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Humans actively observe the visual surroundings by focusing on salient
objects and ignoring trivial details. However, computer vision models
based on convolutional neural networks (CNN) often analyze visual in-
put all at once through a single feedforward pass. In this study, we de-
signed a dual-stream vision model inspired by the human brain. This
model features retina-like input layers and includes two streams: one de-
termining the next point of focus (the fixation), while the other interprets
the visuals surrounding the fixation. Trained on image recognition, this
model examines an image through a sequence of fixations, each time fo-
cusing on different parts, thereby progressively building a representa-
tion of the image. We evaluated this model against various benchmarks
in terms of object recognition, gaze behavior, and adversarial robustness.
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Our findings suggest that the model can attend and gaze in ways similar
to humans without being explicitly trained to mimic human attention and
that the model can enhance robustness against adversarial attacks due to
its retinal sampling and recurrent processing. In particular, the model can
correct its perceptual errors by taking more glances, setting itself apart
from all feedforward-only models. In conclusion, the interactions of reti-
nal sampling, eye movement, and recurrent dynamics are important to
human-like visual exploration and inference.

1 Introduction

CNNs and brains are different in both front and back ends. In the front end,
they use an input layer to evenly sample a grid of pixels. The input size
and computational complexity increase quadratically with the dimension
of the visual field. In contrast, the brain uses the retina to obtain nonuni-
form and fisheye-style samples distributed around where the eyes are
fixated (Bashivan et al., 2019; Curcio et al., 1990; Watson, 2014). Retinal sam-
pling is much denser and more accurate in the fovea than in the periphery,
as the size of the retina’s receptive fields increases proportionally with ec-
centricity, becoming larger as they move away from the fovea (Connolly &
Van Essen, 1984; Curcio et al., 1990; Derrington & Lennie, 1984). This non-
linear sampling density allows the brain to keep up with a very wide visual
field despite restricted memory and computation (Gattass et al., 1981, 1988).
In the back end, CNNs process the input pixels all at once through a single
feedforward pass and arrive at a single perceptual decision per each image
input. In contrast, humans may take multiple glances through eye move-
ments and use dual visual streams to guide gaze behavior and support dy-
namic perception. The magnocellular subcortical pathway and its extension
onto the dorsal cortical pathway direct where to look at each glance, while
the parvocellular subcortical pathway and its extension onto the ventral
cortical pathway transform the retina samples into abstract representations
for recognition (Merigan & Maunsell, 1993; Mishkin et al., 1983). It is, how-
ever, unclear whether and how such front-end and back-end differences
explain the gaze behavior and perceptual robustness of computer versus
human vision.

Humans use spatial attention to drive eye movements. For rapid recogni-
tion, they tend to look at salient regions while disregarding less informative
or insignificant parts. This is because the eyes collect more samples from
the fovea such that downstream visual processing is also more dedicated
to regions around the fixation. This bias in sampling and processing makes
“where to look” an important decision that the brain has to make. To inform
this decision, the brain uses a wide view enabled, including both central and
peripheral vision, to locate the salient object and use this spatial informa-
tion as overt attention to direct eye movement (Deubel & Schneider, 1996;
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Wiecek et al., 2012). This process involves the brain’s “where” pathway and
the oculomotor control pathway (Colby & Goldberg, 1999; Corbetta & Shul-
man, 2002; Rizzolatti & Matelli, 2003).

Under normal viewing conditions, humans move their eyes to collect
more information and refine visual perception. Human vision is robust,
unlike computer vision. A small amount of adversarial noise can deceive
computer vision but appear trivial to humans (Goodfellow et al., 2014).
However, when humans have an extremely restricted time (e.g., 70 ms or
less) to observe an image, the brain may also make perceptual mistakes
given the same adversarial noises (Elsayed et al., 2018). In this case, hu-
mans can only afford a single glance while the brain is limited to its feed-
forward processing rather than feedback or recurrent processing (Lamme &
Roelfsema, 2000). The brain’s feedforward visual processing takes 150 ms
to reach a perceptual decision (Thorpe et al., 1996) for rapid object recogni-
tion (DiCarlo et al., 2012), akin to the mode of operation in CNNs. There-
fore, it is likely that eye movement, feedback, and recurrent processing are
necessary for robust human vision. The retina may place a key role in ad-
versarial robustness. Depending on the distance from the point of fixation,
or eccentricity, the same object bears different retinal patterns when it is in
the fovea versus periphery (Balas et al., 2009; Bouma, 1970; Lettvin, 1976;
Rosenholtz, 2016; Stewart et al., 2020). This dynamic sampling acts as a form
of data augmentation, possibly making visual perception less vulnerable to
minor distortions or adversarial perturbations (Vuyyuru et al., 2020).

Therefore, the retina has profound impacts on human vision but is rarely
explored in computer vision. In this study, we draw inspirations from
human eyes, dorsal and ventral streams, and spatial attention to design a
recurrent neural network for computer vision and evaluate the model’s at-
tention and adversarial robustness. The model has three modules: an input
sampler that takes retinal samples around the fixation, an attention net-
work that mimics the brain’s dorsal visual pathway and guides where to
look next, and a recognition network that mimics the ventral visual path-
way and represents the retinal samples recurrently for object recognition.
As illustrated in Figure 1, we design three variations of such a model. Each
of them uses a different strategy for sampling visual input with respect to
the point of fixation, including cropping image patches with a single field
of view, with two fields of view, or applying retinal foveation and nonuni-
form sampling. These models all attempt to mimic the brain’s ability to en-
gage in saccadic eye movement and recurrent neural processing (Kar et al.,
2019; Lamme & Roelfsema, 2000). We hypothesize that the model using eye-
like, retinal transformation learns attention behavior that is closer to human
attention. Additionally, the model with retinal transformation can pro-
gressively refine the perceptual decision and improve robustness against
adversarial perturbations as it allocates more time to take additional
glances at an image under attack, allowing for a more refined perceptual
decision.

20z Jequieldas 90 UO pueydle|y euowey Aq Jpd-gg9L0 B 000U/9EESIPZ/E L L L/6/9E/IPA-O[OIIE/000U/NPS NUIJoRIIP//:d]lY WOl PEPEOIUMOQ



1716 M. Choi et al.

(a) General Scheme (b) Crop-S (c) Crop-D (d) Retina

Ventral

Ventral Ventral
CNN CNN CNN

Double Crop

=3
19
15
o
2
0,
g
@

Retinal Transform

Figure 1: Recurrent models for eye movement and visual recognition. (a) The
general two-stream model architecture: The model includes two streams: the
dorsal (left) and ventral (right) streams. The dorsal stream has a broad field of
view and generates a fixation point (/;) at a step (or glance). The ventral stream
takes selective samples around the fixation, extracts a representation, and accu-
mulates the representations across multiple glances for object recognition (p;).
Using this general scheme, we design and test three implementations of the ven-
tral stream: Crop-S, Crop-D, and Retina, illustrated in panels b to d. (b) Crop-S
crops a small image region (shown as the red box) around the fixation.
(c) Crop-D crops two regions (shown as the red and blue boxes) around the
fixation and samples them with different resolutions such that the same num-
ber of samples is extracted from either region. (d) Retina applies retinal trans-
formation and extracts nonuniform samples with respect to the fixation. Those
models use the same architecture for the dorsal stream, for which the weights
are learned separately alongside the different ventral stream models.

2 Related Work

2.1 Two-Stream Architecture. In the field of computer vision, focus-
ing on distinct aspects of data, such as spatial and temporal features, often
proves beneficial for solving specific tasks like object recognition and action
recognition. To handle these distinct features, two or more parallel process-
ing streams specialized for each feature can be employed.

In object recognition, Esteves et al. (2017), Guo et al. (2019), Sermanet
etal. (2014), and Wang et al. (2020) use dual-stream architectures to support
both global and local feature processing. In these works, one stream pro-
cesses the entire image area, extracting global features that provide a broad
understanding of the scene. Based on these global features, the models de-
termine where to allocate more resources to obtain detailed local features.
Subsequently, the other stream processes these local features, allowing for
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more precise object recognition. By processing only the informative image
areas, these models save computational costs while achieving comparable
recognition accuracies to single-stream models with larger sizes. For video
processing, dual-stream architectures specialized for temporal and spatial
information processing demonstrate improved action recognition perfor-
mance (Feichtenhofer et al., 2017; Simonyan & Zisserman, 2014; Wang et al.,
2016). Choi et al. (2023) proposed two-stream architectures to model the
dorsal and the ventral visual streams of human brains. The two streams are
trained to perform distinct functions of saliency prediction and object clas-
sification. The results demonstrate that the two streams resemble the repre-
sentations of the brain’s dorsal and ventral visual streams, respectively.

Our study also employs a two-stream architecture for local and global
feature processing. However, unlike previous works that simply crop
patches from the given images (Guo et al., 2019; Sermanet et al., 2014; Wang
etal., 2020), our model uses retina-like image sampling, enabling the model
to effectively capture detailed local features while not ignoring the global
context of the images. Our work shares similarities with the study by Choi
et al. (2023) in terms of utilizing two streams and retinal transformation.
However, a key distinction lies in our approach to modeling visual atten-
tion. Unlike Choi et al. (2023), who employ a human saliency data set to
mimic human attention, our model is exclusively trained for object recog-
nition without relying on any human saliency data set. Consequently, in our
model, the emergence of human-like visual attention occurs as a natural by-
product of the object recognition task rather than being directly trained to
replicate human attention patterns.

2.2 Foveated Visions. In primate vision, the visual acuity is highest at
the center of the gaze, a region called the fovea, due to the dense concentra-
tion of cone photoreceptors. This phenomenon, known as foveated vision,
enables high-resolution and color perception in the central visual field. As
the distance from the fovea increases, visual acuity decreases, reflecting the
natural distribution of photoreceptors in the retina (Curcio & Allen, 1990;
Curcio et al., 1990; Weber & Triesch, 2009). The concept of foveated vision
has been extensively explored in the field of machine vision (Cheung et al.,
2016; Deza & Konkle, 2020; Pramod et al., 2022). Researchers have investi-
gated its applications across various domains, such as image rendering for
virtual reality, predicting human scan paths, and improving object recogni-
tion performance.

Specifically, in virtual reality, low-resolution rendering of peripheral im-
age regions based on foveated vision has been shown to significantly re-
duce rendering latency due to the reduced accuracy of human peripheral
vision. Several studies have explored this approach and demonstrated its
effectiveness in reducing computational requirements while maintaining
the quality of the rendered image (Jabbireddy et al., 2022; Kaplanyan et al.,
2019).
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Furthermore, the foveated vision has been widely used in predicting hu-
man scan paths by analyzing eye movement patterns during visual per-
ception. Researchers have developed models that can predict the order in
which humans fixate on different regions of an image or scene, which can
be useful in various applications such as advertising, design, and robotics
(Bao & Chen, 2020; Berga & Otazu, 2020; Wang et al., 2017).

In addition to predicting scan paths, foveated vision has been shown to
improve object recognition performance or reduce the computational costs
of recognition systems. By using a high-resolution foveal region to focus
processing resources on important areas of the image and a low-resolution
peripheral region for less important areas, recognition systems can achieve
higher accuracy with lower computational requirements. This approach has
been explored in several studies and has shown promising results in im-
proving recognition accuracy while reducing computational costs (Jonnala-
gaddaetal., 2021; Min et al., 2022; Thavamani et al., 2021; Wang et al., 2021).

2.3 Recurrent Attention. A crucial difference between human and ma-
chine vision is that humans explore images or scenes by directing attention
with eye movements (overt attention) or without eye movements (covert
attention). Prior works has attempted to make machines solve downstream
tasks by teaching them where to look through a recurrent process. Given
an attention focus (or the fixation), the attended region can be cropped at
various resolutions or scales (Mnih et al., 2014; Sermanet et al., 2014; Wang
et al., 2020; Xu et al., 2015). Arguably better than hard cropping, the at-
tended region may be subject to retinal transformation (Akbas & Eckstein,
2017; Bashivan et al., 2019; Vuyyuru et al., 2020) or polar transformation
(Esteves et al., 2017) inspired by the primate retina (Coletta & Williams,
1987; Curcio et al., 1990; Geisler & Hamilton, 1986; Thibos et al., 1987). For
covert attention, models generate and apply soft weightings for all features
and locations depending on their relative importance (Jaegle et al., 2021; Xu
et al., 2015; Zoran et al., 2020).

These recurrent attention models are similar to the human brain (Kiet-
zmann et al., 2019). Because of this similarity, understanding recurrent at-
tention models would provide insights into the mechanisms of adversarial
robustness in human vision. However, despite their importance, recurrent
attention models have rarely been the focus of research compared to their
counterparts, feedforward CNNSs. In the current work, we design and test
different recurrent attention models and show how they are affected by ad-
versarial noise as more recurrent steps are deployed.

2.4 Adversarial Attacks. An adversarial attack refers to an attempt to
deceive machine learning models by adding carefully designed pertur-
bations to an input image (Athalye et al., 2018; Carlini & Wagner, 2017;
Goodfellow et al., 2014; Madry et al., 2017; Szegedy et al., 2013). The per-
turbation, known as adversarial noise, can be optimized with the projected
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gradient descent (PGD) (Madry et al., 2017), the fast gradient sign method
(Goodfellow et al., 2014) and Carlini and Wagner’s (2017) attack, among
others. To counteract adversarial noise, defensive methods have been pro-
posed (Goodfellow et al., 2014; Gu & Rigazio, 2014; Papernot et al., 2016; Xie
et al.,, 2017) but remain vulnerable (Athalye et al., 2018; Carlini & Wagner,
2017; He et al., 2017).

Unlike computer vision models, humans do not seem to suffer from the
same vulnerability, especially when enough time is available for them to
observe the image under attack (Elsayed et al., 2018). This distinction has
motivated prior work to take inspiration from human vision for computer
vision. For example, Luo et al. (2015) have found that allowing models to
fixate on different image regions can alleviate the effect of adversarial noise.
More recently, Dapello et al. (2020) show that attaching a block with prop-
erties of V1 at the front of feedforward CNNs can make CNNs more ro-
bust. Huang et al. (2020) demonstrate that a neural network with predic-
tive coding improves adversarial robustness. Berrios and Deza (2022) show
that their adversarially robust model achieves higher explainable variance
for some brain areas compared to other biologically plausible neural net-
works, showing the possible link between the adversarially trained trans-
former and the explainability in the brain.

Vuyyuru et al. (2020) demonstrate that nonuniform spatial sampling and
varying receptive fields that mimic the retinal transformation in the primate
retina can also improve the robustness against adversarial attacks. Harring-
ton and Deza (2021) show that the representation robust against adversarial
noises is more attributable to processing information from the periphery, as
opposed to the fovea.

In line with the related work, we also explore biologically inspired com-
putational mechanisms for adversarial robustness. Similar to Vuyyuru et al.
(2020), we use a retina-like front end to generate fixation-dependent reti-
nal input for image recognition. A notable distinction is that Vuyyuru et al.
(2020) prefix the points of fixation, whereas in our study, the fixation is adap-
tive and sequentially inferred via an attention module that learns where to
look next. As such, our model iteratively and sequentially samples an im-
age into time-varying retinal patterns, similar to retinal input to the brain
during saccadic eye movement.

3 Method

In this section, we detail the methodology behind our approach, which inte-
grates elements of human visual processing into our computer vision mod-
els. As illustrated in Figure 1a, the dorsal stream has a wide field of view
that covers the whole image sampled with lower resolution. It learns spatial
attention, predicts where to look next, and passes the predicted fixation (I;)
to the ventral stream. The ventral stream has a narrow field of view around
the fixation, samples the input, learns to represent the samples for each
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fixation, recurrently accumulates the representation across different fixa-
tions, and outputs the probability in image classification (p;).

Specifically, the dorsal stream has two modules: DorsalCNN and
Attention, and the ventral stream includes VentralCNN, RNN, and
Classifier. Three model variations shown in Figures 1b to 1d all share the
same architecture for the dorsal stream, but they use different sampling
strategies for the ventral stream: a single-cropped field of view (Crop-S),
double-cropped field of views with different resolution but the same
matrix size (Crop-D), and retinal sampling (Retina). Further details of these
configurations are provided below.

3.1 Image Sampling.

Single Crop: The model Crop-S crops a rectangular patch around the
fixated location as the input to the ventral stream (see Figure 1b).

Double Crop: The model Crop-D processes two rectangular patches
around the same fixation point, as shown in Figure 1c, with differ-
ent scales and resolution. They are further resized to have the same
patch size.

Retinal Sampling: We use retinal sampling with the knowledge of bi-
ological visual systems. In primate visual systems, both retinal gan-
glion cells and neurons at early visual areas have increasingly larger
receptive fields yet lower resolution at higher eccentricity relative to
where the eyes are fixated in the visual field (Freeman & Simoncelli,
2011; Gattass et al., 1981, 1988). In addition, more cells and neurons
are devoted to the central vision than to peripheral vision (Bashivan
et al., 2019; Curcio et al., 1990; Watson, 2014). Inspired by these prop-
erties, we design an input layer with two steps: foveated imaging and
non-uniform sampling.

Foveated imaging (Duchowski et al., 2004; Perry & Geisler, 2002) varies
image resolution and acuity along eccentricity: higher resolution around the
fixation and progressively lower resolution toward the periphery. We im-
plement this by applying a larger gaussian kernel to peripheral regions but
a smaller kernel to the central region, resulting in greater smoothness in the
periphery. More details are included in appendix A. Since each foveated im-
age is transformed from the original image with a varying extent of spatial
blurring, the feedforward convolutional layers effectively have eccentricity-
dependent receptive fields. This effect is similar to how biases from different
receptive fields in the retina are passed to downstream visual areas.

Retinal sampling collects nonuniform discrete samples from the
foveated image. Figure 1d shows an example of retinal sampling points
and the resulting retinal image. Suppose that we want to sample an N x N
foveated image to fill an 7 x n retinal image with n < N. We first calculate
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Original Image Retinal Sampling Grid
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Figure 2: Examples of the retinal transformation. Left: Original image. Right:
Retinal sampling grid and resulting retinal images.

the eccentricity e(x, y; fx, fy) of any pixel location (x, y) with respect to the
fixation point (fy, f,) in the foveated image (see equation 3.1). Similarly we
calculate p(i, j; fi, f;) as the distance from fixation (f;, f;) to pixel (i, j) (see
equation 3.2) in the retinal image.

e(x,y; fr, fy) = I(x, y) — (fx, fy)”Zv (3.1)
oG, s fi. f7) = WG, 7)) = (fis f)ll2- (3.2)

We then relate the eccentricity in the foveated image e to p of the retinal
image through a nonlinear mapping function g(p) (see equation 3.3):

N sinh(p - b%)

2sinh(b4) (33)

e=g(p) =

Here, b € RT is a hyperparameter. Its value controls the degree of
nonuniform sampling, which is set to 12.0 in our work. When there is no
retinal sampling or b is very small, it can be considered that an image is
under the fovea. Therefore, visual acuity is high everywhere sampled. As b
becomes larger, the fovea area decreases and the periphery increases, while
the retinal image is increasingly distorted relative to the original image (see
Figures 2 and 5c¢ for examples).

3.2 Dorsal Stream. In the preceding section, we explained how we
implement retinal sampling to the visual input when a fixation point is
present. Now, the next question is: How do we integrate an overt atten-
tion mechanism to determine where to look? Inspired by human vision, this
process is facilitated by the dorsal stream in our proposed model, which is
designed to generate a sequence of fixation points on the given images.
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Figure 3: Details of the Attention module in the dorsal stream. Attention pro-
duces a 2D saliency map and fixation point at time step ¢ (I;). Intermediate rep-
resentations from each module are shown on the right.

The dorsal stream includes DorsalCNN and Attention module. The
input to the dorsal stream is an image with the full view but in a low res-
olution. The DorsalCNN is a stack of convolutional layers. Attention deter-
mines the next location to focus on. It uses the feature maps from all layers
from DorsalCNN after they are resized to the same size and then concatenated
along the channel dimension. Figure 3 shows the architecture of the atten-
tion module. To predict the next fixation point (/;), the module maps salient
regions with a Saliency Map Network. It includes a convolutional layer
with 3 x 3 kernels and outputs a 2D saliency map (Itti et al., 1998; Koch &
Ullman, 1987), highlighting the candidate regions for the next fixation.

To prevent future fixations returning to the previously attended regions,
the inhibition-of-return (IOR) module (I0R-Module; Akbas & Eckstein, 2017;
Itti & Koch, 2001; Najemnik & Geisler, 2005; Posner & Cohen, 1984) reduces
the saliency of previously attended regions. Specifically, the IOR at time f is
expressed as

t
IOR(t) = I0R-Module(l1;) = ReLU (1 -y Gr=1I.%= 021)> . (4

=1
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Here, G is a normalized 2D gaussian function centered at I, with a stan-
dard deviation o at the tth step. Its values are normalized so that the maxi-
mum equals 1. We sum the normalized gaussian kernels across all previous
time steps to prohibit future fixations from going back to the previously vis-
ited locations. Subtracting the accumulated gaussian kernels from a matrix
of ones creates a soft mask with high values at unattended regions but low
values at previously attended regions. Applying this mask to the saliency
map by element-wise multiplication followed by softmax gives rise to a 2D
probability map based on which the next fixation is randomly sampled. Fig-
ure 3 shows typical examples of the saliency map, IOR, and the prediction
of the next fixation point.

The dorsal stream is trained with reinforcement learning based on the
REINFORCE algorithm (Williams, 1992). At time t, the fixation I; generated by
the attention module results in a new class prediction p; by the recognition
pathway (ventral stream). The reward r; of choosing I; as the fixation is
calculated as the reduced classification loss relative to the previous time
step 1y = CE(p;_1, label) — CE(p, label), where CE is the cross-entropy loss.
The goal of reinforcement learning is to maximize the discounted sum of
rewards, R = Zthl yt=1r,, where y € (0, 1) is the discount factor and it is
set as 0.8.

3.3 Ventral Stream. The recognition pathway includes VentralCNN, RNN,
and Classifier stacked as shown in Figure 1. VentralCNN consists of a stack
of convolutional layers to extract features from the retinal samples at each
time step. The extracted features initially go through global average pool-
ing and then are channeled to a recurrent neural network (RNN) equipped
with gated recurrent units (Chung et al., 2014). The RNN learns to accumulate
information across different fixation points, which are then used for object
recognition at the Classifier (a fully connected layer) at every time step
t. The learning objective is to minimize the cross-entropy losses summed
across T time steps.

3.4 Implementation Details. Convolutional layers in VentralCNN
and DorsalCNN have the same architecture (but distinct parameters),
and they all have convolutional layers using 3 x 3 kernels with stride
equal to 1. VentralCNN and DorsalCNN have Conv(64) x 2 — MaxPool —
Conv(128) x 2 — MaxPool — Conv(256) X 2 — MaxPool — Conv(512) x 2,
where Conv(C) x k represents k convolutional layers with C channels.
MaxPool has a kernel size of 2 and a stride of 2. The sampled images for
VentralCNN and DorsalCNN are in the size of 64 x 64 and 128 x 128, respec-
tively. The dorsal and the ventral stream as shown in Figure 1 are trained
together. For the Crop-D model, the same VentralCNN sharing the weights
is used to extract features from both patches, and the resulting features are
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summed to be forwarded to the next module. Code and data are publicly
available.!

3.5 Training Details. We train these three two-stream models (Crop-
S, Crop-D, and Retina) in three stages. First, we train models on single-
label classification on ImageNet100. We randomly sample 100 classes from
ILSVRC2012 (Deng et al., 2009) with 1000 classes in total to form Ima-
geNet100 to save computational costs. Then the models are trained on
multilabel classification tasks on MS-COCO (Lin et al., 2014). We include
MS-COCO in the training process because of the complexity of the data set.
Unlike ImageNet, images in MS-COCO include multiple objects, and the
sizes of the objects are usually smaller than those of ImageNet, which is
beneficial for training the dorsal stream for mimicking human attention. In
the last stage, we fine-tune the models on ImageNet100 again. This stage
is required to test our models on adversarial attacks because most of the
adversarial attack algorithms are for single-label images.

In the first stage on ImageNet100, we train our models for 90 epochs us-
ing the Adam optimizer (Kingma & Ba, 2014) (Ir = 0.002, 81 = 0.9, 8, = 0.99).
The learning rate is decreased by 10 at the 30th, 60th, and 80th epochs. Dur-
ing training, models are allowed to deploy four fixations to explore images.
In the second stage on MS-COCO, we train our models for 90 epochs using
the Adam optimizer (Ir = 0.001, g1 = 0.9, B, = 0.99). The learning rate is
decreased by 10 at the 30th, 60th, and 80th epochs. During training, models
are allowed to deploy eight fixations to explore images. In the last stage on
ImageNet100, we train our models for 20 epochs using the Adam optimizer
(Ir = 0.0005, g1 = 0.9, B, = 0.99). The learning rate is decreased by 10 at the
10th epoch. During training, models are allowed to deploy four fixations to
explore images.

4 Experiments

With the proposed models, we first test the performance of the models on
single-label and multilabel classification tasks. Then we test how close the
model attention is to human attention. At the same time, the effect of in-
put sampling (retinal transformation, double crops, or single crop) on the
generated attention is investigated. Finally, we test our models on the adver-
sarial attacks to evaluate their adversarial robustness. As additional base-
line models, we also trained a model with feedforward CNN (FF-CNN)
and a model with recurrent attention but without overt eye movements
(S3TA; Zoran et al., 2020). In the literature by Zoran et al. (2020), S3TA
is trained with adversarial training. However, since our focus is on the
model architecture instead of learning strategies, we use S3TA trained on

! https:/ /github.com/minkyu-choi04/rs-rnn.
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Table 1: Summary of the Models.

ImageNet100 MS-COCO

Model Top-1 Accs F1 Scores Input Type Attention
Retina 76.6% 59.5 Retinal Image Overt
Crop-D 81.2% 57.0 Double Crop Overt
Crop-S 75.5% 47.6 Single Crop Overt
S3TA 82.3% 58.8 Whole Image Covert
FF-CNN 80.8% 57.0 Whole Image -

single-label classification and multilabel classification tasks without adver-
sarial training.

4.1 Model Performances on Classification Tasks. With the models
trained on ImageNet100 and MS-COCO, we report their top-1 accuracy
and F1 scores on the validation sets, which were not used for training the
models. Table 1 includes the top-1 accuracy on ImageNet100’s validation
set and F1 scores for multi-label recognition on MS-COCO’s validation set
for all models. It also summarizes the attention properties of all models
compared. For the ImageNet100 data set, models that receive full images
(FF-CNN and S3TA) are generally better than the models with sampling
images (Retina, Crop-D, and Crop-S), which may be attributable to the
large size of the objects in the image. For image-sampling models (Retina,
Crop-D, and Crop-S), a single glimpse may not capture the entire object.
In contrast, FF-CNN models view the entire object, which contributes to
their better performance. However, for MS-COCO, the model Retina’s F1
score surpasses the other models, which implies that the complex image
data sets with multiple small objects, such as MS-COCO, are more suitable
for the models with human-like image sampling strategy, compared to sim-
pler data sets with a single large object, such as ImageNet.

4.2 Model Attention Compared to Human Attention. In this batch of
experiments, we quantitatively and qualitatively compare the generated at-
tention maps with human attention. The proposed two-stream models, par-
ticularly the Retina model, successfully capture human-like attention with-
out direct supervision from human saliency data. The models with explicit
attention mechanisms (Retina, Crop-S, Crop-D, and S3TA) are trained to
produce and use the attention maps for object classification tasks. Although
FF-CNN lacks explicit attention mechanisms, we use class activation map
(CAM, Zhou et al., 2016) to highlight image regions contributing to object la-
bel predictions. Figure 4 illustrates the attention maps from humans, Retina
model, Crop-D, Crop-S, S3TA, and FF-CNN from the top row using the im-
ages from the validation set of SALICON (Jiang et al., 2015). In the visu-
alized attention maps, the Retina model and Crop-D largely overlap with
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Input Images

Human
Attention

Crop-S

S3TA

FF-CNN

Figure 4: Saliency maps from top to bottom: humans, Retina, Crop-D, Crop-S,
S3TA, and FF-CNN. Regions of higher saliency are highlighted in red, while
areas of lower saliency are depicted in blue.

Table 2: Saliency Prediction Metrics on the SALICON Data Set.

AUC 1 NSS 1 SIM 1 cCt

Retina 0.77+ < 0.01  0.41+ < 0.01 0.49% < 0.01  0.44+ < 0.01
Crop-D  0.75+ < 0.01 0.38 £0.01 0.48 +£0.01 0.41+0.01
S3TA 0.724+ < 0.01 0.29 +0.01 0.46+ < 0.01  0.29+ < 0.01
Crop-S 0.65 £0.02 0.23+£0.04 0.40 £0.02 0.26 £0.03
FFCNN  0.62+ < 0.01 0.21+0.01 0.40+ < 0.01 0.20 4+ 0.01

Note: Values in bold indicate the highest scores achieved across the models
for each metric.

the human attention maps. Attention from S3TA is more selective and frag-
mented, but still overlaps with human attention. However, the attended
areas from FF-CNN are fragmented and sometimes focus on nonessential
parts of the images.

Quantitative evaluation of attention accuracy aligns with the visual ob-
servation. We report quantitative metrics of AUC (area under the curve),
NSS (normalized scanpath saliency), SIM (similarity metric), CC (linear cor-
relation coefficient) in Table 2 to measure how close the attention produced
from the models is to the human attention. The result shows that the atten-
tion from the Retina model is the closest to the human attention, and Crop-
D is the second closest compared to the other models. This implies that the
input sampling schemes, with varying resolutions and resembling fovea-
periphery, might be helpful in producing attention maps that are similar to
human attention. On the other hand, FF-CNN produces the least human-
like attention maps.
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(a) Learned Fixation Points (b) Shifting Fixation Points
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Figure5: (a) Learned fixations from the first four steps. From the first fixation to
the last fixations are marked as red-blue-green-black. The first column presents
exemplar attention shifts. (b) Visualization of the retinal transformation as the
object is shifted from the fovea to the periphery. (c) Examples of the retinal trans-
formation as the hyperparameter b is changing from 8 to 16.

To validate the plausibility of the fixations, we visualize them in Fig-
ure 5a, where they are drawn from the attention maps generated by the
models. As illustrated in Figure 3, fixations are sampled from the models’
attention maps, and the inhibition of return (IOR) fosters models to explore
new areas of images. The first four fixations are marked with red, blue,
green, and black squares in order. Figure 5a demonstrates that the learned
fixation points are placed on the foreground objects as opposed to focusing
on background regions with no information.

4.3 Adversarial Attacks. Evaluating the robustness of computer vision
models against adversarial attacks is crucial for understanding their re-
silience and reliability in real-world applications. Adversarial attacks aim
to manipulate model predictions by introducing carefully crafted perturba-
tions to the input images. These attacks can be broadly classified into two
types: targeted and untargeted. In a targeted attack, the goal is to deceive an
image-computable model, which correctly classifies an image, into labeling
it as a different, attacker-specified class. In contrast, an untargeted attack
strives to reduce the likelihood of the model recognizing the image as its
original class, causing it to classify the image incorrectly.

We evaluate the adversarial robustness of the models trained on Ima-
geNet100 using the attack success rate (ASR), which represents the ratio
of successful attacks to total attack attempts. A model with a lower ASR is
deemed more resistant to attacks. For attack algorithms, projected gradient
descent (PGD) with L, is used while varying the maximum perturbation
budget allowed (¢). We iterate PGD 100 times with the step size at € /20. We
also consider fast gradient signed method (FGSM) attack (Goodfellow et al.,
2014) and SPSA attack (gradient-free; Uesato et al., 2018). All the sampling
methods (retinal transformation and image crop) are fully differentiable.
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Table 3: Attack Success Rates of the Models.

Model Untargeted PGD Targeted PGD

e 2e3 3e-3 5e-3 7e-3 3e-3 5e-3 7e-3 le-2
Retina 28.2% 42.4% 65.2% 78.8% 4.7% 13.6% 31.7% 55.2%
Crop-D 492% 732% 89.1% 96.1% 224% 56.6% 851% = 96.1%
Crop-S 651% 81.1% 93.0% 97.8% 31.2% 70.7% 88.6%  95.9%
S3TA 944%  971% 99.8% 99.9% 722% 932% 99.2%  100.0%
FF-CNN 915% 96.5% 99.8% 99.8% 82.8% 98.8% 99.8%  99.8%

Note: Values in bold indicate the highest scores achieved across the models for each
metric.

To understand how these attack strategies affect the dynamical nature
of our models, we further explore their responses under both targeted
and untargeted attack scenarios. The dynamical models (Crop-S, Crop-D,
Retina, and S3TA) are set to take 12 gazes at each image under the untar-
geted/targeted attack to minimize /maximize the prediction probability of
the true/target class from all gazes. To reflect the stochastic nature of eye
movements (Burak et al., 2010; Kuang et al., 2012), gaussian noise (with 0
mean and 0.1 standard deviation) is added to the fixation points generated
from the models (Crop-S, Crop-D, and Retina), and expectation over trans-
formation (EOT; Athalye et al., 2018) is used to deal with the randomness. In
our experiments, we average the gradients over 40 iterations. Considering
the huge amount of computational costs from 100 iterations of PGD and 40
iterations from EOT, we further sample the validation set of ImageNet100
to include 1000 images to reduce computational costs. For an SPSA attack,
we use a sample size of 4096.

4.3.1 Effects of the Retinal Transformation. Table 3 shows the ASR of dy-
namical models at the 12th step given adversarial examples with vari-
ous adversarial noise levels, epsilon (¢€). The result shows that the models
with overt attention (Crop-S, Crop-D, and Retina) are more robust than the
covert attention (S3TA). Table 4 shows the results from FGSM attack and
SPSA attack. Consistent with previous findings, we observe that combining
multiresolution patches (Crop-D) is more robust than a single-resolution
patch (in Crop-S; Vuyyuru et al., 2020). The model Retina maintains the
highest robustness compared to other baseline models and outperforms
Crop-S and Crop-D by a large margin. This result suggests that nonuni-
form retinal transformation is a key mechanism for adversarial robustness
among the three sampling strategies. In general, models using explicit fixa-
tions (Crop-S, Crop-D, and Retina) demonstrate greater robustness com-
pared to S3TA, whose robustness is relatively low, and akin to that of
FF-CNN when adversarial training is not applied.
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Table 4: Attack Success Rates from FGSM and SPSA.

Model FGSM SPSA
€ 2e-3 3e-3 5e-3 7e-3 7e-3 le-2 2e-2 3e-2

Retina 21.7% 31.7% 42.9% 52.6% 57%  13.5%  21.5%  27.3%
Crop-D 33.3% 44.1% 59.8% 65.8%  21.5%  26.7%  465% = 61.9%
Crop-S 522% 64.6% 779% 86.5%  659%  77.5%  89.5%  96.8%
S3TA 67.9%  76.5% 87.0% 90.6% 100.0% 100.0% 100.0%  100.0%
FF-CNN 82.0% 88.2% 93.5% 92.0% 100.0% 100.0% 100.0%  100.0%

Note: Values in bold indicate the highest scores achieved across the models for each
metric.

(a) ASR on 12 Step (b) ASR on All Steps
100 Retina Crop-S Crop-D _ S3TA
100 |~ L K\ |
80 80 ﬁ“
g 60
2" \__
20 %
II I I 2 40 epsilons
0 b, . - m— 3e-3
3e-3 5e-3 7e-3 e
epsilons 20 /"—\ T ded
e —7e-3
msm FF-CNN  msm Crop-D 0 -_— —le-2
e S3TA mm Retina
s Crop-S  mm FF-CNN-AT 1 12 24 1 12 24 1 12 241 12 24
Steps Steps Steps Steps

Figure 6: Results of targeted PGD attack. (a) Attack success rate (ASR) from
12th step. (b) ASR from all steps.

It should be noted that the performance of the S3TA model in our study,
particularly its attack success rate, differs from what was reported in the
original paper. This discrepancy arises from our focus on architectural de-
sign choices rather than learning strategies, such as adversarial training. In
our experiments, we employed S3TA to contrast the effects of overt atten-
tion (eye movements) and covert attention (soft attention) without the ad-
versarial training used in the original study. As a result, the S3TA model in
our research, lacking this adversarial training component, exhibits a higher
attack success rate than its counterpart in the original study.

4.3.2 Effects of the Number of Recurrent Steps. Unlike feedforward CNNs,
dynamical models can vary and unroll their computational graphs with in-
creasing time. Hence, we evaluate these models” ASR as a function of time
at each recurrent inference step. Figure 6a visualizes ASR at the 12th step
of the targeted attack from Table 3, including adversarially trained FE-CNN
(FF-CNN-AT), which achieves the highest robustness. Figure 6b shows ASR
for all 24 steps from the targeted PGD attack. All models except for the
model Retina appear to maintain or increase ASR by taking more glances
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(a)

100%
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Figure 7: (a) Methodology for generating adversarial probability maps: These
maps are created by systematically altering the fixation point across all regions
of the image and recording the model’s output probability of identifying the
target class used in a targeted adversarial attack scenario. (b) Visualization of
the experiment: The first row shows original images with fixations used during
attack generation (blue dot: first fixation; red dot: second fixation). Subsequent
rows present adversarial probability maps for each model under two scenar-
ios during the attack: (1) using only the first fixation and (2) incorporating both
first and second fixations. These scenarios reflect different levels of exposure to
adversarial influence. The color gradient on the maps signifies the model’s like-
lihood of misclassifying the image as the adversarial target class based on the
fixation: warmer colors (toward red) suggest higher probabilities and cooler col-
ors (toward blue) for lower probabilities. This indicates how the fixation strat-
egy affects the model’s vulnerability to adversarial attacks.

for object recognition. In contrast, the model Retina increases its robustness
during the steps both under 1 to 12 steps and after 12 to 24 steps the attack.

4.3.3 Effect of Sequential Eye Movements. To intuitively understand this
difference, we visualize the regions that are affected by the adversarial at-
tack for each model (see Figure 7). For each model (Crop-S, Crop-D, and
Retina), we generated two sets of adversarial images: the first set using
only the model’s initial, learned fixation point, reflecting the model’s natu-
ral point of focus in an adversarial context; and the second set incorporat-
ing an additional, artificially designated fixation, allowing us to examine
the impact of a two-step fixation sequence. In this sequence, the first adver-
sarial image is obtained using the model’s natural first fixation, while the
second image employs both the original and a new, predefined fixation in
the lower left corner, effectively simulating a more complex viewing pat-
tern. The second fixation is manually selected at the lower left corner to
ensure that the first fixation point will be located in the periphery of the
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second fixation. The first (blue) and the second (red) fixations are marked
on image examples in the first row of Figure 7b. Two adversarial images
from each model are generated under the targeted PGD attack: one deploy-
ing only the first fixation (blue) and the other deploying both fixations. The
resulting adversarial images are not shown in Figure 7. The same gaussian
noise and the targeted attack used for Table 3 and Figure 6 are used again
for the experiment.

Once the adversarial images are generated, the models take them as in-
put and perform a recognition task by making fixations on all the possible
locations on the images as illustrated in Figure 7a. In this experiment, our
goal is to assess the model’s response to adversarial attacks by analyzing
its performance across a range of potential fixation points. To this end, we
overlay a 32 x 32 virtual grid over each adversarial image, as depicted at
the bottom of Figure 7a. This grid represents an array of possible fixation
locations, allowing us to simulate how the model might focus on different
parts of the image. Each grid point serves as a hypothetical fixation site, en-
abling a methodical exploration of the model’s responses to a diverse set of
focal points.

For each grid location, we direct the model’s fixation to that point and
record its prediction probability for a randomly selected target class used
in the targeted attack. These probabilities are mapped to the corresponding
locations on the grid, as shown in Figure 7a, top. This approach provides
a detailed perspective on how the model processes adversarial images, re-
vealing its susceptibility or resilience to attacks based on where it focuses.

Each fixation is treated as an isolated event in this experiment, meaning
the recurrent neural network (RNN) in the model’s ventral stream is reset
for every new fixation. This enables us to consider the model’s object recog-
nition capabilities as a series of independent, one-step tasks. By systemati-
cally varying the fixation points across the grid and observing the model’s
classification outcomes, we gain valuable insights into how its visual atten-
tion and processing strategies influence its robustness against adversarial
attacks.

Figure 7b displays the probability maps for the target class from the mod-
els. In these maps, color indicates the likelihood of the models classifying
the image as the targeted class in the adversarial attack, with red signifying
a higher probability and blue a lower one. This means that fixations placed
on red regions in an adversarial image are likely to lead the model to clas-
sify the image as the target class. Conversely, fixations on blue regions tend
to result in the model not classifying the image as the target class. Thus,
the probability maps effectively represent the model’s vulnerability to the
adversarial attack, considering all possible fixation locations on the image.

As shown in Figure 7b, the locations near the attacked fixation points
are more vulnerable. However, although the fixations are the same across
all models, the area that is highly affected by the adversarial attack is differ-
ent for distinct models. The Retina model shows the smallest area affected
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by the adversarial attack compared to the Crop-S and Crop-D models. By
comparing the probability maps from a single fixation and two fixations,
we observe that the attacked area near the first fixation is persistently af-
fected during the second attack. However, for the Retina model, the area af-
fected by the attack at the first fixation is reduced after including the second
fixation.

This observation can be attributed to the fact that the convolutional op-
eration on the retinal images does not maintain the property of translational
equivariance, while the convolution on the images in a regular grid does.
When the fixation in Crop-S or Crop-D changes a little bit, the representa-
tions after convolutional operations will be simply shifted to the new fixa-
tion location. However, for the Retina model, small changes in the fixation
will result in large changes in the retinal images after foveation and nonuni-
form sampling. This may further alter its representation significantly in the
stacked CNN layers. This fixation-dependent representation is not a sim-
ple translation but a change of the whole layout. Therefore, the adversarial
noise generated at the certain fixation does not necessarily fool the Retina
model when a fixation point is made on other locations.

This is in line with the human brain, where foveal vision and peripheral
vision have different functional roles. The foveal vision focuses on object
recognition, while the peripheral vision has better adversarial robustness
(Harrington & Deza, 2021; Logothetis et al., 1995; Riesenhuber & Poggio,
1999). In Figure 7, when the first fixation is made on the object, the adver-
sarial noise is calculated based on the object in the foveal vision. Then when
the second fixation is set at the corner, the object is placed in the peripheral
vision. Because of this difference, the adversarial noise from the foveal vi-
sion (from the first fixation) fools the model less effectively when it is placed
on the peripheral vision (from the second fixation).

5 Discussion

This study introduces brain-inspired mechanisms into computer vision
models, specifically focusing on retinal sampling, adaptive eye movement,
and recurrent processing. Our models can produce more human-like visual
attention and be more robust against adversarial attacks. Through compu-
tational experiments, we demonstrate that (1) visual attention emerges as
a strategy that optimizes eye movement for efficient object recognition and
(2) nonuniform retinal sampling and varying fixations contribute to adver-
sarial robustness.

We found that the Retina model and the Crop-D model exhibit su-
perior performance in mimicking human visual attention compared to
baseline models. A key feature of these models is their fovea/periphery
approach, which involves high-resolution foveal viewing combined with
low-resolution peripheral processing. This approach mirrors the human
vision system where both foveal and peripheral views are integral for
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attention. The high-resolution foveal view in these models allows for de-
tailed analysis of specific regions of interest, paralleling the human use of
fovea to focus on and scrutinize central vision details. In contrast, the low-
resolution peripheral processing effectively manages the broader scene con-
text, assisting in overall interpretation and situational awareness, similar to
human peripheral vision.

This dual approach to visual processing, inspired by human vision, en-
ables these models to effectively learn and prioritize visual attention. By
dynamically shifting focus between detailed and broader views, the mod-
els more accurately identify relevant image areas, enhancing their ability to
mimic human attention patterns. This capability aligns with the concept of
attention mining (Li et al., 2018; Wei et al., 2017) in computer vision, wherein
the models, akin to human visual processing, distribute attention across a
wider range of relevant features, reducing biases toward certain dominant
features. The retina model, in particular, excels in this aspect by adaptively
focusing on various parts of an image, thus offering a more balanced and
comprehensive analysis.

The implications of these findings are significant, suggesting that in-
tegrating elements of human visual processing, especially the balance
between foveal and peripheral attention, can create more intuitive and
effective Al vision systems. These systems would excel not only in recog-
nizing fine details but also in understanding the broader context of a scene.
Such advancements hold promise for applications in areas like autonomous
navigation, surveillance, and human-computer interaction, where nuanced
visual perception is crucial.

In this study, models incorporating retinal transformation have emerged
as the most robust among all tested. This superior robustness can be at-
tributed to retinal sampling, which complicates adversarial attacks. Adver-
sarial perturbations tailored for a specific retinal pattern, associated with
a given fixation, prove difficult to generalize across different retinal pat-
terns. This is because as the eyes move and fixate on different locations,
the retinal patterns of the same objects are represented with varying fea-
tures, resolutions, and scales. Unlike models that process images on a reg-
ular grid, where perturbations at one location can easily be transferred to
other areas, retinal sampling introduces an element of unpredictability for
attackers, thereby enhancing robustness.

Building on the advantages of retinal transformation, models with se-
quential eye movement further augment this robustness. In scenarios with-
out time constraints, such models have the capacity to scan an image
multiple times, each time attending to a different region. This adaptabil-
ity, especially when eye movements are stochastic, introduces an addi-
tional layer of complexity for attackers. If attackers lack knowledge of
the model’s subsequent fixation points, our experiments suggest that the
model can use additional glances to rectify errors induced by adversar-
ial images. Notably, models with overt eye movement or overt attention
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consistently demonstrate greater robustness compared to the model with
covert attention (S3TA). This finding underscores the significance of vari-
able attention mechanisms in enhancing model resilience. The integration
of these brain-inspired approaches—retinal transformation and sequential
eye movements—not only bolsters the models” defenses against adversar-
ial attacks but also aligns their functioning more closely with human visual
processing. Such advancements hold promise for future developments in
Al potentially leading to more intuitive, efficient, and resilient computer
vision systems.

Building on the strengths and insights gained from our research, it
is important to also acknowledge some of the limitations and areas for
further exploration. In advancing the work of Vuyyuru et al. (2020), we
integrated an attention mechanism in our models that learns and adapts fix-
ation points dynamically. This approach marks a departure from the static
fixation strategies used in prior studies. However, our investigation into
the impact of this learned fixation strategy on model robustness revealed
complex dynamics. We observed no significant difference in robustness be-
tween learned and random or predefined fixations (results are not included
in the main text). However, a noticeable decrease in robustness occurred
when models operated without the inhibition of return (IOR), suggesting
the importance of varied and shifting fixation points in enhancing adver-
sarial robustness.

The influence of the data set characteristics on our findings is also note-
worthy. Our evaluations primarily used the ImageNet data set, charac-
terized by images with large, prominent objects. In such a context, both
random and learned fixations often focus on these dominant objects, reduc-
ing the distinction between the two fixation strategies. A clearer difference
might emerge with data sets featuring smaller objects, where the precision
of fixations could play a more significant role. Absence of IOR led to static
fixations, allowing for the persistence of adversarial patterns. In contrast,
models with IOR or adaptive fixation strategies, which involve dynamic
eye movements, showed an ability to mitigate the impact of adversarial pat-
terns over time, enhancing overall robustness.

In our exploration of brain-inspired mechanisms within computer vi-
sion models, we have only scratched the surface of potential applications.
While our study primarily focused on retinal transformation and adaptive
eye movements, other mechanisms prevalent in the brain, such as top-down
and recurrent connections, hold significant promise. In our models, recur-
rent connections were utilized at the end of the VentralCNN, but top-down
connections, crucial for integrating higher-level cognitive processes with
sensory inputs, were not implemented. Delving deeper into these mecha-
nisms could pave the way for developing more sophisticated and resilient
computer vision models. This exploration has the potential not only to en-
hance Al technology but also to contribute to our understanding of human
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vision processes and behaviors, bridging the gap between computational
modeling and biological reality.

It is also essential to address some limitations in our study. One no-
table area is the object recognition accuracy of models using retinal trans-
formation, particularly in single-label classification tasks. This approach,
while mimicking the human eye’s foveal-peripheral dynamics, introduces
anonlinear distortion to images. The high-resolution focus in the fovea and
significant downsampling in peripheral areas can affect the efficiency of
convolutional operations, especially since the same kernels process regions
of varying scale. Consequently, our model exhibits suboptimal performance
compared to other baseline methods when dealing with large objects that
extend into the peripheral field. Conversely, for images with smaller ob-
jects or more complex scenes, the retinal transformation demonstrates supe-
rior performance, underscoring its suitability for handling intricate visual
information.

Appendix A: Foveated Imaging

In the foveated image, the foveated region maintains high acuity, but the pe-
riphery has reduced acuity. To implement the eccentricity-dependent acu-
ity, we apply different levels of gaussian blur based on the eccentricity. Here,
we assume that the fixation is at the center of an image. Similar procedures
can be generalized to noncentered fixation.

To illustrate a varying blurring effect, we use three 2D isotropic gaussian
kernels, K1, Ky, and Kys. The kernel Ky (i € [1, 2, 3]) isin size 7 x 7 and has
a variance o}2. The 031, o1, and o33 are set to 1, 3, and 5, respectively, in this
study.

First, the gaussian kernels Ky, Kj», and K3 are separately applied to the
original image, resulting in blurred images, A1, Ay, and Aps. The original
image (A) and the blurred images are shown in Figure 8a.

Second, region masks are produced. The region masks are used to
confine the regions with a specific level of blurring. The masks appear as
concentric rings. They act as filters to pass the image with the desired reso-
lution to the target area. Applying such masks to the blurred images makes
the blurring dependent on the eccentricity. For a foveated image, a region
mask designed to pass the fovea region is applied to an image with original
resolution (see Figure 8b, top row). For the periphery, region masks for the
peripheral regions are applied to the blurred images (shown in Figure 8b in
the second, third, and fourth rows from the top).

To generate region masks, 2D isotropic gaussian kernels are first gen-
erated. The gaussian kernels are denoted as Ty, Ty, and T3, and they
are in size 224 x 224. Ty, Ty, and T3 have means at the fixated loca-
tion and variances o7, 03, and o3, respectively. (In this study, oy = 40,
op =70, 013 = 90.) The generated gaussian kernels are normalized to make
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(a) Gaussian (b) Region (c) Masked
Blurred Masks Images
Images

Blurred Blurred Original
Image

Blurred

Figure 8: Illustration of the foveated image generated from an example image,
when the fixation is at the image center. (a) The original image is blurred by ap-
plying different gaussian kernels, with (b) region masks applied to the blurred
images. The black and white colors represent the range of values (0, 1). (c) Re-
sults of element-wise multiplication of panels a and b. (d) The foveated image
by summing up the masked images.

their maximal amplitude 1.0. The region masks M1, M,, M3, and M, are
generated as equations A.la to A.1d

M, =Ty, (A.1a)
M; =Ty —Thn. (A.1b)
M; =T —Tp, (A.10)
My=1-"T, (A.1d)

where 1 is a 2D matrix filled with ones whose size is identical to T;3 The
region masks are shown in Figure 8b, and it can be checked that each region
mask passes distinct image regions based on the eccentricity.

Once the blurred images and the region masks are obtained, the region
masks are applied to the corresponding original and blurred images as
element-wise multiplications (see equations A.2a to A.2d):
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Ayl =A0Th, (A.2a)
App = Ap © T, (A.2b)
Apz = A © T, (A.20)
Ams = A O Tha, (A.2d)

where the operation © is an element-wise multiplication. The first region
mask T designed to pass the center of fixation is applied to the original
image so that the foveated image maintains high acuity in the fixated re-
gion. On the contrary, the region masks assigned to the peripheral regions
are applied to the corresponding blurred images. The masked images are
shown in Figure 8c.

Finally, the masked images are summed together to produce the foveated
image:

Foveated image = A1 + Apz + Az + Apa. (A.3)

The resulting image is shown in Figure 8d. In the foveated image, the
region near the fixation maintains the high acuity, and the periphery regions
are gradually blurred as the eccentricity grows.

Appendix B: ImageNet100

The randomly selected 100 classes from 1000 classes of ILSVRC2012 (Deng
et al., 2009) are:

[n01496331 n01756291 n01833805 n02025239 n02100583 n02137549
n02480495 n02808440 n03124043 n03291819 n03770679 103902125
n04201297 n04371430 n09246464 n01531178 n01768244 n01843383
n02028035 n02102480 n02138441 n02492660 n02834397 n03127747
n03388183 n03781244 n03956157 n04251144 n04399382 n09472597
n01630670 n01797886 n01847000 n02077923 n02105412 n02172182
n02504458 n02892201 n03131574 n03443371 n03785016 n04037443
n04275548 n04505470 n01644900 n01806143 n01871265 n02087046
n02106166 n02190166 n02640242 n02963159 n03180011 n03494278
n03796401 n04040759 n04325704 n04536866 n01667778 n01807496
n01872401 n02088632 n02108089 n02233338 n02701002 n02971356
n03216828 n03662601 n03837869 n04049303 n04335435 n04589890
n01669191 n01817953 n01968897 n02089078 n02113712 n02317335
n02787622 n02977058 n03249569 n03710193 n03877472 n04146614
n04355338 n04591713 n01694178 n01824575 n01980166 n02094258
n02119789 n02410509 n02795169 n03100240 n03272010 n03733131
n03877845 n04162706 n04356056 n07614500]
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