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The anomalous Hall effect (AHE) is an efficient tool for detecting the Néel vector in collinear compensated
magnets with spin-split bands, known as altermagnets (AMs). Here, we establish design principles for obtaining
nonzero anomalous Hall conductivity in the recently proposed two-dimensional (2D) AMs using spin and
magnetic group symmetry analysis. We show that only two of the seven nontrivial spin layer groups exhibit
an unconventional in-plane AHE in which the Néel vector lies within the plane of the Hall current. Through
first-principles simulations on bilayers of MnPSe3 and MnSe, we demonstrate the validity of our group theoretic
framework for obtaining AHE with d- and i-wave altermagnetic orders, depending on the stacking of the bilayers.
We find that the spin group symmetry is successful in determining the linear and cubic dependence of anomalous
Hall conductivity in Néel vector space, although AHE is a relativistic effect. This work shows that the AHE in
2D AMs can probe the altermagnetic order and Néel vector reversal, thereby facilitating the miniaturization of
altermagnetic spintronics.
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I. INTRODUCTION

Altermagnetism (AM) has emerged as a novel class of
collinear magnetism characterized by time-reversal symmetry
(T ) breaking in momentum space along with compensated
magnetic order in real space [1–5]. Unlike conventional an-
tiferromagnets (AFMs), where the opposite spin sublattices
are connected by the inversion (P) and/or translation (τ )
operations, in AMs they are connected by mirror-rotation
symmetries. Hence, AMs show eV-scale nonrelativistic spin
splittings [3], leading to highly spin-polarized currents, which
are characteristic of ferromagnets (FMs). Since there is no net
magnetization, AMs also show ultrafast switching dynamics
and resilience towards stray fields, similar to that shown by
AFMs [6–9]. This combination of properties of both FMs and
AFMs in a single material makes AMs interesting not only for
fundamental research, but also for spintronics-based applica-
tions by allowing for facile control and detection of spin states
using different means, including electric or optical fields. Bro-
ken T -symmetry effects in AMs are experimentally detected
through angle-resolved photoemission spectroscopy [10,11],
spin-to-charge interconversion [12,13], and the anomalous
Hall effect (AHE) [14]. To date, the experimental observation
of altermagnetic effects is still limited to three-dimensional
(3D) materials, i.e., MnTe [15], Mn5Si3 [16], CrSb [17], and
RuO2 [12].

The discovery of magnetic ordering in atomically thin ma-
terials opens up new possibilities for miniaturizing devices to
the two-dimensional (2D) limit. However, achieving AM in
2D systems is difficult due to additional symmetry constraints.
In 2D layers, the electronic bands are dispersionless along the
out-of-plane direction [18–21]. As a result, in the 2D limit, the
twofold rotation along the z axis (Cz

2) and horizontal mirror
(Mz) symmetry transform k = (kx, ky) like P and τ , respec-
tively. Therefore, for altermagnetism to emerge, the opposite
spin sublattices must not be connected by Mz and/or Cz

2 [19].

In spite of these exacting requirements, AM in 2D materials
was predicted theoretically using a high-throughput compu-
tational approach (RuF4, FeBr3 [22,23]), bilayer stackings
(CrSBr, MnBi2Te4 [18,20]) and twisting bilayers [21,24,25].
The nonrelativistic understanding of 2D altermagnetism was
recently established in Refs. [18–25]. However, unlike 3D
bulk AMs, a comprehensive analysis of the magnetotransport
effects (such as anomalous Hall and anomalous Nernst ef-
fects), and novel Néel vector detection methods for 2D AMs
is still lacking.

Our work based on symmetry analysis and first-principles
simulations elucidates the stringent symmetry requirement for
observing AHE in the 2D AMs. We show an unconventional
periodic dependence of AHE on the Néel-vector space, where
the Néel vector lies in the plane of the Hall current. This is
in contrast to the conventional FM-like Hall response, where
Hall current is perpendicular to the magnetization [26,27].
By performing density functional theory (DFT) simulations
on bilayers of MnPSe3 and MnSe, which are PT symmetric
as monolayers, we achieved d- and i-wave altermagnetism
with an in-plane anomalous Hall response as large as for the
well-known bulk AMs—MnTe [15,28] and Mn5Si3 [16,29].
Furthermore, we reveal the unique relationship of the AHE
with the spin group symmetries and nonrelativistic spin-
degenerate nodal lines. Moreover, the in-plane AHE is shown
to be an efficient tool to probe the altermagnetic order and
180◦ Néel vector reversal in 2D AMs.

II. CALCULATION METHODS

DFT calculations have been carried out using the projector-
augmented wave method [30], as implemented in the VASP

package [31]. The Perdew-Burke-Ernzerhof (PBE) [32] func-
tional within the generalized-gradient approximation, along
with a Hubbard-U correction, are employed to accurately
describe electronic interactions. Following Refs. [33,34], an
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effective U value of 3.0 eV was applied to the Mn-d orbitals
using the approach of Dudarev et al. [35]. The Grimme-D3
scheme was used to account for the vdW interactions [36].

The AHE can be described by an order parameter called
the Hall vector (σH), with the anomalous Hall current density
given by J = σH × E, where E is the electric field. The Hall
vector is defined as: σH=(σzy, σxz, σyx ) [37], with σ³´ for ³ �=
´ being the antisymmetric components of the conductivity
tensor. At the microscopic level, the intrinsic contribution to
anomalous Hall conductivity (AHC) is expressed as

σ³´ = −ε³´γ

e2

h̄

∫

dk

(2π )3

∑

n

f (En,k)	γ (n, k), (1)

where ε³´γ is Levi-Civita symbol. En,k and 	γ are the en-
ergy eigenvalue and Berry curvature, respectively, of the band
with quantum number n. f (En,k) is the Fermi-Dirac distribu-
tion function. At zero temperature, the summation in Eq. (1)
reduces to a sum over occupied bands. To simulate AHC
within DFT, we constructed a tight-binding Hamiltonian from
maximally localized Wannier functions, which were obtained
through WANNIER90 [38]. Wannier interpolation of Berry
curvature and AHC were postprocessed using the pruned FFT-
based WANNIERBERRI [39] package. Note that rapid variations
of Berry curvature are taken into account by integrating the
Brillouin zone on a dense k mesh of 125 × 125 × 1 and with
recursive adaptive mesh refinement. We conducted symmetry
analysis using Ref. [40], FINDSYM [41], BILBAO crystallo-
graphic server [42], MAGNDATA [43], and AMCHECK [44].

III. RESULTS AND DISCUSSION

A. Symmetry analysis for AHE in 2D AMs

Since AMs display spin splitting of electronic structure
without spin-orbit coupling (SOC), they are best characterized
by spin group symmetries [R1||R2], where R1 and R2 sym-
metry operations act on the decoupled spin and real space,
respectively [3,45–47]. Just like in the case of AFMs, sym-
metry dictates a net zero magnetization in AMs. However,
in AFMs, the spin-up and -down bands are degenerate. It is
instructive to see which symmetries (in terms of spin group
formalism) would result in a traditional AFM versus an AM.
Collinear magnets, including AMs, always have spin-only
symmetry [C2||T ], where C2 is a twofold rotation around
the axis perpendicular to the collinear spins, followed by
inversion in spin space [45]. The [C2||T ] transforms energy
eigenstates as [C2||T ]E (s, k) = E (s,−k), leading to even-
parity spin splitting. The [C2||T ][C2||P] and [C2||τ ] transform
the energy eigenstates from E (s, k) to E (−s, k), which lead to
spin degeneracy at an arbitrary k point. The C2 operation is the
twofold rotation about an axis perpendicular to collinear spins
in spin space and, for simplicity, can be interpreted as spin
space inversion. Additionally, for the 2D case (kz = 0), the
spin group symmetries [C2‖Mz] and [C2‖Cz

2] also lead to spin
degeneracy (see Sec. I of Supplemental Material (SM) [48]).
Overall, to obtain altermagnetism in 2D materials, opposite
spin sublattices should not be connected by crystallographic
P, τ , Cz

2, and Mz. However, there should exist at least one
crystallographic symmetry connecting opposite spin sublat-
tices to have symmetry-enforced net zero magnetization. The

FIG. 1. Schematic diagram showing how symmetries determine
the presence or absence of AHE in 2D altermagnets. In this exam-
ple, the spin-group symmetry [C2||Mx] connects the opposite spin
sublattices. (a) Mx symmetry is satisfied when the Néel vector (N)
is perpendicular to the direction of the mirror plane. Note that the
direction of mirror plane refers to the direction normal to the mirror
(here, x direction). (b) Mx symmetry forbids the AHE (see Table I).
(c) N being parallel to the x direction violates the Mx symmetry and
(d) thus the AHE is symmetry allowed. Since N, JH, and E all lie in
the same plane (here, the x-y plane), this is referred to as the in-plane
AHE.

possible symmetry options are in-plane twofold rotation (i.e.,
[C2||Cx

2 ]), vertical mirror plane (i.e., [C2||Mx]), and out-of-
plane fourfold rotation ([C2||Cz

4]). The 2D AM case with
[C2||Mx] symmetry is highlighted in Fig. 1.

The symmetry analysis for the relativistic AHE requires
the considerations of magnetic symmetry operations acting on
coupled spin and real spaces. From the symmetry perspective,
the Hall vector, σH, transforms like a pseudovector, similar to
magnetization. Therefore, the magnetic symmetry operations
impose certain constraints on allowed components, σi j , of the
system (see Table I and Sec. II of SM [48]). In particular, all
components of the AHC tensor are symmetry forbidden if a
material (2D or 3D) possesses either of the T , PT , TCx,z

3,4,6,
or T Sx,z

4,6 symmetries. Further constraints determining nonzero
AHC are imposed by the 2D nature of the 2D AMs. As the
Hall current is restricted to the plane of the 2D materials, the
only component that is experimentally relevant is σxy (taking
z as the out-of-plane axis). Hence, the presence of Cx

n , Mx,
T Mz, and TCz

2 symmetries suppresses AHE in 2D materials
as these symmetries result in zero σxy (see Table I). Over-
all, our symmetry analysis shows that three of the following
conditions must be simultaneously satisfied to obtain a 2D
AM with AHE: (i) absence of [C2||P], [C2||τ ], [C2||Mz], and
[C2||Cz

2] spin group symmetries that will otherwise indicate
that we have a conventional AFM, (ii) presence of at least
one of [C2||Cx

2 ], [C2||Mx], and [C2||Cz
4] spin group symmetries,

ensuring altermagnetism, and (iii) absence of T , PT , TCx,z
3,4,6,

T Sx,z
4,6, Cx

n , Mx, T Mz, and TCz
2 magnetic symmetries, which

ensures nonzero σxy. These conditions for obtaining 2D AMs
with AHE are partially related. For example, [C2||P] and PT

occur simultaneously in collinear magnets. These conditions
make observing AHE difficult in 2D AMs, and have largely
remained unexplored.
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TABLE I. Symmetry constraints on the components of the anomalous Hall conductivity tensor imposed by the magnetic point group
operations.

√
and ✗ denotes symmetry-allowed and -forbidden components, respectively. The z (x) denotes the out-of-plane (in-plane)

direction.

P Cz
n Cx

n Mz Mx Sz
4,6 Sx

4,6 T PT TCz
2 TCx

2 T Mz T Mx TCx,z
3,4,6 T Sx,z

4,6

σxy

√ √
✗

√
✗

√
✗ ✗ ✗ ✗

√
✗

√
✗ ✗

σxz

√
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

√ √ √ √
✗ ✗

σyz

√
✗

√
✗

√
✗

√
✗ ✗

√
✗

√
✗ ✗ ✗

The magnetic symmetries depend on the Néel vector ori-
entation with respect to the crystal symmetry. The Néel vector
serves as an order parameter for AFMs and offers a robust
nonvolatile approach to modifying magnetic symmetries [49].
Since, AMs also have net zero magnetization, the Néel vector
could serve as a natural way to modify AHE. For example,
consider the case of a 2D AM with [C2||Mx] symmetry, where
opposite spin sublattices are connected through a vertical mir-
ror plane (see Fig. 1). When the Néel vector is perpendicular
to the x direction, the magnetic point group of the AM will
contain Mx, leading to vanishing σxy [Figs. 1(a) and 1(b)].
However, aligning the Néel vector along the x direction will
lead to the breaking of the Mx symmetry [Fig. 1(c)]. Hence,
the presence of the Néel vector along the x direction will allow
σxy [Fig. 1(d)]. It is worth mentioning that Mx and Cx

2 impose
the same condition on σxy (see Table I). Therefore, the pres-
ence of [C2||Cx

2 ] will allow (forbid) σxy when the Néel vector
is parallel (perpendicular) to x direction. Following the same
approach, we have classified the 2D AMs based on whether
the AHE is allowed for the different Néel vector orientations,
spin-momentum coupling and their nontrivial spin layer group
(SLG) (see Table II and Sec. III of SM [48]). Interestingly,
d-wave AMs with nontrivial SLG 22/2m and i-wave AMs
with nontrivial SLG 132m allows for an in-plane AHE, where
N, JH, and E lie in the x-y plane. Additionally, AMs with non-
trivial SLGs 2m2m1m, 24/1m, 24/1m2m1m, 14/1m2m2m, and
16/1m2m2m do not show an in-plane AHE due to the presence
of TCz

2 symmetry. In accordance to symmetry analysis, σxy is
always forbidden for 2D AMs when Néel vector points along
the z direction.

B. Bilayer AMs as prototypical candidates

We exemplify the symmetry predictions of AHE in the 2D
AMs using DFT simulations. For this, we chose the proto-
typical experimentally synthesized AFM materials, MnPSe3

[52–54] and MnSe [33,55–57] monolayers. In what follows,
we provide detailed results for MnPSe3, while details of
our calculations for MnSe are included in the Supplemental
Material [48]. Both MnPSe3 and MnSe monolayers form a
large class of 2D materials with G- and A-type AFM order,
respectively, and a Néel transition temperature of ∼75 K
[55,58]. The PT symmetry in MnPSe3 and MnSe monolayers
enforces spin degeneracy and forbids the AHE effect (see
Sec. IV of SM [48]). To obtain AM, we break PT symmetry
of the monolayer MnPSe3 and MnSe by using the bilayer
stacking approach [see Fig. 2(a)] [18]. We created different
bilayer stacking by first taking the top layer to be the mirror
reflection of the lower layer, followed by the translation of
the upper layer in the basal plane (see also Sec. V of SM

[48]). We have also used two different magnetic configura-
tions with intralayer AFM, namely, M ↑↓↑↓ and M ↑↓↓↑
(the four arrows denote the magnetization directions of Mn
atoms, with first two arrows being used for the lower layer
and the last two arrows for the upper layer). DFT calculations
were performed for potential energy surfaces of various high-
symmetry stackings [see Fig. 2(b) for MnPSe3]. There are six
degenerate lowest-energy configurations. These stackings are
equivalent by symmetry and are obtained through translation
of the upper layer by 1

3 a, 1
3 b, 2

3 a, 2
3 b, 1

3 a + 1
3 b, and 2

3 a +
2
3 b. Similarly, three high-energy stacking configurations, ob-
tained through translation of the upper layer by 0, 1

3 a + 2
3 b,

and 2
3 a + 1

3 b, are degenerate. Therefore, we take representa-
tive cases of bilayer MnPSe3 obtained through 1

3 a + 1
3 b [see

Fig. 2(c)] and 1
3 a + 2

3 b [see Fig. 2(d)] and we name those

FIG. 2. Generation of AM through bilayer stackings. (a) The
upper layer is obtained by taking the horizontal mirror reflection
of the lower layer followed by in-plane translation. The bilayer
stacking may have [C2||My] and [C2||Cy

2 ]-like spin group symmetries
depending on the shifting vector and the constituent monolayer.
(b) The energy distribution of the bilayer MnPSe3 as a function
of the shifting of the upper layer. (c) and (d) highlights the two
high-symmetry stackings obtained by shifting the upper layer by
1
3 a + 1

3 b (d-MnPSe3) and 1
3 a + 2

3 b (i-MnPSe3), respectively, with
representative Néel vector along x direction. The blue and yellow
spheres denote the Mn atoms from the top and bottom layers, re-
spectively. We have omitted the P and Se atoms for clear illustration
(see Fig. S3 in the SM [48] for complete structure). The position
of structures in (c) and (d) are also highlighted in potential energy
surfaces in (b) with up- and down-triangle, respectively. The spin
group symmetry operations are also indicated for each case.
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stackings as d-MnPSe3 and i-MnPSe3, respectively. The ra-
tionale behind this unconventional nomenclature is elaborated
in the following paragraph. The configurations M ↑↓↑↓ and
M ↑↓↓↑ for d-MnPSe3 are symmetrically equivalent. Since
both magnetic configurations would exhibit similar anoma-
lous Hall response, we chose to study AHE in M ↑↓↑↓.
On the other hand, for i-MnPSe3, the two configurations,
M ↑↓↓↑ and M ↑↓↑↓, are symmetrically inequivalent, with
the former magnetic configuration being lower than M ↑↓↑↓
by 0.22 meV. Since no symmetry operations connect opposite
spin sublattices in the M ↑↓↑↓ configuration of i-MnPSe3, it
is not altermagnetic. It is, instead, a Luttinger-compensated
ferrimagnet [59–61] and therefore would exhibit FM-like
Hall response (see Sec. V of SM [48] for details). There-
fore, in order to study AHE in MnPSe3 bilayers, we chose
Néel orderings of M ↑↓↑↓ and M ↑↓↓↑ for d-MnPSe3 and
i-MnPSe3, respectively [see Figs. 2(c) and 2(d)]. Although,
i-MnPSe3 bilayer stacking is metastable and higher in en-
ergy by 167 meV than the most stable d-MnPSe3 stacking
[Fig. 2(b)], studying i-MnPSe3 is instructive not only for
comparison with properties of d-MnPSe3, but also as a stand
in for other similar materials that exhibit AHE. For instance,
twisted bilayers (tb) of hexagonal materials (such as tb-NiCl2

[21], tb-MnBi2Te4 [24], and tb-MnPSe3 [25]) have the same
nonmagnetic/magnetic point group and altermagnetic order
as of i-MnPSe3 and are most sought-after candidates for AM
in two dimensions. However, performing DFT+U+SOC sim-
ulations on twisted bilayers are computationally formidable
task owing to supercell size.

We computed the electronic bands of d-MnPSe3 and
i-MnPSe3 without SOC [see Figs. 3(a) and 3(b)]. The spin
degeneracy in the energy bands can be explained through
spin group symmetry operations [3]. The presence of [C2||O]
symmetry leads to [C2||O]E (s, k) = E (−s, O−1k). Therefore,
the bands are spin degenerate along the paths for which
Ok = k or Ok = k + G, where G is a reciprocal lattice vec-
tor. For d-MnPSe3, the spin-up and spin-down states are
degenerate for the bands along the directions perpendicu-
lar and parallel to the mirror plane due to [C2||M−

√
3x+y]

and [C2||T ][C2||M−
√

3x+y], respectively (see Sec. VI of SM
[48] for constant energy contours). AMs with two spin-
degenerate nodal lines are classified as d-wave AMs, and
d-MnPSe3 belong to that class [3]. Similarly, the energy bands
in i-MnPSe3 are spin degenerate along all possible high-
symmetry directions 
-M, 
-K , and M-K due to presence
of three [C2||Cx

2 ]-type spin group symmetries [Fig. 2(d)] and
their combinations with spin-only symmetry [C2||T ]. This
results in the i-wave altermagnetism in the i-MnPSe3. Note
that although bands are nondegenerate at the general k point,
the sum of spin splittings throughout the BZ,

∑

BZ E (s, k) −
E (−s, k), is zero for each case [see Figs. 3(a) and 3(b)].

C. AHC and Néel vector relationship

We calculate the AHC, σxy, as a function of the Fermi
energy for d-MnPSe3 and i-MnPSe3 for different Néel vec-
tor, N, orientations [Figs. 3(c) and 3(d)]. The σxy shows a
strong dependence on the N orientation and is absent when
N is along the z direction. The anomalous Hall response is
strongest for N along the x direction. The σxy for d-MnPSe3

FIG. 3. Valence bands of (a) d-MnPSe3 and (b) i-MnPSe3 bilayer
without inclusion of SOC. The red dashes and blue dots represent
spin-up and spin-down bands, respectively. Anomalous Hall conduc-
tivity σxy of (c) d-MnPSe3 and (d) i-MnPSe3 as a function of Fermi
energy for Néel vector pointing along different directions. The zero
Fermi energy corresponds to valence band maximum.

develops a strong peak of 202 S/cm around −0.23 eV, while
σxy of i-MnPSe3 develops a slightly weaker peak of 25 S/cm
around −0.17 eV. Note that we observe a very sharp peak for
i-MnPSe3 around −0.25 eV and it may be difficult to achieve
experimentally as it requires precise control of the Fermi
energy. Interestingly, σxy is forbidden for N aligned along
the y direction for i-MnPSe3, while it shows an intermediate
response for d-MnPSe3. To understand this dependence of
σxy on the Néel vector, we plot the anomalous Hall peaks
for different N orientations in the x-y and x-z planes (see
Fig. 4). For the x-y plane, the AHE is absent in d-MnPSe3

for the Néel vector along 60◦/240◦ due to the presence of
the vertical mirror M−

√
3x+y [Fig. 4(a)]. Similarly, the AHE

is absent for i-MnPSe3 when N is perpendicular to any of
the twofold rotation symmetries (30◦, 90◦, 150◦, 210◦, 270◦,
and 330◦) [Fig. 4(c)]. When N points in the z direction, the
AHE is forbidden due to presence of the M−

√
3x+y and Cx

2
in d-MnPSe3 and i-MnPSe3, respectively [see Figs. 4(b) and
4(d)].

Furthermore, we understand the periodicity by writ-
ing the general functional form of σxy as σxy(N) =
∑

m,n,r λmnrNm
x Nn

y N r
z , where m, n, and r are whole numbers.

Some components of λmnr are forbidden due to symmetries.
For instance, m + n + r is never even as it would violate
the Onsager reciprocity relation: σxy(N) = σyx(−N) [62].
We use the method of invariants [63] [Oσxy(ON) = σxy(N)]
to obtain symmetry-allowed components λmnr . For this, we
treat N as an extrinsic parameter instead of an intrinsic one
[61,64]. Recall that N transforms like N

′ = ±Det(O)D(O)N,
where D(O) and Det(O) are the matrix representation and
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FIG. 4. The anomalous Hall conductivity (σxy) of d-MnPSe3

with d-wave AM as a function of the Néel vector orientation in
(a) x-y plane and (b) x-z plane at −0.23 eV. Similarly, (c) and
(d) show the AHC for i-MnPSe3 with i-wave AM at −0.17 eV. The
regions with positive and negative σxy are highlighted with light red
and light blue. The green dots represent the calculated DFT values
while black curves are the fits using models in Eq. (2).

determinant of O. The + (−) sign is taken if O exchanges the
same (opposite) spin sublattices [see Figs. 1(a) and 1(b)]. Ta-
ble II summarizes the symmetry allowed profiles of σxy(N) for
2D AMs with different spin group symmetry operations and
nontrivial SLG (see also Sec. III of SM [48]). d-MnPSe3 and
i-MnPSe3 have nontrivial SLG 22/2m and 132m, respectively,
and the σxy-N relationship can be expressed as

σ
22/2m
xy = λ100Nx + λ300N3

x + λ111NxNyNz + λ120NxN2
y

+ λ102NxN2
z

σ
132m
xy = λ300

(

N3
x − 3NxN2

y

)

+ λ302
(

N3
x − 3NxN2

y

)

N2
z . (2)

In Fig. 4, we fit the calculated DFT values of σxy with the
models in Eq. (2). Note that for d-MnPSe3 the mirror plane is
M−

√
3x+y and not Mx. Therefore, we have rotated the models

accordingly while fitting. The models provide good agreement
with the DFT results. However, the fit shows slight deviations
from the DFT results, which may be due to the structural dis-
tortions relative to the ideal symmetric configurations, and/or
because we have ignored the higher-order terms in Eq. (2).
Note that the σxy of d-MnPSe3 depends on linear and cu-
bic terms in the Néel vector N [Fig. 4(a)], while i-MnPSe3

exhibits a purely cubic dependence on N [Fig. 4(c)]. Conse-
quently, the strength of AHC in i-MnPSe3 is smaller than that
in d-MnPSe3, with three AHC-forbidden directions in the x-y
plane of the Néel vector space.

The dependence of σxy on N is derived for all 2D alter-
magnetic nontrivial SLGs in Table II. The AHE is forbidden
for all g-wave 2D AMs due to the presence of [E ||Cz

4] sym-
metry, while the [E ||Cz

2,Cz
3] symmetries suppress the AHE

in i-wave 2D AMs with the nontrivial SLG 16/1m2m2m. The
presence of [E ||Cz

2], [E ||Cz
4], or [C2||Cz

4] leads to the presence
of magnetic TCz

2 symmetry, which forbids the in-plane AHE.
Most commonly, 2D magnets have an easy axis of magne-
tization that lies completely in-plane [34,57] or out-of-plane

TABLE II. AHE in 2D AMs with different nontrivial spin-layer group (SLG) symmetry. The superscripts 1 and 2 denote symmetry
operations connecting atoms with the same and opposite spin magnetizations, respectively. Spin-momentum coupling is categorized based on
the number of spin-degenerate nodal lines in the band dispersion. Specifically, d-, g-, and i-wave AMs exhibit 2, 4, and 6 spin-degenerate
nodal lines passing through the 
 point, respectively, in the (kx-ky) momentum space. The nontrivial spin group symmetry operations are
highlighted for each case. Note that the spin group operations [E ||E ] and [E ||P] are excluded as they impose no restrictions on the AHC.
Symmetry-invariant terms describe the functional dependence of the AHC σxy on the Néel vector components (Nx, Ny, Nz). The table also
specifies whether σxy is allowed when the Néel vector is perpendicular or parallel to the out-of-plane direction (z). For forbidden cases, the
relevant magnetic symmetry responsible is also indicated. Symmetry invariants up to cubic in Ni are included. Note that symmetry invariants
may encompass higher-order terms, though their contributions are expected to be weak. Additionally, examples of well-known 2D AMs
belonging to different SLGs are also tabulated. Entries marked with [�] denote examples from this work.

Nontrivial Spin-momentum Nontrivial Symmetry-allowed σxy Examples

SLG coupling spin group operations σxy terms N ⊥ z N ||z
22/2m d-wave [C2||Cx

2 ] N1,3
x , NxNa

y Nb
z (a + b=2)

√
✗ (Cx

2 ) RuF4 [23], d-MnPSe3 [�]
2m2m1m d-wave [C2||Cx

2 ], [E ||Cz
2] NxNyNz ✗ (TCz

2) ✗ (Cx
2 ) MnTeMoO6 [19]

24/1m d-wave [C2||Cz
4], [E ||Cz

2] N2
x Nz − N2

y Nz, NxNyNz ✗ (TCz
2) ✗ (Cx

2 )
24/1m2m1m d-wave [C2||Cz

4], [E ||Cz
2,Cx

2 ] N2
x Nz − N2

y Nz ✗ (TCz
2) ✗ (Cx

2 ) VSe2O [50], CrO [51]
14/1m2m2m g-wave [C2||Cx

2 ], [E ||Cz
4,Cz

2] — ✗ (TCz
2) ✗ (Cx

2 ) VP2H8(NO4)2 [19]
132m i-wave [C2||Cx

2 ], [E ||Cz
3] N3

x − 3NxN2
y

√
✗ (Cx

2 ) i-MnPSe3 [�]
16/1m2m2m i-wave [C2||Cx

2 ], [E ||Cz
3,Cz

2] — ✗ (TCz
2) ✗ (Cx

2 )
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[65,66], and in such a scenario, the AHE can be observed
for only 22/2m and 132m out of the seven nontrivial SLGs.
Interestingly, the dependence of σxy on the Néel vector space
is similar to that of the Berry curvature multipoles on k space
[67] and the spin magnetization multipoles on real space [68].

The quantum origin of the large AHC lies in the SOC-
induced avoided crossings, which act as opposite poles of
Berry curvature (see Sec. VII of SM [48]). The highest σxy is
achieved if the Fermi energy lies in the middle of the poles. In
the case of the antiferromagnetic MnSe bilayer, with the trans-
lation of one layer relative to the other by 1

3 a + 1
3 b, we obtain

effects similar to those in the d-MnPSe3 bilayer, including
altermagnetism (see Sec. VIII of SM [48]). Note that bilayer
stacking of AFMs may also lead to weak ferromagnetism
[69,70] where the opposite spin sublattices are not connected
by any symmetry. For instance, the polar stacking of bilayer
MnSe with basal plane translated by 1

3 a + 2
3 b leads to weak

ferromagnetism in the structure. In such cases, the anomalous
Hall response is FM-like, where the AHE is also observed
in the plane perpendicular to Néel vector. The weakly FM
bilayer MnSe shows σxy when the Néel vector points along the
z direction similar to conventional FMs [71,72] (see Sec. IX
of SM [48]) and differ from the AHE in 2D AMs.

IV. SUMMARY

We have established the principles for obtaining the AHE
in 2D AMs. Our analysis shows that TCz

2 and Cx
2 are the most

common magnetic point group symmetries that suppress the
AHE in 2D AMs. Although the AHE is a relativistic effect,
spin group symmetries are effective in explaining the uncon-
ventional periodicity in the in-plane anomalous Hall response,
which can be used to detect the altermagnetic order and Néel
vector reversal. We also show that the AHE is forbidden for
the g-wave 2D AMs. Our symmetry predictions are supported
by first-principles DFT simulations for bilayer MnPSe3 with
two different layer-stacking geometries used as prototypical
candidates for the d- and i-wave AMs. Overall, 2D AMs
are promising for the miniaturization of spintronic memory

devices, with the Néel vector serving as the write-in mecha-
nism and in-plane AHE for read off of the information. For
the purpose of application in spintronics, 2D AMs that have
an in-plane easy axis of magnetization will form a suitable
choice. The spin-momentum coupling, and hence, the alter-
magnetic order can be controlled in twisted magnetic bilayers,
depending on the symmetry of the constituent monolayers
[24], providing an exceptional platform to achieve the AHE in
experiments. Additionally, external parameters such as elec-
tric fields or strain may induce AHE in otherwise forbidden
AMs [73–75]. We anticipate that the theoretical findings of
this work will enrich the field of altermagnetic spintronics
[4]. The approach provided here can be extended to other
similar transverse effects, such as the anomalous Nernst effect
[76] and the nonlinear Hall effect [77]. It should be pointed
out that altermagnetic spin splittings are also known to gen-
erate unconventional spin Hall responses even without SOC
[12,78]. A detailed analysis based on the spin group symmetry
for 2D AMs, similar to our analysis for nonzero AHC, will
be important for determining symmetry conditions that allow
spin current generation in 2D AMs [79–81].
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Springholz, K. Uhlířová, F. Alarab, P. C. Constantinou, V.
Strocov, D. Usanov et al., Altermagnetic lifting of Kramers spin
degeneracy, Nature (London) 626, 517 (2024).

184407-6



SPONTANEOUS ANOMALOUS HALL EFFECT IN … PHYSICAL REVIEW B 111, 184407 (2025)

[12] H. Bai, Y. C. Zhang, Y. J. Zhou, P. Chen, C. H. Wan, L. Han,
W. X. Zhu, S. X. Liang, Y. C. Su, X. F. Han et al., Efficient
spin-to-charge conversion via altermagnetic spin splitting effect
in antiferromagnet RuO2, Phys. Rev. Lett. 130, 216701 (2023).

[13] C.-T. Liao, Y.-C. Wang, Y.-C. Tien, S.-Y. Huang, and D. Qu,
Separation of inverse altermagnetic spin-splitting effect from
inverse spin Hall effect in RuO2, Phys. Rev. Lett. 133, 056701
(2024).

[14] L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and
T. Jungwirth, Anomalous Hall antiferromagnets, Nature Rev.
Mater. 7, 482 (2022).

[15] R. Gonzalez Betancourt, J. Zubáč, R. Gonzalez-Hernandez,
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Fabian, and M. Birowska, Magneto-optical anisotropies of
two-dimensional antiferromagnetic MPX3 from first principles,
Phys. Rev. B 109, 054426 (2024).

[35] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Electron-energy-loss spectra and the structural
stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57,
1505 (1998).

[36] S. Grimme, Semiempirical GGA-type density functional con-
structed with a long-range dispersion correction, J. Comput.
Chem. 27, 1787 (2006).

[37] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

[38] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, wannier90: A tool for obtaining maximally-
localised Wannier functions, Comput. Phys. Commun. 178, 685
(2008).

[39] S. S. Tsirkin, High performance Wannier interpolation of Berry
curvature and related quantities with WannierBerri code, npj
Comput. Mater. 7, 33 (2021).

[40] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group The-

ory: Application to the Physics of Condensed Matter (Springer,
Berlin, 2007).

[41] H. T. Stokes and D. M. Hatch, FINDSYM: Program for identify-
ing the space-group symmetry of a crystal, J. Appl. Crystallogr.
38, 237 (2005).

[42] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova,
S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek,
Bilbao crystallographic server: I. Databases and crystallo-
graphic computing programs, Zeitschrift für Kristallographie-
Crystalline Materials 221, 15 (2006).

[43] S. V. Gallego, J. M. Perez-Mato, L. Elcoro, E. S. Tasci, R. M.
Hanson, K. Momma, M. I. Aroyo, and G. Madariaga, MAG-

NDATA: Towards a database of magnetic structures. I. The
commensurate case, J. Appl. Crystallogr. 49, 1750 (2016).

[44] A. Smolyanyuk, L. Šmejkal, and I. I. Mazin, A tool to check
whether a symmetry-compensated collinear magnetic material
is antiferro- or altermagnetic, SciPost Physics Codebases 30
(2024).

[45] D. B. Litvin and W. Opechowski, Spin groups, Physica 76, 538
(1974).

184407-7



SAJJAN SHEORAN AND PRATIBHA DEV PHYSICAL REVIEW B 111, 184407 (2025)

[46] Y. Jiang, Z. Song, T. Zhu, Z. Fang, H. Weng, Z.-X. Liu, J.
Yang, and C. Fang, Enumeration of spin-space groups: Toward
a complete description of symmetries of magnetic orders, Phys.
Rev. X 14, 031039 (2024).

[47] P. Liu, J. Li, J. Han, X. Wan, and Q. Liu, Spin-group symmetry
in magnetic materials with negligible spin-orbit coupling, Phys.
Rev. X 12, 021016 (2022).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.111.184407 for further discussion on 2D
altermagnetism, symmetry constraints on AHE, AHE−Néel
vector relationship, monolayer and bilayer MnPSe3 and MnSe,
which includes Refs. [3,21,24,25,33,52–57,59–61,71,82–89].

[49] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antifer-
romagnetic spintronics, Nature Nanotechnol. 11, 231 (2016).

[50] H.-Y. Ma, M. Hu, N. Li, J. Liu, W. Yao, J.-F. Jia, and J. Liu,
Multifunctional antiferromagnetic materials with giant piezo-
magnetism and noncollinear spin current, Nature Commun. 12,
2846 (2021).

[51] X. Chen, D. Wang, L. Li, and B. Sanyal, Giant spin-splitting and
tunable spin-momentum locked transport in room temperature
collinear antiferromagnetic semimetallic CrO monolayer, Appl.
Phys. Lett. 123, 022402 (2023).

[52] Z. Ni, A. Haglund, H. Wang, B. Xu, C. Bernhard, D. Mandrus,
X. Qian, E. Mele, C. Kane, and L. Wu, Imaging the Néel
vector switching in the monolayer antiferromagnet MnPSe3

with strain-controlled Ising order, Nature Nanotechnol. 16, 782
(2021).

[53] X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe3 exfo-
liated nanosheet with carrier doping, J. Am. Chem. Soc. 136,
11065 (2014).

[54] N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and
D. Xiao, Magnetic ground state of semiconducting transition-
metal trichalcogenide monolayers, Phys. Rev. B 91, 235425
(2015).

[55] M. Aapro, M. N. Huda, J. Karthikeyan, S. Kezilebieke, S. C.
Ganguli, H. G. Herrero, X. Huang, P. Liljeroth, and H.-P.
Komsa, Synthesis and properties of monolayer MnSe with un-
usual atomic structure and antiferromagnetic ordering, ACS
Nano 15, 13794 (2021).

[56] J. Wang, H. Zeng, W. Duan, and H. Huang, Intrinsic nonlinear
Hall detection of the Néel vector for two-dimensional antiferro-
magnetic spintronics, Phys. Rev. Lett. 131, 056401 (2023).

[57] S. Sheoran and S. Bhattacharya, Multiple Zeeman-type hidden
spin splittings in PT-symmetric layered antiferromagnets, Phys.
Rev. B 109, L020404 (2024).

[58] X. Yi, Q. Chen, K. Wang, Y. Yu, Y. Yan, X. Jiang, C. Yan, and
S. Wang, Exploring the interfacial coupling between graphene
and the antiferromagnetic insulator MnPSe3, Phys. Rev. B 108,
125427 (2023).

[59] J. M. Luttinger and J. C. Ward, Ground-state energy of a many-
fermion system. II, Phys. Rev. 118, 1417 (1960).

[60] J. Luttinger, Fermi surface and some simple equilibrium prop-
erties of a system of interacting fermions, Phys. Rev. 119, 1153
(1960).

[61] L.-D. Yuan, A. B. Georgescu, and J. M. Rondinelli, Nonrela-
tivistic spin splitting at the Brillouin zone center in compensated
magnets, Phys. Rev. Lett. 133, 216701 (2024).

[62] L. D. Landau, J. S. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz,
and J. Sykes, Electrodynamics of Continuous Media (Elsevier,
Amsterdam, 2013), Vol. 8.

[63] L. C. L. Y. Voon and M. Willatzen, The kp Method: Electronic

Properties of Semiconductors (Springer, Berlin, 2009).
[64] R.-C. Xiao, H. Li, H. Han, W. Gan, M. Yang, D.-F. Shao, S.-H.

Zhang, Y. Gao, M. Tian, and J. Zhou, Anomalous-Hall Neel
textures in altermagnetic materials, arXiv:2411.10147.

[65] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W.
Duan, and Y. Xu, Intrinsic magnetic topological insulators in
van der Waals layered MnBi2Te4-family materials, Sci. Adv. 5,
eaaw5685 (2019).

[66] L. Webster and J.-A. Yan, Strain-tunable magnetic anisotropy
in monolayer CrCl3, CrBr3, and CrI3, Phys. Rev. B 98, 144411
(2018).

[67] C.-P. Zhang, X.-J. Gao, Y.-M. Xie, H. C. Po, and K. T.
Law, Higher-order nonlinear anomalous Hall effects induced
by Berry curvature multipoles, Phys. Rev. B 107, 115142
(2023).

[68] S. Bhowal and N. A. Spaldin, Ferroically ordered magnetic
octupoles in d-wave altermagnets, Phys. Rev. X 14, 011019
(2024).

[69] D. Jo, D. Go, Y. Mokrousov, P. M. Oppeneer, S.-W. Cheong,
and H.-W. Lee, Weak ferromagnetism in altermagnets from
alternating g-tensor anisotropy, arXiv:2410.17386.

[70] M. Roig, Y. Yu, R. C. Ekman, A. Kreisel, B. M. Andersen, and
D. F. Agterberg, Quasi-symmetry constrained spin ferromag-
netism in altermagnets, arXiv:2412.09338.

[71] T. Cao, D.-F. Shao, K. Huang, G. Gurung, and E. Y. Tsymbal,
Switchable anomalous Hall effects in polar-stacked 2D antifer-
romagnet MnBi2Te4, Nano Lett. 23, 3781 (2023).

[72] S. K. Chong, Y. Cheng, H. Man, S. H. Lee, Y. Wang, B. Dai,
M. Tanabe, T.-H. Yang, Z. Mao, K. A. Moler et al., Intrinsic
exchange biased anomalous Hall effect in an uncompensated
antiferromagnet MnBi2Te4, Nature Commun. 15, 2881 (2024).

[73] M. Lejman, C. Paillard, V. Juvé, G. Vaudel, N. Guiblin, L.
Bellaiche, M. Viret, V. E. Gusev, B. Dkhil, and P. Ruello,
Magnetoelastic and magnetoelectric couplings across the anti-
ferromagnetic transition in multiferroic BiFeO3, Phys. Rev. B
99, 104103 (2019).

[74] S. Sheoran, P. Bhumla, and S. Bhattacharya, Emergence of
cubic ordered full-plane persistent spin textures in lead-free
materials, Phys. Rev. Mater. 6, 094602 (2022).

[75] S. Sheoran, M. Jain, R. Moulik, and S. Bhattacharya, Probing
the uniaxial strain-dependent valley drift and Berry curvature in
monolayer MoSi2N4, Phys. Rev. Mater. 7, 114003 (2023).

[76] M. Mizuguchi and S. Nakatsuji, Energy-harvesting materials
based on the anomalous Nernst effect, Sci. Tech. Adv. Mater.
20, 262 (2019).

[77] Z. Du, H.-Z. Lu, and X. Xie, Nonlinear Hall effects, Nature Rev.
Phys. 3, 744 (2021).

[78] R. González-Hernández, L. Šmejkal, K. Výborný, Y. Yahagi,
J. Sinova, T. Jungwirth, and J. Železný, Efficient electrical spin
splitter based on nonrelativistic collinear antiferromagnetism,
Phys. Rev. Lett. 126, 127701 (2021).

[79] W. Yan, O. Txoperena, R. Llopis, H. Dery, L. E. Hueso, and F.
Casanova, A two-dimensional spin field-effect switch, Nature
Commun. 7, 13372 (2016).

[80] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Graphene
spintronics, Nature Nanotechnol. 9, 794 (2014).

[81] D. J. de Sousa, M. J. Sammon, R. Kim, H. Li, I. A. Young, and
T. Low, Spin torque generated by valley Hall effect in WSe2,
Phys. Rev. B 106, 184412 (2022).

184407-8



SPONTANEOUS ANOMALOUS HALL EFFECT IN … PHYSICAL REVIEW B 111, 184407 (2025)

[82] C. Wang, Y. Gao, and D. Xiao, Intrinsic nonlinear Hall effect
in antiferromagnetic tetragonal CuMnAs, Phys. Rev. Lett. 127,
277201 (2021).

[83] N. Sivadas, S. Okamoto, and D. Xiao, Gate-controllable
magneto-optic Kerr effect in layered collinear
antiferromagnets, Phys. Rev. Lett. 117, 267203
(2016).

[84] U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F. Muñoz,
and A. H. Romero, PyProcar: A Python library for electronic
structure pre/post-processing, Comput. Phys. Commun. 251,
107080 (2020).

[85] S. Singh and A. C. Garcia-Castro, Kagome KMn3Sb5 metal:
Magnetism, lattice dynamics, and anomalous Hall conductivity,
Phys. Rev. B 108, 245143 (2023).

[86] H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect
arising from noncollinear antiferromagnetism, Phys. Rev. Lett.
112, 017205 (2014).

[87] L. Šmejkal, R. González-Hernández, T. Jungwirth, and J.
Sinova, Crystal time-reversal symmetry breaking and sponta-
neous Hall effect in collinear antiferromagnets, Sci. Adv. 6,
eaaz8809 (2020).

[88] R. Peng, T. Zhang, Z. He, Q. Wu, Y. Dai, B. Huang, and Y.
Ma, Intrinsic layer-polarized anomalous Hall effect in bilayer
MnBi2Te4, Phys. Rev. B 107, 085411 (2023).

[89] A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh,
S.-C. Ho, D. Bérubé, R. Chen, H. Sun et al., Layer Hall effect in
a 2D topological axion antiferromagnet, Nature (London) 595,
521 (2021).

184407-9


