown the existence of a solution to the ACOE
and thus the existence of optimal stationary Markov policies under a minorization condition
for the dynamics of the agents. However, we have also observed that this approach may fail
when the number of agents is large.

In this section, we will show that a solution to the ACOE can be established using the
vanishing discount approach under the assumption that the transition and cost functions of
the agents are Lipschitz continuous. Furthermore, the approach presented in this section will
be valid for large populations, and in particular for the infinite population problems as we will
see later.

ASSUMPTION 2.2.
i. X and U are compact.

ii. f is Lipschitz in x, u, µ such that

|f(x, u, µ, wi, w0)− f(x′, u′, µ′, wi, w0)| ≤ Kf (|x− x′|+ |u− u′|+W1(µ, µ
′))

for some 2Kf < 1, uniformly in wi, w0 where W1 is the first order Wasserstein
distance.

iii. c is Lipschitz in x, u, µ such that

|c(x, u, µ)− c(x′, u′, µ′)| ≤ Kc (|x− x′|+ |u− u′|+W1(µ, µ
′))

for some Kc < ∞.
11



THEOREM 2.3. Under Assumption 2.2, there exists a constant j∗, and a function
h ∈ B(PN (X)), such that

j∗ + h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
PN (X)

h(µ1)η(dµ1|µ,Θ)

)
.

Furthermore, there exists a stationary and Markov policy g which achieves the infimum at the
right hand side.

Proof. We start by analyzing the discounted cost criteria. Let

KN
β (µ, g) =

∞∑
t=0

βtEg
µ [k(µt,Θt)]

be the discounted cost under some policy g where 0 < β < 1 is some discount factor.
Furthermore, let KN,∗

β (µ) denote the optimal discounted cost function for the initial agent
distribution µ ∈ PN (X).

We define the following relative discounted value function, for some fixed µ′ ∈ PN (X):

hN
β (µ) := KN,∗

β (µ)−KN,∗
β (µ′).

Using the Bellman equation for KN,∗
β (µ) and by rearranging some terms, one can write that

KN,∗
β (µ)−KN,∗

β (µ′)

= inf
Θ∈U(µ)

(
k(µ,Θ) + β

∫ (
KN,∗

β (µ1)−KN,∗
β (µ′)

)
η(dµ1|µ,Θ)− (1− β)KN,∗

β (µ′)

)
.

Using the definition hN
β function, we can also write that

hN
β (µ) = inf

Θ∈U(µ)

(
k(µ,Θ) + β

∫
hN
β (µ1)η(dµ1|µ,Θ)− (1− β)KN,∗

β (µ′)

)
(2.11)

Next, we will show that hN
β is uniformly bounded and equicontinuous (over β) when we

metrize PN (X) with the first order Wasserstein distance. Thus we can invoke the Arzela-
Ascoli Theorem since PN (X) is complete and separable under the Wasserstein metric.

For the boundedness:∣∣hN
β (µ)

∣∣ = ∣∣∣KN,∗
β (µ)−KN,∗

β (µ′)
∣∣∣ ≤ 2Kc

1− 2Kfβ
W1(µ, µ

′)

where we used [10, Lemma 4] for the last step. Furthermore, since we assume that X is
compact (and bounded), W1(µ, µ

′) is uniformly bounded as well. Hence, hN
β (µ) is uniformly

bounded over β when 2Kf < 1.
For equicontinuity, similarly, for some µ, µ̂ we write∣∣hN

β (µ)− hN
β (µ̂)

∣∣ = ∣∣∣KN,∗
β (µ)−KN,∗

β (µ′)−KN,∗
β (µ̂) +KN,∗

β (µ′)
∣∣∣ ≤ 2Kc

1− 2Kfβ
W1(µ, µ̂)

(2.12)

which proves that hN
β (µ) is equicontinuous over β if 2Kf < 1, as the bound becomes uniform

over β.
Furthermore, the stage-wise cost function is uniformly bounded as c is continuous and

X is compact. Hence, for the fixed µ′, (1−β)KN,∗
β (µ′) is a bounded sequence over β. Thus,
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there exists a sequence of discount factors, say β(k) → 1, such that, (1−β(k))KN,∗
β(k)(µ

′) →
j∗ for some constant j∗. If we consider some other µ ∈ PN (X), we can also show that

|(1− β(k))KN,∗
β(k)(µ)− j∗|

≤ |(1− β(k))KN,∗
β(k)(µ)− (1− β(k))KN,∗

β(k)(µ
′)|+ |(1− β(k))KN,∗

β(k)(µ
′)− j∗|

≤ (1− β(k))
∣∣∣hN

β(k)(µ)
∣∣∣+ |(1− β(k))KN,∗

β(k)(µ
′)− j∗| → 0

where we used the boundedness of hN
β and the fact that along the sequence β(k), |(1 −

β(k))KN,∗
β(k)(µ

′)− j∗| → 0. Hence, not only for the fixed µ′ but for all µ ∈ PN (X), we have

that |(1− β(k))KN,∗
β(k)(µ)− j∗| → 0.

We have shown that hN
β is equicontinuous, hence there exists a further subsequence, say

β(k′), such that hN
β(k′) → h uniformly, for some continuous function h, using the Arzela-

Ascoli Theorem. If we take the limit of both sides in (2.11) along β(k′), we can see

h(µ) = lim
k′→∞

inf
Θ∈U(µ)

(
k(µ,Θ) + β(k′)

∫
hN
β(k′)(µ1)η(dµ1|µ,Θ)

)
− j∗

One can also justify the exchange of infimum and the limit using the equicontinuity of
hN
β , compactness of X, and thus the weakly pre-compactness of PN (X), see [58, Theorem

7.3.3], once we exchange the limit and the infimum, we get

h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
h(µ1)η(dµ1|µ,Θ)

)
− j∗

which proves the first part. The second part follows as the measurable selection conditions
are satisfied under Assumption 2.2, since the limit function h, and the cost function k are
continuous, η is weakly continuous and the action set U(µ) is compact and lower continuous.

The proof method used for the previous result reveals an important implication. Along
any sequence (not just a subsequence) of vanishing discount factors, a normalized version of
the discounted optimal value function converges to the average cost optimal value function.

PROPOSITION 2.4. Under Assumption 2.2, we have that for any µ ∈ PN (X)

lim
β→1

(1− β)KN,∗
β (µ) = KN,∗

∞ (µ) = j∗.

Proof. Note that we know from the proof of Theorem 2.3 that for any β → 1, there exists
a subsequence β(k) → 1 such that

lim
β(k)→1

(1− β(k))KN,∗
β (µ) = j∗

where j∗ is the optimal value function for the average cost infinite horizon problem. The
result then follows, since j∗, i.e. the optimal value function, is unique under Assumption 2.2
and thus any convergent subsequence should converge to the same value.

3. Ergodic Control of Mean Field Limit Problem. In Section 2, we have focused
on solutions to the problem of a finite population team, for which the resulting policy is a
mapping g : PN (X) → PN (U × X). In other words, the policy provides a distribution
rule for the joint state-action of the agents, by looking at the state distribution of the agents.
Note that this policy is a recipe for the team, however, to apply this policy at the agent level,
one needs to coordinate the agents in order to realize the recipe state-action distribution. For
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example, if the distribution of the agents is given by µ ∈ PN (X), and the optimal action is
given by Θ(du, dx) ∈ PN (U×X), then Θ(du, dx) serves as a recipe for the team of agents.
The agents need to coordinate to create this joint distribution among each other. In particular,
every agent may be required to apply different, asymmetric policies, even if their states are
the same, i.e. the agent level policies might depend on the identity of the agents. It might be
the case for example, two agents i ̸= j with same state xi = xj , might need to apply different
policies γi(·|xi, µx) ̸= γj(·|xj , µx), see Example 4.1. Asymmetric policies, especially for
the large number of agents, can be hard to coordinate.

To deal with this coordination challenge, the usual approach is to consider the infinite
population problem. The solution of the infinite population problem which we will introduce
in this section, provides a policy, say g : P(X) → P(U × X), that maps the marginal dis-
tribution of a representative agent to a joint state-action measure. For example, if the state
is µ ∈ P(X), and the recipe action is some Θ(du, dx) ∈ P(U × X), then by disintegrat-
ing, Θ(du, dx) = γ(du|x, µ)µ(dx), every agent can apply the agent level symmetric policy
γ(·|x, µ), which solves the coordination challenge.

In this section, we consider the control problem for the infinite population of agents, i.e.
for N → ∞. We will first provide a control problem for a single agent, and formulate it as a
controlled measure valued Markov process.

3.1. Infinite Population Measure Valued Control Problem. We present a control
problem for the measure process µt, by changing the control variables as well. We will
let the control actions be the joint measures on U×X. Let Θt ∈ P(U×X) such that the first
marginal of Θt agrees with the state distribution of the agent µt. We define the stage-wise
cost function k(µt,Θt) similar to the finite population measure valued MDP construction so
that

k(µt,Θt) :=

∫
c(x, u, µt)Θ(du, dx).

An admissible policy g = {gt} is a sequence of control functions such that each can use the
information variables {µ0, . . . , µt,Θ0, . . . ,Θt−1}. Let G be the set of all admissible policies
for the measure valued process.

Recall the transition kernel T w0

(·|x, u, µ) defined in (1.1), which defines a probability
measure on X given the last state, action, and measure variables (x, u, µ) and the common
noise w0. We can define the dynamics of the measure process µt using T w0

so that

µt+1(·) = F (µt,Θt, w
0) :=

∫
T w0

(·|x, u, µt)Θ(dx, du).

Note that the dynamics can also be represented using a Markov kernel, which we will denote
by

η(dµt+1|µt,Θt)

by an abuse of notation; recall that we have used the same notation to denote the transition
kernel of the finite population measure valued MDP (see (2.2)). Even though these transition
kernels are totally different, we use the same notation for notation simplicity.

We define the cost function to be minimized as

K∞(µ, g) = lim sup
T→∞

1

T

T−1∑
t=0

Eg
µ [k(µt,Θt)]

where µ = µ0.
14



We denote the optimal cost function by K∗
∞(µ) such that

K∗
∞(µ) = inf

g∈G
K∞(µ, g).

REMARK 3.1. We note that even though the infinite population problem can be struc-
tured as a classical single agent MDP problem, the standard tools used to study the average
cost optimality criteria for MDPs may not be directly applicable. The standard methods (see
e.g. [36, 37, 6]) requires certain ergodicity conditions on the controlled state process, as
well as mixing type conditions of the state process under total variation norm, e.g. conditions
similar to Assumption 2.1. These conditions may be easy to verify for state variables living
in general Euclidean state spaces, e.g. for the finite population problem as we have seen in
Section 2.2. However, for the measure valued controlled process we have introduced in this
section for the infinite population problem, these conditions are not applicable unless we as-
sume very strong conditions on the system dynamics. For example, a slightly weaker version
of Assumption 2.1 requires that

∥η(·|µ,Θ)− η(·|µ′,Θ′)∥TV ≤ 2α (3.1)

for some α < 1. If we assume for simplicity that there is no common noise and consider the
infinite population measure valued process, this inequality will always fail, since the process
becomes deterministic, and in particular we get ∥η(·|µ,Θ) − η(·|µ′,Θ′)∥TV = 2 for any
µ ̸= µ′ and Θ ̸= Θ′. In general, most of the tools developed to study MDPs under average
cost criteria may not be applicable for deterministic systems.

With the presence of common noise, the dynamics becomes stochastic again, however,
verifying the standard average cost criteria assumptions is not immediate. For example, as
we have observed in Remark 2.3, in order to verify (3.1) for infinite population dynamics, a
sufficient condition is that there exists a measurable set B with positive probability, P (B) >
0, such that for any x, u, µ we have

T w0

(·|x, u, µ) = π(·)

for all w0 ∈ B, where π is a probability measure. In words, there exists a set of common
noise realizations which resets the measure flow to some π(·) ∈ P(X). Obviously, this is
a very restrictive assumption, and thus, in what follows, we use different tools to study the
average cost optimality.

3.2. Existence of a Solution to the ACOE and Optimal Policies under Continuity of
Transition and Cost Functions. We will first analyze the optimality problem, and establish
the existence of stationary Markov optimal policies for the infinite population problem as in
the finite population problem. We follow the same steps in Section 2.3 and establish a result
parallel to Theorem 2.3. As before, we will use the vanishing discount approach. Let

Kβ(µ, g) =
∞∑
t=0

βtEg
µ [k(µt,Θt)]

where 0 < β < 1 is some discount factor. Furthermore, let K∗
β(µ) denote the optimal

discounted cost function.
We define the following relative discounted value function, for some fixed µ′ ∈ P(X):

hβ(µ) := K∗
β(µ)−K∗

β(µ
′).

THEOREM 3.1. Under Assumption 2.2, there exists a constant j∗, and a function
h ∈ B(PN (X)), such that

j∗ + h(µ) = inf
Θ∈U(µ)

(
k(µ,Θ) +

∫
P(X)

h(µ1)η(dµ1|µ,Θ)

)
.
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Furthermore, there exists a stationary and Markov policy g which achieves the infimum at the
right hand side.

Proof. As in the proof of Theorem 2.3, we define the relative discounted value function
for some fixed µ′ ∈ P(X):

hβ(µ) = K∗
β(µ)−K∗

β(µ
′).

A careful look at the proof of Theorem 2.3 shows that it is sufficient to show hβ is uniformly
bounded and equicontinuous over β ∈ (0, 1).

For hβ , we have that

|hβ(µ)| =
∣∣K∗

β(µ)−K∗
β(µ

′)
∣∣ ≤ lim

N→∞

∣∣∣K∗
β(µ)−KN,∗

β (µN )
∣∣∣+ ∣∣∣KN,∗

β (µN )−KN,∗
β (µN ′

)
∣∣∣

+
∣∣∣KN,∗

β (µN ′
)−K∗

β(µ
′)
∣∣∣

≤ 2Kc

1− 2Kfβ
W1(µ, µ

′) (3.2)

where µN and µN ′
are chosen such that µN → µ and µN ′ → µ′ weakly. Taking the limit

N → ∞, the first and last terms go to 0 by [9, 44] under Assumption 2.2, and the middle term
is bounded by 2Kc

1−2Kfβ
W1(µ

N , µN ′
) as we have shown in (2.12). Hence, we have uniform

boundedness together with compactness of X. For the equicontinuity one can follow the
same steps.

For the second part of the result, we have that the measurable selections conditions holds
under Assumption 2.2, as the cost function k(µ,Θ) is continuous in both variables, and the
transition kernel η(·|µ,Θ) is weakly continuous in both variables, furthermore U(µ) is com-
pact and lower-semi continuous. Therefore, the proof is complete.

We now present a result, similar to Proposition 2.4. The result is about the limit of nor-
malized discounted optimal value functions. The proof is identical to the proof of Proposition
2.4 and follows from the uniqueness of the optimal value function for the average cost criteria.

PROPOSITION 3.2. Under Assumption 2.2, we have that for any µ ∈ P(X)

lim
β→1

(1− β)K∗
β(µ) = K∗

∞(µ) = j∗.

4. Limit Theorems for N → ∞. Finally, in this section, we study the relation between
the finite population control and the infinite population control. In particular, we will show
that the value function of the N - population problem converges to the value function of the
infinite population problem. We will show that the accumulation points of the optimal state-
action distributions for the N -population problem are optimal state-action distribution for the
infinite population problem. Furthermore, we will establish that one can symmetrically use
policies designed for the infinite population problem for the finite population control with
near optimality if the population is sufficiently large.

4.1. Convergence of Value Functions as N → ∞. THEOREM 4.1. Under Assump-
tion 2.2

lim
N→∞

KN,∗
∞ (µN ) = K∗

∞(µ)

Proof. We will prove the result using the ACOE for the finite population and the infinite
population problem. Recall that we have proved the existence of a solution to the ACOE
for the finite and infinite population problems under Assumption 2.2, in Theorem 3.1 and
Theorem 2.3 such that:

hN (µN ) = inf
ΘN

{
k(µN ,ΘN ) +

∫
hN (µN

1 )η(dµN
1 |µN ,ΘN )

}
− jN
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h(µ) = inf
Θ

{
k(µ,Θ) +

∫
h(µ1)η(dµ1|µ,Θ)

}
− j

for some measurable relative value functions hN , h, and where jN , j are constants that are
equal to the optimal value functions, i.e. KN,∗

∞ (µN ) = jN for all µN and K∗
∞(µ) = j for all

µ. In particular, under Assumption 2.2, there exist optimal selectors, say f and fN such that

hN (µN ) = k(µN , fN (µN )) +

∫
hN (µN

1 )η(dµN
1 |µN , fN (µN ))− jN

h(µ) = k(µ, f(µ)) +

∫
h(µ1)η(dµ1|µ, f(µ))− j

Iterating these equalities T times we get

hN (µN ) =
T−1∑
t=0

EfN

µN

[
k(µN

t ,ΘN
t )
]
+ EfN

µN

[
hN (µN

T )
]
− TjN

h(µ) =

T−1∑
t=0

Ef
µ [k(µt,Θt)] + Ef

µ [h(µT )]− Tj (4.1)

If we denote the finite horizon costs under some policies gN , g by

KN
T (µN , gN ) = EgN

µN

[
T−1∑
t=0

k(µN
t ,ΘN

t )

]

KT (µ, g) = Eg
µ

[
T−1∑
t=0

k(µt,Θt)

]

We can then write, using (4.1)

KN
T (µN , fN )− TjN = hN (µN )− EfN

µN

[
hN (µN

T )
]

KT (µ, f)− Tj = h(µ)− Ef
µ [h(µT )]

We will later show that ∥h∥∞ ≤ M and ∥hN∥∞ ≤ M , where M is uniform over N .
Hence, we can write

KN
T (µN , fN )

T
− jN ≤ 2M

T
KT (µ, f)

T
− j ≤ 2M

T

If we iterate the ACOE’s, over some policies g, gN (including the finite horizon optimal
policies), instead of the selectors f, fN , the equations in (4.1), can be represented as the
following inequalities:

hN (µN ) ≤
T−1∑
t=0

EgN

µN

[
k(µN

t ,ΘN
t )
]
+ EgN

µN
0

[
hN (µN

T )
]
− TjN

h(µ) ≤
T−1∑
t=0

Eg
µ [k(µt,Θt)] + Eg

µ [h(µT )]− Tj

17



Using the same bound on h, hN

−2M

T
≤ KN

T (µN , gN )

T
− jN

−2M

T
≤ KT (µ, g)

T
− j

As we have noted, the above lower bounds are valid for the finite horizon optimal policies

as well. Furthermore, because of the optimality, we have that KN,∗
T (µN )

T ≤ KN
T (µN ,fN )

T and
K∗

T (µ)
T ≤ KT (µ,f)

T where f and fN are the selectors for the ACOE, i.e. the optimal policies
for the infinite horizon average cost problem. Hence, we can write

−2M

T
≤

KN,∗
T (µN )

T
− jN ≤ KN

T (µN , fN )

T
− jN ≤ 2M

T
(4.2)

−2M

T
≤ K∗

T (µ)

T
− j ≤ KT (µ, f)

T
− j ≤ 2M

T

Hence, if M is uniform over N , taking T → ∞, we get

KN,∗
T (µN )

T
− jN → 0

K∗
T (µ)

T
− j → 0 (4.3)

uniformly over N .
To show that h and hN are uniformly bounded over N , we write using (2.12) and (3.2)

hN (µN ) = lim
β→1

hN
β (µN ) ≤ M

h(µ) = lim
β→1

hβ(µ) ≤ M

where M is independent of N .
Finally, we write

∣∣KN,∗
∞ (µN )−K∗

∞(µ)
∣∣ = ∣∣∣∣∣KN,∗

∞ (µN )−K∗
∞(µ)± K∗

T (µ)

T
±

KN,∗
T (µN )

T

∣∣∣∣∣
≤

∣∣∣∣∣KN,∗
∞ (µN )−

KN,∗
T (µN )

T

∣∣∣∣∣+
∣∣∣∣∣KN,∗

T (µN )

T
− K∗

T (µ)

T

∣∣∣∣∣
+

∣∣∣∣K∗
T (µ)

T
−K∗

∞(µ)

∣∣∣∣
We have shown in (4.3) that we can choose a large enough T , independent of N such that the
first and the last terms are less than ϵ/3 for any given ϵ > 0. For the chosen ϵ and T , it has
been shown in [9, 44] that the middle term goes to 0, i.e. can be made less than ϵ/3, for some
large N < ∞, under Assumption 2.2. Hence the proof is completed.

4.2. Accumulation to Optimal Solutions for Infinite Populations. We have estab-
lished the existence of an optimal policy for the N -population control problem, say gN :
PN (X) → PN (U×X). Under this optimal policy, we have that

KN
∞(µN , gN ) = lim

T→∞

1

T

T−1∑
t=0

EgN

[∫
c(x, u, µN

t )ΘN
t (du, dx)

]
= jN

18



for all µN where jN is the optimal value of the problem. The dynamics for the state-action
and state distributions are given in (2.2). We can also rewrite the accumulated cost under the
optimal policy as

KN
∞(µN , gN ) = lim

T→∞

1

T

T−1∑
t=0

EgN

[∫
c(x, u, µN

t )ΘN
t (du, dx)

]

= lim
T→∞

1

T

T−1∑
t=0

∫
k(µ,Θ)PN

t (dΘ)

where PN
t (dΘ) ∈ P(PN (U × X)) ⊂ P(P(U × X)) is the marginal distribution for the

state-action distribution of the agents at time t under the policy gN . Note also that µ is
determined by Θ as it is simply the second marginal of Θ(du, dx). The next result shows
that the accumulation points of PN

t coincides with the optimal flow of the infinite population
control problem as N grows.

We first present a useful lemma.
LEMMA 4.2. Assume Assumption 2.2 holds. Consider a sequence of functions {gN}N

defined on PN (X) such that

gN (µN ) → g(µ)

for some function g and for any W1(µ
N , µ) → 0. Assume further that∣∣gN (µN )− gN (µ̂N )

∣∣ ≤ KW1(µ
N , µ̂N )

for all µN , µ̂N ∈ PN (X) and for some K < ∞ that is independent of N .
We then have for any µN ∈ PN (X),ΘN ∈ PN (U×X) such that W1(µ

N , µ) → 0 and
W1(Θ

N ,Θ) → 0 for some µ ∈ P(X) and Θ ∈ P(U×X)

lim
N→∞

∫
gN (µN

1 )ηN (dµN
1 |µN ,ΘN ) =

∫
g(µ1)η(dµ1|µ,Θ).

Proof. The proof can be found in Appendix B.
THEOREM 4.3. Under Assumption 2.2, we can find a subsequence, say N ′ such that

PN ′

t → Pt weakly for every t for some Pt ∈ P(P(U × X)). Furthermore, the limit flow
{Pt} is the optimal flow for the infinite population control problem such that

lim
T→∞

1

T

∫
k(µ,Θ)Pt(dΘ) = K∗

∞(µ) = j

Proof. We first note that since U ×X is assumed to be compact and Polish, P(U ×X)
is also a compact and Polish under the weak convergence topology. In turn, P(P(U×X)) is
also compact and Polish.

Hence, we can find a sebsequence N0 such that PN0
0 → P0 weakly for some P0 ∈

P(P(U ×X)). In fact, for time t = 0, the common noise does not affect the distributions.
Thus, if the initial state distribution µN → µ, then one can show that P0(·) = δΘ0

(·) for
some Θ0 ∈ P(U×X) such that Θ0(U, ·) = µ(·).

For PN0
1 , one can find a further subsequence N1, such that PN1

1 → P1 for some P1 ∈
P(P(U ×X)). Continuing in this manner, and using a standard diagonal argument, we can
find a subsequence N ′ such that PN ′

t → Pt weakly for all t ≥ 0.
We now show that the limit flow {Pt}t is consistent with the dynamics of the infinite

population dynamics. Note that any Pt ∈ P(P(U × X)) induces a probability measure in
P(P(X)), say P̄t such that

P̄t(µ ∈ A) = Pt({Θ : Θ(U, ·) ∈ A})
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for any A ∈ B(P(X)). The sequence {Pt} ⊂ P(P(U ×X)) is consistent with the infinite
population dynamics, if we have

P̄t+1(µt+1 ∈ A) =

∫
η(µt+1 ∈ A|µ,Θ)Pt(dΘ).

For the N - population dynamics, we have that∫
f(µt+1)P̄

N
t+1(dµt+1) =

∫
f(µt+1)η

N (dµt+1|µ,Θ)PN
t (dΘ) (4.4)

for any continuous and bounded function f , where we use ηN to denote the one step transition
kernel of the N -population dynamics. By Lemma 4.2, for any µN ,ΘN → µ,Θ, we can write∫

f(µt+1)η
N (dµt+1|µN ,ΘN ) →

∫
f(µt+1)η(dµt+1|µ,Θ).

Hence, if we take the limit of both sides in (4.4) along the chosen subsquence N ′, we get∫
f(µt+1)P̄t+1(dµt+1) =

∫
f(µt+1)η(dµt+1|µ,Θ)Pt(dΘ)

where we used the fact that PN ′

t → Pt weakly for all t and [41, Theorem 3.1]. Since the class
of continuous and bounded functions are measure determining (see [15, Theorem 1.2]), we
can conclude that the limit sequence {Pt}t is consistent with the infinite population dynamics.

We now prove the second part of the result. The result is an implication of Theorem 4.1.
By (4.2), we have that

KN
T (µN , gN )

T
→ jN

where gN is the optimal stationary policy for the N -population. Furthermore, the conver-
gence is uniform over N . Thus, if we take the limit of both sides along the subsequence N ′,
we get

lim
N ′→∞

lim
T→∞

KN ′

T (µN ′
, gN

′
)

T
= lim

N ′→∞
jN

′
= j

= lim
T→∞

lim
N ′→∞

KN ′

T (µN ′
, gN

′
)

T
= lim

T→∞

1

T

T−1∑
t=0

lim
N ′→∞

∫
k(µ,Θ)PN ′

t (dΘ)

= lim
T→∞

1

T

T−1∑
t=0

∫
k(µ,Θ)Pt(dΘ)

where we used the weak convergence of PN ′

t → Pt and the continuity of the function k(µ,Θ)
on (µ,Θ) under Assumption 2.2. This shows that

K∗
∞(µ) = j = lim

T→∞

1

T

T−1∑
t=0

∫
k(µ,Θ)Pt(dΘ).
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4.3. Near Optimality of Symmetric Policies for Finite Population Control. In this
section, we focus on the effect of using symmetric policies for finite population control prob-
lem. The following example shows that the symmetric policies may not achieve the optimal
performance, and personalized policies have to be used for the optimality.

EXAMPLE 4.1. Consider a team control problem with two agents, i.e. N = 2. We
assume that X = U = {0, 1}. The stage wise cost function of the agents is defined as

c(x, u, µx) = W1(µx, µ̄)

where

µ̄ =
1

2
δ0 +

1

2
δ1.

In words, the state distribution should be distributed equally over the state space {0, 1} for
minimal stage-wise cost. For the dynamics we assume a deterministic model such that

xt+1 = ut.

In words, the action of an agent purely determines the next state of the same agent. The goal
of the agents is to minimize

K∞(x1
0, x

2
0, g

1, g2) = lim sup
T→∞

1

T

T−1∑
t=0

Eg1,g2

[
c(x1

t , u
1
t , µxt) + c(x2

t , u
2
t , µxt)

2

]
for some initial state values x0 = [x1

0, x
2
0], by choosing policies g1, g2. The expectation is

over the possible randomization of the policies. We assume full information sharing such that
every agent has access to the state and action information of the other agent.

We let the initial states be x1
0 = x2

0 = 0. An optimal policy for the agents for the problem
is given by

g1(0, 0) = 0, g2(0, 0) = 1

g1(0, 1) = 0, g2(0, 1) = 1

g1(1, 0) = 1, g2(1, 0) = 0

g1(1, 1) = 1, g2(1, 1) = 0

which always spreads the agents equally over the state space. One can realize that, when
the agents are positioned at either (0, 0) or (1, 1), they have to use personalized policies to
decide on which one to be placed at 0 or 1.

For any symmetric policy g1(x1, x2) = g2(x1, x2) = g(x1, x2), including the random-
ized ones, there will always be cases with strict positive probability, where the agents are
positioned at the same state, and thus the performance will be strictly worse than the optimal
performance.

We now introduce the symmetric policies that will be used by the agents for the finite
population setting. We will focus on the optimal policies for infinite population under the dis-
counted cost criteria. Let Θ(du, dx) be an optimal state-action distribution for some measure
µ ∈ P(X). We then write

Θ(du, dx) = γ(du|x, µ)µ(dx).

In the finite population setting, we let the agents use the symmetric randomized policy
γ(du|x, µ). That is, an agent i, at time t, observes their local state xi

t and the state distri-
bution of the agents, say µN

t , and applies γ(du|xi
t, µ

N
t ). This agent level policy then defines

a team policy for the state distribution µN such that

gβ(µ
N ) := ΘN (du, dx) = γ(du|x, µN )µN (dx).
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We use the β dependence to emphasize that the policy is constructed using the discounted
cost criteria.

Our next result shows that this policy, which is symmetric between the agents, will
achieve near optimal performance for sufficiently large populations under the discounted cost
criteria.

PROPOSITION 4.4. Under Assumption 2.2, for any µN → µ

lim
N→∞

KN
β (µN , gβ) = K∗

β(µ).

Furthermore,

lim
N→∞

KN
β (µN , gβ)−KN,∗

β (µN ) = 0.

Hence, gβ will achieve near optimal performance for finite populations.
Proof. The proof can be found in Appendix A.
THEOREM 4.5. Under Assumption 2.2, for any given ϵ > 0 we can find a β < 1

sufficiently close to 1, and some N̄ such that for all N > N̄ we have that∣∣KN
∞(µN , gβ)− jN

∣∣ ≤ ϵ.

In words, the symmetric feedback policy gβ is near optimal for N -population problem if N is
sufficiently large.

Proof. Recall hβ(µ) := K∗
β(µ) − K∗

β(µ0). Using the Bellman equation for K∗
β(µ) we

can write

hβ(µ) = k(µ,Θ) + β

∫
hβ(µ1)η(dµ1|µ,Θ)− (1− β)K∗

β(µ0)

= k(µ,Θ) +

∫
hβ(µ1)η(dµ1|µ,Θ)− (1− β)

∫
hβ(µ1)η(dµ1|µ,Θ)− (1− β)K∗

β(µ0)

(4.5)

where Θ is an optimal state-action distribution for µ. We also recall hN
β (µN ) := KN,∗

β (µN )−
KN,∗

β (µN
0 ) where µN

0 ∈ PN (X) is chosen such that µN
0 → µ0. We can then rewrite (4.5) as

±hN
β (µN )± jN + hβ(µ) =k(µ,Θ) +

∫
hβ(µ1)η(dµ1|µ,Θ)

− (1− β)

∫
hβ(µ1)η(dµ1|µ,Θ)− (1− β)K∗

β(µ0)

±
(
k(µN , gβ(µ

N )) +

∫
hN
β (µN

1 )η(dµN
1 |µN , gβ(µ

N ))

)
.

By rearranging the terms we can write

k(µN , g∞β (µN )) +

∫
hN
β (µN

1 )η(dµN
1 |µN , g∞β (µN ))

=jN + hN
β (µN )

+ hβ(µ)− hN
β (µN ) (4.6)

+ j − jN (4.7)

−
(
j − (1− β)K∗

β(µ0)
)
+ (1− β)

∫
hβ(µ1)η(dµ1|µ,Θ) (4.8)
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+ k(µN , g∞β (µN ))− k(µ,Θ) (4.9)

+

∫
hN
β (µN

1 )η(dµN
1 |µN , g∞β (µN ))−

∫
hβ(µ1)η(dµ1|µ,Θ) (4.10)

We first choose β large enough (independent of N ) such that (4.8) is smaller than ϵ. This can
be done using Proposition 3.2, and since hβ is uniformly bounded over β (see (3.2)).

For the chosen β, we can make (4.6) smaller than ϵ, since KN,∗
β (µ) → K∗

β(µ) and
KN,∗

β (µN
0 ) → K∗

β(µ0) as N → ∞ for fixed β < 1. (4.7) can be made smaller than ϵ by
Theorem 4.1.

Finally we focus on (4.9) and (4.10) :

k(µN , gβ(µ
N ) +

∫
hN
β (µN

1 )η(dµN
1 |µN , gβ(µ

N ))− k(µ,Θ)−
∫

hβ(µ1)η(dµ1|µ,Θ)

= k(µN , gβ(µ
N ) + β

∫
hN
β (µN

1 )η(dµN
1 |µN , gβ(µ

N )) + (1− β)

∫
hN
β (µN

1 )η(dµN
1 , µN , gβ(µ

N ))

− k(µ,Θ)− β

∫
hβ(µ1)η(dµ1|µ,Θ)− (1− β)

∫
hβ(µ1)η(dµ1|µ,Θ)

= k(µN , gβ(µ
N ) + β

∫
KN,∗

β (µN
1 )η(dµN

1 |µN , gβ(µ
N ))−K∗

β(µ)− βKN,∗
β (µN

0 ) + βK∗
β(µ0)

+ (1− β)

∫
hN
β (µN

1 )η(dµN
1 |µN , gβ(µ

N ))− (1− β)

∫
hβ(µ1)η(dµ1|µ,Θ)

The last line can be made smaller than ϵ by choosing β sufficiently close to 1 independent of
N since hN

β and hβ are previously shown to be uniformly bounded (uniform over N as well).
Furthermore, for the chosen β, we have that βKN,∗

β (µN
0 ) → βK∗

β(µ0) and finally we have
shown in the proof of Proposition 4.4 that

lim
N→∞

k(µN , gβ(µ
N ) + β

∫
KN,∗

β (µN
1 )η(dµN

1 |µN , gβ(µ
N )) = K∗

β(µ).

We then can make the terms (4.9) and (4.10) smaller than ϵ by choosing β and N sufficiently
large.

Hence we can write the following for the chosen β and N

k(µN , g∞β (µN )) +

∫
hN
β η(dµN

1 |µN , g∞β (µN )) ≤ jN + 5ϵ+ hN
β (µN ).

We note the following inequality to conclude the result (see [58, Theorem 7.1.3]): if

g + h(µN ) ≥ k(µN , f(µN )) +

∫
h(µN

1 )η(dµN
1 |µN , f(µN ))

for some functions h, f and for some constant g and if h is bounded then

g ≥ KN
∞(µN , f).

We have established this inequality with g = jN + 5ϵ, f ≡ gβ and h ≡ hN
β . Therefore we

can conclude that

KN
∞(µN , gβ) ≤ jN + 5ϵ

as hN
β is bounded uniformly.
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Appendix A. Proof of Proposition 4.4.
Consider a sequence of measures {µn}n ⊂ P(X) such that µn → µ weakly for

some µ ∈ P(X). Furthermore, consider the corresponding optimal state-action distribu-
tion Θn(du, dx) for µn under the discounted cost criteria for the infinite population problem.
Since U×X is assumed to be compact, there exists a convergent subsequence, say Θn′ → Θ.
Furthermore, Θ is an admissible state-action distribution for µ, i.e. Θ(U, ·) = µ(·) since
µn → µ. We claim that the limit Θ is also an optimal state-action distribution for µ under the
discounted cost criteria. Consider the following Bellman equation:

K∗
β(µn′) = k(µn′ ,Θn′) + β

∫
K∗

β(µ1)η(dµ1|µn′ ,Θn′).

Note that under Assumption 2.2, K∗
β is continuous, and it can be shown that k(µ,Θ) is

continuous and η(·|µ,Θ) is weakly continuous in µ,Θ. Hence, taking the limit along n′ →
∞, we see that

K∗
β(µ) = k(µ,Θ) + β

∫
K∗

β(µ1)η(dµ1|µ,Θ)

which proves the claim that Θ is an optimal action for µ. In other words, any for some
µn → µ and Θn such that Θn is optimal for µn, limit any convergent subsequence of Θn will
be optimal for µ.

We now define the following operator for any function h : PN (X) → R for the finite
population problem such that

(TNh)(µN ) = k(µN , gβ(µ
N )) + β

∫
h(µN

1 )η(dµN
1 |µN , gβ(µ

N ))

where gβ(µ
N ) = γ(du|x, µN )µN (dx), i.e. gβ is the resulting team policy when the agents

use symmetric policies from the infinite population problem. Note that TN is a contraction
and

lim
k→∞

(TN
k h)(µN ) = KN

β (µN , gβ)

where TN
k denotes TN applied to the function h, k times. The convergence above is uni-

form over N since contraction modulus β is independent of N and since the stage-wise cost
c(c, u, µ) is assumed to be uniformly bounded.

We claim that

lim
N→∞

TN
k (KN,∗

β )(µN ) = K∗
β(µ)

for all k < ∞ for all µN → µ. We prove the claim by induction. For k = 1:

TNKN,∗
β (µN ) = k(µN , gβ(µ

N )) + β

∫
KN,∗

β (µN
1 )η(dµN

1 |µN , gβ(µ
N )).

We assume that there exists some ϵ > 0 and a subsequence N ′ such that∣∣∣TN ′
KN ′,∗

β (µN ′
)−K∗

β(µ)
∣∣∣ > ϵ.

For this subsequence, there exists a further subsequence, say Nm, such that gβ(µNm) con-
verges to some Θ that is optimal for µ by the initial argument we had at the start of the proof.
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Hence, taking the limit of both sides along Nm → ∞ and using Lemma 4.2 with the fact that
KN,∗

β (µN ) → K∗
β(µ), we can have that

lim
Nm

TNm

KNm,∗
β (µNm

) = k(µ,Θ) +

∫
K∗

β(µ1)η(dµ1|µ,Θ) = K∗
β(µ)

where the last equality follows since Θ is an optimal action for µ. Finally, since the value
function K∗

β is unique, we reach a contradiction, which implies that

lim
N→∞

(TNKN,∗
β )(µN ) = K∗

β(µ)

For k + 1:

TN
k KN,∗

β (µN ) = k(µN , gβ(µ
N )) + β

∫
TN
k (KN,∗

β )(µN
1 )η(dµN

1 |µN , gβ(µ
N )).

Using the same contradiction argument with the induction step that
limN→∞ TN

k (KN,∗
β )(µN ) = K∗

β(µ) we can conclude that

lim
N→∞

(TN
k KN,∗

β )(µN ) = K∗
β(µ)

for all k < ∞.
Finally, we write∣∣KN

β (µN , gβ)−K∗
β(µ)

∣∣ ≤ ∣∣∣KN
β (µN , gβ)− (TN

k KN,∗
β )(µN )

∣∣∣+ ∣∣∣(TN
k KN,∗

β )(µN )−K∗
β(µ)

∣∣∣
where the first term can be made arbitrarily small by choosing k large enough for all N , and
the the chosen k the second term is shown to converge to 0 as N → ∞. This proves the
first part of the result. The second part follows since we have KN,∗

β (µN ) → K∗
β(µ) for any

µN → µ weakly.

Appendix B. Proof of Lemma 4.2. For the given µN and ΘN , one can find state and
action vectors x = [x1, x2, . . . , xN ] and u = [u1, u2, . . . , uN ] such that µx = µN and
µ(x,u) = ΘN where µx denotes the empirical distribution of the vector x. Note that for any
permutation σ(x,u), we will have that µσ(x) = µx = µN and µσ(x,u) = µ(x,u) = ΘN

We also consider some x̂, û = [(x1, u1), . . . , (xN , uN )] such that (xi, ui) ∼ Θ(dx, du)
for all i = 1, . . . , N . We then have

W1(µx̂,û, µx,u) = min
σ

1

N

N∑
i=1

∣∣(x̂i, ûi)− σ(xi, ui)
∣∣ .

Note that the minimum above is achievable that is a particular permutation of the state-action
vector (x,u) achieves the minimum. In what follows we consider this particular permutation.

We start by writing∣∣∣∣∫ gN (µN
1 )η(dµN

1 |µN ,ΘN )−
∫

g(µ1)η(dµ1|µ,Θ)

∣∣∣∣
≤
∣∣∣∣∫ gN (µN

1 )ηN (dµN
1 |µx, µx,u)−

∫
gN (µN

1 )η(dµN
1 |µx̂, µx̂,û)

∣∣∣∣
+

∣∣∣∣∫ gN (µN
1 )η(dµN

1 |µx̂, µx̂,û)−
∫

g(µ1)η(dµ1|µ,Θ)

∣∣∣∣ .
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For the first term, we have that∣∣∣∣∫ gN (µN
1 )η(dµN

1 |µx, µx,u)−
∫

gN (µN
1 )η(dµ1|µx̂, µx̂,û)

∣∣∣∣
=

∣∣∣∣∫ gN (µN
f(x,u,w))P (dw)−

∫
gN (µN

f(x̂,û,w))P (dw)

∣∣∣∣
≤ K

∫
W1(µ

N
f(x,u,w), µ

N
f(x̂,û,w))P (dw)

≤ K

∫
1

N

N∑
i=1

∣∣f(xi, ui, µx, w
i, w0)− f(x̂i, ûi, µx̂, w

i, w0)
∣∣P (dw)

≤ K
1

N

N∑
i=1

(
|xi − x̂i|+ |ui − ûi|+W1(µx, µx̂)

)
= K (W1(µx,u, µx̂,û) +W1(µx, µx̂)) → 0.

where µN
f(x,u,w) denotes the empirical distribution of the upcoming local state variables of

the agents, and P (dw) is simply the probability measure for the local noise variables of the
agents {w1, . . . , w

N} and the common noise w0. The last inequality follows since we use a
particular permutation of f(x,u,w) = {f(xi, ui, µx, w

i, w0)}Ni=1. The last equality follows
since the particular permutation fixed at the start is the one that achieves W1(µx,u, µx̂,û).
Finally, the convergence to 0 holds since µx,u = ΘN → Θ by assumption, and µx̂,û → Θ
since they form an empirical measure for Θ.

We now focus on the second term:∣∣∣∣∫ gN (µN
1 )η(dµ1|µx̂, µx̂,û)−

∫
g(µ1)η(dµ1|µ,Θ)

∣∣∣∣ .
Note that the local noise of the agents, i.e. wi, are i.i.d.. We consider an extended probability
space for the infinite sequence of the local noise variables {w1, w2, . . . , wN , . . . }, in which
every ω ∈ Ω gives rise to a possibly different sequence. Then we write the above term as∫

gN (µN
f(x̂,û,w))

N∏
i=1

P (dwi)P (dw0) =

∫
gN (µN

f(x̂,û,w(ω)))P (dω)P (dw0)

where w(ω) is simply the first N terms of the local noise variables and the common noise
variable.

Observe that for a given common noise w0 and a sequence of local noise variables (or
a given ω), µN

1 = µN
f(x̂,û,w) is the empirical distribution of {f(x̂i, ûi, µx̂, w

i, w0)}i where
(x̂i, ûi) ∼ Θ, and the local noise wi are i.i.d.. Hence, for a given common noise w0, and for
any continuous function h with unit Lipschitz constant, we have that∫

h(x1)µ
N
1 (dx1) =

1

N

N∑
i=1

h(f(x̂i, ûi, µx̂, w
i
(ω), w

0))± h(f(x̂i, ûi, µ, wi
(ω), w

0))

≤ KfW1(µx, µ) +
1

N

N∑
i=1

h(f(x̂i, ûi, µ, wi
(ω), w

0))

→
∫

h(f(x, u, µ, w,w0))Θ(dx, du)P (dw) =

∫
h(x1)T w0

(dx1|x, u, µ)Θ(dx, du)
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for almost every ω ∈ Ω. For any given common noise realization µN
1 (dx1) converges to∫

T w0

(dx1|x, u, µ)Θ(dx, du) almost surely. Hence by definition of the kernel η of the infnite
population problem, and by the assumption that gN (µN ) → g(µ) for all µN → µ we can
conclude∫

gN (µN
f(x̂,û,w(ω)))P (dω)P (dw0) →

∫
g(µ1(µ,Θ, w0))P (dw0) =

∫
g(µ1)η(dµ1|µ,Θ)

which conclude the proof.
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Mathématiques Pures et Appliquées, 107(2):205–251, 2017.

[6] A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh, and S. I. Marcus. Discrete-time
controlled Markov processes with average cost criterion: A survey. SIAM J. Control and Optimization,
31:282–344, 1993.

[7] X. Bao and S. Tang. Ergodic control of mckean–vlasov sdes and associated bellman equation. Journal of
Mathematical Analysis and Applications, 527(1):127404, 2023.

[8] M. Bardi and F. S. Priuli. Linear-quadratic n-person and mean-field games with ergodic cost. SIAM Journal
on Control and Optimization, 52(5):3022–3052, 2014.
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