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ABSTRACT. The first part of the paper studies a class of optimal control prob-
lems in Bolza form, where the dynamics is linear w.r.t. the control function. A
necessary condition is derived, for the optimality of a trajectory which starts
at a conjugate point. The second part is concerned with a classical problem
in the Calculus of Variations, with free terminal point. For a generic terminal
cost ¢ € C4(R™), applying the previous necessary condition we show that the
set of conjugate points is contained in the image of an (n — 2)-dimensional
manifold and has locally bounded (n — 2)-dimensional Hausdorff measure.

1. Introduction. Conjugate points play a key role in the study of necessary con-
ditions, for problems in the Calculus of Variations and optimal control [5, 6, 7, 13].
The present paper intends to be a contribution to the analysis of conjugate points,
from the point of view of generic theory. Given a family of optimal control problems,
with various terminal costs, we seek properties of the set of conjugate points which
are true for nearly all terminal costs 1) € C*(R™). Here “nearly all” is meant in the
topological sense of Baire category: these properties should be true on a Gs set, i.e.,
on the intersection of countably many open dense subsets. As usual, C*(R") de-
notes the Banach space of all bounded functions with bounded, continuous partial
derivatives up to order k, see for example [1, §].

Our basic setting is as follows. Consider an optimal control problem of the form

minimize: JY ] = / L(z(t),u(t)) dt + ¢ (=(T)), (1)

where ¢t — x(t) € R™ is the solution to the Cauchy problem with dynamics linear
w.r.t. the control:

o(t) = f(z(t),u(t) = fo(x(t))Jeri(w(t))ui(t), (2)
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and initial data

z(7) = y. (3)
Here and in the sequel, the upper dot denotes a derivative w.r.t. time. In (1),
the minimum cost is sought among all measurable functions w : [7,T] — R™. For
(1,y) € [0,T] x R™, the associated value function V is defined as

Vi(ry) = Lr(lf) JTY ] (4)

To fix ideas, we shall consider a couple (f, L) satisfying the following hypotheses.

(A1) In (2) the vector fields f;, i = 0,...,m, are three times continuously differ-
entiable and satisfy the sublinear growth condition

[fiz)] < e (lz[+1) (5)
for some constant ¢; > 0 and all x € R™.

(A2) The running cost L : R™ x R™ — R is three times continuously differentiable
and uniformly conver w.r.t. u. Namely, for some §;, > 0, the m X m matrix
of second derivatives w.r.t. u satisfies

Lyy(z,u) =6 -I,, > 0 for all z,u. (6)
Here 1,,, denotes the m x m identity matriz.
The Pontryagin necessary conditions [2, 6, 10] take the form

{:b = f(a:,u(x,p)), -

]j = —p- fz ({E,U(C&p)) - Lm(m,U(x,p)),
where u(z,p) is determined as the pointwise minimizer
u(e.p) = avgmin {L(e.0) 4 p- fr0)}. ®)

The assumptions in (A1)-(A2) guarantee that the minimizer in (8) is unique
and solves

D fulz,w) + Ly(z,w) = 0. (9)

Therefore the map (z,p) — u(x,p) is well defined and continuously differentiable,
and the system of ODEs (7) has continuously differentiable right hand side. In
particular, for any z € R™, the system (7) with terminal conditions

z(T) = z, p(T) = Vi(z), (10)
admits a unique solution ¢ — (x,p)(t,z) defined on [0,7]. In turn, this uniquely
determines the control

t — u(tz) = u(x(t,z), p(t,z)). (11)
In the following we mainly focus on the case T = 0.

Definition 1.1. Given an initial point Z € R™, we say that a control u* : [0,T] —
R™ is a weak local minimizer of the cost functional

T = /O L(a(t), u(t)) dt + o (x(T)), (12)

subject to

z = f(z,u), xz(0) = Z, (13)
if there exists § > 0 such that J*[u*]
that ||u — u*||Le~ < 6.

< J®[u] for every measurable control u(-) such
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Consider again the maps
z = .73(',2)7 zZ = p(-,z), zZ = u()'Z)

as in (11), obtained by solving the backward Cauchy problem (7)-(8). Following
[3, 4] we shall adopt

Definition 1.2. For the optimization problem (12)-(13) a point € R™ is a con-
jugate point if there exists Z € R™ such that £ = x(0,%), the control u(-,%) is a
weak local minimizer of (12)-(13), and moreover

det (z.(0,2)) = 0. (14)

Here z, denotes the n x n Jacobian matrix of partial derivatives of the map z
x(0, 2).

Our main goal is to understand the structure of the set of conjugate points, for
a generic terminal cost ¢ € C*(R™) in (12). The present paper provides two results
in this direction. In Section 2 we prove a necessary condition for the optimality of
a trajectory starting at a conjugate point. We recall that, by classical results [6, 7],
a trajectory t — x(t) is not optimal if it contains a conjugate point z(7) for some
0 < 7 < T. However, the case 7 = 0 is more delicate. A necessary condition that
covers this case is given in Theorem 2.2. Relying on this more precise result, in
Section 3 we study a classical problem in the Calculus of Variations:

T
Minimize: / L((t)) dt +(x(T))  subject to z(0) = 7.

Assuming that the Lagrangian function L = L(u) is smooth and uniformly convex,
we study the structure of the set of conjugate points, for a generic terminal cost
Y € C4(R™). In particular, we show that its (n — 2)-dimensional Hausdorff measure
is locally finite. In the 1-dimensional case, the set of conjugate points is empty.

2. Necessary conditions for conjugate points. In this section we derive a
necessary condition for conjugate points. For a given z € R", we consider the map
z + g(z,%), defined by

9(2%) i/o L(#(t,2), ult, 2))dt + ¢ (3(T, 2)). (15)

where u(t, z) = u(xz(t, z), p(t, 2)) is the control corresponding to the solution of the
backward Cauchy problem (7)—(10), while Z(-, z) is the solution of

w(t) = f(z(t),ult,2)),  z(0) = z(0,2). (16)
In other words, g(z,%) is the cost of the trajectory Z(-, z) which

(i) starts at the initial point x(0,Z) of the solution to the Pontryagin equations
(7) ending at z,
(ii) but uses the control u(-, z), corresponding to the solution of (7) ending at z.

Lemma 2.1. Let Z € R™ and v € R™ be a unit vector such that x,(0,Z)v = 0.
Then the map gy : R — R, defined by

gv(0) = g(z+0v,z),
has first and second derivatives which vanish at 8 = 0:

g94(0) =0, gv(0) = 0. (17)
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Proof. 1. For a given solution to (7)—(10), we denote by
TPy o |0, T] — R™X™, u, 2 [0,T] — R™X™

the matrix representations of the differentials w.r.t. the terminal point z. Differen-
tiating (7) and (16) one obtains

afz(tz) = fo(z,u)z, + fulz, w)u.,

%jz(ta Z) = fw(-%v U)-’Ez + fu(-i'v u)uz , (18)
d

%pz(ta Z) = _pzfa: - P (fmwxz + fmuuz) - La::r-rz - L:cuuz .

Moreover, set T'(t, z) = L(z(t, z),u(t, z)) for all (¢,z) € [0,T] x R™. By (7) and (9)
we have

%[p(t, Z) " Tz <t7 Z)} = [_pfw - Lw] T+ p[fzxz + fuuz] (19)
= —Lyx, — Lyu, = —T.(t2).
Observing that
xz(-,z) = z(-,2), z.(0,Z)v = 0, (20)
we have
Z,(t,2) v = x,(t,2)v, for all ¢ € [0, T7. (21)

Recalling (15), we now compute

g(,(a):/o d9 (Z(t,Z+6v),u(t,Zz+ 0v)) dt + Vi (2(T, 2+ 6v)) - da (T, z + 6v)

T
:/ L.(t, 24 0v)vdt + Vi (E(T,z + 0v)) - &.(T,z + 0v)v.
0

Therefore, (19)-(21) yield
T

50 = [ Tt Avde+ Vo) a1
0

T
= _/O (Z[ (t,2)x.(t,2)|vdt + p(T,z) z.(T,Z)v = p(0,%)z.(0,2)v = 0.

2. To prove the second identity in (17) one needs to differentiate (22) once more.
In the following, second order differentials such as t,, = D) and 7, are regarded
as symmetric bilinear maps, sending a couple of vectors vi ® vo € R™ x R™ into R
and into R™, respectively. We compute

gv(0) =, dd92 L(Z(t,z + 0v),u(t,z + 0v))dt
b, (B(T, %+ 0v)) (W0(T) @ W(T)) (23)
FVP(E(T, 5+ 0v)) - (:ZZZ(T,Z LoV (v e v)),

where
wo(t) = Z.(t,Z+0v)v, tec[0,T).
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Differentiating the first equation in (18) once again w.r.t. z, one obtains

d
5T = Jea (T2 @ 22) + 2fou(x: @ uz) + fuu(te @uz) + fo oz + fuuz.. (24)
Setting

wi(t) = 2.(t,Z2+6v)v, bl(t) = u.(t,Z+ 6v)v, te 0,17,

from (24) it follows

%xzz t,2)(VOV) = fi (x(t, z), u(t, 2)) (Wo(t) @ w' (t))
+2 fou (2(t, 2),u(t, 2)) (WO (t) @ BO(t)) + fuu(z(t, 2), u(t, 2)) (b (t) @ BO(2))

+fu(x(t, 2), ult, 2)) 2.2 (8, 2) (v @ V) + fu(z(t,2), ult, 2))u..(t, 2) (v @ v),
(25)

%@Z(t, 2)(veV) = ful(it 2),u(t,2) (W) @ W (t)
2 fou (2(t, 2), ult, 2)) (WO() @ BO(2)) + fuu(E(t, 2), ult, 2)) (BO(t) @ BO(t))
+fa (j(t, z), u(t, 2))jz2(ta Z)(vev)+ fu (fc(t, z), u(t, 2))“% (t,2)(vev).

(26)
By (21) one has

wl(t) = wo(t) for all t € [0, 7).

Comparing the two equations (25)-(26), we see that by (20) the only difference
between the right hand sides is the term involving x,,. Therefore we can write

T, Z2)(veVv) = z..(t,2)(vev)+w(tZz), (27)
where w(+,Z) : [0, T] — R™ is the solution to the linear ODE
w(t) = fo(z(t,2),ut,z)) - w(t), w(0) = —z,.(0,2)(vev). (28)

Using (27), we now compute

o B
WL(x(t, Z4+6v),u(t,z+ HV)) e (29)
= Fzz(twg)(V@V) +Lm($(t,2),u(t,2)) ’IU(t,Z).

By (28) and the second equation in (7) it follows

d _ _ :

2wt 2)] = pwtpfow = (=pfo = Le+pfa)w = —Low.
Hence

L,(z(t,2),u(t,2)) w(t,z) = —% [p(t, 2)w(t, 2)]. (30)
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From (23), using (19), (28) and (30), and recalling that w(T") = v while v,(2) =
p(T, Z), we obtain

T T
gu(0) :/0 Fzz(t,z)(v®v)dt+/0 L (x(t,2),u(t, 2)w(t, z)dt

1, (2) (VO V) + () - [IZZ(T, 2)(v @ v) + w(T, z)}

T q d B B T _ _
= —/0 = (dz[p(t,z)xz(t,z)]) (V®V)dt—/0 ﬁ[p(t,z)w(t,z)] dt

BT, 2)2- (T, D)(v © v) + p(T, (T, 2)

= % [p(0,2) - 2.(0,2)] (v v) + p(0, 2)w(0, )
= p(0.2)[2-:(0.9(v ©v) + w(0.2)] + (-(0.2)v) - (2:(0.)v) = 0.

The proof is complete. O

In view of (17), if £ = (0, 2) is a conjugate point the optimality assumption
implies the vanishing of the third derivative:

9/(0) = 0. (31)
This yields the following necessary condition:

Theorem 2.2. Given a conjugate point T = x(0,Z) € R™, with z € R™ associated
to a weak local minimizer u(-,Z) of the optimization problem (12)-(13), let v € R™
be a unit vector such that x,(0,Z)v = 0. Then one has

(pZ(O,E)V) 2,,(0,Z)(vev) = 0. (32)
Proof. Differentiating (23), we compute

T d3
() = g Ltz +0v),ult, z + ov)) dt
0
Foas (2(T,Z 4 6v)) (W(T) @ W(T) @ W(T))

+30.. (Z(T, 2+ 0v)) (WO (T) @ Z..(T, 2+ 6v)(v @ V))

(33)

. (B(T, 2 + 6v)) - (azzzz(T, ZHV(vOVE v)).

The third order differentials v,,, and ., are here regarded as tri-linear maps,
sending a triple of vectors vi ® vo ® vy € R™ x R™ x R™ into R and into R",
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respectively. Differentiating the identities (25)-(26) once more w.r.t. z, we obtain
st (v E v V)

T zzz\by v v A\
P z
= foza(2(t,2),u(t, 2)) (Wo(t)) + 3fowu(z(t, 2),u(t, 2)) (W1(t))

+3 fow (2 (2 ,2)) (WO(t) @ x(t)) + 3fuu(2(t, 2), u(t, 2)) (u(t) @ BO(1))
+3 fru (z(t 2)) (x(t) @ bO(t) + u(t) @ wo(t))
+fu(z(t, 2),u(t, 2))UE) + fo(x(t, 2), u(t, 2)) X(t)
(34)
and
d . _
2 Teez t,2)(vevev)
= foza(2(t,2),u(t, 2)) (Wo(t)) + 3fowu(z(t, 2),u(t, 2)) (W1(t))
+3 fou (2(t ,2)) (WO(t) @ (1)) + 3 fuu(2(t, 2), u(t, 2)) (u(t) @ BO(1))
+fu(z(t,2),ult, 2))U®R) + fo (x(t,z),u(t,z))fi(t),
(35)
with
Wy(t) = wi(t) @ wo(t) @ wo(t), Wi(t) = wi(t) @ wo(t) @ b2(2),
Wy(t) = wo(t) @ b(t) @ b2(), Wi(t) = bO(t) @ b%(t) @ bO(2),
X(t) = 2.t 2)(vRVRV), X(t) = F(6,2)(VRVR V),
x(t) = z..(t,2)(vev), X(t) = Z..(t,2)(vev),
u(t) = u..(t,2)(vev), Ut) = te(t,2)(vRVRV).
Comparing the results, we eventually obtain
T (8, Z2)(VROVRV) = 2,..(4LZ)(vRVEV)+W(t2), (36)

where w(-) is the function constructed at (28), while W(-,%Z) : [0,T] — R" is the
solution to the linear ODE

W(t) = fo(a(t,2),ut,2)) W) + 3 e (2(t, 2), ult, 2)) (WO(t) @ w(t, 2))
+3 fou(2(t, 2), u(t, 2)) (w(t, 2) @ bO(t)),

with initial data
W(0,2) = —2,..(0,2)(vR v evV). (38)
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In this case, we have
3

d
{%L(f(t,2+9v),u(t E—F@V))L .
= Fzzz( )(V®V®V)+L W(7 )
+ 3Ly (w(t,2) @ b(1)) + 3Ly (w(t,2) @ WO(1)),

(w
jt [ (t,2) W(t, z)}
= —L, W(t,z) +3p(t, 2) for (WO (t) @ w(t, 2))
+3p(t, 2) fou (w(t, 2) @ DO(1)),
& [-.2v) -w(t,2)]
= —p(t, 2) faa (WO(t) @ w(t, 2)) = p(t,2) fou (BO() @ w(L, 2)))
— Ly (WO(t) @ w(t, 7)) — Low (w(t, 2) @ O(1)).

In the above formulas, it is understood that the functions f, L and all their partial
derivatives are computed at the point (x(t, z), u(t, Z))
Using the above identities together with (19) and (28), from (33) we obtain

94 (0)

= [ OT 4 (ddz22 [p(t,2) z:(t,2)](ve v ®v)) dt + d’ijz [p(T,2) - 2.(T,2)](vO vV v)]

| i i)
+3 [ (=(T,2)v) - w(T,2) = [ & [(p=(t2)V) - wi(t, 2)] dt]

= ddz [p(0,2) - 2:(0,2)| (v @ v ®v) + [pW](0, 2) + 3(p(0,2) v) - w(0, 2)

= (pZ(O,E) v) c2:2(0,2) (Ve v) +3( 2(0,%) v) -w(0, 2)

= —(p=(0,2)v) - 2.2(0,2) (v® V).

Since gy attains a local minimum at 6§ = 0 and ¢,(0) = ¢ (0) = 0, this yields
(32). O

3. Conjugate points for a generic problem in the Calculus of Variations.
In this section, the necessary condition stated in Theorem 2.2 will be used to study a
generic property of the set of conjugate points for a classical problem in the Calculus
of Variations. Namely, we seek to minimize (12) in the special case where

T = u, L(z,u) = L(u). (39)

In this case (see for example [2]), the value function V is the unique viscosity solution
to the Hamilton-Jacobi equation

~Vi(t,z) — H(VV(t,z)) = 0, (t,x) € [0,T] x R™,
(40)
V(T,z) = (), r e R",
with
H(p) = min{L(w)+p-w}. (41)

weR”
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By (7) and (10) it follows

2(0,2) = z—T-DH(Vi(z)), p(0,2) = Vy(z), z € R". (42)
By Theorem 2.2, the conjugate points are thus contained in the set {x(0,z2); (z,0) €
Q¢}, with
Qy = {(z,v) ER"x S" 1 2.(0,2)v=0, (D*(2)v)-2..(0,2)(vR V)= O},

(43)
where S™~1 denotes the set of unit vectors in R™.

Theorem 3.1. Let the function L = L(u) be smooth and uniformly conver. Then
there exists a Gs subset M C C*(R™) such that for every 1 € M, the set Qy, at (45)
is an embedded manifold of dimension n — 2.

Proof. 1. Given a terminal cost ¢ € C*(R"™), defining (x, p) as in (42), we have

LEZ(O, Z) =L -T- D2H(V¢(z))D2¢(Z), pz(07 Z) = D21[J(Z) (44)
Thus, if 2, (0, 2)v = 0 then v =T - D*H(V(2))D?*(z)v and
P02 = DXV = - [DPH(V0()] v, (45)

This implies

Qp = {(Z,v) ER" x S"15 2.(0,2)v =0, [D*H(V(2))]

v-z.:(0,2) (VR V) = O} .
(46)
Define the C' map ®¥ : R” x 8”71 — R” x R by setting

Y (z,v) = (mz(O, z)v, [D*H(Vi(2))] 2.0, 2)(v® v)) : (47)

For k > 1, let B, C R™ be the closed ball centered at the origin with radius k, and
consider the open subset of C*(R™)
M, = {p eCR") : (I)w|§kxsn*1 is transversal to {0} } . (48)

Here {0} denotes the zero-dimensional manifold containing the single point (0,0) €
R™ x R.

If M, is dense in C*(R™) for all k € Z*, then the set M = ﬂ M. is a Gs subset

k>1

of C*(R™) such that for every ¢ € M, ®¥ is transverse to {0}. By the implicit
function theorem, the set {2 is an embedded manifold of dimension n — 2.

2. Next, we show that My is dense in C*(R™). For this purpose, fix any ¢ €
C*(R™). For every € > 0, we first approximate 1) by a smooth function v with
|0 — 9|lca < e. Then we need to construct a perturbed function ¢ arbitrarily
close to ¢ in the C* norm, which lies in My. Toward this goal, for any point
(2,v) € By, x S"~1, we consider the family of perturbed functions of the form

W(2) = ) 4z —2) - | D 0z —2)(z — 2) + Y Oulze — 2) | . (49)

ij=1 k=1
Here n : R" + [0, 1] is a smooth cutoff function, such that

W) 1 iffy[ <1, (50)
= 5
T 0 ifly >2.
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Moreover, 6 = (6;;,6) € R"+7. We claim that the map
(z,v,0) — &% = (xZ(o, v, [D2H(VY?(2)] v 22,0, 2) (v ® v))

is transversal to {0} C R™ x R at the point (Z,v,0). This will certainly be true if
the Jacobian matrix D(;(Iﬂ’e of partial derivatives w.r.t. ;5,0 has maximum rank
n+ 1.

Writing z = (21, ..., 2,) € R™ and recalling (49), for |z — Z| < 1 we compute the
partial derivatives

0 d = ; _
a2,1#9(27) = g v+ D (0i5+65i)(z5 — 7)) +30i(2 — 2), (51)
1 (] ]:1
P0(z) = + o (52)
az:iazj azzazj Gij + 9]‘2‘ if 4 7é Ve
Calling {eq,--- ,e,} the standard basis of R™, we have
D2’(/)9(Z)V = D2w(Z)V + Z Z(em + Hji)vj -e; +6 Z 01‘(21‘ — Ei)Vi -e;,
i=1 j=1 i=1
iD2¢0(2)V = V.-e +V -e;
= Vi€ i €j-
892‘]‘
Thus, for every i € {1,---,n}, the matrix Dy[D??(2)v] contains the n x n sub-
matrix
v, 0 - 0 - v 07
ry 0 v, - 0 - o 0
; . . . . . 0
S; = [%D%pe(z)v} = |r;| = |v1 Viel 2Vi Vipl Vn
v Jj=1 0 0 0 V; 0
r, :
0 0O 0 0 vi
Notice that this implies
det(S;) = 2v7. (53)
Recalling (44) and (51), we have
Dy[a2(0,2)v] = T D*H(Vy’(2)) Dy [D*¢’ (2)v], (54)

and (47) implies that the matrix Dy [®%’ (2, v, 6)] contains the (n+1) x n submatrix

- D?H(Vy?(2))S;
6 - _p [PHEEE) )
O1><n
Furthermore, we compute
22,(0,2)(vev) = —TD?*H(VY’(2)) D3 (2)(ve v)

— TD*H(Ve! (2)) (D2 (2)v & D>’ (2)v),
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with
0 DYb(z) = 3(z — )% e iDzwe(z)v = 6(z —Z)vi- €
891 (2 (2 (3] ael (2 (2 7 (2l
%D?’we(z)(V(@v) = 6v?-e, forallie {1, ---,n}.
In particular, we have
Dl B vev) = GTViD (VY ()er
k
and this yields
0

%([DQH(Vwe(Z))] v xz,z(ov 2)(‘/ ® V))

- 2 02 *lv,ixo 218% A%
= [DPHEVY()] v gpal.(B)(vev) (56)

-1

= —6Tvj - [D*H(Vy®(2))]” v - D*H(VY’(2))ey

= —6Tv,2C -vV-ep = —6TV2.

By the previous analysis we conclude that, for every ¢ € {1,--- ,n}, the Jacobian

matrix Dy ¥’ of partial derivatives w.r.t. 6;;,0; contains n+ 1 columns which form
the (n + 1) X n submatrix

Ay = [S;,b;]  with b= (%, -, %, —6Tv3)T. (57)
By (53) and (55), it follows
det(A;) = —6Tv}-det (=T - D*H(Vy’(2))S;)

= —127v!"3 . det (-T - D*H(Vy’(2))) .
By the strict convexity of H and since v € S"~1, we have that rank(A;) = n + 1
for some ¢ € {1,--+ ,n} and this yields
rank Dy®¥’ (2,v,0) = n+ 1. (58)
3. By continuity, there exists a neighborhood Ny of (2, v) such that
rankng)we(E’,v’7O) =n+1 for all (2/,v') € Nz .

Covering the compact set B, x S”~! with finitely many open neighborhoods Ay =
N, zve, £ =1,..., N, we consider the family of combined perturbations

N n n
9O = B+ D e =) | 3 0 (- (e — )+ YO — )
=1 ij=1 k=1
(59)
By construction, the matrix of partial derivatives w.r.t. all combined variables 6 =
(01;,0},) satisfies (58) at every point (2,v) € By x S"~ 1.
Again by continuity, we still have

rank Dg®*’ (2,v,0) = n+1
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for all (z,v,0) € By x S"~1 x RN’ +n) with 0] < ¢ sufficiently small. By the
transversality theorem [11, Lemma I1.4.6], this implies that, for a dense set of values
0, the smooth map %" at (47) is transversal to {0}, restricted to the domain
(2,v) € By x S"71. We conclude that the set M is dense and the proof is
complete. O

Corollary 3.2. In the same setting of Theorem 3.1, there exists a Gs subset M C
CHR"™) with the following property. For every ¢ € M, the set Ty, C R™ of all
conjugate points has locally bounded (n — 2)-dimensional Hausdorff measure.

Proof. Call 7 : R™ x S"~! — R™ the projection on the first component, so that
7m(z,v) = z. Then the set of all conjugate points satisfies the inclusion

ry, C {.T(O,?T(Z,V)) = z—T-DH(Vi(2)); (2,v) € Q¢}.

By Theorem 3.1, there exists a Gs set M C C*(R™) such that, for ) € M, the set
1y is an embedded manifold of dimension n — 2.

We now observe that the map (z,v) — z(0,7(2,v)) is Lipschitz continuous.
Moreover, for every z € R™, one has

2| < |£C(0,Z)|+LT, with L = DH(p)|,

max |
P11Vl oo

and this implies
ry,NB, C {x(O,z); (z,v) € Qy, z€§T+LT} for all r > 0.

Since €, is an embedded manifold, and the map (z,v) — x(0, z) is Lipschitz con-
tinuous, by the properties of Hausdorff measures [9] we conclude that the set T'y,
has locally bounded (n — 2)-dimensional Hausdorff measure. O

Remark 3.3. Using the original version of Sard’s theorem [12], the smoothness
assumption on L can be somewhat relaxed. Indeed, one can check that both The-

orem 3.1 and Corollary 3.2 still hold for a uniformly convex Lagrangian function
L eCcnt2
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