

1

2 **Understanding Moisture Variations in Madden-Julian Oscillation in NCAR**

3 **CAM5.3**

4

5 Mengmiao Yang

6 Institute of Geography, Key Laboratory for Humid Subtropical Eco-Geographical Processes of
7 the Ministry of Education, Fujian Normal University

8 Guyu Cao

9 Shenzhen Capital Group, Shenzhen, China

10 School of Economics and Management, Tsinghua University

11 Guang J. Zhang

12 Scripps Institution of Oceanography, La Jolla, California

13 Yong Wang

14 Department of Atmospheric and Oceanic Sciences, Fudan University

15 For submission to J. Climate

16 Revised on April 17, 2025

17

18 Corresponding author: Guang J. Zhang, Scripps Institution of Oceanography, La Jolla, CA
19 92093. Email: gzhang@ucsd.edu

25

Abstract

26 Previous observational and modeling studies have suggested that moisture plays a
27 dominant role in Madden-Julian Oscillation (MJO) evolution. Using a realistic MJO simulation by
28 incorporating the role of mesoscale stratiform heating in the Zhang-McFarlane deep convection
29 scheme in the National Center for Atmospheric Research Community Atmosphere Model version
30 5.3 (NCAR CAM5.3), this study investigates factors responsible for the improved MJO simulation
31 by examining moisture variations during different MJO phases. Results of column moist static
32 energy (MSE) and moisture budgets show that during suppressed phases of MJO vertical advection
33 acts to increase MSE anomalies for the development of deep convection while radiative heating
34 and surface heat flux decrease MSE. The opposite holds true at MJO mature phase. However, their
35 roles largely cancel each other, leaving horizontal advection to play a major role in low-level MSE
36 increase during the suppressed phase of MJO and MSE decrease after the MJO mature phase. A
37 further analysis combining moisture and temperature budget equations is performed to
38 demonstrate the effects of vertical advection and cloud processes within the column at each level.
39 The vertical profiles of column confined moisture tendency show that large-scale vertical
40 advection induced by latent heat release and evaporation within shallow convective clouds is also
41 important to the lower tropospheric moistening during suppressed phases. This confirms the role
42 of shallow convection in low level moistening ahead of MJO deep convection. Radiative heating
43 is vital across all MJO phases and its warming effects keep the column humidity anomaly
44 maintained in mature phases. None of these features are reproduced by the standard CAM5.3.

45

46 **1. Introduction**

47 The Madden-Julian Oscillation (MJO) has been studied extensively since it was first
48 discovered by Madden and Julian (1971, 1972) because of its important impacts on tropical and
49 global climate. The MJO is characterized by an envelope of enhanced, highly organized deep
50 convection and precipitation propagating eastward from the Indian Ocean to the Western Pacific
51 at about 5 m/s (Zhang, 2005, 2013). Although significant progress has been achieved in many
52 aspects (e.g. the multiscale structure and geographical preference of MJO) and several theories
53 (e.g. considering MJO as an atmospheric response to independent forcing or atmospheric
54 instability) have been developed to understand the MJO dynamics (Zhang, 2005, 2013; Li, 2014;
55 Li et al., 2020; C. Zhang et al., 2020), MJO simulation remains poor in most of the global climate
56 models (GCMs) (e.g. Hung et al., 2013; Wang et al., 2017, 2018; Le et al., 2021). Many
57 observational (e.g. Sherwood, 1999; Wang and Li, 2020) and modeling (e.g. Grabowski, 2003;
58 Derbyshire et al., 2004) studies have shown that moisture variation plays a critical role in
59 controlling convection. Thus, a thorough understanding of moisture variation in MJO evolution is
60 useful for improving the simulation of convection associated with MJO in numerical models.

61 Two main theories have been proposed to explain moisture variation during MJO evolution.
62 One treats MJO as a moisture mode, in which the associated growth of convection is characterized
63 by changes of anomalous moisture (e.g. Maloney, 2009; Hannah and Maloney, 2011; Sobel and
64 Maloney, 2013; Adames and Maloney, 2021) under weak temperature gradient (WTG)
65 approximation (Sobel et al., 2001). It can be quantified with gross moist stability (GMS, Neelin
66 and Held, 1987) defined originally as the export of vertically integrated moist static energy (MSE).
67 A normalized GMS was later proposed by Raymond et al. (2009). The enhanced MJO with
68 negative GMS would suggest the instability of moisture mode. In other words, the variation of
69 moisture could diagnose the development and distribution of convection. The other is based on a
70 recharge-discharge mechanism (Benedict and Randall, 2007), in which the column integrated MSE
71 builds up, leading to the generation of deep convection, and gradually decreases once precipitation
72 forms (e.g. Maloney, 2009). In this view, the region to the east of existing MJO is favored by the
73 recharging processes to moisten the low-level troposphere during suppressed convective period.
74 When convection deepens, the free tropospheric moisture is discharged through precipitation.
75 Although the fundamental mechanism to both the moisture mode framework and the recharge-
76 discharge framework is the interaction between convection and free-tropospheric moisture, these

77 two theories have clear differences in their interpretation on the control mechanism of free-
78 tropospheric humidity variations and the way anomalous moisture and convection interact. In
79 nature, the enhancement of column integrated MSE is initiated from the generation of shallow
80 convection and horizontal advection, which increases the low-level positive moisture anomalies,
81 enhancing the development of deep convection. As argued by Chikira (2014) and Wolding and
82 Maloney (2015), moisture mode theory emphasize the important role of shallow convection on
83 maintaining the existing instability through the amplification of moisture by column processes.
84 On the other hand, the recharge-discharge theory treats the role of shallow convection as gradual
85 moistening.

86 The MSE has been widely used to understand how moisture varies in intraseasonal
87 oscillations and other tropical perturbations in GCMs and observations (e.g. Back and Bretherton,
88 2006; Maloney, 2009; Maloney et al., 2010; Kiranmayi and Maloney, 2011; Hannah and Maloney,
89 2011; Andersen and Kuang, 2012; Cai et al., 2013). Different terms in the column MSE budget
90 equation have distinct contributions to MJO propagation. For instance, horizontal and vertical
91 advection works to increase the instability while surface turbulent fluxes and radiative heating
92 stabilize the MJO at suppressed phases (e.g. Kiranmayi and Maloney, 2011). The ultimate goal of
93 MSE budget analysis is to understand how the net moisture tendency varies in a column because
94 under the WTG approximation the MSE budget becomes the moisture budget. In this regard, an
95 analysis approach proposed by Chikira (2014) on the vertical profile of moisture change within
96 the column is useful for understanding the moisture variation. His results confirm the importance
97 of horizontal advection in MJO eastward propagation and point out the crucial role of external
98 heating (cooling) such as radiative heating (cooling) in moistening (drying) through large-scale
99 vertical motion. Later work along this line of research using reanalysis and superparameterization
100 provides new perspectives on why a small source of moisture anomaly might be critical to MJO
101 amplitude by diagnosing vertical motion from diabatic heating (Wolding and Maloney, 2015;
102 Wolding et al., 2016). Adames (2017) also expanded on the work of Chikira (2014), showing that
103 the moisture tendencies accurately describe the observed distribution of MJO-related rainfall.
104 Using a cloud-resolving model (CRM) simulation during the Dynamics of the Madden-Julian
105 Oscillation (DYNAMO) project, Janiga and Zhang (2016) noted that low-level moistening ahead
106 of MJO passage results from shallow convection. By modifying the cumulus parameterization in
107 Weather Research Forecasting (WRF), Liu et al. (2022) found improved simulation of MJO

108 propagation. This was attributed to the enhanced feedback between shallow convection and low-
109 level moisture convergence, which result in amplified shallow convective heating.

110 Although the role of shallow convection in moistening the environment for the development
111 of MJO-associated deep convection has been demonstrated in many studies (e.g. Mapes, 2000;
112 Slingo et al., 2003; Zhang and Mu, 2005; Mu and Zhang, 2008; Zhang and Song, 2009; Hsu and
113 Li, 2012; Hsu et al., 2014; Cao and Zhang, 2017; Shin and Baik, 2023), there are still many
114 unanswered questions. For example, how does enhanced shallow convection in the suppressed
115 phases of MJO serve to moisten the lower atmosphere exactly? How does vertical advection
116 interact with convective cloud processes during MJO lifecycle? This study investigates the
117 moisture variation during the MJO evolution using simulations from Cao and Zhang (2017)
118 (hereafter CZ17). By incorporating mesoscale stratiform heating structure in the Zhang-McFarlane
119 deep convection scheme in an NCAR CAM5 simulation (referred to as BOTC hereafter, as in
120 CZ17), CZ17 found that the characteristics of the simulated MJOs compare well with those in
121 observations. The substantial improvements in the BOTC run compared to the standard CAM5 run
122 (referred to as the CTRL run) were evaluated thoroughly in CZ17. It was mainly attributed to
123 increased shallow convection ahead of deep convection during suppressed phases, which moistens
124 the lower troposphere by vertical advection. However, how the shallow convection facilitates the
125 MJO development during suppressed phases and the exact physical mechanism of moisture
126 variation during the MJO lifecycle are still unclear. Given the importance of moisture variations
127 in the MJO life cycle, in this study, we will use the framework from Chikira (2014) based on WTG
128 approximation to diagnose the impact of mesoscale heating profile on the formation of the MJO-
129 scale moisture anomalies in the MJO simulations in CAM5.3. Under this framework, how
130 modified convective parameterization improves the MJO simulation can be revealed through
131 column processes analysis. Recently, Chen et al. (2021) also implemented a mesoscale convective
132 heating parameterization similar to that in CZ17 into the DOE E3SM v1 and found similar
133 improvement in MJO simulation. Thus, the results from this study may be applicable to other
134 GCMs as well.

135 The remainder of the paper is organized as follows. The model, analysis method and data
136 used in this study are described in section 2. Section 3 provides the results of moisture variation
137 and gives insights on how moisture varies during MJO by using column MSE budget and the

138 vertical profile of column confined moisture budget. Discussion and conclusions are presented in
 139 section 4.

140 **2. Model, method, and data**

141 The standard version of the National Center for Atmospheric Research Community
 142 Atmosphere Model version 5.3 (NCAR CAM5.3) is used in this study. It has a vertical resolution
 143 of 30 levels and a horizontal resolution of $1.9^\circ \times 2.5^\circ$ (Neale et al., 2010). The planetary boundary
 144 layer parameterization uses a diagnostic turbulent kinetic energy based scheme (Bretherton and
 145 Park, 2009). Shallow convection is represented by Park and Bretherton (2009), and deep
 146 convection is parameterized by the Zhang-McFarlane scheme (Zhang and McFarlane, 1995,
 147 hereafter ZM).

148 This study examines the moisture variation at MJO-scale by analyzing the heat and moisture
 149 budgets, which in pressure coordinates are given by

$$150 \quad \frac{\partial \bar{s}}{\partial t} + \bar{\mathbf{V}}_h \cdot \nabla \bar{s} + \bar{\omega} \frac{\partial \bar{s}}{\partial p} = L(c - e) + \bar{Q}_R - \frac{\partial \bar{\omega} \bar{s}}{\partial p} \quad (1)$$

$$151 \quad \frac{\partial \bar{q}}{\partial t} + \bar{\mathbf{V}}_h \cdot \nabla \bar{q} + \bar{\omega} \frac{\partial \bar{q}}{\partial p} = -(c - e) - \frac{\partial \bar{\omega} \bar{q}}{\partial p} \quad (2)$$

152 where $\bar{s} = C_p \bar{T} + g \bar{z}$ is dry static energy, \bar{q} is specific humidity, C_p and L denote specific heat at
 153 constant pressure and latent heat of vaporization, respectively. c is condensation rate, e is
 154 evaporation rate, $\bar{\mathbf{V}}_h$ represents horizontal velocity vector, $\bar{\omega}$ is vertical velocity, \bar{Q}_R represents
 155 radiative heating, and $-\frac{\partial \bar{\omega} \bar{s}}{\partial p}$ and $-\frac{\partial \bar{\omega} \bar{q}}{\partial p}$ are the eddy transport of DSE and moisture, respectively.

156 Overbar denotes average over the GCM grid box. \bar{Q}_R can be written in flux form as $g \frac{\partial F_R}{\partial p}$, where

157 F_R is radiative flux. $-\frac{\partial \bar{\omega} \bar{s}}{\partial p}$ and $-L \frac{\partial \bar{\omega} \bar{q}}{\partial p}$ can be written as $g \frac{\partial F_s}{\partial p}$ and $g \frac{\partial F_L}{\partial p}$, where F_s and F_L are the
 158 sensible and latent heat fluxes due to subgrid scale eddies, presumably by convection in the free
 159 troposphere and turbulence in the boundary layer. Combining Eqs. (1) and (2) gives the MSE
 160 budget equation,

$$161 \quad \frac{\partial \bar{h}}{\partial t} = -\bar{\mathbf{V}}_h \cdot \nabla \bar{h} - \bar{\omega} \frac{\partial \bar{h}}{\partial p} + g \frac{\partial F_L}{\partial p} + g \frac{\partial F_s}{\partial p} + g \frac{\partial F_R}{\partial p} \quad (3)$$

162 where $\bar{h} = \bar{s} + L \bar{q}$ is MSE.

163 One way to understand how tropospheric specific humidity is affected by various processes
 164 during MJO is to use column integrated MSE. The vertically integrated \bar{h} budget can be formally
 165 written from Eq. (3) as (Neelin and Held, 1987; Maloney, 2009; Kiranmayi and Maloney, 2011),

166 $\langle \frac{\partial \bar{h}}{\partial t} \rangle = -\langle \bar{V}_h \cdot \nabla \bar{h} \rangle - \langle \bar{\omega} \frac{\partial \bar{h}}{\partial p} \rangle + LH + SH + \langle LW \rangle + \langle SW \rangle$ (4)

167 where the angle brackets denote mass-weighted column integral from the surface to the top of the
 168 atmosphere, $\langle x \rangle = \frac{1}{g} \int_{P_T}^{P_B} x dp$. $\langle \frac{\partial \bar{h}}{\partial t} \rangle$ represents the vertically integrated \bar{h} tendency, the first
 169 and second terms on the right-hand side (rhs) represent the column integrated export of \bar{h} due to
 170 horizontal and vertical advections, $\langle LW \rangle$ and $\langle SW \rangle$ are the net longwave and shortwave
 171 fluxes into the atmosphere, LH and SH are the surface latent and sensible heat fluxes.

172 Eqs. (1) and (2) can also be combined to examine the moisture field under the weak
 173 temperature gradient (WTG) approximation (Sobel et al., 2001) following Chikira (2014). When
 174 the eddy transport terms due to convection are expressed explicitly in terms of convective mass
 175 flux and detrainment, Eqs. (1) and (2) can be rewritten as (Yanai et al., 1973; Chikira, 2014; Janiga
 176 and Zhang, 2016),

177 $\frac{\partial \bar{s}}{\partial t} + \bar{V}_h \cdot \nabla \bar{s} + \bar{\omega} \frac{\partial \bar{s}}{\partial p} = \bar{D}_s - M_c g \frac{\partial \bar{s}}{\partial p} + \tilde{Q}_i + L(\tilde{c} - \tilde{e}) + \bar{Q}_R + \bar{S}_{df}$ (5)

178 $\frac{\partial \bar{q}}{\partial t} + \bar{V}_h \cdot \nabla \bar{q} + \bar{\omega} \frac{\partial \bar{q}}{\partial p} = \bar{D}_q - M_c g \frac{\partial \bar{q}}{\partial p} - (\tilde{c} - \tilde{e}) + \bar{Q}_{df}$ (6)

179 where \tilde{c} is large-scale condensation rate, \tilde{e} is evaporation of large-scale precipitation in the
 180 environment, \bar{D}_q and \bar{D}_s are tendencies due to detrainment from convection, $M_c = \rho \sigma w_c$ is the net
 181 convective mass flux, \tilde{Q}_i is latent heating from liquid-ice phase transition, \bar{S}_{df} and \bar{Q}_{df} are heating
 182 and moistening from vertical diffusion. Tildes denote the mean value outside of convection in a
 183 grid box (environment). By definition, the grid-mean vertical velocity is the sum of mass flux
 184 inside convection and vertical velocity in the convection environment:

185 $\bar{\omega} = -M_c g + \tilde{\omega}$ (7)

186 where $\tilde{\omega}$ is environmental vertical velocity. Substituting $\bar{\omega}$ in Eq. (7) into Eqs. (5) and (6) gives,

187 $\frac{\partial \bar{s}}{\partial t} + \bar{V}_h \cdot \nabla \bar{s} + \tilde{\omega} \frac{\partial \bar{s}}{\partial p} = \bar{D}_s + \tilde{Q}_i + L(\tilde{c} - \tilde{e}) + \bar{Q}_R + \bar{S}_{df}$ (8)

188 $\frac{\partial \bar{q}}{\partial t} + \bar{V}_h \cdot \nabla \bar{q} + \tilde{\omega} \frac{\partial \bar{q}}{\partial p} = \bar{D}_q - (\tilde{c} - \tilde{e}) + \bar{Q}_{df}$ (9)

189 By applying the WTG approximation, Eq. (8) takes the following form,

190 $\tilde{\omega} \frac{\partial \bar{s}}{\partial p} = \bar{D}_s + \tilde{Q}_i + L(\tilde{c} - \tilde{e}) + \bar{Q}_R + \bar{S}_{df}$

191 or

192 $\tilde{\omega} = (\frac{\partial \bar{s}}{\partial p})^{-1} [\bar{D}_s + \tilde{Q}_i + L(\tilde{c} - \tilde{e}) + \bar{Q}_R + \bar{S}_{df}]$ (10)

193 With this, Eq. (9) can be rewritten as,

$$194 \quad \frac{\partial \bar{q}}{\partial t} = -\bar{V}_h \cdot \nabla \bar{q} - \tilde{\omega} \frac{\partial \bar{q}}{\partial p} + \bar{D}_q - (\tilde{c} - \tilde{e}) + \bar{Q}_{df} = -\bar{V}_h \cdot \nabla \bar{q} + \left(\frac{\partial \bar{q}}{\partial t} \right)_{column} \quad (11)$$

195 where

$$196 \quad \left(\frac{\partial \bar{q}}{\partial t} \right)_{column} = -\tilde{\omega} \frac{\partial \bar{q}}{\partial p} + \bar{D}_q - (\tilde{c} - \tilde{e}) + \bar{Q}_{df}$$

$$197 \quad = \left(\frac{\partial \bar{q}}{\partial p} \right) \left(\frac{\partial \bar{s}}{\partial p} \right)^{-1} [\bar{D}_s + \tilde{Q}_i + L(\tilde{c} - \tilde{e}) + \bar{Q}_R + \bar{S}_{df}] + \bar{D}_q - (\tilde{c} - \tilde{e}) + \bar{Q}_{df}$$

$$198 \quad = (\alpha - 1)(\tilde{c} - \tilde{e}) + \frac{\alpha}{L} (\bar{Q}_R + \tilde{Q}_i) + (\bar{D}_q + \frac{\alpha}{L} \bar{D}_s) + (\bar{Q}_{df} + \frac{\alpha}{L} \bar{S}_{df}) \quad (12)$$

199 where

$$200 \quad \alpha = -L \left(\frac{\partial \bar{q}}{\partial p} \right) \left(\frac{\partial \bar{s}}{\partial p} \right)^{-1}$$

201 and

$$202 \quad \alpha - 1 = - \left(\frac{\partial \bar{s}}{\partial p} \right)^{-1} \left[L \left(\frac{\partial \bar{q}}{\partial p} \right) + \left(\frac{\partial \bar{s}}{\partial p} \right) \right] = - \left(\frac{\partial \bar{h}}{\partial p} \right) \left(\frac{\partial \bar{s}}{\partial p} \right)^{-1} \quad (13)$$

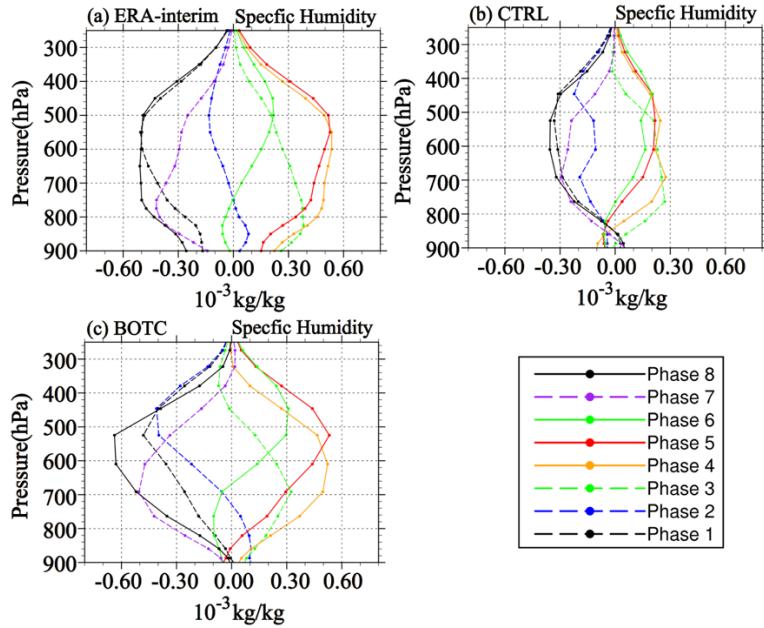
203 measures the ratio of the lapse rate of moist static energy to that of dry static energy. In the lower
 204 troposphere $\partial \bar{h} / \partial p > 0$, thus $\alpha - 1 > 0$; in the upper troposphere $\partial \bar{h} / \partial p < 0$, thus $\alpha - 1 < 0$
 205 since $\left(\frac{\partial \bar{s}}{\partial p} \right)^{-1}$ is negative for stable atmosphere. $\alpha - 1$ characterizes the efficiency of moistening
 206 (drying) at a given level by vertical advection through vertical motion induced by the external
 207 heating (cooling). It is related to the original definition of the GMS by Neelin and Held (1987) and
 208 the shallow water GMS described by Sobel and Maloney (2013) and Adames and Kim (2016).

209 The net effect of vertical advection, cloud processes and vertical diffusion within a column is
 210 referred to as “column process” by Chikira (2014) since these processes are confined to a single
 211 atmospheric column. The first term on the rhs of Eq. (12) represents the net effect of condensation
 212 minus evaporation in the convection environment (e.g. stratiform). When there is net condensation
 213 in the lower troposphere, it moistens the atmosphere. While this goes counterintuitive, it can be
 214 understood if the atmospheric motion is considered together with the WTG approximation. In the
 215 lower troposphere when there is condensation, the condensational heating generates an upward
 216 motion such that the heating is balanced by the adiabatic cooling. The upward motion leads to
 217 moistening from vertical advection that overpowers the condensation due to strong vertical
 218 gradient in moisture, thereby leading to net moistening. In the upper troposphere, due to weak
 219 vertical moisture gradient, condensation leads to net drying, as expected from conventional

thinking. The second, third and last terms on the rhs of Eq. (12) are moistening due to the sum of radiative heating and freezing heat, detrainment of moisture and DSE, and moisture and heat diffusion, respectively. All the diabatic heating terms (e.g. radiative heating) affect moisture through the implied vertical advection by the heating-induced vertical motion. Thus, analyzing the moisture budget in terms of the column process is not only consistent with the column MSE budget, but also provides extra benefits by quantifying the effects of individual processes at specific levels on moisture variation, especially in the lower troposphere, which are important for MJO convection. Processes quantified under this framework include radiation, detrainment of heat and moisture and microphysical process in the convection environment.

The composite anomalous terms of Eqs. (4), (11) and (12) as a function of MJO phases are shown in the following section. The anomalies of all fields are obtained by subtracting the annual means from their absolute values and applying a 20-100-day Lanczos bandpass filter. The composite phases are determined from Real-time Multivariate MJO series (RMM) method (Wheeler and Hendon, 2004). The analysis focuses on boreal winter (November to April) over the tropics. From the spectral and multivariate EOF analyses in CZ17, it was found that MJOs in observations reach the mature phase in the Indian Ocean whereas MJOs in the CAM5.3 simulations reach the mature phase near the Maritime Continent (cf. Fig.4 in CZ17). In order to compare them properly in both simulations and observations and analyze the associated characteristics, we take a phase-centric view rather than a location-centric view. In other words, we compare the observed MJO at its mature phase in the Indian Ocean with simulated MJO at its mature phase near the Maritime Continent. If we were to compare observed and simulated MJOs at the same location, say, the Indian Ocean, we would end up comparing the mature phase of the observed MJO with the developing phase of the simulated MJO, which would not be an apple-to-apple comparison. As such, the model results are longitudinally averaged over Maritime Continent (115-125°E, 10°S-10°N) while observations are over Indian Ocean (85-95°E, 10°S-10°N) where MJO peaks. Note that the selection of different location between observations and model simulations may lead to some discrepancies in the role of horizontal advection due to differences in basic states at different locations. Recently, Mayta and Adames Corraliza (2023) found that the moisture mode is more applicable over Indian ocean and less so over western Pacific and Maritime Continent. Nonetheless, the comparison between the two model simulations is at the same location, and thus is not affected by any geographical shift in the simulated mean state between CTRL and

251 BOTC. Taking a phase-centric view is consistent with the composite analysis of MJO results in
252 different phases.

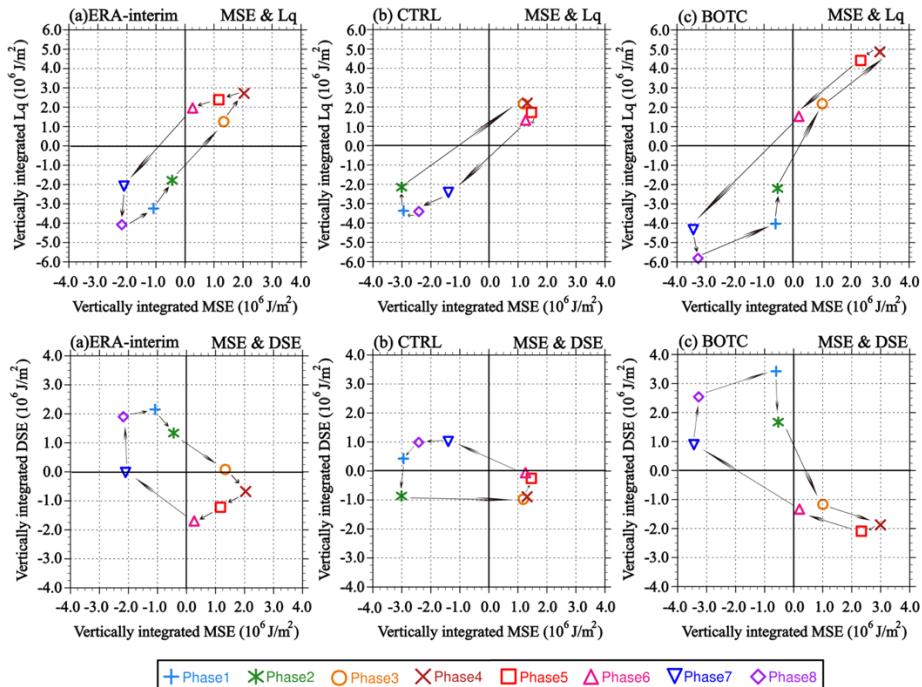

253 The datasets used to evaluate the model performance include daily European Centre for
254 Medium range Weather Forecasts (ECMWF) interim reanalysis data (ERA-interim, hereafter refer
255 to as ERA-I, Simmons et al., 2007), daily TRMM precipitation product (Huffman et al., 2007) and
256 daily GPCP product (Huffman et al., 2001). As in CZ17, there are two AMIP model simulations:
257 the standard NCAR CAM5 run (CTRL) and the experiment with stratiform heating which includes
258 an upper-level heating and a lower-level cooling to mimic the heating profile from the stratiform
259 part of mesoscale convective systems (BOTC). Specifically, in BOTC we artificially modified the
260 vertical structure of heating profile in convective parameterization scheme in CAM5.3. A
261 stratiform heating from condensation in the upper level and cooling from rain evaporation in the
262 lower levels are incorporated into the original convective heating profile, with the column
263 integrated total heating conserved. The inclusion of stratiform heating enhanced the shallow
264 convection in the simulation, which leads to a better simulation of MJO in both magnitude and
265 eastward propagation. More details about the difference between CTRL and BOTC can be found
266 in CZ17. Both reanalysis data and model simulations are from years 1992 to 2001.

267 **3. Results**

268 *3.1 Characteristics of moisture variation during MJO evolution*

269 The vertical profiles of specific humidity anomalies at each phase on MJO-scales are shown
270 in Fig. 1. In both observations and simulations, the gradual evolution of moisture is consistent with
271 previous studies (e.g. Cai et al., 2013; Hsu et al., 2014) in which negative moisture anomalies
272 occur at suppressed and dissipating phases while positive moisture anomalies increasingly appear
273 from developing to mature phases. The positive moisture anomaly peaks near 500hPa in the mature
274 stage (around Phase 5) while the negative one peaks near the same height at Phase 8 in ERA-I and
275 both simulations. Both ERA-I and BOTC have much larger amplitudes of moisture anomalies in
276 almost the entire column, especially from 700hPa to 400hPa, compared with CTRL. Especially,
277 the transition phases are shown in both ERA-I and BOTC where Phase 2 (6) has low-level positive
278 (negative) and upper-level negative (positive) anomalies. The lack of such shallow moistening
279 ahead of the main MJO development phase in CTRL may directly lead to the poor MJO simulation.
280 In addition, we note that compared with ERA-I, both simulations show much smaller magnitudes
281 of moisture anomalies below 850hPa. Previous studies (e.g. Benedict and Randall, 2011; Cai et

282 al., 2013; DeMott et al., 2015) have suggested that the positive feedback between the atmosphere
 283 and the ocean is important to intraseasonal variability. Thus, one possible cause may be the
 284 prescribed SST in the AMIP simulations. Another possibility is that the planetary boundary layer
 285 (PBL) parameterization used in CAM5 cannot generate enough vertical transport in PBL or lack
 286 of moisture convergence from surface friction.


287

288 Fig. 1. Composite of vertical profiles of specific humidity anomalies on the MJO scale at each
 289 phase averaged over eastern Indian Ocean ($85-95^{\circ}\text{E}$, $10^{\circ}\text{S}-10^{\circ}\text{N}$) for (a) ERA-interim; and
 290 Maritime Continent ($115-125^{\circ}\text{E}$, $10^{\circ}\text{S}-10^{\circ}\text{N}$) for (b) CTRL and (c) BOTC. Lines in different colors
 291 represent different phases.

292

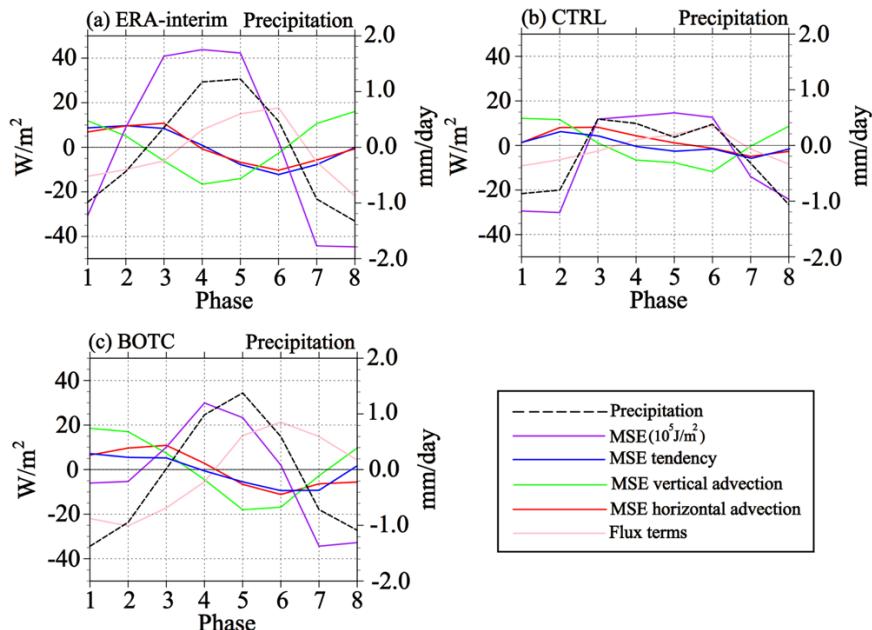
293 The column-integrated MSE is critical to MJO evolution (e.g. Maloney, 2009; Kiranmayi and
 294 Maloney, 2011). Fig. 2 shows the variation of column-integrated MSE vs. that of specific humidity
 295 and dry static energy (DSE) during the 8 phases of MJO development for ERA-I reanalysis data
 296 and the two simulations. The symbols connected with arrows indicate the MJO evolution from
 297 phase 1 to phase 8. The MSE variations in different phases of the MJO mostly come from moisture
 298 anomalies. However, DSE anomalies, although relatively small, are significant, nonetheless. The
 299 moisture mode theory posits that MSE anomalies are approximately governed by moisture
 300 anomalies (Mayta and Adames Corraliza, 2023). Thus, significant DSE variations from one phase
 301 to another suggest that the moisture mode theory only holds approximately. The moisture variation
 302 is compensated by DSE variation, such that the MSE anomalies are positively correlated with
 303 moisture anomalies but negatively correlated with DSE anomalies as the MJO evolves. During the

inactive or suppressed phases (phases 1, 2, 7 and 8) of the MJO over the Maritime Continent, MSE and moisture anomalies are negative while during the active phases (phases 3, 4, 5 and 6) the anomalies are positive. Strong similarities in distribution and magnitude are also found in the phase-longitude distribution of vertically integrated MSE and that of specific humidity (not shown), suggesting that the variations in MSE on MJO-scale are mostly governed by moisture variation. These are consistent with several previous studies (e.g. Maloney, 2009; Kiranmayi and Maloney, 2011; Andersen and Kuang, 2012). In both ERA-I and BOTC simulation, at the MJO initial phase (phases 1&2) the moisture anomaly is negative and the DSE anomaly is positive, but to a lesser extent, resulting in a positive MSE anomaly. Afterwards, the column integrated MSE increases (as a result of increased moisture overwhelming decreased DSE) until phase 4. After the MJO reaches its mature phase, MSE and moisture anomalies start to decrease. It indicates an energy build-up and consumption process during the MJO lifecycle. There is an asymmetry between developing and decaying phases of MJO in moisture and DSE anomalies. The atmosphere is drier and warmer in the developing phase, but moister and cooler in the decaying phase. Therefore, the progression around the origin follows a counterclockwise trajectory for moisture anomalies and a clockwise trajectory for DSE anomalies. However, the CTRL run shows an opposite behavior.

320

321 Fig. 2. Phase space diagram of vertically integrated MSE, Lq (first row), and DSE (second
322 row) anomalies as a function of MJO phases averaged over eastern Indian Ocean (85-95°E, 10°S-30°N).

323 10°N) for (a) ERA-interim; and Maritime Continent (115-125°E, 10°S-10°N) for (b) CTRL and
324 (c) BOTC. Different symbols represent different phases.
325


326 3.2 MSE budget analysis

327 The moisture and MSE budget analysis as a tool is used to understand individual processes
328 in the MJO evolution. The budget terms for the vertically integrated anomalous MSE in Eq. (4)
329 during the MJO lifecycle are shown in Fig. 3. The vertically integrated MSE and precipitation
330 anomalies are also shown. Note that MSE anomalies slightly lead precipitation anomalies (by one
331 phase) in ERA-I and BOTC and are in phase with precipitation anomalies in CTRL. Overall,
332 precipitation is tightly related to column water vapor, another assumption in moisture mode theory
333 (Zhang et al., 2020), in both the reanalysis data and model simulations. In BOTC, positive
334 precipitation anomalies appear at Phase 3 and peak at Phase 5, showing very close agreement with
335 those in ERA-I. In the CTRL run, there are two peaks of anomalous precipitation with smaller
336 amplitudes at Phases 3 and 6, implying deep convection develops too early. The dominant terms
337 in the MSE budget are vertical advection and energy fluxes going into the atmosphere from the
338 top and bottom, and they are largely opposite in signs. The effect of vertical motion on MSE is
339 important for the maintenance of MSE anomalies in MJO lifecycle. In both ERA-I and BOTC
340 vertical advection acts to maintain the MSE anomalies during the initial and early developing
341 phases of MJO and stabilize the column during the mature phases. This reflects the fact that upward
342 motion in the initial and developing phases can only reach a lower altitude. As a result, the
343 associated mass convergence in the lower levels brings more energy into the column than the
344 energy taken out by the mass divergence in the upper part of the upward motion layer. In the
345 mature phase, upward motion reaches the upper troposphere. Consequently, the mass divergence
346 in the upper troposphere exports more energy out of the column than the energy brought in by
347 mass convergence in the lower troposphere. The variation of energy fluxes into the atmospheric
348 column from the top and bottom decreases the column MSE in the early phases and increases the
349 column MSE in mature phase.

350 Because of the large cancelation between vertical advection and energy fluxes into the
351 atmospheric column from the top and bottom, MSE tendency largely follows MSE changes due to
352 horizontal advection. This applies to both ERA-I and the CAM5 simulations although the
353 magnitude of variation is smaller in CTRL. It should be noted that there is a residual after adding
354 up all the budget terms, which has been addressed in previous research and attributed to

misrepresentation of moistening process ahead of MJO in reanalysis model or inevitably errors between exact outputs of advection terms and vertical interpolation of standard variables (Neelin and Held, 1987; Maloney, 2009; Kiranmayi and Maloney, 2011).

358

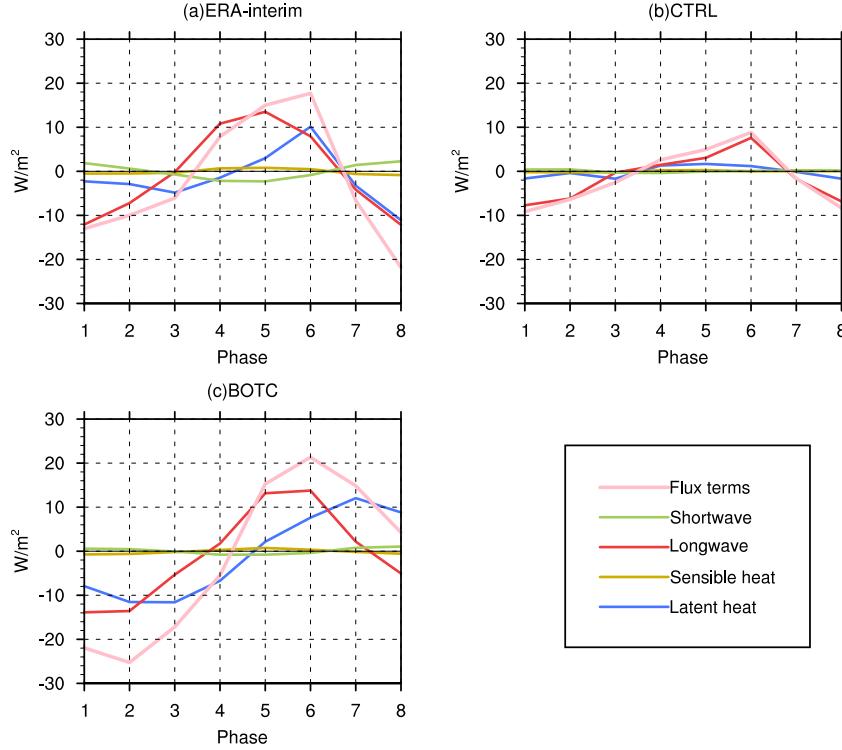
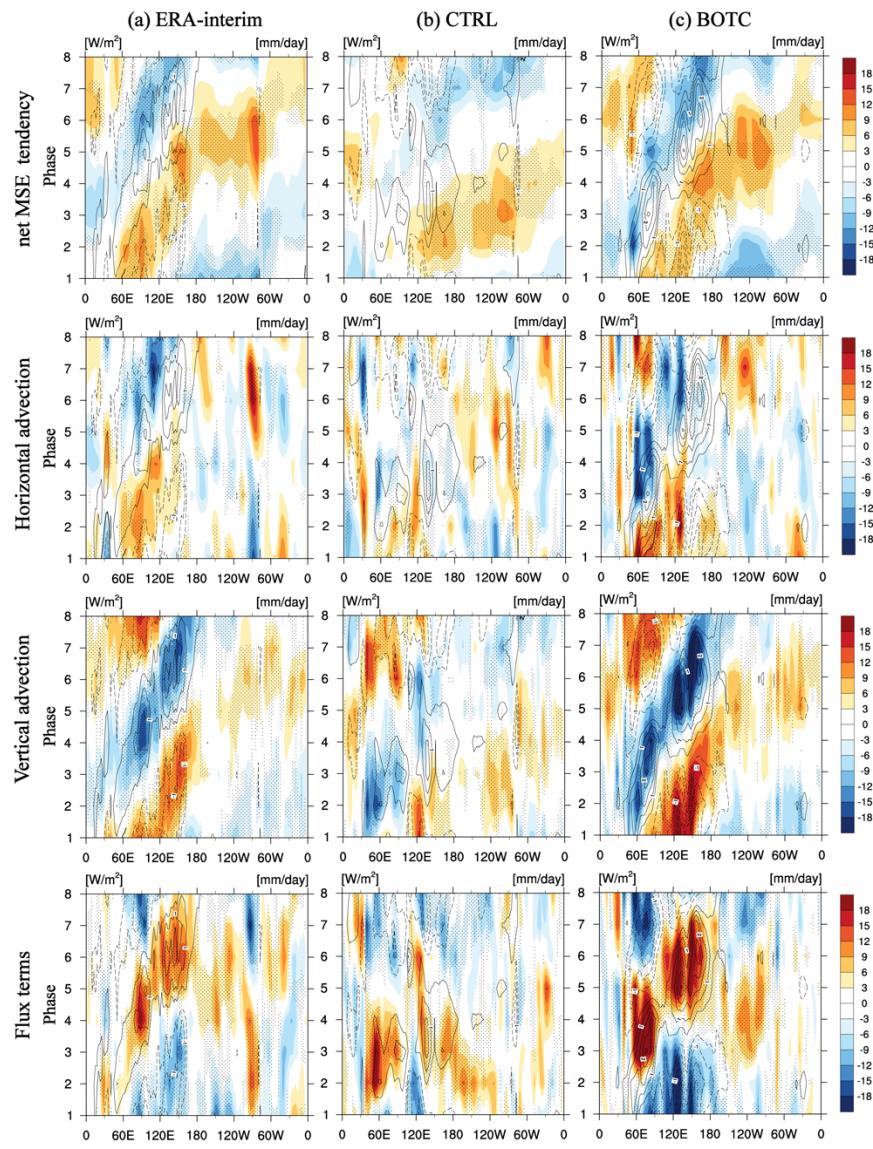

359

Fig. 3. Vertically integrated anomalous MSE budget terms (W/m²) (solid lines in different colors) from the Eq. (1) averaged over eastern Indian Ocean (85–95°E, 10°S–10°N) for (a) ERA-interim; and Maritime Continent (115–125°E, 10°S–10°N) for (b) CTRL and (c) BOTC. Precipitation anomalies (mm/day, dash line and the right ordinate) and vertically integrated MSE (10⁵ J/m², purple line with the left ordinate) are also shown.

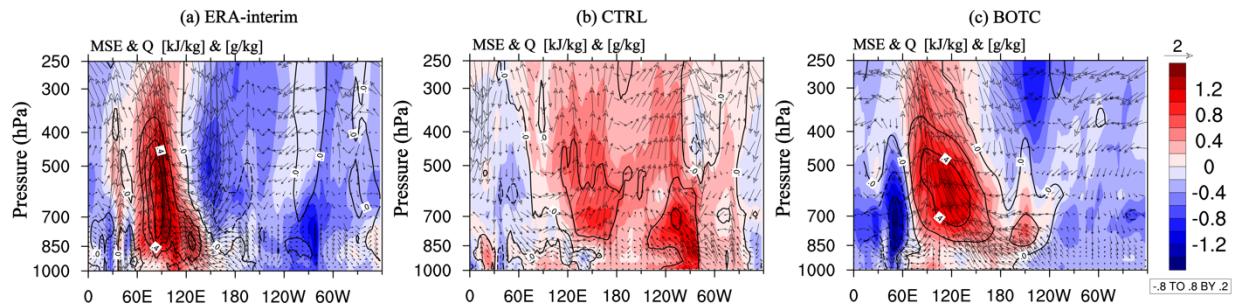
365

As the net energy flux into the atmospheric column is the dominant term that counteracts the vertical advection, Fig. 4 further examines the contributions from its components, that is, shortwave, longwave, surface sensible and latent heat fluxes. The variation of the net flux is dominated by that of longwave flux, with secondary contribution from surface latent heat flux, while shortwave and sensible heat flux contributions are insignificant. The longwave flux is particularly large during initial and mature phases, more than twice as large as that of surface latent heat flux. In the early phases, cloud tops are low, and the cloud longwave effect is small. Thus, the atmospheric column loses more energy (relative to the climatological mean) by emitting longwave radiation at higher temperature. During and after the mature phase, cloud tops are high, and the longwave cloud radiative forcing is large. Thus, the atmosphere gains energy relative to the climatological


376 mean. The surface latent heat flux anomalies in ERA-I are negative in the initial and developing
 377 phases of MJO and positive after phase 5, becoming negative near the end of the MJO lifecycle.
 378 In BOTC, the latent heat flux anomalies are negative before phase 5 and positive after phase 5,
 379 with a larger magnitude than that in ERA-I. In CTRL, latent heat flux anomalies are small in all
 380 phases of the MJO.

381
 382 Fig. 4. Vertically integrated anomalous flux terms (pink solid lines) and its decomposition
 383 averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for (a) ERA-interim; and Maritime
 384 Continent (115-125°E, 10°S-10°N) for (b) CTRL and (c) BOTC.

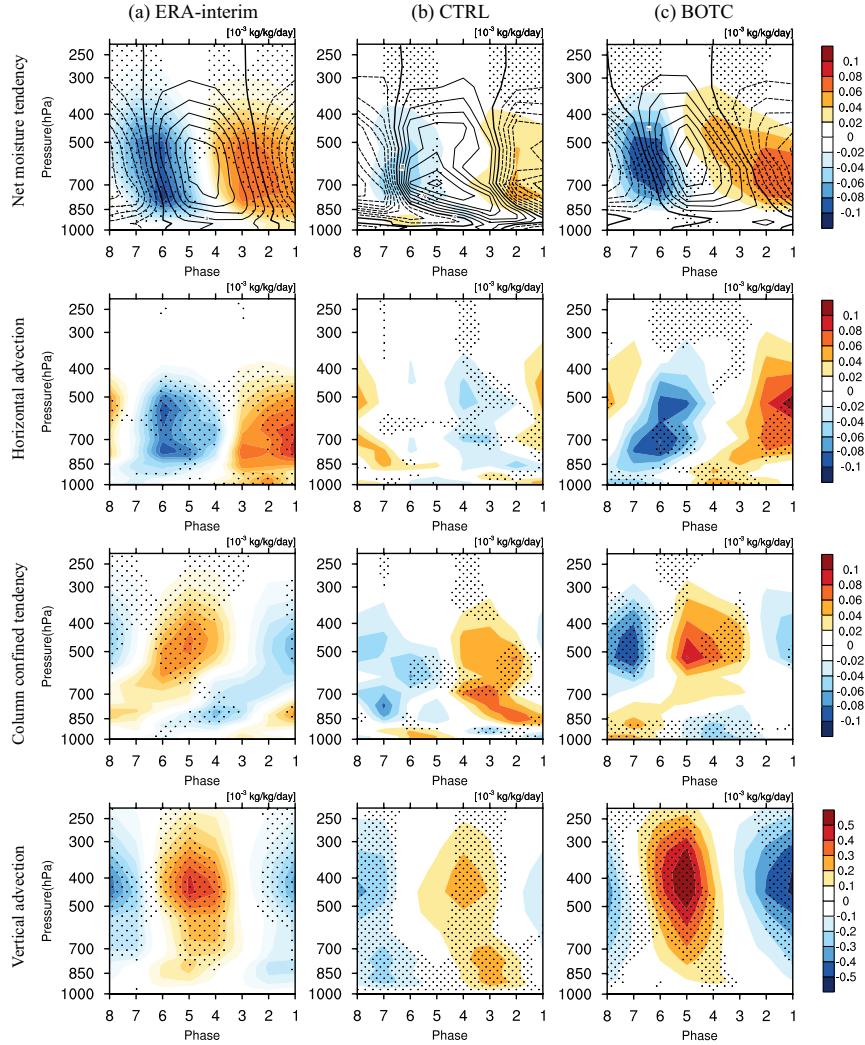
385
 386 In Fig. 5, both ERA-I and BOTC show that the net MSE tendency is located ahead of
 387 precipitation anomalies, leading by about 90° of MJO phases. Such quadrature distribution
 388 indicates that the maintenance and dissipation of column MSE anomalies before and after the MJO
 389 precipitation drive the eastward propagation of the MJO convective center. This result is consistent
 390 with previous reanalysis (e.g. Kiranmayi and Maloney, 2011). In CTRL, although there are also
 391 positive MSE anomalies ahead of precipitation anomalies, the precipitation anomalies do not
 392 coincide with the MJO propagation from the Indian Ocean to the Western Pacific. Horizontal
 393 advection (second row) helps to maintain column MSE anomalous ahead of MJO convection, but


394 it only happens west of the Maritime Continent before Phase 4 and then the drying process takes
 395 over afterwards. In the view of moisture mode, MJO convection center is regarded as a moisture
 396 anomaly center. We found that the regions of negative vertical advection (third row) and positive
 397 flux terms (forth row) of MSE coincide with MJO convective center. It indicates that the moisture
 398 anomalies in MJO convection center is maintained in strength by the longwave radiation and
 399 surface latent heat flux but removed by vertical motions. The horizontal advection ahead of
 400 convective center act to propagate MJO eastward. As a result of the balance between surface fluxes
 401 and vertical advection, the net MSE tendency more resembling horizontal advection.

402

403 Fig. 5. Longitude-phase (averaged over 10°S-10°N) plots of vertically integrated anomalous
 404 MSE terms (W/m^2 , color filled) for (a) ERA-interim; (b) CTRL; and (c) BOTC. Precipitation
 405 anomalies (mm/day, contours) are also drawn. Anomalies with a confidence level greater than 95%
 406 are stippled.

407
 408 Fig. 6 shows the height-longitude cross section of anomalous MSE (color) and wind
 409 perturbations (vectors) in MJO active stage. An eastward extension of the MSE anomaly in the
 410 lower troposphere is seen in both ERA-I and BOTC, indicating that the lower tropospheric
 411 moistening occurs ahead of the MJO center. The 90°E longitude corresponds to the enhanced
 412 precipitation location in ERA-I at Phase 4. BOTC shows very similar features except located at
 413 120°E where the peak precipitation occurs at Phase 5 in the model. Note that both ERA-I and
 414 BOTC show well-organized MSE anomalies, with a typical MJO easterly wind perturbation
 415 feeding into convection from ahead of the convection and westerly wind anomalies from the west.
 416 The positive specific humidity anomalies appear where there is a deep layer of positive MSE
 417 anomalies associated with strong upward motion. CTRL fails to capture such well-organized
 418 features. Wang et al. (2018) suggested that the horizontal structure of the lower tropospheric
 419 moistening and equatorial asymmetry of zonal wind favors eastward propagation.



420
 421 Fig. 6. Height-longitude cross sections of anomalous MSE (color filled, kJ/kg), specific
 422 humidity (contours, g/kg) and wind (u, w vectors, m/s) of composite MJO at Phase 4 for (a) ERA-
 423 interm and at Phase 5 for (b) CTRL and (c) BOTC.

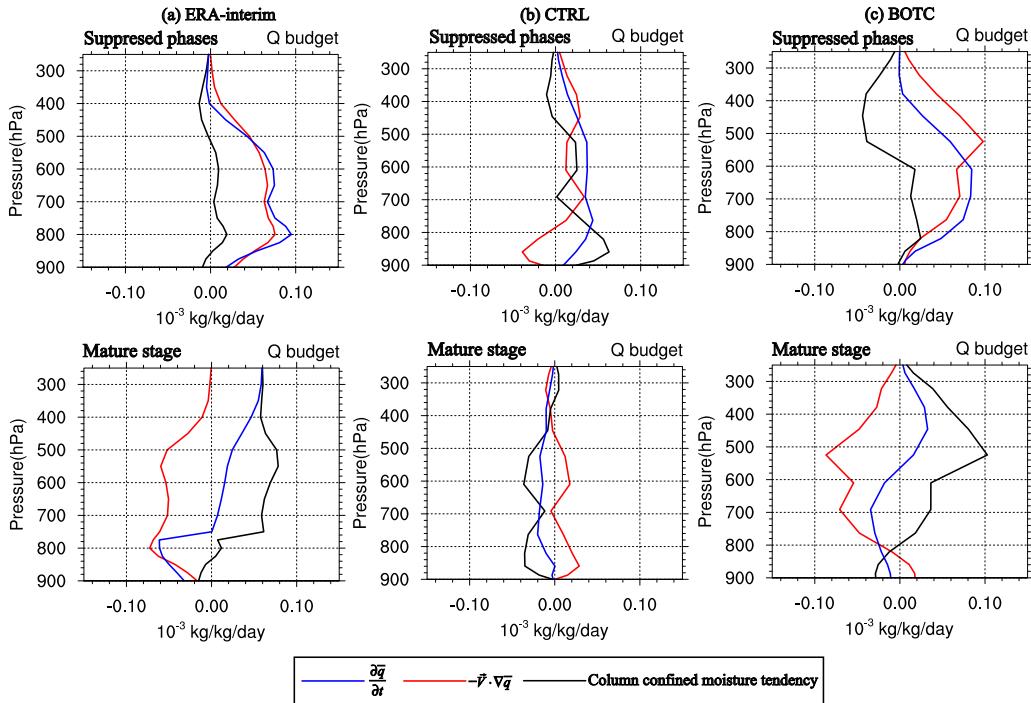
424
 425 *3.3 Vertical structure of moisture budget*

426 As shown in the last subsection, the horizontal advection contributes to the maintenance of
 427 MSE anomalies ahead of MJO convective center. A further breakdown of horizontal advection
 428 into zonal and meridional component (not shown) indicates that zonal advection dominates the
 429 MSE maintenance process and leads to the eastward propagation. Although some studies (e.g.
 430 Maloney, 2009; Kiranmayi and Maloney, 2011; Kim et al., 2014) pointed out that horizontal

431 advection might be governed by meridional advection, our work indicates a larger influence from
432 zonal advection, which is consistent with some other previous works (Hsu and Li, 2012; Liu and
433 Wang, 2016; Kim et al., 2017). While vertical advection is large in the column integrated MSE
434 budget, it is largely balanced by energy flux contributions from the top and bottom of the
435 atmospheric column. Similarly, for moisture, although vertical advection from upward motion
436 moistens the atmosphere, its accompanying condensation acts to dry the atmosphere (e.g. Benedict
437 and Randall, 2007; Hsu and Li, 2012; Adames and Wallace, 2015). The net effect can be either
438 moistening or drying depending on which process is more effective. From the WTG approximation
439 Eq. (10), any diabatic process will affect vertical motion. To consider these processes explicitly in
440 the framework of vertical advection, Chikira (2014) introduces the so-called “column process” or
441 “column confined moisture tendency” as referred to by Janiga and Zhang (2016), which represents
442 the net effect of vertical motion and all diabatic processes within a column that affect the moisture
443 field. Wolding and Maloney (2015) and Wolding et al. (2016) used this method to estimate the
444 vertical velocity resulting from each column process and investigate the moisture variation in the
445 ERA-I reanalyses and the superparameterization version of CAM (SPCAM).

446

447 Fig. 7. Height-Phase plot of composites of anomaly net specific humidity tendency (first row, 448 10^{-3}kg/kg/day), horizontal advection (second row), column confined moisture tendency (third row) 449 and vertical advection (fourth row) averaged over eastern Indian Ocean ($85\text{-}95^\circ\text{E}$, $10^\circ\text{S}\text{-}10^\circ\text{N}$) for 450 (a) ERA-interim; and Maritime Continent ($115\text{-}125^\circ\text{E}$, $10^\circ\text{S}\text{-}10^\circ\text{N}$) for (b) CTRL; and (c) BOTC. 451 Specific humidity anomalies (10^{-3}kg/kg , contours) are also drawn in the first row for reference. 452 Note the color scale in the vertical advection plots differs from the rest. Anomalies with a 453 confidence level greater than 95% are stippled.


454

455 Fig. 7 shows the height-phase cross section of net moisture tendency, horizontal advection, 456 and column confined tendency. Also shown is the vertical advection of moisture for reference and 457 comparison, which will be made clear shortly. Both ERA-I and model simulations show a tilted 458 vertical structure of moisture as MJO develops. There is a positive net moisture tendency (first 459 row) ahead of positive moisture anomalies, indicating an enhancement of moisture anomalies 460 before MJO convection. Both ERA-I and BOTC moisture tendency peaks around 600 hPa. CTRL

461 show much weaker signals. The horizontal advection (second row) in ERA-I and BOTC moistens
462 the atmospheric column in initial stages from Phase 1 to 3 and dries it after the MJO mature phase
463 (phase 5) as the MJO is gradually dissipating. The patterns of horizontal advection show high
464 resemblance to those of the net moisture tendency, indicating that horizontal advection is the main
465 contributor to the net moisture tendency, consistent with Figs. 3 and 5. Its moistening effect over
466 lower troposphere is also confirmed by the shallow positive anomalies in the vertical structure of
467 MSE horizontal advection ahead of the deep layer of MSE anomalies in Fig. 6. The magnitude of
468 column confined moisture tendency (third row) is slightly smaller than the net moisture tendency
469 and horizontal advection. It reaches the maximum during the mature phases of MJO in mid-
470 troposphere in both ERA-I and BOTC. CTRL shows very different phase timing; the peak occurs
471 at phase 3, ahead of the positive moisture anomalies in column confined moisture tendency around
472 700 hPa, implying that convection develops too early. For comparison, vertical advection (fourth
473 row) shows significantly larger magnitude of drying and moistening than that of the column
474 confined moisture tendency, by a factor of 5 or more. Comparing Eqs. (2) and (11), the column
475 confined moisture tendency is the sum of vertical advection, total condensation minus evaporation
476 and eddy transport due to subgrid-scale convection. This clearly indicates that although vertical
477 advection and diabatic physical processes can have large contribution to moisture anomalies
478 individually. They are largely in balance, leaving a comparatively small net effect on the moisture
479 fields. Therefore, considering them in isolation can be misleading when attributing the source of
480 moisture anomalies. They result in drying in the free troposphere in MJO suppressed phases and
481 moistening in the MJO mature phase. The column confined moisture tendencies in the boundary
482 layer will not be discussed here since the WTG approximation only applied to the free troposphere.

483 To demonstrate more clearly the roles of each budget term in Eq. (11) in moisture tendency,
484 we use the initial suppressed and mature phases of MJO as examples below. Fig. 8 shows the
485 vertical profiles of moisture budget averaged in suppressed (first row, phase 1&2) and mature
486 phases (second row, phase 5), respectively. During suppressed phases, both ERA-I and BOTC
487 show relatively small positive values of column confined moisture tendency in the lower
488 troposphere and drying anomalies in the upper troposphere. The net moisture tendency is positive
489 in the whole troposphere and dominated by contributions from horizontal advection. This is
490 consistent with the above results that there is moistening ahead of active convection and horizontal
491 advection contributes the most. CTRL shows different structures with smaller amplitude,

especially in the lower troposphere. When the MJO develops into the mature phase, the moisture budget is largely opposite to the initial phases. In the upper troposphere, both ERA-I and BOTC have large moistening. Horizontal advection depletes moisture while column confined moisture tendency moistens the column as a source, except below the 800 hPa height. In CTRL, horizontal advection moistens the atmosphere while column confined tendency dries the atmosphere, leading to net drying throughout the troposphere with weaker magnitude.

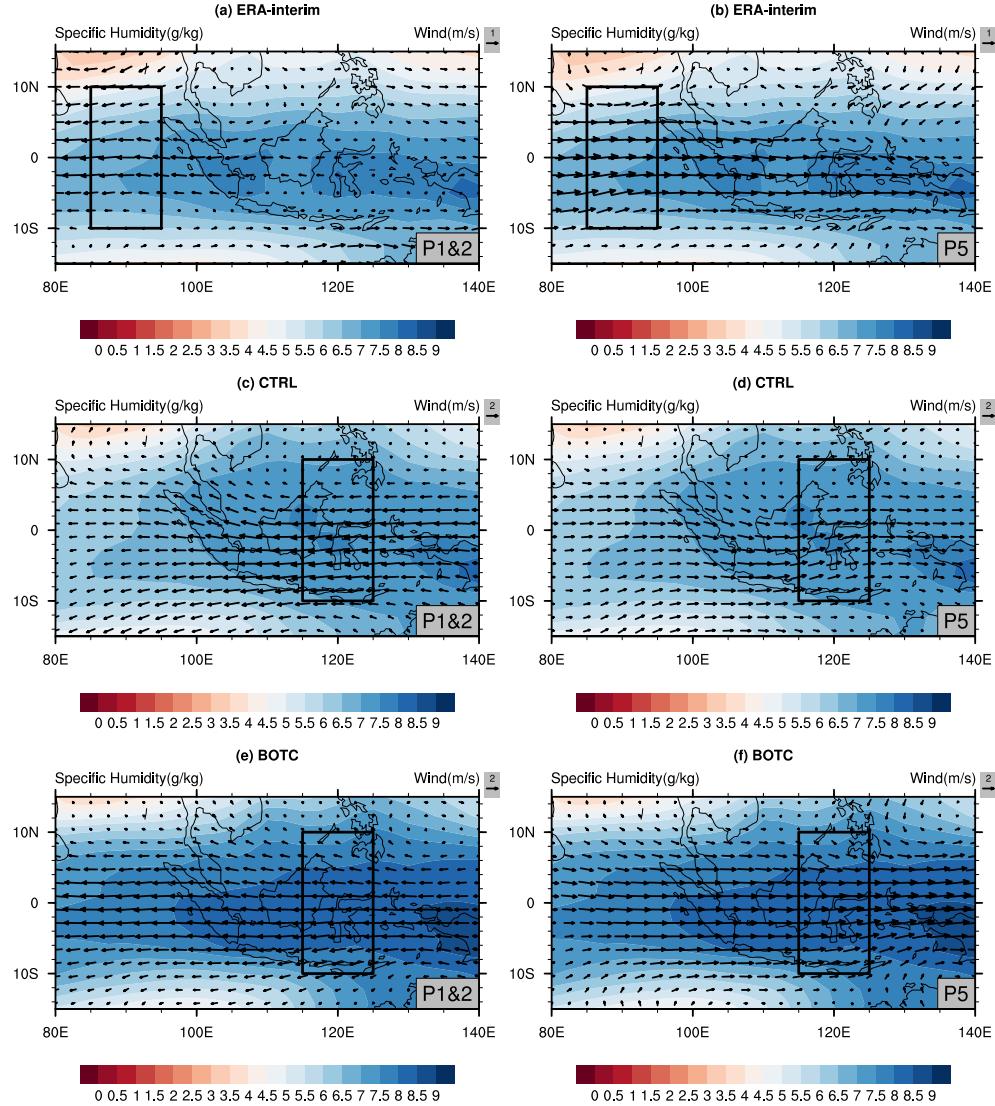

498

Fig. 8. Composite specific humidity budget terms in Eq. (11) (suppressed phases in first row, mature phase in second row), averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for (a) ERA-interim; and Maritime Continent (115-125°E, 10°S-10°N) for (b) CTRL and (c) BOTC.

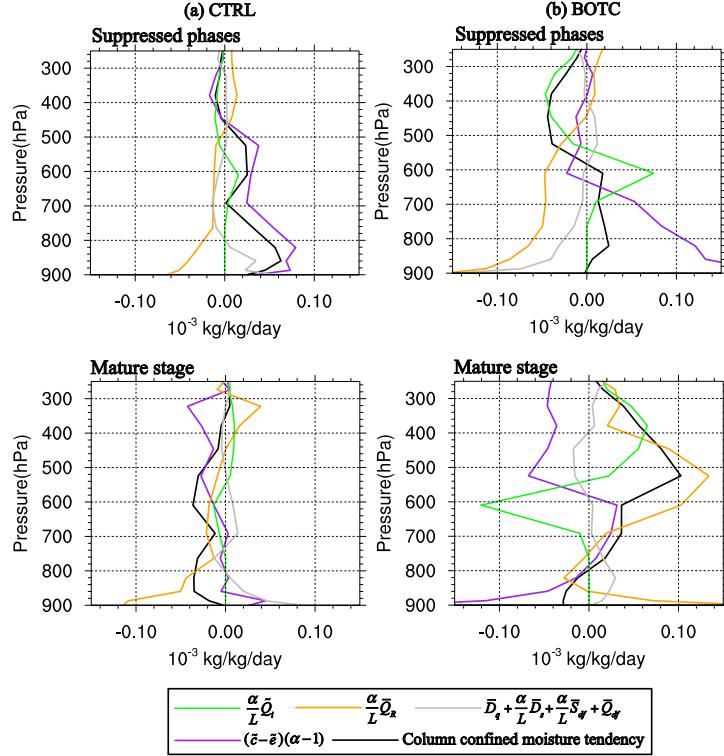
502

503 As horizontal advection is the dominant contributor to moistening in the lower and middle
 504 troposphere at the MJO initial phase and the main drying factor at the MJO mature phase, we
 505 further show horizontal maps of wind anomalies and mean specific humidity distributions at 700
 506 hPa in Fig. 9 for MJO initial and mature phases. We found that the advection of mean specific
 507 humidity by anomalous wind plays a dominant role in the distribution and variation of horizontal
 508 advection, especially in the averaging area (not shown). The advection of anomalous specific
 509 humidity by mean wind contributes less except for areas north to 10°N. This is consistent with
 510 previous works (Cai et al., 2013; Kiranmayi and Maloney, 2011; Maloney, 2009). In ERA-I, the

511 moisture maximum is centered east of 100°E. At the initial phase (Fig. 9a), the easterly winds
512 bring moisture to the averaging domain (85-95°E, 10°S-10°N), leading to moistening. Conversely
513 at phase 5, the westerly winds bring in dry air and cause drying in the region. In CTRL, two
514 moisture maxima are observed, one inside the averaging area near 115-120°E and the other
515 centered to the east of the averaging area near 130-140°E. At the initial phase, the easterly winds
516 lead to small dry advection north of the equator and small moist advection to the south, resulting
517 in a weak positive moisture advection in the averaging area. At the mature phase, although the
518 convergent wind leads to a dry advection south of the equator, the westerly wind brings moisture
519 from the maximum center north of the equator and results in moistening. As a result, the horizontal
520 advection is also weak (Fig. 9d). In BOTC, the moisture maximum is located east of the averaging
521 area near 140°E. At the initial phase the zonal wind anomalies are weaker than those in CTRL, but
522 the gradient of specific humidity and meridional wind anomalies are larger. Both the zonal and
523 meridional wind anomalies result in positive moisture advection in the averaging area. At the
524 mature phase, similar to ERA-I, there is strong convergent wind to the equator, which lead to
525 strong dry advection. Note that the mean state of specific humidity and moisture gradients changed
526 considerably from CTRL to BOTC. Compared with CTRL, the larger moisture gradients in BOTC
527 along with anomalous wind result in the horizontal advection similar to that of ERA-I.
528 Comparatively, the changes in moisture gradients contribute more to this improvement (not
529 shown). This indicates that the altered mean state from modified parameterization may also have
530 some effect on the MJO simulation besides convection organization itself (Jiang, 2017; Ahn et al.,
531 2020).

532
533
534
535
536
537
538

539 Fig. 9. Composites of 700 hPa anomalous horizontal winds (m/s) and mean specific
540 humidity (g/kg) in MJO suppressed phases and mature phase in (a), (b) ERA-interim, (c), (d)
541 CTRL, and (e), (f) BOTC. Here the mean specific humidity is multi-year averaged daily specific
542 humidity over winter half of the year. The rectangles represent the averaging areas used in previous
543 plots.


544 The column confined moisture tendency is a result of competing effects of dynamic and
545 thermodynamic processes. For instance, cloud condensation depletes moisture, and therefore acts
546 to impede the maintenance of moisture anomalies. However, condensational heating will result in
547 upward motion, which moistens the atmosphere by transporting moisture-rich air from the low
548 levels upward. The net effect can be either moistening or drying the atmospheric column,
549 depending on the moisture and temperature stratification. By the same token, radiative cooling,
550 although not directly affecting the moisture field, will result in sinking motion and thus dries the

546 atmosphere through vertical advection. Therefore, examining the individual contribution to the
547 column confined moisture tendency can provide useful insight into the roles they play in moisture
548 variation during MJO evolution.

549 Fig. 10 shows the moisture tendency terms from the column processes in Eq. (12) in the
550 MJO suppressed and mature phases. The terms containing α represent moistening (drying) caused
551 indirectly by vertical advection induced by heating (cooling). In suppressed phases, in both CTRL
552 and BOTC the major moistening factor in the lower troposphere is the combined effects of
553 condensation and evaporation in the convection environment of the GCM grid box. As explained
554 earlier in section 2, the vertical moisture advection from condensational heating supplies more
555 moisture than needed by condensation, resulting in a net moistening. It was shown in CZ17 that
556 shallow convection is increased in BOTC and there are positive low-level moisture and heating
557 anomalies ahead of deep convection as MJO propagates eastward. Also, there are positive
558 anomalies of vertical advection of moisture in the lower troposphere in advance of precipitation
559 (Fig. 8 of CZ17). These together indicate that the low-level moistening from condensation
560 anomalies is tightly associated with enhanced shallow convection. This is in agreement with CRM
561 studies in Janiga and Zhang (2016). Note that while moistening from shallow convection ahead of
562 deep convection in MJOs is well known, the interpretation may vary. On the one hand, evaporation
563 from shallow convection in the convection environment can moisten the lower troposphere. On
564 the other hand, under WTG approximation condensational heating will induce grid-scale upward
565 motion, which will moisten the environment, although in the convection-free environment there
566 can be compensating subsidence. Their combined effect is to moisten the atmosphere.

567 Consistent with the column MSE budget analysis, the radiative cooling leads to anomalous
568 descent and dries most of the column, especially the lower troposphere. The drying tendencies are
569 larger in BOTC than in CTRL. The moisture tendency due to freezing/melting from phase
570 transition is positive near 600 hPa and negative above the height of 550 hPa. The moistening is
571 due to less melting (compared to MJO lifecycle average) and the drying above is due to less
572 freezing. The effects of detrainment and vertical diffusion are relatively small in the entire free
573 troposphere, but quite large in the PBL in BOTC. In CTRL, the net column confined moisture
574 tendency is positive from the surface to 450 hPa, which may contribute to fast development of
575 convection. On the other hand, the positive net column confined moisture tendency in BOTC only
576 extends to 600 hPa, with strong drying above. This may act to delay the development of deep

577 convection. Thus, the important role of shallow convection in the MJO suppressed phases is further
 578 confirmed by examining the physical processes associated with vertical structure of moisture
 579 tendency variation.

580
 581 Fig. 10. Composite column confined moisture tendency and its components in Eq. (12) in
 582 suppressed (top row) and mature phase (bottom row), averaged over Maritime Continent (115-
 583 125°E, 10°S-10°N) for (a) CTRL and (b) BOTC.

584
 585 At the mature stage, the dominant contributor to the positive column confined moisture
 586 tendency in BOTC is radiative heating, which almost moistens the whole column and peaks at the
 587 midlevel. The decomposition into shortwave and longwave heating contributions separately (not
 588 shown) finds that longwave heating-induced moistening dominates throughout the troposphere
 589 below the 300 hPa height whereas the shortwave heating/cooling has a moistening effect in the
 590 upper troposphere and drying effect in the lower troposphere, with maximum drying near 800 hPa.
 591 The net large-scale condensation minus evaporation dries the upper troposphere and moistens the
 592 lower troposphere between 800 and 600 hPa. However, in the PBL there is strong drying, likely
 593 from evaporation-induced subsidence, which is largely balanced by radiative heating. We should
 594 point out that caution must be taken when interpreting the results in the PBL since the WTG

approximation only holds in the free troposphere above the PBL. Because of the strong precipitation from higher levels associated with active deep convection, more ice/snow melting cools the midtroposphere near 600 hPa and thereby the induced subsidence substantially dries the layer. On the other hand, liquid freezing or ice/snow formation moistens the upper troposphere. In comparison with BOTC, CTRL shows entirely different vertical structure with the negative column confined moisture tendency at all levels below 400 hPa. Together with the vertical profile of column confined moisture tendency in suppressed phases and vertical structure of moisture in Fig. 6, it can be concluded that convection in CTRL develops too early and thus there is not enough active deep convection at the mature phase.

4. Discussion and Conclusions

Benefiting from a realistic simulation of MJO (the BOTC run) by modifying the vertical convective heating profile in the NCAR CAM5, this study examines contributions from different physical processes to moisture variations during different MJO phases, especially in the suppressed and mature phases. The objective is to understand what processes contribute the most to the MJO improvement, including its eastward propagation, in CAM5 simulation when the vertical heating profiles are modified to mimic the heating from mesoscale convective systems. The column MSE budget shows that in suppressed phases both horizontal and vertical advection contribute positively to MSE anomaly ahead of the MJO-associated deep convection. The vertical advection dominates the maintenance of vertically integrated MSE anomaly while radiative heating and surface fluxes act to reduce MSE in ERA-I and simulations. The opposite is true at the mature stage. However, they are largely balanced, leaving the horizontal advection governing the evolution of MSE tendency anomaly, leading to the eastward propagation of the MJO convection center. Although CTRL can produce these processes related to the column MSE budget, their magnitude is small and propagation is less organized, which result in large biases in MSE anomalies during MJO lifecycle. The analysis of column confined moisture tendency demonstrates the role of enhanced shallow convection (i.e., acting as an important source of low-level moisture in the suppressed phases of MJO) on the improved MJO simulation in BOTC. The moisture anomalies associated with shallow convection is due to vertical advection by the large-scale ascent induced by latent heat release from condensation rather than due to direct detrainment of moisture from shallow convection. This is because shallow convection drives a strong low-level moisture convergence through heating to force large-scale vertical upward motion (Wu, 2003) and in the lower

626 troposphere below the level of minimum MSE vertical advection is more efficient in moistening
627 the atmosphere than condensational depletion of moisture.

628 In the BOTC simulation, the horizontal advection of column MSE serves to increase
629 (decrease) the MSE anomalies before (after) MJO develops to the mature phase. There is a shallow
630 layer of positive MSE anomalies dominated by the horizontal advection in the lower troposphere
631 ahead of MJO convection, helping the MJO to propagate eastward. The CTRL simulation fails to
632 capture this feature. In the vertical structure of moisture budget, the net moisture tendency largely
633 follows the anomalous horizontal advection in the whole column and peaks at mid-level in the
634 MJO initial stages for ERA-I and BOTC. CTRL has small net moisture tendency with a maximum
635 at lower troposphere during earlier phase, indicating too early convection. The column longwave
636 radiative heating and latent heat flux have a positive correlation with precipitation anomalies,
637 implying that these two terms maintain the column MSE during the enhanced MJO convection
638 stages and help to stabilize the atmosphere during the initial stage, opposite to the vertical
639 advection. The vertical profiles of column confined moisture tendency are examined with the aid
640 of WTG approximation to help understand the contributions to the column moisture variation
641 including the interaction between the cloud processes and vertical advection. It shows that the
642 downward vertical advection induced by radiative cooling is essential to moisture budget in
643 balancing the moistening from other processes in the initial stage, consistent with the column MSE
644 budget analysis. At the mature phase, advective moistening from radiative heating-induced upward
645 motion is a major source to maintain the moisture anomalies. The improvement in BOTC is
646 attributed to the effects from increased shallow convection, which helps moisten the atmosphere
647 below 600 hPa during suppressed phases and advance the eastward evolution afterwards.

648 As a follow up work of CZ17, this study provides a better understanding of the underlying
649 mechanisms for the improved MJO simulation in BOTC from the view of moisture variations in
650 MJO lifecycle. Based on the vertically integrated MSE budget and vertical profile of column
651 confined moisture tendency analyses, this study confirms the physical mechanism of shallow
652 convection in moistening the lower troposphere for the development of the deep convection during
653 MJO evolution. It is also found that the role of vertical motion induced by radiative heating in
654 moistening or drying is crucial to the MJO development. In a previous study, Wang and Sobel
655 (2012) showed that radiative heating serves to destabilize the atmosphere when deep convection
656 is enhanced in a CRM simulation. Wing and Emanuel (2014) suggested that radiative-convective

657 feedbacks are important for the onset and organization of convection over tropics. Recent
658 observations (Ciesielski et al., 2017) demonstrated that the radiative heating is essential in
659 maintaining MJO during DYNAMO. In this study we showed that radiative heating and
660 condensational heating in the convection environment are the two dominant terms in the column
661 confined processes. These together with horizontal advection govern the moisture evolution in
662 MJO.

663

664 *Acknowledgments:* This work is supported by the Science and Technology Project of Fujian
665 Province under Grant Number 2023R1002006 and 2022R1002008. GJZ is supported by the U.S.
666 National Science Foundation under grant AGS-2054697 and Department of Energy, Office of
667 Science, Biological and Environmental Research Program (BER), under Award Numbers DE-
668 SC0022064 and SC0023069. The authors would like to thank the three anonymous reviewers for
669 their constructive comments that have helped improve the manuscript.

670 **Availability Statement**

671
672 The CAM5 simulation output for this study is available from a public data repository at Zenodo
673 <https://zenodo.org/records/10333148>.

674

675

676

References

677 Adames, Á.F., 2017. Precipitation budget of the Madden–Julian oscillation. *Journal of the*
 678 *Atmospheric Sciences* 74, 1799–1817.

679 Adames, Á.F., Kim, D., 2016. The MJO as a dispersive, convectively coupled moisture wave:
 680 Theory and observations. *Journal of the Atmospheric Sciences* 73, 913–941.

681 Adames, Á.F., Maloney, E.D., 2021. Moisture Mode Theory's Contribution to Advances in our
 682 Understanding of the Madden-Julian Oscillation and Other Tropical Disturbances. *Curr*
 683 *Clim Change Rep* 7, 72–85. <https://doi.org/10.1007/s40641-021-00172-4>

684 Adames, Á.F., Wallace, J.M., 2015. Three-dimensional structure and evolution of the moisture
 685 field in the MJO. *Journal of the Atmospheric Sciences* 72, 3733–3754.

686 Ahn, M.-S., Kim, D., Kang, D., Lee, J., Sperber, K.R., Gleckler, P.J., Jiang, X., Ham, Y.-G.,
 687 Kim, H., 2020. MJO propagation across the Maritime Continent: Are CMIP6 models
 688 better than CMIP5 models? *Geophysical Research Letters* 47, e2020GL087250.

689 Andersen, J.A., Kuang, Z., 2012. Moist static energy budget of MJO-like disturbances in the
 690 atmosphere of a zonally symmetric aquaplanet. *Journal of Climate* 25, 2782–2804.

691 Back, L.E., Bretherton, C.S., 2006. Geographic variability in the export of moist static energy
 692 and vertical motion profiles in the tropical Pacific. *Geophysical research letters* 33.

693 Benedict, J.J., Randall, D.A., 2011. Impacts of idealized air–sea coupling on Madden–Julian
 694 oscillation structure in the superparameterized CAM. *Journal of the Atmospheric*
 695 *Sciences* 68, 1990–2008.

696 Benedict, J.J., Randall, D.A., 2007. Observed characteristics of the MJO relative to maximum
 697 rainfall. *Journal of the atmospheric sciences* 64, 2332–2354.

698 Bretherton, C.S., Park, S., 2009. A new moist turbulence parameterization in the Community
 699 Atmosphere Model. *Journal of Climate* 22, 3422–3448.

700 Cai, Q., Zhang, G.J., Zhou, T., 2013. Impacts of shallow convection on MJO simulation: A moist
 701 static energy and moisture budget analysis. *Journal of Climate* 26, 2417–2431.

702 Cao, G., Zhang, G.J., 2017. Role of vertical structure of convective heating in MJO simulation in
 703 NCAR CAM5. 3. *Journal of Climate* 30, 7423–7439.

704 Chen, C.-C., Richter, J.H., Liu, C., Moncrieff, M.W., Tang, Q., Lin, W., Xie, S., Rasch, P.J.,
 705 2021. Effects of organized convection parameterization on the MJO and precipitation in
 706 E3SMv1. Part I: Mesoscale heating. *Journal of Advances in Modeling Earth Systems* 13,
 707 e2020MS002401.

708 Chikira, M., 2014. Eastward-propagating intraseasonal oscillation represented by Chikira–
 709 Sugiyama cumulus parameterization. Part II: Understanding moisture variation under
 710 weak temperature gradient balance. *Journal of the Atmospheric Sciences* 71, 615–639.

711 Ciesielski, P.E., Johnson, R.H., Jiang, X., Zhang, Y., Xie, S., 2017. Relationships between
 712 radiation, clouds, and convection during DYNAMO. *Journal of Geophysical Research:*
 713 *Atmospheres* 122, 2529–2548.

714 DeMott, C.A., Klingaman, N.P., Woolnough, S.J., 2015. Atmosphere-ocean coupled processes in
 715 the Madden-Julian oscillation. *Reviews of Geophysics* 53, 1099–1154.

716 Derbyshire, S.H., Beau, I., Bechtold, P., Grandpeix, J.-Y., Piriou, J.-M., Redelsperger, J.-L.,
 717 Soares, P.M.M., 2004. Sensitivity of moist convection to environmental humidity.
 718 *Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric*
 719 *sciences, applied meteorology and physical oceanography* 130, 3055–3079.

720 Grabowski, W.W., 2003. MJO-like coherent structures: Sensitivity simulations using the cloud-
721 resolving convection parameterization (CRCP). *Journal of the Atmospheric Sciences* 60,
722 847–864.

723 Hannah, W.M., Maloney, E.D., 2011. The role of moisture–convection feedbacks in simulating
724 the Madden–Julian oscillation. *Journal of Climate* 24, 2754–2770.

725 Hsu, P., Li, T., 2012. Role of the boundary layer moisture asymmetry in causing the eastward
726 propagation of the Madden–Julian oscillation. *Journal of Climate* 25, 4914–4931.

727 Hsu, P.-C., Li, T., Murakami, H., 2014. Moisture asymmetry and MJO eastward propagation in
728 an aquaplanet general circulation model. *Journal of Climate* 27, 8747–8760.

729 Huffman, G.J., Adler, R.F., Morrissey, M.M., Bolvin, D.T., Curtis, S., Joyce, R., McGavock, B.,
730 Susskind, J., 2001. Global precipitation at one-degree daily resolution from multisatellite
731 observations. *Journal of hydrometeorology* 2, 36–50.

732 Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman,
733 K.P., Stocker, E.F., 2007. The TRMM multisatellite precipitation analysis (TMPA):
734 Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. *Journal
735 of hydrometeorology* 8, 38–55.

736 Hung, M.-P., Lin, J.-L., Wang, W., Kim, D., Shinoda, T., Weaver, S.J., 2013. MJO and
737 convectively coupled equatorial waves simulated by CMIP5 climate models. *Journal of
738 Climate* 26, 6185–6214.

739 Janiga, M.A., Zhang, C., 2016. MJO moisture budget during DYNAMO in a cloud-resolving
740 model. *Journal of the Atmospheric Sciences* 73, 2257–2278.

741 Jiang, X., 2017. Key processes for the eastward propagation of the Madden-Julian Oscillation
742 based on multimodel simulations. *Journal of Geophysical Research: Atmospheres* 122,
743 755–770. <https://doi.org/10.1002/2016JD025955>

744 Kim, D., Kim, H., Lee, M.-I., 2017. Why does the MJO detour the Maritime Continent during
745 austral summer? *Geophysical Research Letters* 44, 2579–2587.
746 <https://doi.org/10.1002/2017GL072643>

747 Kim, D., Xavier, P., Maloney, E., Wheeler, M., Waliser, D., Sperber, K., Hendon, H., Zhang, C.,
748 Neale, R., Hwang, Y.-T., 2014. Process-oriented MJO simulation diagnostic: Moisture
749 sensitivity of simulated convection. *Journal of Climate* 27, 5379–5395.

750 Kiranmayi, L., Maloney, E.D., 2011. Intraseasonal moist static energy budget in reanalysis data.
751 *Journal of Geophysical Research: Atmospheres* 116.

752 Le, P.V., Guilloteau, C., Mamalakis, A., Foufoula-Georgiou, E., 2021. Underestimated MJO
753 variability in CMIP6 models. *Geophysical research letters* 48, e2020GL092244.

754 Li, T., 2014. Recent advance in understanding the dynamics of the Madden-Julian oscillation.
755 *Journal of Meteorological Research* 28, 1–33.

756 Li, T., Ling, J., Hsu, P.-C., 2020. Madden-Julian oscillation: Its discovery, dynamics, and impact
757 on East Asia. *Journal of Meteorological Research* 34, 20–42.

758 Liu, F., Wang, B., 2016. Role of Horizontal Advection of Seasonal-Mean Moisture in the
759 Madden-Julian Oscillation: A Theoretical Model Analysis. <https://doi.org/10.1175/JCLI-D-16-0078.1>

760 Liu, Y., Tan, Z.-M., Wu, Z., 2022. Enhanced feedback between shallow convection and low-
761 level moisture convergence leads to improved simulation of MJO eastward propagation.
762 *Journal of Climate* 35, 591–615.

763 Madden, R.A., Julian, P.R., 1972. Description of global-scale circulation cells in the tropics with
764 a 40–50 day period. *Journal of Atmospheric Sciences* 29, 1109–1123.

766 Madden, R.A., Julian, P.R., 1971. Detection of a 40–50 day oscillation in the zonal wind in the
767 tropical Pacific. *Journal of Atmospheric Sciences* 28, 702–708.

768 Maloney, E.D., 2009. The moist static energy budget of a composite tropical intraseasonal
769 oscillation in a climate model. *Journal of Climate* 22, 711–729.

770 Maloney, E.D., Sobel, A.H., Hannah, W.M., 2010. Intraseasonal variability in an aquaplanet
771 general circulation model. *Journal of Advances in Modeling Earth Systems* 2.

772 Mapes, B.E., 2000. Convective inhibition, subgrid-scale triggering energy, and stratiform
773 instability in a toy tropical wave model. *Journal of the Atmospheric Sciences* 57, 1515–
774 1535.

775 Mayta, V.C., Adames Corraliza, Á.F., 2023. Is the Madden-Julian Oscillation a Moisture Mode?
776 *Geophysical Research Letters* 50, e2023GL103002.
777 <https://doi.org/10.1029/2023GL103002>

778 Mu, M., Zhang, G.J., 2008. Energetics of Madden Julian oscillations in the NCAR CAM3: A
779 composite view. *Journal of Geophysical Research: Atmospheres* 113.

780 Neale, R.B., Chen, C.-C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley,
781 A.J., Garcia, R., Kinnison, D., Lamarque, J.-F., 2010. Description of the NCAR
782 community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR 1,
783 1–12.

784 Neelin, J.D., Held, I.M., 1987. Modeling tropical convergence based on the moist static energy
785 budget. *Monthly Weather Review* 115, 3–12.

786 Park, S., Bretherton, C.S., 2009. The University of Washington shallow convection and moist
787 turbulence schemes and their impact on climate simulations with the Community
788 Atmosphere Model. *Journal of Climate* 22, 3449–3469.

789 Raymond, D.J., Sessions, S.L., Sobel, A.H., Fuchs, Ž., 2009. The mechanics of gross moist
790 stability. *Journal of Advances in Modeling Earth Systems* 1.

791 Sherwood, S.C., 1999. Convective precursors and predictability in the tropical western Pacific.
792 *Monthly Weather Review* 127, 2977–2991.

793 Shin, J., Baik, J.-J., 2023. Global simulation of the Madden–Julian oscillation with stochastic
794 unified convection scheme. *Journal of Advances in Modeling Earth Systems* 15,
795 e2022MS003578.

796 Simmons, A., Uppala, S., Dee, D., Kobayashi, S., 2007. ERA-Interim: New ECMWF reanalysis
797 products from 1989 onwards. <https://doi.org/10.21957/POCNEX23C6>

798 Slingo, J., Inness, P., Neale, R., Woolnough, S., Yang, G., 2003. Scale interactions on diurnal
799 to seasonal timescales and their relevance to model systematic errors. *Annals of
800 Geophysics*.

801 Sobel, A., Maloney, E., 2013. Moisture modes and the eastward propagation of the MJO. *Journal
802 of the Atmospheric Sciences* 70, 187–192.

803 Sobel, A.H., Nilsson, J., Polvani, L.M., 2001. The weak temperature gradient approximation and
804 balanced tropical moisture waves. *Journal of the atmospheric sciences* 58, 3650–3665.

805 Wang, B., Lee, S.-S., Waliser, D.E., Zhang, C., Sobel, A., Maloney, E., Li, T., Jiang, X., Ha, K.-
806 J., 2018. Dynamics-oriented diagnostics for the Madden–Julian Oscillation. *Journal of
807 Climate* 31, 3117–3135.

808 Wang, L., Li, T., 2020. Reexamining the MJO moisture mode theories with normalized phase
809 evolutions. *Journal of Climate* 33, 8523–8536.

810 Wang, L., Li, T., Maloney, E., Wang, B., 2017. Fundamental causes of propagating and
811 nonpropagating MJOs in MJOTF/GASS models. *Journal of Climate* 30, 3743–3769.

812 Wang, S., Sobel, A.H., 2012. Impact of imposed drying on deep convection in a cloud-resolving
813 model. *Journal of Geophysical Research: Atmospheres* 117.

814 Wheeler, M.C., Hendon, H.H., 2004. An all-season real-time multivariate MJO index:
815 Development of an index for monitoring and prediction. *Monthly weather review* 132,
816 1917–1932.

817 Wing, A.A., Emanuel, K.A., 2014. Physical mechanisms controlling self-aggregation of
818 convection in idealized numerical modeling simulations. *Journal of Advances in
819 Modeling Earth Systems* 6, 59–74.

820 Wolding, B.O., Maloney, E.D., 2015. Objective diagnostics and the Madden–Julian oscillation.
821 Part II: Application to moist static energy and moisture budgets. *Journal of Climate* 28,
822 7786–7808.

823 Wolding, B.O., Maloney, E.D., Branson, M., 2016. Vertically resolved weak temperature
824 gradient analysis of the Madden–Julian Oscillation in SP-CESM. *Journal of Advances
825 in Modeling Earth Systems* 8, 1586–1619.

826 Wu, Z., 2003. A shallow CISK, deep equilibrium mechanism for the interaction between large-
827 scale convection and large-scale circulations in the tropics. *Journal of the atmospheric
828 sciences* 60, 377–392.

829 Yanai, M., Esbensen, S., Chu, J.-H., 1973. Determination of bulk properties of tropical cloud
830 clusters from large-scale heat and moisture budgets. *Journal of Atmospheric Sciences* 30,
831 611–627.

832 Zhang, C., 2013. Madden–Julian oscillation: Bridging weather and climate. *Bulletin of the
833 American Meteorological Society* 94, 1849–1870.

834 Zhang, C., 2005. Madden–Julian oscillation. *Reviews of Geophysics* 43.

835 Zhang, C., Adames, Á.F., Khouider, B., Wang, B., Yang, D., 2020. Four Theories of the
836 Madden–Julian Oscillation. *Reviews of Geophysics* 58, e2019RG000685.
837 <https://doi.org/10.1029/2019RG000685>

838 Zhang, G.J., McFarlane, N.A., 1995. Sensitivity of climate simulations to the parameterization of
839 cumulus convection in the Canadian climate centre general circulation model.
840 *Atmosphere Ocean* 33, 407–446.

841 Zhang, G.J., Mu, M., 2005. Effects of modifications to the Zhang–McFarlane convection
842 parameterization on the simulation of the tropical precipitation in the National Center for
843 Atmospheric Research Community Climate Model, version 3. *Journal of Geophysical
844 Research: Atmospheres* 110.

845 Zhang, G.J., Song, X., 2009. Interaction of deep and shallow convection is key to Madden–Julian
846 Oscillation simulation. *Geophysical Research Letters* 36.

847