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Abstract

Previous observational and modeling studies have suggested that moisture plays a
dominant role in Madden-Julian Oscillation (MJO) evolution. Using a realistic MJO simulation by
incorporating the role of mesoscale stratiform heating in the Zhang-McFarlane deep convection
scheme in the National Center for Atmospheric Research Community Atmosphere Model version
5.3 (NCAR CAMS.3), this study investigates factors responsible for the improved MJO simulation
by examining moisture variations during different MJO phases. Results of column moist static
energy (MSE) and moisture budgets show that during suppressed phases of MJO vertical advection
acts to increase MSE anomalies for the development of deep convection while radiative heating
and surface heat flux decrease MSE. The opposite holds true at MJO mature phase. However, their
roles largely cancel each other, leaving horizontal advection to play a major role in low-level MSE
increase during the suppressed phase of MJO and MSE decrease after the MJO mature phase. A
further analysis combining moisture and temperature budget equations is performed to
demonstrate the effects of vertical advection and cloud processes within the column at each level.
The vertical profiles of column confined moisture tendency show that large-scale vertical
advection induced by latent heat release and evaporation within shallow convective clouds is also
important to the lower tropospheric moistening during suppressed phases. This confirms the role
of shallow convection in low level moistening ahead of MJO deep convection. Radiative heating
is vital across all MJO phases and its warming effects keep the column humidity anomaly

maintained in mature phases. None of these features are reproduced by the standard CAMS5.3.
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1. Introduction
The Madden-Julian Oscillation (MJO) has been studied extensively since it was first
discovered by Madden and Julian (1971, 1972) because of its important impacts on tropical and
global climate. The MJO is characterized by an envelope of enhanced, highly organized deep
convection and precipitation propagating eastward from the Indian Ocean to the Western Pacific
at about 5 m/s (Zhang, 2005, 2013). Although significant progress has been achieved in many
aspects (e.g. the multiscale structure and geographical preference of MJO) and several theories
(e.g. considering MJO as an atmospheric response to independent forcing or atmospheric
instability) have been developed to understand the MJO dynamics (Zhang, 2005, 2013; Li, 2014;
Lietal., 2020; C. Zhang et al., 2020), MJO simulation remains poor in most of the global climate
models (GCMs) (e.g. Hung et al., 2013; Wang et al., 2017, 2018; Le et al., 2021). Many
observational (e.g. Sherwood, 1999; Wang and Li, 2020) and modeling (e.g. Grabowski, 2003;
Derbyshire et al., 2004) studies have shown that moisture variation plays a critical role in
controlling convection. Thus, a thorough understanding of moisture variation in MJO evolution is
useful for improving the simulation of convection associated with MJO in numerical models.
Two main theories have been proposed to explain moisture variation during MJO evolution.
One treats MJO as a moisture mode, in which the associated growth of convection is characterized
by changes of anomalous moisture (e.g. Maloney, 2009; Hannah and Maloney, 2011; Sobel and
Maloney, 2013; Adames and Maloney, 2021) under weak temperature gradient (WTG)
approximation (Sobel et al., 2001). It can be quantified with gross moist stability (GMS, Neelin
and Held, 1987) defined originally as the export of vertically integrated moist static energy (MSE).
A normalized GMS was later proposed by Raymond et al. (2009). The enhanced MJO with
negative GMS would suggest the instability of moisture mode. In other words, the variation of
moisture could diagnose the development and distribution of convection. The other is based on a
recharge-discharge mechanism (Benedict and Randall, 2007), in which the column integrated MSE
builds up, leading to the generation of deep convection, and gradually decreases once precipitation
forms (e.g. Maloney, 2009). In this view, the region to the east of existing MJO is favored by the
recharging processes to moisten the low-level troposphere during suppressed convective period.
When convection deepens, the free tropospheric moisture is discharged through precipitation.
Although the fundamental mechanism to both the moisture mode framework and the recharge-

discharge framework is the interaction between convection and free-tropospheric moisture, these



77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

two theories have clear differences in their interpretation on the control mechanism of free-
tropospheric humidity variations and the way anomalous moisture and convection interact. In
nature, the enhancement of column integrated MSE is initiated from the generation of shallow
convection and horizontal advection, which increases the low-level positive moisture anomalies,
enhancing the development of deep convection. As argued by Chikira (2014) and Wolding and
Maloney (2015), moisture mode theory emphasize the important role of shallow convection on
maintaining the existing instability through the amplification of moisture by column processes.
On the other hand, the recharge-discharge theory treats the role of shallow convection as gradual
moistening.

The MSE has been widely used to understand how moisture varies in intraseasonal
oscillations and other tropical perturbations in GCMs and observations (e.g. Back and Bretherton,
2006; Maloney, 2009; Maloney et al., 2010; Kiranmayi and Maloney, 2011; Hannah and Maloney,
2011; Andersen and Kuang, 2012; Cai et al., 2013). Different terms in the column MSE budget
equation have distinct contributions to MJO propagation. For instance, horizontal and vertical
advection works to increase the instability while surface turbulent fluxes and radiative heating
stabilize the MJO at suppressed phases (e.g. Kiranmayi and Maloney, 2011). The ultimate goal of
MSE budget analysis is to understand how the net moisture tendency varies in a column because
under the WTG approximation the MSE budget becomes the moisture budget. In this regard, an
analysis approach proposed by Chikira (2014) on the vertical profile of moisture change within
the column is useful for understanding the moisture variation. His results confirm the importance
of horizontal advection in MJO eastward propagation and point out the crucial role of external
heating (cooling) such as radiative heating (cooling) in moistening (drying) through large-scale
vertical motion. Later work along this line of research using reanalysis and superparameterization
provides new perspectives on why a small source of moisture anomaly might be critical to MJO
amplitude by diagnosing vertical motion from diabatic heating (Wolding and Maloney, 2015;
Wolding et al., 2016). Adames (2017) also expanded on the work of Chikira (2014), showing that
the moisture tendencies accurately describe the observed distribution of MJO-related rainfall.
Using a cloud-resolving model (CRM) simulation during the Dynamics of the Madden-Julian
Oscillation (DYNAMO) project, Janiga and Zhang (2016) noted that low-level moistening ahead
of MJO passage results from shallow convection. By modifying the cumulus parameterization in

Weather Research Forecasting (WRF), Liu et al. (2022) found improved simulation of MJO
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propagation. This was attributed to the enhanced feedback between shallow convection and low-
level moisture convergence, which result in amplified shallow convective heating.

Although the role of shallow convection in moistening the environment for the development
of MJO-associated deep convection has been demonstrated in many studies (e.g. Mapes, 2000;
Slingo et al., 2003; Zhang and Mu, 2005; Mu and Zhang, 2008; Zhang and Song, 2009; Hsu and
Li, 2012; Hsu et al., 2014; Cao and Zhang, 2017; Shin and Baik, 2023), there are still many
unanswered questions. For example, how does enhanced shallow convection in the suppressed
phases of MJO serve to moisten the lower atmosphere exactly? How does vertical advection
interact with convective cloud processes during MJO lifecycle? This study investigates the
moisture variation during the MJO evolution using simulations from Cao and Zhang (2017)
(hereafter CZ17). By incorporating mesoscale stratiform heating structure in the Zhang-McFarlane
deep convection scheme in an NCAR CAMS simulation (referred to as BOTC hereafter, as in
CZ17), CZ17 found that the characteristics of the simulated MJOs compare well with those in
observations. The substantial improvements in the BOTC run compared to the standard CAMS run
(referred to as the CTRL run) were evaluated thoroughly in CZ17. It was mainly attributed to
increased shallow convection ahead of deep convection during suppressed phases, which moistens
the lower troposphere by vertical advection. However, how the shallow convection facilitates the
MIJO development during suppressed phases and the exact physical mechanism of moisture
variation during the MJO lifecycle are still unclear. Given the importance of moisture variations
in the MJO life cycle, in this study, we will use the framework from Chikira (2014) based on WTG
approximation to diagnose the impact of mesoscale heating profile on the formation of the MJO-
scale moisture anomalies in the MJO simulations in CAMS5.3. Under this framework, how
modified convective parameterization improves the MJO simulation can be revealed through
column processes analysis. Recently, Chen et al. (2021) also implemented a mesoscale convective
heating parameterization similar to that in CZ17 into the DOE E3SM vl and found similar
improvement in MJO simulation. Thus, the results from this study may be applicable to other
GCMs as well.

The remainder of the paper is organized as follows. The model, analysis method and data
used in this study are described in section 2. Section 3 provides the results of moisture variation

and gives insights on how moisture varies during MJO by using column MSE budget and the
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vertical profile of column confined moisture budget. Discussion and conclusions are presented in
section 4.
2. Model, method, and data

The standard version of the National Center for Atmospheric Research Community
Atmosphere Model version 5.3 (NCAR CAMS.3) is used in this study. It has a vertical resolution
of 30 levels and a horizontal resolution of 1.9°X 2.5° (Neale et al., 2010). The planetary boundary
layer parameterization uses a diagnostic turbulent kinetic energy based scheme (Bretherton and
Park, 2009). Shallow convection is represented by Park and Bretherton (2009), and deep
convection is parameterized by the Zhang-McFarlane scheme (Zhang and McFarlane, 1995,
hereafter ZM).

This study examines the moisture variation at MJO-scale by analyzing the heat and moisture

budgets, which in pressure coordinates are given by

05 . = — _ 0s —~ owrs’
E+Vh-Vs+oo%—L(c—e)+QR— ap (1)
9 e+ 5 _(c— o)~ T
5 T Vn Vq+ooap— (c—e) o (2)

where § = Cp'I_" + gZ is dry static energy, q is specific humidity, C,, and L denote specific heat at
constant pressure and latent heat of vaporization, respectively. ¢ is condensation rate, e is

evaporation rate, V, represents horizontal velocity vector, @ is vertical velocity, Qg represents

dwIs?

., . dwrqr
radiative heating, and — 5 1

and —
p dp

are the eddy transport of DSE and moisture, respectively.
: — : : ]
Overbar denotes average over the GCM grid box. Q can be written in flux form as gail:, where

dwIs7?

7p and —L

owrqr
a

. _y . oF. oF
Fy is radiative flux. — can be written as ga—pS and ga—;, where F; and F;, are the

sensible and latent heat fluxes due to subgrid scale eddies, presumably by convection in the free
troposphere and turbulence in the boundary layer. Combining Egs. (1) and (2) gives the MSE
budget equation,

oh = - _0h oF], OF; 0FR
eV, Vh—p 4 gilp gl glR
at h ap t8 ap + ap ap

3)
where h = § + Lg is MSE.

One way to understand how tropospheric specific humidity is affected by various processes
during MJO is to use column integrated MSE. The vertically integrated h budget can be formally

written from Eq. (3) as (Neelin and Held, 1987; Maloney, 2009; Kiranmayi and Maloney, 2011),
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<%>=—<Vh-|7i_1>—<(T)Z—Z>+LH+SH+<LW>+<SW> 4)

where the angle brackets denote mass-weighted column integral from the surface to the top of the

on

atmosphere, < x >= é f:TB xdp. < 6’; > represents the vertically integrated h tendency, the first

and second terms on the right-hand side (rhs) represent the column integrated export of h due to
horizontal and vertical advections, < LW > and < SW > are the net longwave and shortwave
fluxes into the atmosphere, LH and SH are the surface latent and sensible heat fluxes.

Egs. (1) and (2) can also be combined to examine the moisture field under the weak
temperature gradient (WTG) approximation (Sobel et al., 2001) following Chikira (2014). When
the eddy transport terms due to convection are expressed explicitly in terms of convective mass
flux and detrainment, Egs. (1) and (2) can be rewritten as (Yanai et al., 1973; Chikira, 2014; Janiga
and Zhang, 2016),

35 | o _ ., 05 = 35 | = X = =
E+Vh-Vs+(o%=Ds—Mcg£+Qi+L(c—e)+ Qr + Sar (5)
WV, Vi+02=D,~Mgl— (-8 +Q (6)
ot VAT WG =Eem Mg, af
where C is large-scale condensation rate, € is evaporation of large-scale precipitation in the
environment, Bq and D are tendencies due to detrainment from convection, M, = pow, is the net
convective mass flux, Q; is latent heating from liquid-ice phase transition, S, 5 and Qq 7 are heating
and moistening from vertical diffusion. Tildes denote the mean value outside of convection in a

grid box (environment). By definition, the grid-mean vertical velocity is the sum of mass flux

inside convection and vertical velocity in the convection environment:

wo=—-Mg+® (7)
where @ is environmental vertical velocity. Substituting ® in Eq. (7) into Egs. (5) and (6) gives,
5 | = ., ~05 = | = s N, A =
a—i+Vh-Vs+(oa—;=Ds+Qi+L(c—e)+QR+Sdf (8)
07 | - _ 07 _ = s N A
a—Z+Vh-Vq+oo£=Dq—(c—e)+Qdf )
By applying the WTG approximation, Eq. (8) takes the following form,
05 _ - _
w%=D5+Qi+L(c—e)+QR + Sar

or

&= (G Ds + Qi+ L(E — &) + Qr + Suy] (10)
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With this, Eq. (9) can be rewritten as,
9q

-V ovAi_~% . p _(x_> A —_7 -vsa (2
at Vh Vq wap+Dq (C e)+Qdf_ Vh Vq+(6t)column (11)
where
ac"[) aqg — —
— =—B——+D,— (6—8& +
<at column ap 1 ( ) Qdf
aq\ 05\ ' —
=(%)(%) [Ds + Qi + LG — &) + Qr + Saf] + Dy — (6 — &) + Quy
= (= 1)@= &) +5(Qr + Q) + Dy + D) + (Qur ++Sus) (12)
where
NGV
o= L(ap)(ap)
and

— (3L (2 4 ()] = — (OB (257
a-1= (6p) [L (6p) + (6p)] - (ap) (6p) (13)
measures the ratio of the lapse rate of moist static energy to that of dry static energy. In the lower

troposphere dh/dp > 0, thus a — 1 > 0; in the upper troposphere dh/dp < 0, thusa —1 < 0

. a5\ 7L . . . . C
since (ﬁ) is negative for stable atmosphere. a — 1 characterizes the efficiency of moistening

(drying) at a given level by vertical advection through vertical motion induced by the external
heating (cooling). It is related to the original definition of the GMS by Neelin and Held (1987) and
the shallow water GMS described by Sobel and Maloney (2013) and Adames and Kim (2016).
The net effect of vertical advection, cloud processes and vertical diffusion within a column is
referred to as “column process” by Chikira (2014) since these processes are confined to a single
atmospheric column. The first term on the rhs of Eq. (12) represents the net effect of condensation
minus evaporation in the convection environment (e.g. stratiform). When there is net condensation
in the lower troposphere, it moistens the atmosphere. While this goes counterintuitive, it can be
understood if the atmospheric motion is considered together with the WTG approximation. In the
lower troposphere when there is condensation, the condensational heating generates an upward
motion such that the heating is balanced by the adiabatic cooling. The upward motion leads to
moistening from vertical advection that overpowers the condensation due to strong vertical
gradient in moisture, thereby leading to net moistening. In the upper troposphere, due to weak

vertical moisture gradient, condensation leads to net drying, as expected from conventional
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thinking. The second, third and last terms on the rhs of Eq. (12) are moistening due to the sum of
radiative heating and freezing heat, detrainment of moisture and DSE, and moisture and heat
diffusion, respectively. All the diabatic heating terms (e.g. radiative heating) affect moisture
through the implied vertical advection by the heating-induced vertical motion. Thus, analyzing the
moisture budget in terms of the column process is not only consistent with the column MSE budget,
but also provides extra benefits by quantifying the effects of individual processes at specific levels
on moisture variation, especially in the lower troposphere, which are important for MJO
convection. Processes quantified under this framework include radiation, detrainment of heat and
moisture and microphysical process in the convection environment.

The composite anomalous terms of Egs. (4), (11) and (12) as a function of MJO phases are
shown in the following section. The anomalies of all fields are obtained by subtracting the annual
means from their absolute values and applying a 20-100-day Lanczos bandpass filter. The
composite phases are determined from Real-time Multivariate MJO series (RMM) method
(Wheeler and Hendon, 2004). The analysis focuses on boreal winter (November to April) over the
tropics. From the spectral and multivariate EOF analyses in CZ17, it was found that MJOs in
observations reach the mature phase in the Indian Ocean whereas MJOs in the CAMS.3
simulations reach the mature phase near the Maritime Continent (cf. Fig.4 in CZ17). In order to
compare them properly in both simulations and observations and analyze the associated
characteristics, we take a phase-centric view rather than a location-centric view. In other words,
we compare the observed MJO at its mature phase in the Indian Ocean with simulated MJO at its
mature phase near the Maritime Continent. If we were to compare observed and simulated MJOs
at the same location, say, the Indian Ocean, we would end up comparing the mature phase of the
observed MJO with the developing phase of the simulated MJO, which would not be an apple-to-

apple comparison. As such, the model results are longitudinally averaged over Maritime Continent
(115-125°E,10°S-10°N) while observations are over Indian Ocean (85-95°E, 10°S-10°N) where

MJO peaks. Note that the selection of different location between observations and model
simulations may lead to some discrepancies in the role of horizontal advection due to differences
in basic states at different locations. Recently, Mayta and Adames Corraliza (2023) found that the
moisture mode is more applicable over Indian ocean and less so over western Pacific and Maritime
Continent. Nonetheless, the comparison between the two model simulations is at the same location,

and thus is not affected by any geographical shift in the simulated mean state between CTRL and
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BOTC. Taking a phase-centric view is consistent with the composite analysis of MJO results in
different phases.

The datasets used to evaluate the model performance include daily European Centre for
Medium range Weather Forecasts (ECMWF) interim reanalysis data (ERA-interim, hereafter refer
to as ERA-I, Simmons et al., 2007), daily TRMM precipitation product (Huffman et al., 2007) and
daily GPCP product (Huffman et al., 2001). As in CZ17, there are two AMIP model simulations:
the standard NCAR CAMS run (CTRL) and the experiment with stratiform heating which includes
an upper-level heating and a lower-level cooling to mimic the heating profile from the stratiform
part of mesoscale convective systems (BOTC). Specifically, in BOTC we artificially modified the
vertical structure of heating profile in convective parameterization scheme in CAMS.3. A
stratiform heating from condensation in the upper level and cooling from rain evaporation in the
lower levels are incorporated into the original convective heating profile, with the column
integrated total heating conserved. The inclusion of stratiform heating enhanced the shallow
convection in the simulation, which leads to a better simulation of MJO in both magnitude and
eastward propagation. More details about the difference between CTRL and BOTC can be found
in CZ17. Both reanalysis data and model simulations are from years 1992 to 2001.

3. Results
3.1 Characteristics of moisture variation during MJO evolution

The vertical profiles of specific humidity anomalies at each phase on MJO-scales are shown
in Fig. 1. In both observations and simulations, the gradual evolution of moisture is consistent with
previous studies (e.g. Cai et al., 2013; Hsu et al., 2014) in which negative moisture anomalies
occur at suppressed and dissipating phases while positive moisture anomalies increasingly appear
from developing to mature phases. The positive moisture anomaly peaks near 500hPa in the mature
stage (around Phase 5) while the negative one peaks near the same height at Phase 8 in ERA-I and
both simulations. Both ERA-I and BOTC have much larger amplitudes of moisture anomalies in
almost the entire column, especially from 700hPa to 400hPa, compared with CTRL. Especially,
the transition phases are shown in both ERA-I and BOTC where Phase 2 (6) has low-level positive
(negative) and upper-level negative (positive) anomalies. The lack of such shallow moistening
ahead of the main MJO development phase in CTRL may directly lead to the poor MJO simulation.
In addition, we note that compared with ERA-I, both simulations show much smaller magnitudes

of moisture anomalies below 850hPa. Previous studies (e.g. Benedict and Randall, 2011; Cai et
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al., 2013; DeMott et al., 2015) have suggested that the positive feedback between the atmosphere
and the ocean is important to intraseasonal variability. Thus, one possible cause may be the
prescribed SST in the AMIP simulations. Another possibility is that the planetary boundary layer
(PBL) parameterization used in CAMS cannot generate enough vertical transport in PBL or lack

of moisture convergence from surface friction.
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Fig. 1. Composite of vertical profiles of specific humidity anomalies on the MJO scale at each
phase averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for (a) ERA-interim; and
Maritime Continent (115-125°E, 10°S-10°N) for (b) CTRL and (c) BOTC. Lines in different colors
represent different phases.

The column-integrated MSE is critical to MJO evolution (e.g. Maloney, 2009; Kiranmayi and
Maloney, 2011). Fig. 2 shows the variation of column-integrated MSE vs. that of specific humidity
and dry static energy (DSE) during the 8 phases of MJO development for ERA-I reanalysis data
and the two simulations. The symbols connected with arrows indicate the MJO evolution from
phase 1 to phase 8. The MSE variations in different phases of the MJO mostly come from moisture
anomalies. However, DSE anomalies, although relatively small, are significant, nonetheless. The
moisture mode theory posits that MSE anomalies are approximately governed by moisture
anomalies (Mayta and Adames Corraliza, 2023). Thus, significant DSE variations from one phase
to another suggest that the moisture mode theory only holds approximately. The moisture variation
is compensated by DSE variation, such that the MSE anomalies are positively correlated with

moisture anomalies but negatively correlated with DSE anomalies as the MJO evolves. During the

11
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inactive or suppressed phases (phases 1, 2, 7 and 8) of the MJO over the Maritime Continent, MSE
and moisture anomalies are negative while during the active phases (phases 3, 4, 5 and 6) the
anomalies are positive. Strong similarities in distribution and magnitude are also found in the
phase-longitude distribution of vertically integrated MSE and that of specific humidity (not shown),
suggesting that the variations in MSE on MJO-scale are mostly governed by moisture variation.
These are consistent with several previous studies (e.g. Maloney, 2009; Kiranmayi and Maloney,
2011; Andersen and Kuang, 2012). In both ERA-I and BOTC simulation, at the MJO initial phase
(phases 1&2) the moisture anomaly is negative and the DSE anomaly is positive, but to a lesser
extent, resulting in a positive MSE anomaly. Afterwards, the column integrated MSE increases (as
a result of increased moisture overwhelming decreased DSE) until phase 4. After the MJO reaches
its mature phase, MSE and moisture anomalies start to decrease. It indicates an energy build-up
and consumption process during the MJO lifecycle. There is an asymmetry between developing
and decaying phases of MJO in moisture and DSE anomalies. The atmosphere is drier and warmer
in the developing phase, but moister and cooler in the decaying phase. Therefore, the progression
around the origin follows a counterclockwise trajectory for moisture anomalies and a clockwise

trajectory for DSE anomalies. However, the CTRL run shows an opposite behavior.
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Fig. 2. Phase space diagram of vertically integrated MSE, Lq (first row), and DSE (second
row) anomalies as a function of MJO phases averaged over eastern Indian Ocean (85-95°E, 10°S-
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10°N) for (a) ERA-interim; and Maritime Continent (115-125°E, 10°S-10°N) for (b) CTRL and
(c) BOTC. Different symbols represent different phases.

3.2 MSE budget analysis

The moisture and MSE budget analysis as a tool is used to understand individual processes
in the MJO evolution. The budget terms for the vertically integrated anomalous MSE in Eq. (4)
during the MJO lifecycle are shown in Fig. 3. The vertically integrated MSE and precipitation
anomalies are also shown. Note that MSE anomalies slightly lead precipitation anomalies (by one
phase) in ERA-I and BOTC and are in phase with precipitation anomalies in CTRL. Overall,
precipitation is tightly related to column water vapor, another assumption in moisture mode theory
(Zhang et al., 2020), in both the reanalysis data and model simulations. In BOTC, positive
precipitation anomalies appear at Phase 3 and peak at Phase 5, showing very close agreement with
those in ERA-I. In the CTRL run, there are two peaks of anomalous precipitation with smaller
amplitudes at Phases 3 and 6, implying deep convection develops too early. The dominant terms
in the MSE budget are vertical advection and energy fluxes going into the atmosphere from the
top and bottom, and they are largely opposite in signs. The effect of vertical motion on MSE is
important for the maintenance of MSE anomalies in MJO lifecycle. In both ERA-I and BOTC
vertical advection acts to maintain the MSE anomalies during the initial and early developing
phases of MJO and stabilize the column during the mature phases. This reflects the fact that upward
motion in the initial and developing phases can only reach a lower altitude. As a result, the
associated mass convergence in the lower levels brings more energy into the column than the
energy taken out by the mass divergence in the upper part of the upward motion layer. In the
mature phase, upward motion reaches the upper troposphere. Consequently, the mass divergence
in the upper troposphere exports more energy out of the column than the energy brought in by
mass convergence in the lower troposphere. The variation of energy fluxes into the atmospheric
column from the top and bottom decreases the column MSE in the early phases and increases the
column MSE in mature phase.

Because of the large cancelation between vertical advection and energy fluxes into the
atmospheric column from the top and bottom, MSE tendency largely follows MSE changes due to
horizontal advection. This applies to both ERA-I and the CAMS simulations although the
magnitude of variation is smaller in CTRL. It should be noted that there is a residual after adding

up all the budget terms, which has been addressed in previous research and attributed to
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misrepresentation of moistening process ahead of MJO in reanalysis model or inevitably errors
between exact outputs of advection terms and vertical interpolation of standard variables (Neelin

and Held, 1987; Maloney, 2009; Kiranmayi and Maloney, 2011).
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Fig. 3. Vertically integrated anomalous MSE budget terms (W/m?) (solid lines in different
colors) from the Eq. (1) averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for (a) ERA-
interim; and Maritime Continent (115-125°E, 10°S-10°N) for (b) CTRL and (c) BOTC.
Precipitation anomalies (mm/day, dash line and the right ordinate) and vertically integrated MSE
(10°J/m?, purple line with the left ordinate) are also shown.

As the net energy flux into the atmospheric column is the dominant term that counteracts the
vertical advection, Fig.4 further examines the contributions from its components, that is, shortwave,
longwave, surface sensible and latent heat fluxes. The variation of the net flux is dominated by
that of longwave flux, with secondary contribution from surface latent heat flux, while shortwave
and sensible heat flux contributions are insignificant. The longwave flux is particularly large
during initial and mature phases, more than twice as large as that of surface latent heat flux. In the
early phases, cloud tops are low, and the cloud longwave effect is small. Thus, the atmospheric
column loses more energy (relative to the climatological mean) by emitting longwave radiation at
higher temperature. During and after the mature phase, cloud tops are high, and the longwave

cloud radiative forcing is large. Thus, the atmosphere gains energy relative to the climatological
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mean. The surface latent heat flux anomalies in ERA-I are negative in the initial and developing
phases of MJO and positive after phase 5, becoming negative near the end of the MJO lifecycle.
In BOTC, the latent heat flux anomalies are negative before phase 5 and positive after phase 5,
with a larger magnitude than that in ERA-I. In CTRL, latent heat flux anomalies are small in all

phases of the MJO.
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Fig. 4. Vertically integrated anomalous flux terms (pink solid lines) and its decomposition
averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for (a) ERA-interim; and Maritime
Continent (115-125°E, 10°S-10°N) for (b) CTRL and (¢) BOTC.

In Fig. 5, both ERA-I and BOTC show that the net MSE tendency is located ahead of
precipitation anomalies, leading by about 90° of MJO phases. Such quadrature distribution
indicates that the maintenance and dissipation of column MSE anomalies before and after the MJO
precipitation drive the eastward propagation of the MJO convective center. This result is consistent
with previous reanalysis (e.g. Kiranmayi and Maloney, 2011). In CTRL, although there are also
positive MSE anomalies ahead of precipitation anomalies, the precipitation anomalies do not
coincide with the MJO propagation from the Indian Ocean to the Western Pacific. Horizontal

advection (second row) helps to maintain column MSE anomalous ahead of MJO convection, but
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it only happens west of the Maritime Continent before Phase 4 and then the drying process takes
over afterwards. In the view of moisture mode, MJO convection center is regarded as a moisture
anomaly center. We found that the regions of negative vertical advection (third row) and positive
flux terms (forth row) of MSE coincide with MJO convective center. It indicates that the moisture
anomalies in MJO convection center is maintained in strength by the longwave radiation and
surface latent heat flux but removed by vertical motions. The horizontal advection ahead of
convective center act to propagate MJO eastward. As a result of the balance between surface fluxes

and vertical advection, the net MSE tendency more resembling horizontal advection.
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Fig. 5. Longitude-phase (averaged over 10°S-10°N) plots of vertically integrated anomalous
MSE terms (W/m?, color filled) for (a) ERA-interim; (b) CTRL; and (¢) BOTC. Precipitation
anomalies (mm/day, contours) are also drawn. Anomalies with a confidence level greater than 95%
are stippled.

Fig. 6 shows the height-longitude cross section of anomalous MSE (color) and wind
perturbations (vectors) in MJO active stage. An eastward extension of the MSE anomaly in the
lower troposphere is seen in both ERA-I and BOTC, indicating that the lower tropospheric
moistening occurs ahead of the MJO center. The 90°E longitude corresponds to the enhanced
precipitation location in ERA-I at Phase 4. BOTC shows very similar features except located at
120°E where the peak precipitation occurs at Phase 5 in the model. Note that both ERA-I and
BOTC show well-organized MSE anomalies, with a typical MJO easterly wind perturbation
feeding into convection from ahead of the convection and westerly wind anomalies from the west.
The positive specific humidity anomalies appear where there is a deep layer of positive MSE
anomalies associated with strong upward motion. CTRL fails to capture such well-organized
features. Wang et al. (2018) suggested that the horizontal structure of the lower tropospheric

moistening and equatorial asymmetry of zonal wind favors eastward propagation.
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Fig. 6. Height-longitude cross sections of anomalous MSE (color filled, kJ/kg), specific
humidity (contours, g/kg) and wind (u, w vectors, m/s) of composite MJO at Phase 4 for (a) ERA-
interm and at Phase 5 for (b) CTRL and (c) BOTC.

3.3 Vertical structure of moisture budget

As shown in the last subsection, the horizontal advection contributes to the maintenance of
MSE anomalies ahead of MJO convective center. A further breakdown of horizontal advection
into zonal and meridional component (not shown) indicates that zonal advection dominates the
MSE maintenance process and leads to the eastward propagation. Although some studies (e.g.

Maloney, 2009; Kiranmayi and Maloney, 2011; Kim et al., 2014) pointed out that horizontal
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advection might be governed by meridional advection, our work indicates a larger influence from
zonal advection, which is consistent with some other previous works (Hsu and Li, 2012; Liu and
Wang, 2016; Kim et al., 2017). While vertical advection is large in the column integrated MSE
budget, it is largely balanced by energy flux contributions from the top and bottom of the
atmospheric column. Similarly, for moisture, although vertical advection from upward motion
moistens the atmosphere, its accompanying condensation acts to dry the atmosphere (e.g. Benedict
and Randall, 2007; Hsu and Li, 2012; Adames and Wallace, 2015). The net effect can be either
moistening or drying depending on which process is more effective. From the WTG approximation
Eq. (10), any diabatic process will affect vertical motion. To consider these processes explicitly in
the framework of vertical advection, Chikira (2014) introduces the so-called “column process” or
“column confined moisture tendency” as referred to by Janiga and Zhang (2016), which represents
the net effect of vertical motion and all diabatic processes within a column that affect the moisture
field. Wolding and Maloney (2015) and Wolding et al. (2016) used this method to estimate the
vertical velocity resulting from each column process and investigate the moisture variation in the

ERA-I reanalyses and the superparameterization version of CAM (SPCAM).

18



446

447
448
449
450
451
452
453
454
455

456
457
458
459
460

(a) ERA-interim (b) CTRL (c) BOTC

s
| [10° kg/kgicay]

, ) ) [10fkg/kplday
250 -] : : 250
300 o . . 300

M )
250 X X X

300

0.1
0.08
0.06
0.04
0.02

400
500

400
500

400

500 -0.02

-0.04

-0.06

-0.08
-0.1

0.1
0.08
0.06
0.04
0.02

0
-0.02
-0.04
-0.06
-0.08

-0.1

Net moisture tendency
Pressure(hPa)

700 700
850 NS | 850
1000 +——F——=— 1000

700
850

T 1000
8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Phase Phase
L [wf kg/kg/day L [10.“‘ kg/kg/day
250 4 250 4 : 250
300 4 300 A 300

Horizontal advection
Pressure(hPa)

X X [10.G kg/kg/day] L X [1of kg/kg/day] L L [10;"kg/kP/day
= 250 - . 250 : 0.1
5 .
5 300 - 300 4 0.08
'g _ 0.06
2 & 0.04
o T 400 1 400 A 0.02
T \ 0
= 2 500 A 500 4 0.02
= 2 . -
8 & 0.04
= 700 700 ‘\ 0.06
g ¢ . -0.08
_2 850 - 850 - L w850 -0.1
&} 1000 — T 1000 — =+ 1000 -

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Phase Phase Phase

1o? kg/kg/day] L o.’ kghkg/day]

@
N [10. Kg/kp/day

250
300

250
300

400
500

400
500

Pressure(hPa)

L BEbS | 700
850 : |1 850
1000 1000

700

850
1000

Vertical advection

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
Phase Phase

Fig. 7. Height-Phase plot of composites of anomaly net specific humidity tendency (first row,
10-3kg/kg/day), horizontal advection (second row), column confined moisture tendency (third row)
and vertical advection (fourth row) averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for
(a) ERA-interim; and Maritime Continent (115-125°E, 10°S-10°N) for (b) CTRL; and (¢) BOTC.
Specific humidity anomalies (10~ kg/kg, contours) are also drawn in the first row for reference.
Note the color scale in the vertical advection plots differs from the rest. Anomalies with a
confidence level greater than 95% are stippled.

Fig. 7 shows the height-phase cross section of net moisture tendency, horizontal advection,
and column confined tendency. Also shown is the vertical advection of moisture for reference and
comparison, which will be made clear shortly. Both ERA-I and model simulations show a tilted
vertical structure of moisture as MJO develops. There is a positive net moisture tendency (first

row) ahead of positive moisture anomalies, indicating an enhancement of moisture anomalies

before MJO convection. Both ERA-I and BOTC moisture tendency peaks around 600 hPa. CTRL
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show much weaker signals. The horizontal advection (second row) in ERA-I and BOTC moistens
the atmospheric column in initial stages from Phase 1 to 3 and dries it after the MJO mature phase
(phase 5) as the MJO is gradually dissipating. The patterns of horizontal advection show high
resemblance to those of the net moisture tendency, indicating that horizontal advection is the main
contributor to the net moisture tendency, consistent with Figs. 3 and 5. Its moistening effect over
lower troposphere is also confirmed by the shallow positive anomalies in the vertical structure of
MSE horizontal advection ahead of the deep layer of MSE anomalies in Fig. 6. The magnitude of
column confined moisture tendency (third row) is slightly smaller than the net moisture tendency
and horizontal advection. It reaches the maximum during the mature phases of MJO in mid-
troposphere in both ERA-I and BOTC. CTRL shows very different phase timing; the peak occurs
at phase 3, ahead of the positive moisture anomalies in column confined moisture tendency around
700 hPa, implying that convection develops too early. For comparison, vertical advection (fourth
row) shows significantly larger magnitude of drying and moistening than that of the column
confined moisture tendency, by a factor of 5 or more. Comparing Egs. (2) and (11), the column
confined moisture tendency is the sum of vertical advection, total condensation minus evaporation
and eddy transport due to subgrid-scale convection. This clearly indicates that although vertical
advection and diabatic physical processes can have large contribution to moisture anomalies
individually. They are largely in balance, leaving a comparatively small net effect on the moisture
fields. Therefore, considering them in isolation can be misleading when attributing the source of
moisture anomalies. They result in drying in the free troposphere in MJO suppressed phases and
moistening in the MJO mature phase. The column confined moisture tendencies in the boundary
layer will not be discussed here since the WTG approximation only applied to the free troposphere.

To demonstrate more clearly the roles of each budget term in Eq. (11) in moisture tendency,
we use the initial suppressed and mature phases of MJO as examples below. Fig. 8 shows the
vertical profiles of moisture budget averaged in suppressed (first row, phase 1&2) and mature
phases (second row, phase 5), respectively. During suppressed phases, both ERA-I and BOTC
show relatively small positive values of column confined moisture tendency in the lower
troposphere and drying anomalies in the upper troposphere. The net moisture tendency is positive
in the whole troposphere and dominated by contributions from horizontal advection. This is
consistent with the above results that there is moistening ahead of active convection and horizontal

advection contributes the most. CTRL shows different structures with smaller amplitude,
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especially in the lower troposphere. When the MJO develops into the mature phase, the moisture
budget is largely opposite to the initial phases. In the upper troposphere, both ERA-I and BOTC
have large moistening. Horizontal advection depletes moisture while column confined moisture
tendency moistens the column as a source, except below the 800 hPa height. In CTRL, horizontal
advection moistens the atmosphere while column confined tendency dries the atmosphere, leading

to net drying throughout the troposphere with weaker magnitude.

(2) BRA-interim (b) CTRL (¢) BOTC
Suppresed phases Q budget Suppressed phases Q budget Suppressed phases Q budget

jzz 300 {\\>\ 300 (/
oI R 1 o | P O
700 /\ e\ 700 é%\ 700 ]\ y
mlop> el b Tul P

-0.10 0.00 0.10 -0.10 0.00 0.10 -0.10 0.00 0.10
10 kg/kg/day 10 kg/kg/day 10 kg/kg/day

Mature stage Q budget Mature stage Q budget Mature stage Q budget
300 300 ] 300 \
400 400 / \)
500 500 500
600 < / ) 600 600 \
00 an|
800 “

700 700
900 \/ 900 900

800 (—s— 800
010 000 0410 010 000 010 010 000 010

107 kg/kg/day 107 kg/kg/day 10 kg/kg/day

)

N
o
o

L
Pa)

N

(=}

o

Pressure(h

Pressure(hPa)
Pressure(hPa

Pressure(hPa)
Pressure(hPa)

Ayél&c\
I -
Pressure(hPa)

% 7.z C
¥

‘olumn

Fig. 8. Composite specific humidity budget terms in Eq. (11) (suppressed phases in first
row, mature phase in second row), averaged over eastern Indian Ocean (85-95°E, 10°S-10°N) for
(a) ERA-interim; and Maritime Continent (115-125°E,10°S-10°N) for (b) CTRL and (¢) BOTC.

As horizontal advection is the dominant contributor to moistening in the lower and middle
troposphere at the MJO initial phase and the main drying factor at the MJO mature phase, we
further show horizontal maps of wind anomalies and mean specific humidity distributions at 700
hPa in Fig. 9 for MJO initial and mature phases. We found that the advection of mean specific
humidity by anomalous wind plays a dominant role in the distribution and variation of horizontal
advection, especially in the averaging area (not shown). The advection of anomalous specific
humidity by mean wind contributes less except for areas north to 10°N. This is consistent with

previous works (Cai et al., 2013; Kiranmayi and Maloney, 2011; Maloney, 2009). In ERA-I, the
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moisture maximum is centered east of 100°E. At the initial phase (Fig. 9a), the easterly winds

bring moisture to the averaging domain (85-95°E, 10°S-10°N), leading to moistening. Conversely
at phase 5, the westerly winds bring in dry air and cause drying in the region. In CTRL, two
moisture maxima are observed, one inside the averaging area near 115-120°E and the other
centered to the east of the averaging area near 130-140°E. At the initial phase, the easterly winds
lead to small dry advection north of the equator and small moist advection to the south, resulting
in a weak positive moisture advection in the averaging area. At the mature phase, although the
convergent wind leads to a dry advection south of the equator, the westerly wind brings moisture
from the maximum center north of the equator and results in moistening. As a result, the horizontal
advection is also weak (Fig. 9d). In BOTC, the moisture maximum is located east of the averaging
area near 140°E. At the initial phase the zonal wind anomalies are weaker than those in CTRL, but
the gradient of specific humidity and meridional wind anomalies are larger. Both the zonal and
meridional wind anomalies result in positive moisture advection in the averaging area. At the
mature phase, similar to ERA-I, there is strong convergent wind to the equator, which lead to
strong dry advection. Note that the mean state of specific humidity and moisture gradients changed
considerably from CTRL to BOTC. Compared with CTRL, the larger moisture gradients in BOTC
along with anomalous wind result in the horizontal advection similar to that of ERA-L
Comparatively, the changes in moisture gradients contribute more to this improvement (not
shown). This indicates that the altered mean state from modified parameterization may also have

some effect on the MJO simulation besides convection organization itself (Jiang, 2017; Ahn et al.,

2020).
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Fig. 9. Composites of 700 hPa anomalous horizontal winds (m/s) and mean specific
humidity (g/kg) in MJO suppressed phases and mature phase in (a), (b) ERA-interim, (c), (d)
CTRL, and (e), (f) BOTC. Here the mean specific humidity is multi-year averaged daily specific
humidity over winter half of the year. The rectangles represent the averaging areas used in previous
plots.

The column confined moisture tendency is a result of competing effects of dynamic and
thermodynamic processes. For instance, cloud condensation depletes moisture, and therefore acts
to impede the maintenance of moisture anomalies. However, condensational heating will result in
upward motion, which moistens the atmosphere by transporting moisture-rich air from the low
levels upward. The net effect can be either moistening or drying the atmospheric column,
depending on the moisture and temperature stratification. By the same token, radiative cooling,

although not directly affecting the moisture field, will result in sinking motion and thus dries the
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atmosphere through vertical advection. Therefore, examining the individual contribution to the
column confined moisture tendency can provide useful insight into the roles they play in moisture
variation during MJO evolution.

Fig. 10 shows the moisture tendency terms from the column processes in Eq. (12) in the
MJO suppressed and mature phases. The terms containing o represent moistening (drying) caused
indirectly by vertical advection induced by heating (cooling). In suppressed phases, in both CTRL
and BOTC the major moistening factor in the lower troposphere is the combined effects of
condensation and evaporation in the convection environment of the GCM grid box. As explained
earlier in section 2, the vertical moisture advection from condensational heating supplies more
moisture than needed by condensation, resulting in a net moistening. It was shown in CZ17 that
shallow convection is increased in BOTC and there are positive low-level moisture and heating
anomalies ahead of deep convection as MJO propagates eastward. Also, there are positive
anomalies of vertical advection of moisture in the lower troposphere in advance of precipitation
(Fig. 8 of CZ17). These together indicate that the low-level moistening from condensation
anomalies is tightly associated with enhanced shallow convection. This is in agreement with CRM
studies in Janiga and Zhang (2016). Note that while moistening from shallow convection ahead of
deep convection in MJOs is well known, the interpretation may vary. On the one hand, evaporation
from shallow convection in the convection environment can moisten the lower troposphere. On
the other hand, under WTG approximation condensational heating will induce grid-scale upward
motion, which will moisten the environment, although in the convection-free environment there
can be compensating subsidence. Their combined effect is to moisten the atmosphere.

Consistent with the column MSE budget analysis, the radiative cooling leads to anomalous
descent and dries most of the column, especially the lower troposphere. The drying tendencies are
larger in BOTC than in CTRL. The moisture tendency due to freezing/melting from phase
transition is positive near 600 hPa and negative above the height of 550 hPa. The moistening is
due to less melting (compared to MJO lifecycle average) and the drying above is due to less
freezing. The effects of detrainment and vertical diffusion are relatively small in the entire free
troposphere, but quite large in the PBL in BOTC. In CTRL, the net column confined moisture
tendency is positive from the surface to 450 hPa, which may contribute to fast development of
convection. On the other hand, the positive net column confined moisture tendency in BOTC only

extends to 600 hPa, with strong drying above. This may act to delay the development of deep
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convection. Thus, the important role of shallow convection in the MJO suppressed phases is further
confirmed by examining the physical processes associated with vertical structure of moisture

tendency variation.
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Fig. 10. Composite column confined moisture tendency and its components in Eq. (12) in
suppressed (top row) and mature phase (bottom row), averaged over Maritime Continent (115-
125°E,10°S-10°N) for (a) CTRL and (b) BOTC.

At the mature stage, the dominant contributor to the positive column confined moisture
tendency in BOTC is radiative heating, which almost moistens the whole column and peaks at the
midlevel. The decomposition into shortwave and longwave heating contributions separately (not
shown) finds that longwave heating-induced moistening dominates throughout the troposphere
below the 300 hPa height whereas the shortwave heating/cooling has a moistening effect in the
upper troposphere and drying effect in the lower troposphere, with maximum drying near 800 hPa.
The net large-scale condensation minus evaporation dries the upper troposphere and moistens the
lower troposphere between 800 and 600 hPa. However, in the PBL there is strong drying, likely
from evaporation-induced subsidence, which is largely balanced by radiative heating. We should

point out that caution must be taken when interpreting the results in the PBL since the WTG
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approximation only holds in the free troposphere above the PBL. Because of the strong
precipitation from higher levels associated with active deep convection, more ice/snow melting
cools the midtroposphere near 600 hPa and thereby the induced subsidence substantially dries the
layer. On the other hand, liquid freezing or ice/snow formation moistens the upper troposphere. In
comparison with BOTC, CTRL shows entirely different vertical structure with the negative
column confined moisture tendency at all levels below 400 hPa. Together with the vertical profile
of column confined moisture tendency in suppressed phases and vertical structure of moisture in
Fig. 6, it can be concluded that convection in CTRL develops too early and thus there is not enough
active deep convection at the mature phase.
4. Discussion and Conclusions

Benefitting from a realistic simulation of MJO (the BOTC run) by modifying the vertical
convective heating profile in the NCAR CAMS, this study examines contributions from different
physical processes to moisture variations during different MJO phases, especially in the suppressed
and mature phases. The objective is to understand what processes contribute the most to the MJO
improvement, including its eastward propagation, in CAMS simulation when the vertical heating
profiles are modified to mimic the heating from mesoscale convective systems. The column MSE
budget shows that in suppressed phases both horizontal and vertical advection contribute positively
to MSE anomaly ahead of the MJO-associated deep convection. The vertical advection dominates
the maintenance of vertically integrated MSE anomaly while radiative heating and surface fluxes
act to reduce MSE in ERA-I and simulations. The opposite is true at the mature stage. However,
they are largely balanced, leaving the horizontal advection governing the evolution of MSE
tendency anomaly, leading to the eastward propagation of the MJO convection center. Although
CTRL can produce these processes related to the column MSE budget, their magnitude is small
and propagation is less organized, which result in large biases in MSE anomalies during MJO
lifecycle. The analysis of column confined moisture tendency demonstrates the role of enhanced
shallow convection (i.e., acting as an important source of low-level moisture in the suppressed
phases of MJO) on the improved MJO simulation in BOTC. The moisture anomalies associated
with shallow convection is due to vertical advection by the large-scale ascent induced by latent
heat release from condensation rather than due to direct detrainment of moisture from shallow
convection. This is because shallow convection drives a strong low-level moisture convergence

through heating to force large-scale vertical upward motion (Wu, 2003) and in the lower

26



626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

troposphere below the level of minimum MSE vertical advection is more efficient in moistening
the atmosphere than condensational depletion of moisture.

In the BOTC simulation, the horizontal advection of column MSE serves to increase
(decrease) the MSE anomalies before (after) MJO develops to the mature phase. There is a shallow
layer of positive MSE anomalies dominated by the horizontal advection in the lower troposphere
ahead of MJO convection, helping the MJO to propagate eastward. The CTRL simulation fails to
capture this feature. In the vertical structure of moisture budget, the net moisture tendency largely
follows the anomalous horizontal advection in the whole column and peaks at mid-level in the
MJO initial stages for ERA-I and BOTC. CTRL has small net moisture tendency with a maximum
at lower troposphere during earlier phase, indicating too early convection. The column longwave
radiative heating and latent heat flux have a positive correlation with precipitation anomalies,
implying that these two terms maintain the column MSE during the enhanced MJO convection
stages and help to stabilize the atmosphere during the initial stage, opposite to the vertical
advection. The vertical profiles of column confined moisture tendency are examined with the aid
of WTG approximation to help understand the contributions to the column moisture variation
including the interaction between the cloud processes and vertical advection. It shows that the
downward vertical advection induced by radiative cooling is essential to moisture budget in
balancing the moistening from other processes in the initial stage, consistent with the column MSE
budget analysis. At the mature phase, advective moistening from radiative heating-induced upward
motion is a major source to maintain the moisture anomalies. The improvement in BOTC is
attributed to the effects from increased shallow convection, which helps moisten the atmosphere
below 600 hPa during suppressed phases and advance the eastward evolution afterwards.

As a follow up work of CZ17, this study provides a better understanding of the underlying
mechanisms for the improved MJO simulation in BOTC from the view of moisture variations in
MJO lifecycle. Based on the vertically integrated MSE budget and vertical profile of column
confined moisture tendency analyses, this study confirms the physical mechanism of shallow
convection in moistening the lower troposphere for the development of the deep convection during
MJO evolution. It is also found that the role of vertical motion induced by radiative heating in
moistening or drying is crucial to the MJO development. In a previous study, Wang and Sobel
(2012) showed that radiative heating serves to destabilize the atmosphere when deep convection

is enhanced in a CRM simulation. Wing and Emanuel (2014) suggested that radiative-convective
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feedbacks are important for the onset and organization of convection over tropics. Recent
observations (Ciesielski et al., 2017) demonstrated that the radiative heating is essential in
maintaining MJO during DYNAMO. In this study we showed that radiative heating and
condensational heating in the convection environment are the two dominant terms in the column
confined processes. These together with horizontal advection govern the moisture evolution in

MJO.
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