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ScholarFinder: Knowledge Embedding based
Recommendations using a Deep Embedded

Clustering Model
Yuanxun Zhang, Xiyao Cheng, Roland Oruche, Sai Swathi Sivarathri, Prasad Calyam

Abstract—Bold scientific research tasks need multi-disciplinary
knowledge and collaborations that require finding scholars from
particular domains with relevant knowledge. Given the variety
of scholars and diversity, finding the appropriate scholar is an
important and challenging problem for scientific communities. In
this paper, we propose a “ScholarFinder” framework that uses
contextual information (abstracts or publications) for embedding
a scholar’s knowledge in an unsupervised learning manner.
Specifically, we implement an unsupervised embedding technique
viz., Variational AutoEncoder (VAE). For better feature represen-
tation learning, we also implement a Variational Deep Embedded
Clustering (VDEC) method that further enhances downstream
tasks (e.g., clustering, classification) accuracy, scalability, and
performance. In addition, we incorporate a multi-task learning
scheme into our VDEC model for improving the effectiveness of
simultaneously learning both embedding and clustering. Subse-
quently, the downstream tasks can be built based on pre-trained
scholars’ knowledge embeddings to predict suitability of a scholar
for a research task. Using a dataset involving a 20-year collection
of federal grant awards, we have demonstrated how our pre-
trained model improved the performance for downstream tasks.
We have also investigated how our pre-trained model can be
integrated into a knowledge graph to achieve better performance.
Lastly, we show that our ScholarFinder model variants out-
perform state-of-the-art baseline models (i.e., XGBoost, GBDT,
AdaBoost, DNN, GraphSAGE, DEC, VaDE) and recent LLM
based models (i.e., Bert4Rec, OpenP5) by atleast 18%.

Index Terms—Embedding, Deep Learning, Representation
Learning, Recommendation System, Clustering.

I. INTRODUCTION

KNOWLEDGE creation becomes possible due to access
to experts who can answer relevant research questions.

Moreover, knowledge creation today involves experts work-
ing on bold problems that require interdisciplinary expertise
and cross-domain collaborations. However, finding relevant
scholars across scientific domains to execute critical research
tasks is demanding. For example, how do we find pertinent
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Fig. 1. Example of scholar profile that includes title, affiliation, research
interests, and publications.

experts to effectively work on building computational bioin-
formatics/neuroscience infrastructure for flexibly scaling data
analysis pipelines? Answering such a scholar finder problem
is a hard challenge for handling diverse and interdisciplinary
scientific research tasks, especially when identifying relevant
experts from multiple domains in a pool of several thousand
scholars.

Industry has developed interesting approaches e.g.,
LinkedIn [1] proposed a model for searching potential job
candidates using deep representation learning based on
talents search domain, skills entities, and talents feedback.
HomeAdvisor [2] similarly helps users to find suitable
handyman service personnel using their private database.
Facebook [3] uniquely solved the cold-start issue by projecting
users and events into the same latent space for matching
heterogeneous information from different domains.

There have been limited works on identifying relevant
scholars in academia using open datasets that include in-
formation such as scholar publications and funding records.
Most existing scholar search and recommendation systems
rely on querying and matching static information from online
profiles, such as titles, affiliations, or declared research inter-
ests as shown in the Figure 1 example. Existing approaches
typically use keyword matching [4] or NLP-based semantic
analysis [5, 6] to assess a scholar’s suitability for a given task.

However, such methods face inherent limitations. Research
interest tags are often static and fail to reflect a scholar’s
evolving or interdisciplinary interests. Furthermore, these tags
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tend to be overly broad, lacking the granularity needed to
match specific research tasks [7]. For instance, the scholar in
Figure 1 might be matched only to general fields like “com-
puter science,” “distributed computing,” or “data science.” This
overlooks the scholar’s more specific focus on computational
performance in distributed systems and cloud infrastructure.
By exploring their publications, we also find contributions in
areas like “big data” [8] and “machine learning,” [9, 10] which
are absent from their profile tags.

In our work, we propose a novel model viz., “Schol-
arFinder” to find suitable scholars using contextual (e.g., publi-
cations and funding record) information, who can successfully
accomplish a set of given bold/multi-disciplinary research
tasks across scientific domains. We present our ScholarFinder-
VAE model in which we have applied the Variational Autoen-
coder (VAE) [11] for embedding scholar’s knowledge based
on their publication abstracts. The VAE model uses an encoder
network to map the original dataset (publication abstracts) to
the latent representation. In addition, it uses a decoder network
to reconstruct the original dataset from the latent represen-
tation, and subsequently uses Stochastic Gradient Variational
Bayes (SGVB) [12] to learn the model parameters and latent
representations, which helps it to achieve better performance
than state-of-the-art models. The advantage of VAE model is
to understand the scholars’ research distributions, which can
help us to overcome the limitations in the length of scholars’
descriptions. Using our model, each scholar can be mapped
into a low dimensional latent space, and each dimension may
represent the scholar’s research areas or research interests.
However, the embedding space generated by our VAE, as
shown in Figure 2 using the t-SNE algorithm [13], does not
clearly visualize clusters, making it difficult to differentiate
scholars with different research interests. Ideally, if the em-
bedding space were to form distinct clusters, with each cluster
representing a research topic, it would significantly enhance
downstream tasks such as clustering, visualization, prediction,
and recommendation. Numerous studies [14] have shown that
learning well-defined clusters can improve the performance
of these downstream tasks by providing more structured and
meaningful representations.

Consequently, taking inspiration from the Deep Embedding
Cluster (DEC) model [14], we extend the ScholarFinder-VAE
model by proposing the ScholarFinder-VDEC model that adds
a clustering objective function to learn the features embedding
and cluster assignment simultaneously. Unlike the DEC model
that uses Autoencoder to learn the embeddings, we directly
extend the VAE model by adding a clustering layer to learn
the cluster assignment. We make such an addition due to the
VAE yielding a better generalization performance over the
Autoencoder. Further, we improve the generalization and clus-
tering performance simultaneously by implementing the multi-
tasks learning [15]. Consequently, our pre-trained knowledge
embedding trained with our advanced VDEC model can be
used for further downstream tasks. Our work can bridge the
gap between generative modeling and clustering. Specifically,
it shows how generative models can achieve clustering out-
comes without significant alterations or dedicated clustering
modules. Our dual functionality of generative modeling and

Fig. 2. Visualization of the latent space of scholars’ knowledge embedding
that is generated by the VAE model using the t-SNE algorithm.

clustering with improved performance sets our approach apart
from classical generative or clustering methods.

Using a novel “follow-the-money” strategy, we apply our
pre-trained knowledge embedding to a large collection of NSF
(National Science Foundation) grant awards dataset [16] to
predict whether a scholar is suitable for a particular grant or
research task. This NSF grant award dataset is collected over
the last twenty years and contains more than 20,000 award
records (with project abstract and names), and 15,074 scholars
who received grants. Using the above dataset in experimental
studies, we evaluate our ScholarFinder-VDEC model with
state-of-the-art models such as XGBoost, gradient boosting
decision trees (GBDT), AdaBoost, Deep Neural Network
(DNN), deep clustering models, such as DEC, VaDE, and
recent large language models (LLMs), such as Bert4Rec [17]
and OpenP5 [18] in terms of precision, recall, F1-score and
accuracy metrics. Our clustering performance experiments
aim to show how our embedding clusters similar scholars’
interests and has generative characteristics to be able to sample
new scholar recommendations from existing knowledge. As a
case study, we also demonstrate how we can integrate our
ScholarFinder as a pre-trained model in a knowledge graph to
improve the downstream task performance. The contributions
of our work can be summarized as follows:

• Enhanced the Deep Embedding Cluster (DEC) model by
innovative incorporating Variational Autoencoder (VAE),
achieving improved both representation learning and clus-
tering performance.

• Boosted both generative and clustering performance by
employing a novel multi-task learning to optimize gener-
ation and clustering simultaneously.

• Customized and adapted innovative negative sampling
schemes to enhance downstream scholar task matching
performance.

• To the best of our knowledge, first Designed and im-
plemented the ScholarFinder system to identify and rec-
ommend suitable scholars for interdisciplinary research
tasks.
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The remainder of this paper is organized as follows: Sec-
tion II discusses the related works. In Section III, we de-
scribe our methodology for the ScholarFinder model, in which
we will describe our ScholarFinder-VAE and ScholarFinder-
VDEC models. Section IV details the proposed ScholarFinder
system architecture featuring a deep learning model. In Sec-
tion V, we discuss our datasets used in experiments and
ScholarFinder model evaluation experiment results. Section VI
shows a case study to demonstrate about how ScholarFinder
as a pre-trained model can be improved in terms of the down-
stream task performance. Section VII concludes the paper.

II. RELATED WORK

Prior related works can be organized under three broad cat-
egories: (a) Recommendation system; (b) Deep representation
learning; and (c) Embedding techniques.
Recommendation system. The recommendation system is
considered to be one of the most successful approaches
for personalized information filtering and searching schemes.
Recommendation engines are an interesting alternative to
search fields, as recommendation engines help users discover
products or content that they may not come across otherwise.
They are widely applied in E-commerce ecosystems, such as
Amazon and eBay that recommend products to individual cus-
tomers based on their interests or preferences. Traditional al-
gorithms such as content-based filtering [19] and collaborative
filtering [20] are commonly used recommendation algorithms
and they have their limitations in accurately predicting user’s
ratings due to the sparsity of the datasets and cold-start issues.

Recently, advanced techniques have been proposed for solv-
ing the problem of cold start and sparsity and have become
state-of-the-art approaches. For example, matrix factorization
(MF) [21] decomposes rating matrix into the latent representa-
tion of users and items vectors, which allows making a rating
prediction using the dot product of users and items vectors.
Similarly, [22] used a probabilistic graphical model with latent
users/items variables and observed ratings variables to perform
matrix decomposition. Hence, latent representation learning
became useful to understand the complex relationships in a
high-dimensional dataset. [23] adapted a topic model to recom-
mend collaborators. [24] proposed a probabilistic generative
model to explore the expert behaviors and recommend experts
in the collaborative networks by analyzing IBM ticket tracking
logs. Similarly, Twitter’s probabilistic model, TWILITE [25] is
based on the Latent Dirichlet Allocation (LDA) [26] and rec-
ommends consumers’ top-K tweets and users to read/follow,
respectively. In addition, many recommendation systems cur-
rently use knowledge graphs to represent the relationships
between graph nodes, along with deep representation learning
to generate node embeddings [27, 28, 29].

Similar to prior works on recommender systems, our Schol-
arFinder uses embedding but in a contextual manner with
unsupervised learning. In addition, our recommender system
is the first to produce recommendations of suitable scholars
based on their knowledge profiles in publications, as well as
their publicly available funding records information.
Deep representation learning. Deep learning shows its best-
in-class performance on problems that significantly outperform

other solutions in multiple domains such as speech, language,
vision. It involves training of a deep neural network using the
back-propagation algorithm with a large amount of datasets.
It can also effectively reduce the need for handcrafting feature
engineering, which happens to be one of the most time-
consuming parts in machine learning practice.

Representation learning is also an important area in deep
learning that involves learning of the latent representation in
high-dimensional data to extract useful features, such as basic
components with image dataset, and semantic meaning with
text dataset. Those features can be effectively used to perform
classification, detection, as well as recommendation tasks. In
earlier 1986, [30] presented a distributed representation learn-
ing of concepts with a simple neural network to learn family
relationships. For a while, RBM and Autoencoder [31] were
the popular deep generative models to model high-dimensional
data for extracting features. Recently, VAE [12] and GAN [32]
have shown impressive performance in generating data, which
have made them become the most popular deep generative
models. Autoencoder and VAE learn the latent representation
(or embedding) through reconstruction of input data, and GAN
learns the latent representation by playing games through
generators and discriminators. In our work, we choose VAE
to learn expertise embedding, because the documents can be
treated as bag-of-words, which are not continuous. GAN is
more suitable for use when given continuous datasets. In addi-
tion, VAE directly learns the distributions of the latent patterns
that is more in line with our need to characterize scholars’
distributions. Hence, in comparison with autoencoders and
GAN, VAE can achieve better generalization performance by
replacing latent variables with distributions, instead of discrete
values. Recent works also try to improve autoencoder for a
variety of downstream tasks by leveraging the methods of
clustering [14] and graph neural networks [33, 34]. Among
these methods, deep clustering methods [14, 35, 36] integrate
feature learning and clustering, enhancing both processes. Un-
like other methods with high computational and labeling costs,
our approach scales linearly and supports large datasets and
online scenarios. Consequently, the efficiency and accuracy
of our approach are beneficial for effective data analysis and
downstream tasks.

Recommendation systems also leverage deep learning tech-
niques to achieve desired performance [37, 38]. The work
in [39] proposed a restricted Boltzmann machine with one
visible layer and one hidden layer to identify those users with
similar interests. [40] combined convolutional neural network
(CNN) and probabilistic matrix factorization (PMF) to capture
contextual information of documents for improving perfor-
mance. Similarly, the authors in [41] also fused matrix fac-
torization (MF) and Multi-Layer Perceptron (MLP) to achieve
better recommendation performance. Further, a deep matrix
factorization (DMF) model was used in [42] to learn about
both users and items in a common low dimensional space with
non-linear projections. Further, deep representation learning is
also applied in the context of knowledge graph based methods.
The work in [43] proposes a novel representation learning for
dynamic graphs based on the graph convolutional networks
(GCNs), called DGCN, which achieves better performance
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in nodes clustering and link prediction. Similarly, the work
in MI-KGNN [44] enhanced knowledge graph aware recom-
mendations by proposing a multi-dimension interaction based
attentional knowledge graph neural network.

In recent years, large language models (LLMs) have increas-
ingly been explored for recommendation systems, leveraging
their strong sequence modeling and generative capabilities.
Traditional models like BERT4Rec [17] apply bidirectional
Transformers (or Transformer Encoder) to capture user behav-
ior sequences patterns and so as to predict future interactions.
More recently, OpenP5 [18] provides an open platform for
developing, training, and evaluating LLM-based generative
recommenders, supporting both encoder-decoder (e.g., T5)
and decoder-only (e.g., Llama-2) architectures. In our work,
we use BERT4Rec and OpenP5 as baselines to evaluate the
performance of our model on the ScholarFinder dataset.

Our ScholarFinder approach utilizes the VAE [12] deep gen-
erative model and the deep embedded clustering (DEC) [14]
is utilized on top of VAE to capture scholars’ knowledge
embeddings through learning latent representation of given
scholars’ knowledge profile, i.e., the semantic meaning of data
on the scholar’s expertise. The DEC extension extracts latent
representations from high dimensional scholar-related data in
order to improve the downstream tasks (e.g., knowledge graph
based recommendation systems) from our deep generative
model.
Embedding techniques. Embedding is a popular technique
that is widely used in dimension reduction [31] for finding
good representations as well as visualizations [45]. Normally,
we can use matrix factorization [21] and neural network based
embedding [46] to learn embeddings. However, the former
method performs a matrix decomposition that needs to be
recomputed when a new user or item is added into the rating
matrix. Neural network based embedding has become popular
owing to its flexibility and incremental learning techniques.

Embedding is also useful in a recommendation system for
solving the issue of data sparsity [47, 48]. Hence, various
embedding methods are applied to a recommendation sys-
tem: [49] proposed a skip-gram based model “prod2vec” to
learn product embeddings for product-to-product predictions,
and user embeddings for user-to-products predictions. [50]
proposed a mixture embedding method for questions classifi-
cation, which combines topic embeddings, word embeddings,
and entity embeddings. [1] combined embedding and semantic
representations for talent search at LinkedIn. [51] used a multi-
modal embedding framework to provide more robust recom-
mendations at Pinterest. [52] proposed a method that uses
VAE to capture the latent representation of documents. [53]
learned latent representation of scholars’ knowledge in an
unsupervised manner using the VAE model.

In addition, searches based on broad keywords can yield
thousands of potential matches, making it difficult to identify
the best fit. Scholars often work across multiple domains, and
their research interests are not easily encapsulated by static
tags. Thus, effective scholar discovery requires a dynamic
approach that captures the nuanced and evolving nature of
academic work [54]. A major challenge lies in developing
an effective knowledge representation method to quantify

scholars’ expertise using contextual information, such as their
publications, while covering a broad spectrum of research
topics. Addressing this challenge is critical to overcoming
the limitations of fixed research tags, which fail to capture
the evolving and diverse nature of scholarly work [55]. Intu-
itively, a bag-of-words approach could represent publications
as vectors. However, this method introduces significant issues
such as sparsity and high dimensionality. Existing dimension-
ality reduction techniques like Principal Component Analysis
(PCA) [56, 57] mitigate these challenges through linear trans-
formations but are impacted with the computational overheads
associated with processing high-dimensional matrices in large
datasets. Other approaches, such as matrix factorization [21]
or neural collaborative filtering [41] extract latent features
through gradient descent to scale effectively to large datasets.
Regardless, these methods focus solely on user/item indices
and overlook contextual information. Consequently, whenever
new data is added, re-computation or re-training of the model
becomes necessary, and may impact practical application.

Inspired from word2vec [45], our ScholarFinder embeds
scholars’ knowledge in an unsupervised manner based on
their knowledge profile. We assume that a scholar’s expertise
knowledge is similar to word embedding because of its corre-
sponding semantic meaning of knowledge. Such a knowledge
can be obtained via training on scholars’ publications infor-
mation. We evaluate this knowledge later along with scholars’
publicly available funding information to recommend whether
a scholar is suitable for particular research tasks or not. We
also demonstrate how our model can be integrated into a
knowledge graph for improving the performance for graph
learning, and thereby improving the performance of down-
stream tasks such as prediction, clustering and visualization.

III. SCHOLARFINDER METHODOLOGY

In this section, we detail our ScholarFinder methodology
that can be organized under the following three aspects:

1) Learning good representation of scholars’ knowledge us-
ing an embedding technique based on their publications.
First, we will describe our ScholarFinder-VAE model that
use variational autoencoder to learn latent knowledge
representation; next, we will extend our ScholarFinder-
VAE for learning the clustering features by demonstrating
the ScholarFinder-VDEC model.

2) Demonstrating a novel negative sampling scheme for
solving the issue of unbalanced labels in datasets.

3) Using our pre-trained knowledge embeddings to predict
whether a scholar is suitable for a proposed task based
on funding records in the NSF award dataset [16].

A. Knowledge Abstraction
The scholars’ knowledge abstraction fully relies on scholars’

publications. Scholars’ publications are represented by a bag-
of-words with a fixed size of the vocabulary C. These vocab-
ulary are generated by using keywords from scientific topics
taken from the ScienceDirect website [58]. In this way, we
can visualize a scholar’s expertise knowledge with a bag-of-
words. As shown in Figure 3, we can easily recognize that this
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Fig. 3. Vector representation of bag-of-words based on a scholar’s publica-
tions with top 20 frequent words shown above; word counts are normalized
between 0 and 1.

particular scholar has expertise knowledge in deep learning
from the most frequent words occurrence in his publications,
which are normalized between 0 and 1.

Suppose we have M scholars, each scholar’s publication
in bag-of-words is denoted as xi, which is a vector with the
size of vocabulary C dimension. Then, all scholars’ knowledge
abstractions are represented by X → RM→C . With scholars’
knowledge abstraction, we will generate their embeddings.

Encoder

Decoder

x

Latent z

#$

% &

Fig. 4. ScholarFinder-VAE model network architecture based on variational
autoencoder (VAE).

B. ScholarFinder-VAE: ScholarFinder using Variational Au-
toencoder

First, we describe the ScholarFinder-VAE model that uses
variational autoencoder (VAE) to learn the latent representa-
tion for a scholar’s knowledge profile based on his/her publi-
cations. Autoencoder [31] is typically a neural network that is
trained by reconstructing input data through encoder/decoder

networks in an unsupervised manner. In addition, a latent
representation (coder) is also learned by reconstructing input
data during the training process. The VAE model is similar
to the Autoencoder, but instead of using discrete variables
for latent representation in Autoencoder, VAE uses a distri-
bution (such as, Gaussian distribution or other differentiable
distribution) to present it. This in turn can help achieve
better generalization performance. In order to infer the latent
variables, VAE uses the Stochastic Gradient Variational Bayes
(SGVB) with reparameterization trick [12].

In Figure 4, we present our VAE architecture for learning
knowledge embedding. The goal of the VAE model is to learn
knowledge (or latent) embedding z for each scholar based on
the input of his/her publication xi, and all scholars shared
weights.

We define that the latent representation zi is drawn from
the Gaussian distribution,

zi ↑ N
(
µi,ω

2
i I
)

(1)

With SGVB algorithm, the zi can be approximated with,

zi = µi + ωi ↓ ε and ε ↑ N (0, I) (2)

And zi, µi,ωi are hidden vectors with K dimension in VAE
model shown in Figure 4 that are computed by a regular feed-
forward neural network. The K is also a dimension of embed-
ding, which needs to be defined. In our model, we use K = 50
for learning knowledge embedding. The encoder network and
decoder network have two hidden layers, respectively. Each
layer has 500 hundred neurons with ReLU [59] activation
function. Thus, the l-th hidden layer hl can be computed by,

hl = ReLu(WT
l hl↑1 + bl) (3)

And, the µ,ω for i-th scholar can be calculated by,

µi = WT
µ h2 + bµ (4)

ωi = WT
ω h2 + bω (5)

To learn weights W and biases b for obtaining knowledge
embedding ui, we need to solve the optimization problem by
minimizing the reconstruction loss and KL-divergence loss.
Hence, the VAE loss for i-th example is defined as,

L(W , xi) ↔ ↗ 1

2

K∑

k=1

(
1 + log((ωk

i )
2)↗ (µk

i )
2 ↗ (ωk

i )
2
)

↗ 1

L
logP (xi | zi,W ) (6)

This optimization problem can be solved using the stochastic
gradient descent (SGD) or any of the other optimizers. In our
work, we use the Adam optimizer [60].

After the training completion of our VAE model, we obtain
knowledge embedding zi for each scholar i using an encoder
network. Then, we can use the scholars’ pre-trained knowledge
embedding to perform further proposed tasks.
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C. ScholarFinder-VDEC: ScholarFinder using Variational
Deep Embedded Clustering & Multi-Task Learning

As mentioned earlier in Section I, the drawback of the
ScholarFinder-VAE model is the fact that the VAE model does
not intend to separate the data in the latent space with different
clusters based on the objective function in Equation (6), which
may not achieve optimal performance in the downstream
tasks. Hence, we have proposed our ScholarFinder-VDEC by
improving the previous ScholarFinder-VAE model in the fol-
lowing two ways: (i) We added a clustering layer for learning
clustering in the embedding space; (ii) We applied a multi-
task learning scheme to learn autoencoding and clustering
simultaneously.

1) Variational Deep Embedding Cluster Model for learning
clustering in the embedding space: Inspired by the Deep
Embedding Cluster (DEC) model [14], we added a cluster-
ing layer for learning clustering representation in embedding
space, where we apply the method described in the DEC
model. Different with DEC, we still use the variational au-
toencoder to learn the feature representation instead of using
autoencoder, which can achieve better performance as per our
earlier evaluation efforts [53]. There are three steps that are
involved in learning the clustering features.

First, we initialize K cluster centroids, denoted as {ϑj}Kj=1,
in the embedding space zi using the K-means algorithm.
Each centroid ϑj is a vector with the same dimension as
zi. To obtain the initial values for ϑj , we train a variational
autoencoder model for a few epochs, passing the data through
the model to obtain embedded data points zi. Finally, we apply
the K-means clustering algorithm in the embedding space Z
to determine the K initial centroids {ϑj}Kj=1.

Second, we compute the soft assignment between embedded
points zi and ϑj with the t-distribution kernel function, which
is defined as,

qij =

(
1 + ↘zi ↗ ϑj↘2 /ϖ

)↑ω+1
2

∑
j→

(
1 + ↘zi ↗ ϑj→↘2 /ϖ

)↑ω+1
2

(7)

where the zi is generated by the encoder network of VAE
model, the ϖ is the degrees of freedom of the t-distribution,
which we set as ϖ = 1 in our experiments, and the qij is
defined as the probability of assigning data point i to cluster
j.

Third, we update the soft assignments by using an auxiliary
target distribution. A common approach to measure similarity
between the distributions P and Q is to use Kullback Leibler
(KL) divergence [13]. More specifically, the model is trained
by optimizing the difference between soft assignments qij and
auxiliary target distribution pij using the KL divergence loss,
which is defined as -

DKL(P↘Q) =
∑

i

∑

j

pij log
pij
qij

(8)

The choice of auxiliary target distribution pij is suggested by
Xie et al.[14] as follows -

pij =
q2ij/fj∑
j→ q

2
ij→/fj→

(9)

where fj =
∑

i qij are frequencies of soft assignments. This
approach can be explained as a self-training strategy to learn
the clustering assignment with a high confidence score.

2) Multi-Task learning: Although Xie et al. [14] mentioned
that the DEC model simultaneously learns feature repre-
sentations and cluster assignments, they use two individual
phases to learn them separately. This approach may not find
the optimal solution because it separately optimizes the two
objective functions. However, many works [61, 62] investigate
multi-tasking learning to optimize multiply objective functions
simultaneously. Radford et al. [63] also found that jointly
training with multiple objective functions help to improve the
model generalization in their GPT models.

Encoder

Decoder

x

"#

Clustering

Task 1 Task 2

Latent z

% &

Fig. 5. ScholarFinder-VDEC model network architecture based on deep
embedded clustering and multi-task learning.

As shown in Figure 5, we use multi-task learning scheme to
learning feature representation (Task 1) and feature clustering
(Task 2) simultaneously. The Task 1 learns the latent repre-
sentation z described in Section III-B; and the Task 2 learns
clustering feature mentioned in Section III-C1.

During the training of our VDEC model, we jointly optimize
total loss L by combining the VAE loss L1 defined in Equa-
tion (6) and KL loss L2 defined in Equation (8). Specifically,
we jointly optimize the following objective (with weight ϑ),

L = L1 + ϑ ≃ L2 (10)

and the ϑ is hyperparameter that can be tuned based on the
given objectives and dataset. In our experiment, we initially
set a small ϑ during the early epochs to allow the model to
focus on learning better feature representations with the VAE.
As training progresses, we gradually increase ϑ to shift the
model’s focus towards learning the clustering features. The
hyperparameter can be adjusted based on any given datasets
and analysis objectives.

D. Negative Sampling
The negative sample issue is common in the most machine

learning tasks. This is because it is easier to obtain a positive
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sample than a negative sample in the real world. For example,
in job matching tasks, we can easily get datasets showing a
person who got a job offer, but it is hard to obtain datasets
indicating persons who rejected offers or failed in the inter-
views. We faced a similar missing negative samples issue in
our dataset that only has positive samples. More specifically,
in the NSF grant award datasets, we only have records that
show that the scholars who got grants from NSF, but there
are no records showing the scholars who failed to apply for a
certain NSF grant.

Based on the above discussion, we need to generate negative
samples for each scholar to train our downstream task model
that predicts a score for a scholar given a task. Common
methods such as Word2Vec [45] use random sampling to
select a subset of dataset samples as negative samples. This
approach works well when the dataset is large and spans a
high-dimensional space, which naturally reduces correlations
among samples. For example, in the case of Word2Vec,
random sampling is likely to select a sample with a completely
different semantic meaning from the target data. However,
in our case, the manifold dimensions are low because we
deal with a limited set of research fields that exhibit high
correlations. For example, “computer systems” is closely re-
lated to “computer networking” and “cloud computing”, while
“bioinformatics” has strong overlaps with “data mining” and
“machine learning”.

The goal of our method is to sample adequate negative
samples for each scholar. In the random sampling scheme,
for each scholar, we randomly sample the same amount of
negative samples with positive samples from whole datasets
for indicating those NSF grants that are not suitable for that
scholar. Given that the data correlation is high, this approach
results in cases with a higher chance to sample an NSF
grant that is similar or has some connection with a positive
sample. This in turn makes the model training less effective
for accurate predictions of scholar recommendations.

To address this issue, we introduce a novel negative sam-
pling scheme that leverages our pre-trained scholar embed-
ding technique. For each positive sample xi, we compute its
embedding vector zi. We then randomly select 100 negative
samples from the dataset and use the VAE model encoder to
obtain their latent representations zj . The Euclidean distance
between zi and each zj is computed, and the distances are
sorted in descending order. The final negative sample is
selected from the top K samples with the largest distances.
To determine the optimal number of negative samples, we
conduct a negative sampling ratio analysis in Section V-C.
Our experiments indicate that 20 negative samples are optimal
for our datasets and model. This result also aligns with the
recommendation from Word2Vec [45], which suggests 5–20
negative samples are sufficient for small datasets. Our negative
sampling approach aims to maximize the difference between
negative and positive samples by incorporating randomization,
helping to avoid suboptimal solutions. This method resembles
the negative sampling technique in Word2Vec, which has been
proven to be effective [45].

This is allowed, because we pre-train the embeddings
(knowledge embedding and tasks embeddings) separately in

an unsupervised learning manner, and perform subsequent
prediction tasks using the pre-trained embeddings. This ap-
proach cannot be applied to those methods when the tasks
and knowledge embeddings are trained jointly (e.g., NCF [41],
DSSM [64]). This is because the knowledge and task embed-
dings are in the same space. Task embeddings will have similar
information in comparison with the knowledge embeddings.

E. Prediction with Pre-trained Knowledge Embedding

As we discussed in Section III-B, we use the ScholarFinder
model (i.e., ScholoarFinder-VAE, ScholarFinder-VDEC) to get
scholars’ embeddings and proposed tasks embedding sepa-
rately. In this section, we will discuss how we can build the
prediction downstream task using the pre-trained embeddings.
For any scholar i and proposed task j, our goal is to predict
whether the scholar i is suitable for the proposed task j based
on their embeddings ui, vj . Basically, we pre-train the em-
bedding models using ScholarFinder models with contextual
information (i.e., publications and funding information). We
separately trained the ScholarFinder models for generating
scholars’ embedding and tasks’ embedding.

Scholar Embedding Task EmbeddingEmbedding Layer

FC Layers FC LayersAlignment Layer

ŷ

Aggregation Layer

y
Prediction Target

LossOutput Layer

Encoder Network VAE Encoder VAE Encoder

Input Layer

Scholar Task

Dot Product /  
Concatenation

Fig. 6. Illustration showing the use of pre-trained knowledge embedding for
proposed tasks prediction with two types aggregation options “Concatenation”
or “Dot product”.

After obtaining our scholar embeddings ui and task em-
bedding vj for a particular scholar or task using its own
ScholarFinder encoder, we need to predict whether the scholar
is suitable for a given research task or not. Intuitively, this
problem looks easy to solve, which simply requires computing
the dot product of these two vectors ui, vj , because we use
the same embedding dimension K. This method can be used
when they are trained with same VAE encoder. In our case,
however, the two pre-trained embeddings ui and vj are learned
separately with different ScholarFinder VAE encoder models,
which are not in the same embedding space. Hence, the dot
product computation will not work in this scenario. The reason
why we separately trained the embedding model is that we
want to uniquely train a model to generate scholar embedding,
which can be applied to any of the types of downstream tasks.
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To solve this problem, we firstly have the “Alignment
Layer” on the top of the “Embedding Layer” as shown in
Figure 6. The purpose of the “Alignment Layer” in our
model is to align the two embedding spaces ui and vj
before performing concatenation or a dot product on them.
The “Alignment Layer” is constructed by two or three fully
connected hidden layers with the ReLU activation function
and 10% dropout [65]. If a scholar is suitable for a particular
task, the weights in “Alignment Layer” will be learnt to align
them into the same direction.

After “Alignment Layer”, we use an “Aggregation layer”
to combine the two separate embeddings before output layer.
We test two types of aggregation operations: “Concatenation”
and “Dot Product” as shown in Figure 6. “Concatenation” is
defined as an operation to concatenate two vectors p and q in
the form of [p1, ..., pn, q1, ..., qn]; “Dot Product” is defined as
inner dot product of two vectors p and q with p · q.

Finally, the “Output Layer” model in Figure 6 will be
connected to “Aggregation Layer” with a fully connected
layer using sigmoid activation function for the output values
between 0 to 1. To learn the model parameters, we need to
minimize cross-entropy loss between prediction value ŷij and
target value yij for all pairs of scholar i and task j,

L =
M∑

i=1

N∑

j=1

[
↗ yij logŷij ↗ (1↗ yij)log(1↗ ŷij)

]
(11)

In summary, our ScholarFinder model involves two stages:
pre-train stage and prediction stage. In the pre-train stage,
we need to pre-train scholars embeddings U and tasks em-
beddings V separately. Whereas, in the prediction stage, we
check whether a particular scholar is suitable for a proposed
research task given a particular scholar xi, and a proposed task
abstract yj . The overall ScholarFinder model procedure above
is summarized in Algorithm 1.

Algorithm 1 ScholarFinder model performs prediction with
our pre-trained embeddings
(i). Pre-train Stage:

(a) Given input scholars’ publication in bag-of-words X , and input
tasks’ abstracts in bag-of-words Y

(b) Pre-train the scholar embedding U with a ScholarFinder-VDEC
model;

(c) Pre-train the task embedding V with a ScholarFinder-VDEC
model;

(ii). Prediction Stage:
(a) Given a scholar input xi and a task input yi;
(b) Get its scholar embedding ui and task embedding vj with its

VAE encoders
(c) Use our prediction model (see Figure 6) to predict a score,

which indicates whether a scholar is suitable for a given
research task or not

IV. SYSTEM ARCHITECTURE

In this section, we present our proposed system architecture
for the ScholarFinder model. As shown in Figure 7, there
are five major components in our ScholarFinder system archi-
tecture: (i) Web Crawler; (ii) Data Pre-processing; (iii) Deep
Learning model; and (iv) Visualization.

A. Web Crawler

In our system, the web crawler is used to extract publication
abstracts from Google Scholar, which has the following steps
shown in Figure 7: a) get all scholars names from NSF award
dataset (Details of NSF award dataset will be discussed in
Section V-A1); b) for each scholar, obtain his/her publications
from Google Scholar using Google Scholar APIs [66]; c) for
each publication, the web crawler will extract its abstract using
Google Scholar APIs; d) save abstracts into a local storage
system for later pre-processing.

1) Web Crawler

Local Storage

NSF
Award

a) get scholar names

Scholar
Publications

c) save abstracts

Google 
Scholar

b) extract abstracts 

2) Data Pre-processing

Lowercasing Stop words 
Removal

Lemmatization Tokenization

Bag-of-words

4) Deep Learning Model

Knowledge 
Embedding

Prediction Model

5) Visualization

Embedding 
Visualization

Metrics

Sequence Data

3) Data Generation

Task 
Embedding

Fig. 7. System architecture of our ScholarFinder model.

B. Data Pre-processing

The goal of pre-processing is to generate bag-of-words
for each abstract we collect. The basic steps for data pre-
processing are: lowercasing the texts; removing the stop words
that are not meaningful words, and significantly frequent (e.g.,
“the”, “a”) in texts; lemmatization to reduce or group different
inflected forms of a word to a common base form; tokenization
to tokenize words from; and bag-of-words to generate words
counts for each abstract.

C. Data Generation

In the data generation stage, we use the text dataset to gener-
ate different data structures (bag-of-words or Sequence) based
on the different scenarios. For example, we can use bag-of-
words to understand basic topics of text, or use text sequence
datasets for dialog design for questioning and answering.

D. Deep Learning Model

In our system, the deep learning model used is the one
discussed in Section III which comprises of a “Knowledge
Embedding” model that is used to train each scholar’s knowl-
edge embedding based on his/her publication abstracts as bag-
of-words representations which are processed in the previous
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stage. After finishing the training procedure, we obtain pre-
trained knowledge embedding for each scholar, which can
be used for future prediction, clustering, and visualization.
In addition, a “Prediction” model is used to leverage the
pre-trained knowledge embedding to perform another deep
learning model. In our case, we use pre-trained knowledge
embedding to predict whether a scholar is suitable for a pro-
posed set of research tasks or not. We also show a case study in
Section VI to demonstrate how we can apply the ScholarFinder
to a Graph Neural Network (GNN) for improving performance
of downstream tasks.

E. Visualization
The last part comprising of visualization and evaluation are

used to: (a) visualize scholars’ embedding in a 2D space,
(b) for monitoring the model training performance (such as
training loss or autoencoder reconstruction errors), and (c) for
monitoring the evaluation performance in terms of precision,
recall, F1-score, and accuracy metrics. We will demonstrate
more details about visualization and evaluation in Section V-D
(for performance evaluation), and Section V-E (for embedding
visualization), respectively.

V. PERFORMANCE EVALUATION

In this section, we evaluate the precision, recall, F1-scores
and accuracy of our model with state-of-the-art XGBoost and
Deep Neural Network (DNN) models. Following this, we
demonstrate visualization of embeddings based on our pre-
trained knowledge embeddings to show the performance of
clustering and generalization.

A. Datasets
In our work, we used two categories of open and large

scholar related datasets: NSF Awards dataset, and Publica-
tions dataset, which cover most of the scientific fields. The
Publications dataset is used to obtain scholars’ knowledge
embedding, and from the NSF Awards dataset, we extract NSF
award abstract and scholars’ names who successfully received
competitive funding for checking whether a scholar is suitable
for a research task or not.

1) NSF Awards: The NSF award dataset [16] mainly
consists of categorical data related to abstracts by various
authors who received NSF grants during the past twenty years.
The award summaries consist of funded researchers’ project
profiles with keywords of research areas, tools, data sets, and
research collaborators. The attributes of the dataset include ab-
stract, title, award id, author details such as name, role as (PI)
Principle investigator or Co-PI, institution information such
as name, address, department, etc. We have collected 20,000
abstracts from the NSF award dataset that contains information
that is relevant to 15,074 scholars who successfully obtained
competitive funding from NSF grants over the past twenty
years. Those scholars who received awards are considered as
positive labels. Given the lack of negative samples in our
dataset, we apply our negative sampling scheme discussed
in Section III-D to generate the same amount of negative

samples for training and testing activities. In order to compare
performance of our negative sampling scheme, we consider a
random negative sampling method as the competing solution.

2) Publications: As described in Section IV-A, the web
crawler will extract all scholars’ publications abstracts from all
open publication archives and save them in our local storage
system. Then, the collected abstracts are pre-processed by
lowercasing, removing “stop words”, tokenization discussed
in Section IV-B Each abstract is represented as a “bag-of-
words” in our model. Additionally for each author, we will
use at most 10 recent papers abstracts in our model.

B. Experimental Setup
1) Metrics: We use Precision, Recall, F1-Score, Accuracy

for our evaluation metrics:
• Precision is a metric to measure the ratio of correctly pre-

dicted positive labels (TP) to the total predicted positive
labels (TP+FP).

Precision =
TP

TP + FP

• Recall is the ratio of correctly predicted positive labels
(TP) to the all labels (TP + FN) in actual class.

Recall =
TP

TP + FN

• F1 score is the Harmonic mean of Precision and Recall,
which consider the impact of both false positives (FP)
and false negatives (FN). F1 score is usually more useful
in the unbalanced dataset.

F1 = 2 ≃ Precision ≃Recall

Precision+Recall

• Accuracy is metric to measure overall accuracy for both
positive and negative labels

Accuracy =
TP + TN

TP + FP + FN + TN

2) Baselines: We consider state-of-the-art classical method
sets including deep learning models and traditional machine
learning models to evaluate our proposed model. Among the
models we considered, DNN, XGBoost, GBDT, and AdaBoost
are trained using bag-of-words directly and a random negative
sampling scheme. In addition, we consider the DEC and
VaDE state-of-the-art models that are trained similarly as our
ScholarFinder using pre-trained embedding techniques and our
novel negative sampling scheme.

• DNN: A deep neural network with 3 hidden layers is
used in our evaluation experiments. Each layer uses
ReLU activation function, and output layer uses sigmoid
activation function with cross-entropy loss.

• XGBoost [67]: XGBoost is an optimized distributed gra-
dient boosting library designed to be highly efficient,
flexible and portable. XGBoost is based on Gradient
Boosting algorithm and provides a parallel tree boosting
(also known as GBDT, GBM) that solves many data
science problems in a fast and accurate way.

• GBDT: Gradient boosting decision trees (GBDT) [68] is a
machine learning technique that optimizes loss functions
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to produce a prediction model in the form of decision
trees. GBDT produces competitive and robust procedures
for both regression and classification tasks.

• AdaBoost: Adaptive Boosting (AdaBoost) [69] boosts the
performance of decision trees in classification programs
by attempting to combine multiple weaker classifiers into
one strong classifier. The weak learners that are refined
based of their instances of misclassification of previous
classifiers allow the algorithm to be adaptive.

• DEC: The Deep Embedded Clustering (DEC) model [14]
learns clustering features for the embedding space
through training with an autoencoder. As a pre-trained
embedding model, we have applied our negative sampling
method to the DEC model.

• VaDE: Variational Deep Embedding (VaDE) [70] em-
ploys an unsupervised approach for learning the la-
tent space within the framework of a Variational Auto-
Encoder (VAE). In contrast to DEC and our model,
which incorporate clustering within the latent space, the
VaDE model relies purely on the variational autoencoder
algorithm.

• BERT4Rec: BERT4Rec (Bidirectional Encoder Represen-
tations from Transformers for Sequential Recommenda-
tion) [17] is a model that treats each user’s shopping
behavior as a sequence to predict the next possible items
they may purchase. In our work, we adopt BERT4Rec to
train a model using our ScholarFinder dataset.

• OpenP5: OpenP5 is an open-source platform designed
as a resource to facilitate the development, training, and
evaluation of LLM-based generative recommender sys-
tems [18]. The platform is implemented using encoder-
decoder LLMs (e.g., T5) and decoder-only LLMs (e.g.,
Llama-2). Here we choose encoder-decoder LLMs as our
baseline model, and apply our ScholarFinder dataset to
show this model’s performance.

3) ScholarFinder: As discussed in Section III, our Schol-
arFinder features two models (i.e., ScholarFinder-VAE and
SchoalrFinder-VDEC) to learn the scholars’ knowledge em-
bedding. We have also proposed two types of aggregation
layers (“Concatenation” and “Dot Product”) for demonstrating
the use of our pre-trained model to perform predictions. In
the evaluation experiments, we evaluate both variants of the
proposed ScholarFinder model, namely:

• ScholarFinder-VAE (Concatenate): Use ScholarFinder-
VAE for pre-training knowledge embedding and use
“Concatenation” for prediction

• ScholarFinder-VAE (Dot): Use ScholarFinder-VAE for
pre-training knowledge embedding and use “Dot Product”
for prediction

• ScholarFinder-VDEC (Concatenate): Use ScholarFinder-
VDEC for pre-training knowledge embedding and use
“Concatenation” for prediction

• ScholarFinder-VDEC (Dot): Use ScholarFinder-VDEC
for pre-training knowledge embedding and use “Dot
Product” for prediction

C. The Number of Negative Sample Selection Analysis
In Table II, we analyze the impact of varying the number

of negative samples on our model’s performance. Following
the recommendations from the Word2Vec [45], which typically
suggests using 3 to 20 negative samples, we adjust the number
of negative samples to evaluate the model’s performance. We
define the number of negative samples as the ratio of positive
to negative samples; for instance, a ratio of 5 means that for
each positive example, 5 negative samples are sampled. The
results in Table II show that our model’s performance improves
as the number of negative samples increases, achieving optimal
performance when the number of negative samples reaches
20. Based on this result, we then use 20 negative samples for
training and evaluation of our model.

D. Prediction Performance Evaluation Results
As shown in Table I, all our ScholarFinder models show

better performance in comparison to the baseline models in
terms of Precision, Recall, and F1-Score. Our ScholarFinder
models achieve significantly better performance than other
baseline models and improve the prediction performance by
around 18% when considering all of the metrics. Particularly,
the DEC and VaDE models are trained using the similar
pre-trained techniques and novel negative sampling scheme,
which proves that our ScholarFinder model has better gener-
alization performance than the DEC and VaDE models. More
specifically, VaDE showed the worst performance compared
to other models. In our experiments, we observed that the
training loss converged quickly after a few epochs, and there
was no further improvement in performance. We also adjusted
various hyperparameters, however these efforts did not yield
any further improvement. We conclude that the original VaDE
model may need deeper optimization for our dataset.

In addition, we compare our model with LLM-based rec-
ommendation models, including BERT4Rec, a sequential rec-
ommendation model using bidirectional Transformers, and
OpenP5, a generative recommender system built on encoder-
decoder LLMs. Our model outperforms all baselines on our
scholar dataset, as it incorporates more scholar-specific in-
formation, such as publication records, enhancing its effec-
tiveness in this domain. This finding demonstrates that our
model surpasses other state-of-the-art models in the academic
social network recommendation domain. Compared to these
baseline models, our ScholarFinder-VDEC model achieves
slightly better performance than our previous ScholarFinder-
VAE model, with around a 3% improvement. Moreover,
ScholarFinder-VDEC proves particularly useful for support-
ing downstream clustering and classification tasks, without
compromising overall model performance. We also evaluated
the clustering performance to prove the advantage of us-
ing the ScholarFinder-VDEC. In addition, for the prediction
model, the “concatenation model” achieves slightly better
performance than the “dot product model”. Hence, among
the ScholarFinder model variants, the ScholarFinder-VDEC
(concatenation) layer clearly achieves the best performance.

Our ScholarFinder model is a generative model designed
for high-quality data generation through learning of the rep-
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TABLE I
EVALUATION RESULTS OF OUR PROPOSED SCHOLARFINDER MODELS COMPARISON WITH STATE-OF-THE-ART MODELS IN TERMS OF PRECISION,

RECALL, F1 SCORE AND ACCURACY METRICS.

Model Accuracy Precision Recall F1-score

AdaBoost 0.51 0.51 0.51 0.51
GBDT 0.59 0.59 0.59 0.59

XGBoost 0.59 0.59 0.59 0.59
DNN 0.73 0.73 0.73 0.72
Bert4Rec 0.81 0.86 0.81 0.80
OpenP5 0.67 0.67 0.67 0.67

VaDE (Concatenate) 0.50 0.53 0.50 0.33
VaDE (Dot) 0.50 0.25 0.50 0.33

DEC (Concatenate) 0.76 0.77 0.76 0.76
DEC (Dot) 0.76 0.77 0.76 0.76

ScholarFinder-VAE (Concatenate) 0.96 0.96 0.96 0.96
ScholarFinder-VAE (Dot) 0.94 0.94 0.94 0.94

ScholarFinder-VDEC (Concatenate) 0.99 0.99 0.99 0.99
ScholarFinder-VDEC (Dot) 0.96 0.96 0.96 0.96

(a) Input of a normalized bag-of-words representation
of a scholar’s publications with top 20 frequent words
shown above.

(b) Reconstruction of a normalized bag-of-words rep-
resentation of the scholar’s publications.

Fig. 8. Reconstruction performance results of knowledge embedding using ScholarFinder-VDEC model.

TABLE II
IMPACT OF THE NUMBER OF NEGATIVE SAMPLES ON THE PERFORMANCE

OF SCHOLARFINDER MODELS IN TERMS OF ACCURACY SCORE.

Negative Sample Number 1 5 10 20

Accuracy 0.91 0.97 0.98 0.99

resentation of latent space, which can directly enhance the
performance of downstream tasks. Additionally, ScholarFinder
prioritizes the generation of well-structured clusters. As noted
earlier, clustering improves downstream tasks by organizing
data into coherent groups, reducing noise, and revealing hidden
patterns. These well-defined clusters make the data more
interpretable and meaningful, enhancing the quality and effec-
tiveness of subsequent analyses. To evaluate clustering perfor-

mance quantitatively, we employ two unsupervised metrics: (i)
the Calinski-Harabaz Index (CHI) [71] and (ii) the Silhouette
Coefficient [72]. These metrics are vital for assessing how
effectively the clustering algorithm groups similar data points
and separates dissimilar ones.

The Calinski-Harabaz Index calculates the ratio of the
dispersion between clusters to the dispersion within clusters,
with dispersion defined as the sum of squared distances. A
higher CHI score reflects clusters that are compact and well-
separated, which ensures that the resulting groups are distinct
and easy to interpret, enhancing data clarity for downstream
analysis. The Silhouette Coefficient further measures cluster-
ing quality by considering both intra-cluster distance and the
nearest inter-cluster distance, generating a score from -1 to
1. A positive score near 1 indicates well-separated clusters,
promoting clearer differentiation of data points, while negative
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(a) VaDE (b) DEC (c) ScholarFinder-VAE (d) ScholarFinfder-VDEC
Fig. 9. Visual comparison of the latent space of scholars’ knowledge embedding as generated by different models using the t-SNE algorithm.

TABLE III
CLUSTERING PERFORMANCE EVALUATION USING CALINSKI-HARABAZ INDEX (CHI) AND SILHOUETTE COEFFICIENT METRICS FOR VARYING N, WHICH

DENOTES THE NUMBER OF CLUSTERS

N
ScholarFinder-VAE DEC ScholarFinder-VDEC VaDE

CHI Silhouette CHI Silhouette CHI Silhouette CHI Silhouette

5 13014.2 0.35 17201.63 0.44 30297.54 0.52 10020.20 0.31
10 14432.81 0.38 18592.40 0.48 33940.47 0.55 11691.97 0.33
15 14637.80 0.37 21443.83 0.49 36266.32 0.56 11851.55 0.32
20 15157.36 0.38 17714.23 0.45 32867.33 0.50 11804.71 0.32
25 15774.73 0.39 16988.65 0.44 34347.43 0.54 11639.60 0.32
30 15898.09 0.38 16857.02 0.43 29656.65 0.48 11133.99 0.32

scores highlight poor clustering performance, which can hinder
subsequent tasks by introducing ambiguity and errors.

We compare the performance of Calinski-Harabaz Index
(CHI) and Silhouette Coefficient metrics with different number
of clusters N in order to evaluate of the effectiveness of our
model. Table III shows the results; note that in case of both
the metrics, a higher score indicates better performance and
each score is calculated by averaging the scores from 5 tests.
Given that the Scholar-VAE, DEC, VaDE and ScholarFinder-
VDEC models have randomization process in the initialization,
each case is run 5 times to get the average values. We can
observe that our ScholarFinder-VDEC model has much better
clustering performance than other models in the various cluster
number scenarios. This observation signifies that we achieve
better data grouping and clearer separation of clusters or
distinct and meaningful clusters, enhancing the quality and
interpretability of subsequent analyses.

E. Embedding Performance Evaluation
One goal in our ScholarFinder model is to better learn the

clustering features that are helpful for necessary classification
and clustering visualization tasks. In this section, we evaluate
visualization performance in the embedding space among
the DEC, and ScholarFinder models. Among these models,
we use the same hyperparameters, such as the batch size,
the learning rate, and the number of epoch to train the
embedding. We use the same number of clusters (K=20) for
DEC and ScholarFinder-VDEC. As shown in Figure 9, our
previous ScholarFinder-VAE and VaDE models cannot learn
the clustering features on our NSF dataset. DEC can learn

the good clustering features as shown in the evaluation results
with 20 clusters. However, our ScholarFinder-VDEC model
achieves a better clustering performance in comparison with
the DEC model. The reason being, the gaps among clusters
are clearer and the shapes of clusters look more regular than
the DEC model, which also validated the scores mentioned in
Table III.

In addition, we can also evaluate generalization performance
of the embedding space by visualizations of the reconstruc-
tion process. As shown in Figure 8, we can see that our
ScholarFinder-VDEC can basically capture the scholar’s re-
search areas (such as cloud computing, networking) through
the reconstruction results.

We also explored another interesting phenomenon in our
experiments that involves a generative nature to query scholars
based on their particular expertise knowledge or cross-domain
knowledge. For example, let us assume we want to find a
scholar who can connect the areas between “Networking and
Cloud” and “Machine Learning and Data Mining” domains.
Then, we can just find a known scholar in “Networking and
Cloud” domain and a known scholar in “Machine Learning
and Data Mining” domain. Then, using the ScholarFinder-
VDEC encoder network, we can get the embeddings for these
two scholars ui and uj respectively, and then compute the
middle point uk = (ui + uj)/2 in the embedding space.
Finally, we just need to search the nearest neighbor points in
the embedding space to look up the scholars we are querying.

As shown in Figure 10, we can visualize the scholar’s ex-
pertise knowledge by using the ScholarFinder-VDEC decoder
network. We found that the scholar in this case has expertise
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Fig. 10. Sample a new scholar obtained by fusing a scholar from networking
and cloud domains, and a scholar from machine learning and data mining
domains.

knowledge in the area of “data computation”, “workflow
performance” or ”distributed system”, which are really syn-
ergistic and bridge areas to connect between “Networking and
Cloud” and “Machine Learning and Data Mining” domains.
We can thus validate that our ScholarFinder has generative
characteristics given the fact many emerging collaborations
among these two domains are increasingly focused on building
efficient infrastructures for data computing, machine learning,
and data analysis workflows.

VI. KNOWLEDGE GRAPH INTEGRATION CASE STUDY

In this section, we will discuss how we can use our
ScholarFinder model with pre-trained embedding to improve
the performance of a Graph Neural Network (GNN), such as
GraphSAGE [73].

A. Building a Knowledge Graph using the NSF Dataset
Our NSF dataset includes entities such as scholars and

awards information. Based on that information, we build a
knowledge graph involving entities (such as scholars and
awards) and relationships between entities. The relationship
indicates how a specific scholar has obtained funding from
NSF. This type of graph is called a Heterogeneous Knowledge
Graph. As shown in Figure 11, in order to simply apply the
GraphSAGE algorithm, we ignore the award entity and only
keep the scholar entity. Following this, we build edges among
scholars for those working on the same NSF grant awards. Fi-
nally, we can transform the Heterogeneous Knowledge Graph
into a Homogeneous Knowledge Graph. We extract 1,174
scholars from our NSF award dataset to build our knowledge
graph. For nodes’ label, we use the awards’ division name
as the scholar’s node labels (such as natural science, society
science). Thereby, we can map each scholar into one class for
classification tasks.

Scholar1

NSF_award

Scholar2

works on(PI)

works on(co-PI)
Scholar3

works on(co-PI)

PI

S1

A1

S2

A2

S3

co-PI

co-PI
PI co-PI

S1 S3

S2

Fig. 11. An example of NSF grant Knowledge Graph, which can be
transformed from Heterogeneous Knowledge Graph (left) to Homogeneous
Knowledge Graph (right). The “S1, S2, S3” denotes scholars, and the “A1,
A2” denotes NSF grant awards.

B. Learning with GraphSAGE
We have proved that our pre-trained ScholarFinder model

can improve simple downstream tasks in the previous sections.
Herein, we demonstrate how our model can be applied to the
area of Graph Neural Networks (GNNs) to further improve
their performance. In our case study, we consider a classical
graph algorithm GraphSAGE [73], which is a representation
learning technique suitable for dynamic graphs. It learns nodes
embedding by aggregating information from a node’s local
neighborhood using a neural network.

In addition, GraphSAGE allows us to leverage nodes’
features (e.g., text, image features) to efficiently generate
node embeddings. This approach is more advanced than
the previous classical model node2vec [45] that only uses
index information. Hence, we initialize the nodes’ features
in GraphSAGE with our pre-trained scholar embeddings to
evaluate whether our model can improve the graph learning
performance or not.

C. Performance Evaluation
GraphSAGE can be trained in either a supervised or un-

supervised manner. For the purposes of our case study, we
trained a supervised GraphSAGE for node classification. We
were able to map each scholar into one class based on the
category of NSF award, as we mentioned earlier. To evalu-
ate the performance of our pre-trained ScholarFinder model,
we trained one GraphSAGE model using our pre-trained
ScholarFinder-VEDC embedding, and another one without our
pre-trained ScholarFinder embedding.

We use precision, recall, and f1 score as evaluation metrics
to analyze our experiment results. As shown in Table IV,
the GraphSAGE-S, which uses our pre-trained ScholarFinder-
VEDC scholars’ embeddings achieves much better perfor-
mance than the original GraphSAGE in every metric.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel ScholarFinder that
features two models (i.e., ScholarFinder-VAE and
ScholarFinder-VDEC) to find scholars who are suitable for
specific research tasks that require expertise in multiple do-
mains. Our ScholarFinder-VAE model uses Variational Au-
toencoder (VAE), to embed a scholar’s expertise knowledge
based on his/her publications, and each scholar is represented
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TABLE IV
GRAPHSAGE MODEL PERFORMANCE EVALUATION USING PRECISION, RECALL AND F1 METRICS WITH DIFFERENT PRE-TRAINED EMBEDDING.

Models Precision Recall F1

GraphSAGE 42.4 48.1 39.3
GraphSAGE-S 55.6 52.9 60.7

with latent knowledge representations. These knowledge rep-
resentations can be used for matching similar interests for
collaborations, or to evaluate whether an individual scholar is
qualified to perform particular research tasks. We showed how
our ScholarFinder-VDEC model extends the ScholarFinder-
VAE model by adding a deep embedded clustering method
to learn the clustering assignments. We have also applied the
multi-tasks learning to our ScholarFinder-VDEC to improve
its generalization and clustering performance. We have shown
how our ScholarFinder methodology uses pre-trained knowl-
edge embedding to build further downstream prediction and
clustering tasks by proposing two different DNN models (i.e.,
Concatenation model and Dot Product model). Leveraging
the pre-trained embedding scheme, we also proposed a novel
negative sampling scheme that solves the issue of unbalanced
labels in our scholars’ funding record dataset.

In our model evaluation experiments, we compared the
ScholarFinder model variants with state-of-the-art baseline
models (i.e., XGBoost, GBDT, AdaBoost, DNN, GraphSAGE,
DEC, VaDE) and recent LLM based models (i.e., Bert4Rec,
OpenP5). Our evaluation results showed that our Schol-
arFinder models variants consistently can achieve at least 18%
better performance in terms of precision, recall, F1-score and
accuracy. In addition, our clustering visualization performance
results showed that our embedding can cluster those scholars
with similar research interests and has generative characteris-
tics to be able to sample new scholar recommendations from
existing knowledge. These experimental results also proved
that our ScholarFinder with variational autoencoder (VAE)
is good at capturing the latent representation of scholars’
knowledge to improve the performance of downstream tasks;
and the deep embedded clustering algorithm can achieve better
clustering performance when it is trained with VAE model
using multi-task learning techniques. Lastly, we demonstrated
that our novel negative sampling scheme can significantly
improve the performance when facing the issue of imbalanced
datasets. In addition, we also use a case study to demonstrate
how graph learning can leverage our ScholarFinder to further
improve the model performance.

Possible future directions for this work include building
visualization interfaces in our ScholarFinder to browse and
drill-down knowledge patterns. In addition, one can investi-
gate the efficacy of using knowledge graphs and GNNs on
the NSF grant dataset that enables fusing of heterogeneous
information (such as co-authorships, institutes) for identifying
groups/teams of scholars that are suitable for collaboration
for a given research task. Our ScholarFinder could also be
integrated with a chatbot for recommending scholars to solve
research tasks in emerging areas such as precision medicine,
data-driven agriculture and autonomous materials design.
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