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0. # Manually specified format for input tensors

1. FUNC log_regression(X::Dense(Sparse()), \::Dense())

2. # Manually defined intermediate format

3. R = Dense()

4. # Manually defined loop order

5. FOR i=_

6. FOR j=_

7. # Manually defined iteration algorithm

8. R[i] += X[i::iter,j::iter]*\[j::lookup]

9. END

10. END

11. P = Dense()

12. FOR i=_

13. P[i] = f(R[i::iter])

14. END

15. END

Fig. 1. Logistic regression implemented in the language of a sparse tensor compiler.

others. However, modern tensor programming systems like NumPy, PyTorch, and sparse tensor
compilers lack the advanced optimization capabilities of relational databases. Instead, users are
forced to optimize their programs manually which is challenging and time consuming. In this
work, we address this by introducing Galley, a system for declarative sparse tensor programming
powered by advanced, cost-based program optimization.
E�ciently processing sparse tensors is challenging. Traditional tensor processing frameworks

are collections of hand-optimized functions over dense tensors [2, 8, 23, 36]. To take advantage of
sparsity, these frameworks need to provide implementations for every combination of input tensors’
formats, resulting in spotty coverage for operations over sparse data [27]. Sparse tensor compilers
(STCs) have been developed to automatically produce these implementations [4, 11, 26, 29, 43].
However, these compilers expose even more performance decisions than traditional frameworks,
and they similarly lack automatic optimization capabilities.1

Example 1. Consider Fig. 1 which implements logistic regression inference in the language of Finch,

an STC[4]. Here, the user must choose the output format for the intermediate R (line 3). In this case,

she chose a Dense rather than a Sparse format, which would be ≈ 10× slower. Then, the user chooses

the loop order (lines 5-6). In this case, she chose 8-then- 9 , which is asymptotically faster than 9-then-8

because each out-of-order access to - requires a full scan of the tensor. Finally, the user picks a merge

algorithm for each loop that describes how to iterate through the non-zero indices (line 8). Here, - is

iterated through, and each non-zero 9 is looked up in \ . If she chose to iterate through \ , each

inner loop would scan the entire vector. Even for a simple kernel, these decisions represent a mine�eld

of potential slowdowns.

In this paper, we propose Galley, a system for declarative sparse tensor programming. Galley
makes algorithmic decisions on the users’ behalf, freeing them to focus on the high-level semantics
of their program without sacri�cing computational e�ciency. It accepts input programs written
in a declarative language, equivalent to the core of the NumPy API, and automatically produces
an optimized STC implementation using the Finch compiler [4]. To do so, it �rst restructures the
program into a sequence of aggregation steps, minimizing total computation and materialization

1Some systems separate declarative and imperative concerns with a scheduling language. However, the user still

controls both aspects. For a more detailed description of the prototypical STC, we direct the reader to [29].
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costs (Sec. 4). It then optimizes each step by selecting the loop order, the optimal formats for all
intermediate tensors, and the merge algorithm for each loop (Sec. 5). These decisions are all guided
by a system for estimating sparsity via statistics on the input tensors (Sec. 6). Galley builds on

fundamental principles from cost-based query optimization while developing new techniques that are

speci�c to producing optimized code for sparse tensor compilers.
Designing Galley required overcoming three key challenges. First, the high-level optimization

requires a complex rewriting of the original program which must respect the algebraic properties
of the program. We addressed this by introducing a novel extension of the FAQ framework that
can handle arbitrary sparse tensor programs [28]. Second, STCs provide a vast design space for
kernel implementations which makes the per-aggregate optimization challenging. Galley’s physical
optimizer searches through this space e�ciently by separating concerns (loop order, output format,
and intersection algorithm) and applying branch-and-bound optimization. Lastly, the computational
cost of a sparse tensor program depends on the data distribution of the input data which complicates
the optimization process. Galley produces these data-dependent cost estimates by leveraging
the similarity of sparsity estimation and relational cardinality estimation. By overcoming these
challenges, we have attempted to design Galley for a broad set of use cases ranging from sparse
ML to graph algorithms and scienti�c simulations. To this end, we have incorporated Galley into
the PyData/Sparse library which implements the full NumPy API for sparse arrays [3, 23].

Example 2. Let �, �, and � be sparse matrices, and suppose that you want to compute the matrix

chain ��� . Because they do not consider the sparsity of the inputs, traditional systems will always

perform this in the order (��)� where the intermediate, ��, is stored as a sparse matrix. When given

this problem, Galley will optimize at runtime for the input’s sparsities. This allows it to consider plans

that are only e�cient for speci�c inputs. For example, it may: 1) re-order the operations to perform ��

before multiplying with � 2) store the intermediate as a dense matrix 3) transpose � to iterate over the

shared dimension �rst. In Sec. 7, we show that this can provide a 10x speedup over state-of-the-art

tensor frameworks for this example.

Contributions We claim the following contributions:

• We present Galley, a system for declarative sparse tensor programming (Sec.3). Galley is the �rst
system to perform cost based lowering of sparse tensor algebra to the imperative language of
sparse tensor compilers, and the �rst to optimize arbitrary operators beyond

∑
and ∗.

• Galley supports a highly expressive language for sparse tensor algebra with arbitrary algebraic
operators, aggregates within expressions, and multiple outputs (Sec.3).

• Galley performs cost-based logical optimization with a novel extension of the variable elimination
framework to handle arbitrary aggregations and pointwise operators (Sec.4). Galley performs
cost-based physical optimization to determine loop orders, tensor formats, and merge algorithms
(Sec.5).

• We propose a minimal interface for sparsity estimation to guide optimizations and implement two
estimators (Sec.6).

• We evaluate Galley and show that it is 1-300x faster than hand-optimized kernels for mixed
dense-sparse workloads and .25-100x faster than a SOTA database for highly sparse workloads
(Sec.7).

• We have implemented Galley as part of the PyData/Sparse sparse array project and the Finch
tensor compiler[4, 37].
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Fig. 2. Galley overview.

2 Background

2.1 Tensor Index Notation

Input to Galley is written in an extended version of Einstein Summation (Einsum) notation that
we call tensor index notation[7]. Traditional Einsum notation permits a single summation wrapped
around a multiplication. For instance, you can describe triangle counting in a graph with adjacency
matrix �8 9 using the following statement:

C =
∑
8 9:

�8 9� 9:�8:

To capture the diverse workloads of tensor programming, we additionally allow the use of arbi-
trary functions for both aggregates and pointwise operations, nesting aggregates and pointwise
operations, and de�ning multiple outputs. For example, a user could perform logistic regression to
predict entities that might be laundering money. Then, they could �lter this set based on whether
the entities occur in a triangle in the transactions graph. This is represented by max9: (�8 9� 9:�8: ),
which is 1 if 8 occurs in at least one triangle and 0. This can be written in tensor index notation as:

!8 = f (
∑
9

-8 9\ 9 ) > .5

+8 = !8 ·max
9:

(�8 9� 9:�8: )

Tensor compilers like Halide, TACO, and Finch each build o� of similar core notations, adding
additional structures like FOR-loops to let users specify algorithmic choices [4, 29, 39]. Crucially,
the vast majority of operations in array programming frameworks like NumPy can be expressed as
operations in tensor index notation. Therefore, though we focus here on this notation, traditional
tensor work�ows can be captured and optimized in this framework.

2.2 Sparse Tensor Compilers

Over the last decade, compiler researchers have developed a series of sparse tensor compilers and
shown that they produce highly e�cient code for sparse tensor computations[4, 29]. We use this
work as our execution engine, so we brie�y explain its important concepts below.

Tensor Formats. There are many di�erent ways to represent sparse tensors, and the optimal
approach depends on the data distribution and the workload. Work in this space has converged
on the �bertree abstraction for describing the space of formats [29, 48]. In this formalism, a tensor
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Fig. 3. Fibertree format abstraction.

A. Input Program

Plan := Query... Query := (Name, Expr)

Agg := (Op, Idx..., Expr) Map := (Op, Expr...)

Expr := Agg | Map | Input | Alias

Input := Tensor[Idx...] Alias := Name[Idx...]

B. Logical Plan

Plan := Query... Query := (Name, Agg)

Agg := (Op, Idx..., Expr) Map := (Op, Expr...)

Expr := Map | Input | Alias

Input := Tensor[Idx...] Alias := Name[Idx...]

C. Physical Plan

Plan := Query... Query := (Name, Mat, Idx...)

Mat := (Format..., Idx..., Agg)

Agg := (Op, Idx..., Expr) Map := (Op, Expr...)

Expr := Map | Input | Alias

Input := Tensor[PIdx...] Alias := Name[PIdx...]

PIdx := Idx::Protocol

Fig. 4. �ery plan dialects.

format is a nested data structure resembling the one in Fig. 3. Each layer stores the non-�ll (e.g.,
non-zero) indices in a particular dimension, conditioned on earlier dimensions, and pointers to
the next dimension’s non-�ll indices. These layers can be represented in any format that enables
iteration and lookup.
In this work, we consider sorted lists, hash tables, bytemaps, and dense vectors, which each

perform di�erently in terms of iteration, lookup, andmemory footprint. For example, the compressed
sparse row (CSR) is a common format for sparse matrices. It stores the row dimension as a dense
vector, where each entry points to the set of non-zero columns for that particular row. This set of
non-zero columns is then stored in a sorted list, i.e., in a compressed sparse format. Importantly,
this abstraction requires tensors to be accessed in the order in which they are stored (e.g., row-
then-column in the case of CSR), which restricts the set of valid loop orders, as we describe next.
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Loop Execution Model. The input to a Sparse Tensor Compiler is a high-level domain speci�c
language (DSL); it consists of for-loops, in-place aggregates (e.g., + =), and arithmetic over indexed
tensors (e.g., �[8, 9] ∗ � [ 9, :]). Crucially, the for-loops in these expressions are not executed in a
dense manner. Instead, these compilers analyze the input formats and the algebraic properties of the
expression to determine which index combinations will produce non-�ll entries. In Fig. 1, because 0
is the annihilator of multiplication (i.e., G ∗ 0 = 0), only the values of 8 that map to non-zero entries
in - and \ are processed. All other index values will return a zero. So, the outer loop is compiled
to an iteration over the intersection of the non-zero 8 indices in - and \ ; Fig. 3 shows how this
is simply co-iteration over the top levels of their formats. The inner loop then iterates over the 9
indices that are non-zero in - [8, _], i.e., the non-zero columns that occur in each row.

Merge Algorithms. Once the compiler has determined which tensors’ non-zero indices must be
merged to iterate over a particular index, it can apply several algorithms. All formats enable both
ordered iteration and lookup operations; therefore, one algorithm iterates through the indices of
all inputs, similar to a merge join, which is highly e�cient per operation. However, this algorithm
is linear in the total size of all inputs even if one is much smaller than the others. Another method
is to iterate through a single input’s level and lookup that index in the others. In this work, we take
the latter approach, as described in Sec. 5.3. We refer to the mode of an individual tensor (such as
“iterate” or “lookup”) as an access protocol and the overall strategy as a merge algorithm [5].

3 Galley Overview

We now provide a high-level view of Galley. We show how it transforms an input program to a
logical plan then to a physical plan that is executed by an STC, as illustrated in Fig. 2. These steps
are each represented by a dialect of our query plan language, whose grammar is de�ned in Fig. 4.
In the following discussion, we use this grammar as a guide to show how our example program,
i.e., logistic regression, would be transformed through these steps.

3.1 Input Program Space

The input program dialect is equivalent to the tensor index notation de�ned in Sec. 2.1. Pointwise
functions such as �8 9 ∗ � 9: are represented with Map. Aggregates such as

∑
8 are denoted by Agg.

Each assignment is a Query, and previous assignments are referenced with an Alias. Crucially, the
Op terminal used in both Map and Agg can be any user de�ned function (e.g. 5 (G,~) = B8=(1+G ∗~))
as long as it accepts the correct number of arguments (i.e. the number of expressions in the Map and
two arguments in Agg). Galley takes advantage of properties of these functions during optimization,
speci�cally distributivity, commutativity, associativity, identity, idempotency, and the existence of
an annihilator. Further, users can declare these properties to Galley at runtime. This extensibility
is a bene�t of Galley’s formal framework. Lastly, Idxs are named symbols (e.g. 8 , 9 ), and Tensors
are memory-resident input tensors. Our logistic regression example from Fig. 1 is de�ned in this
dialect as

Query(P, Map(f, Agg(+, j, Map(*, X[i,j], \[j]))))

Note that this notation is compatible with array APIs like Numpy that do not have named indices.
Operations like ’matmul’ can be automatically mapped into this language by generating index
names for inputs on the �y and renaming whenever operations imply equality between indices.

3.2 Logical Plan

The �rst task in our optimization pipeline, handled by the logical optimizer, breaks down the input
program into a sequence of simple aggregates. This is enforced by converting the input program
( 4.A) to a logical plan ( 4.B). This dialect is a restriction of the input dialect, where each query
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contains a single aggregate statement that wraps an arbitrary combination of Map, Input, and
Alias statements. Intuitively, each logical query corresponds to a single STC kernel that produces
a single intermediate tensor, but it does not specify details like loop orders and output formats.
To perform this conversion soundly, each input query must correspond to a logical query, which
produces a semantically equivalent output. To do this e�ciently, Galley must minimize the total
cost of all queries in the logical plan.

Our logistic regression program above is not a valid logical plan because the outer expression is
a pointwise function not an aggregate. However, it can be translated into the following logical plan

Query(R, Agg(+, j, Map(*, X[i,j], \[j])))

Query(P, Agg(no-op, Map(f, R[i])))

In this plan, the �rst query isolates the sum over the 9 index, while the second query performs the
remaining sigmoid operation on the result. Note that the latter query uses a no-op aggregate to
represent an element-wise operation while conforming to the logical dialect.

3.3 Physical Plan

Given the logical plan, Galley’s physical optimizer determines the implementation details needed
to convert each logical query to an STC kernel. Speci�cally, it de�nes the loop order of each
compiled kernel, the format of each output, and the merge algorithm for each index. As above, this
is expressed by converting the logical plan to a physical plan described in the most constrained
dialect. To avoid out-of-order accesses, we require that the index order of inputs and aliases are
concordant with the loop order, so the physical optimizer may insert additional queries to transpose
inputs. Therefore, each logical query corresponds to one or more physical queries.
Using this language, we can precisely express the program from Fig. 1 as follows, where it

means iterate and lu means lookup.

Query(R,Mat(dense,i,Agg(+,j,Map(*, X[i::it,j::it],

\[j::lu]))), i, j)

Query(P,Mat(dense,i, Map(f, P1[i::it])), i)

The �rst query computes the sum by iterating over the valid i indices for X, iterating over the j
indices in the intersection of X[i,_] and \ , and materializing (hence Mat) their product in a dense
vector over the i indices. The second query runs over this output and applies the sigmoid function,
returning the result as a dense vector.

3.4 Execution

Once Galley has generated a physical plan, the execution is very simple. For each physical query, it
�rst translates the expression into an STC kernel de�nition and calls the STC to compile it. Then,
Galley injects the tensors referenced by inputs and aliases and executes the kernel, storing the
resulting tensor in a dictionary by name. After all queries have been computed, it returns the
tensors requested in the input program by looking them up in this dictionary.

4 Logical Optimizer

Given the plan dialects above, we now describe the logical optimizer, which receives an input
program (Dialect 4.A) and outputs a semantically equivalent logical plan (Dialect 4.B). Speci�cally,
the logical optimizer converts each query in the input program to a sequence of logical queries,
where the last query produces the same output as the input query. There are many valid plans, and
the optimizer searches this space to identify the cheapest one. We now brie�y de�ne "cheapest" in
this context before outlining the complex space of logical plans that are considered. Finally, we
explain the algorithms that we use to perform this search.
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4.1 Normalization & Pointwise Distributivity

The �rst step in logical optimization is to normalize the input program with a few simple rules
that we apply exhaustively: (1) merge nested Map operators, (2) merge nested Agg operators, (3) lift
Agg operators above Map operators, when possible, and (4) rename indices to ensure uniqueness.
Applying these rules compresses the input program and makes our reasoning simpler in later steps
by ensuring that operator boundaries are semantically meaningful.

Next, we consider whether to distribute pointwise expressions. Doing so may or may not yield a
better plan because it both makes operations more sparse and produces larger expressions.

Example 3. Consider the following expression which computes the loss function for the alternating

least squares (ALS) algorithm and its distributed form:∑
8 9

(-8 9 −*8+9 )2 =
∑
8 9

- 2
8 9 − 2

∑
8 9

-8 9*8+9 +
∑
8

* 2
8

∑
9

+ 2
9

If all inputs are dense, the non-distributed form is more e�cient because it results in fewer terms and

has the same computational cost per term. However, if -8 9 is sparse and *8 ,+9 are dense, then the

distributed form is more e�cient because all terms can be computed in time linear w.r.t. the sparsity of

-8 9 . Note that the squaring operation here is a pointwise function, not a matrix multiplication.

To take advantage of this potentially asymptotic performance improvement, Galley performs
a greedy search for the optimally distributed expression. At each step, it considers all single
applications of distributivity in the expression. It then runs variable elimination for each (described
later in this section) and computes the cost an optimal logical plan. If applying distributivity
improved on the cost of the original expression, it continues. If not, it returns the optimal logical
plan discovered so far. Lastly, we additionally consider the expression derived from applying
distributivity exhaustively.

4.2 Cost Model

Overall, Galley’s logical optimizer attempts to minimize the time required to execute the logical
program. Because logical queries do not correspond to concrete implementations, our logical cost
model aims to approximate this time without reference to the particular implementation that
the physical optimizer will eventually decide on. This approximation considers two factors: (1)
the number of non-�ll entries in the output tensor and (2) the amount of computation (i.e., the
number of FLOPs) needed to produce the output. The former corresponds to the size of the tensor
represented by Agg, ==I (Agg), and the latter corresponds to the tensor size represented by the
MapExpr within, ==I (MapExpr). We assume that the inputs are in memory; hence, there is no cost
for reading inputs from disk. We then perform a simple regression to associate each cost with a
constant, and we add them to produce our overall cost, 2 , as follows:

2>BC ≈ 0 ∗ ==I (Agg) + 1 ∗ ==I (MapExpr)
To estimate ==I (Agg) and ==I (MapExpr), we use the sparsity estimation framework described in
Sec. 6.

4.3 Variable Elimination

The core of our logical optimizer is an extension of the variable elimination (VE) (eq. FAQ) framework
[19, 28]. In its original context, this algorithm described a means of marginalization for probabilistic
models by removing one variable at a time. When applied to our setting, it allows us to de�ne the
logical plan for an input query via an order on the indices being aggregated over, i.e., an elimination

order. If we are given this order, we can construct a valid logical plan by iterating through the
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�rst removes all Agg nodes and annotates their inner expressions with (Idx, Op). It then replaces
all Map nodes with their operator to get the �nal tree, where every internal node is a pointwise
function and every leaf is either an Input or an Alias.

Example 5. Fig. 5 shows the annotated expression tree for logistic regression where the input matrix

is de�ned by a join-like expression -8 9 = (8?2 (%? 9 +�2 9 ). Further, Galley has pushed down \ 9 into this

expression. The sigmoid function is the outermost layer of the expression, so it appears at the top of the

tree. The summations all occur just inside the sigmoid function, so they annotate the top multiplication

operator.

Given the AET, Galley identi�es an index’s MSEs by starting at the node where it is annotated
and traversing downwards according to the algebraic properties of each internal node. We now
describe the traversal rules for functions that are distributive, non-distributive, and commutative
with respect to the aggregation operator.

Distributive Functions. When we reach a function that distributes over the aggregate (e.g., ∗
and

∑
), we examine how many of the children, subtrees of the AET, contain the current index. If

one child contains the index, we traverse down that child’s branch, i.e., we factor the other children
out of the aggregate. If multiple children contain the index, we wrap the sub-tree rooted at that
node in the aggregate and return it as our MSE. If the function is commutative and associative, we
only include the children that contain the index.
Commutative, Identical Functions.When the node’s function is the same as the aggregate

function and is commutative, we can push the aggregate down to each child independently. For
example, we can transform the expression

∑
8 �8 +�8 into

∑
8 �8 +

∑
8 �8 . For all children that contain

the index, we add the result of traversing down its branch to the list of MSEs and replace it with an
alias to the result. If a child does not contain the index, then we need to account for the repeated
application of the aggregate function. For example,

∑
8 � = #8 ∗ � where #8 is the size of the 8

dimension.
Blocking Functions. A function that does not distribute or commute with our aggregate

function is called a blocking function. When we reach a blocking function in our traversal, we
simply wrap it in our aggregate and return the sub-tree as an MSE. For example, the expression∑
9

√
�8 9� 9: cannot be rewritten as

√∑
9 �8 9

∑
9 � 9: because

√
is a blocking function.

Discussion. Galley builds upon and extends the theoretical FAQ framework for optimizing
conjunctive queries with aggregation[28]. This framework explored the optimization of queries

with the following form, where each
⊕(8 )

is either equal to or forms a semi-ring with ⊗:

(1)⊕
E1

· · ·
(: )⊕

E:

� 1+1 ⊗ · · · ⊗ �:+:

Similarly to Galley, the FAQ paper described the optimization problem as selecting an optimal
elimination order over the aggregated variables. Though this framework captures many important
problems, it lacks the �exibility needed to support a general tensor processing system. Consider a
slightly modi�ed version of the SDDMM kernel:∑

9

�8: (�8 9 +� 9: )

This expression is not an FAQ query because it mixes addition and multiplication in the pointwise
expression. Galley extends this framework to accommodate arbitrary pointwise expressions and
placement of aggregates within expressions.
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4.5 Restricted Elimination Orders

Depending on the program structure, the order in which indices can be eliminated might be
restricted. This could be due to non-commutative aggregates or aggregate placement. The former is
when an aggregate wraps another aggregate that it does not commute with. For example, given
max8

∑
9 �8 9 , we must perform the summation before handling the maximum because max and

∑
do not commute. The latter is when an aggregate wraps another aggregate but cannot reach it via

the traversal described above, e.g.,
∑
8

√∑
9 �8 9 ; in this case, the inner aggregate must be performed

�rst. Collectively, these restrictions form a partial ordering on the index variables that must be
respected when we enumerate elimination orders.

4.6 Search Algorithms

With the VE approach, we have simpli�ed the complicated issue of high-level optimization to
the discrete problem of choosing an optimal order on the aggregated index variables. We start by
revisiting our example from Fig. 5. The input query is the following,

Query(X, Map(f,

Agg(+,p,c,j,

Map(*,S[i,p,c],

Map(+,

Map(*, P[p,j], \[j]),

Map(*, C[c,j], \[j]))))))

The elimination order for this expression is an ordering of the indices {?, 2, 9}. Galley’s logical
optimizer searches through these possible orders to �nd the most e�cient one. In this case, it would
choose [ 9, ?, 2], resulting in the following logical plan,

Query(A1, Agg(+, j, Map(*, P[p,j], \[j])))

Query(A2, Agg(+, j, Map(*, C[c,j], \[j])))

Query(A3, Agg(+, p, c, Map(*, S[i,p,c],

Map(+, A1[p], A2[c]))))

Query(X, Map(f, A3[i]))

We now present two algorithms to search for that optimal order using the tools described above.
Greedy. The greedy approach chooses the cheapest index to aggregate at each step by �nding the

minimal sub-query for each index and computing its cost. The cheapest index’s minimal sub-query
is removed from the expression, appended to the logical plan, and replaced with an alias to the
result. This continues until no aggregates remain in the expression.
Branch-and-Bound. The branch-and-bound approach computes the optimal variable order

and occurs in two steps. The �rst step uses the greedy algorithm to produce an upper bound
on the cost of the overall plan; the second performs a dynamic programming algorithm. In the
dynamic programming step, the keys of the memo table are unordered sets of indices, and the
values are tuples containing a partial elimination order, residual query, and cost. The algorithm
initializes the table with the empty set and a cost of zero. At each step, it iterates through table
entries and attempts to aggregate out another index. It then uses the cost bound from the �rst step
to prune entries from the memo table whose cost exceeds the bound; doing so is valid because costs
monotonically increase as more indices are added to the set. At the end of this step, the algorithm
returns the index order associated with the full set of indices.

5 Physical Optimizer

Each query in the logical dialect roughly corresponds to a single loop nest and materialized
intermediate. However, several decisions remain about how the kernel is computed, including: (1)
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the loop order over the indices, (2) the format of the result, and (3) the merge algorithm for each
index. The physical optimizer makes these decisions.

5.1 Loop Order

The loop order determines that inputs are accessed. An good loop order prunes the iteration space
due to early intersection of sparse inputs. Intuitively, this is similar to selecting a variable order for
a worst-case optimal join algorithm. Galley’s physical optimizer searches the space of loop orders
to �nd one with the minimum cost, de�ned below.

Cost Model. The cost of a loop order is composed of each loop’s number of iterations and the
cost of transposing inputs to make them concordant with the loop order.

Example 6. Consider matrix chain multiplication over three sparse matrices, �, �, and � , where

� [8;] =
∑
9:

�[8 9] ∗ � [ 9:] ∗� [:;] (1)

Suppose that � has only a single non-zero entry and that � and � have 5 non-zero entries per column

and per row. In this case, the loop order 8 9:; is signi�cantly more e�cient than ;: 98 . In the former, the

�rst two loops, over 8 and 9 , incur only a single iteration because they are bounded by the size of �.

The third and fourth incur 5 and 52 iterations, respectively, because there are only 5 non-zero :’s per 9
in � and 5 non-zero ; ’s per : in � . In the latter, the �rst two loops iterate over the full matrix � despite

most of those iterations not leading to useful computation.

Formally, let & be the pointwise expression in our kernel, and let & (81,...,8: ) be the restriction of

that expression to just the index variables 81, . . . , 8: . Let A
(81,...,8: ) be the input tensors that are not

concordant with 81, . . . , 8: . Then, we can de�ne the cost of a loop order as follows,

2>BC (&, (81, . . . , 8: )) ≈
:∑
9=1

==I (& (81,...,8 9 ) ) +
∑

�∈A(81,...,8: )

|�|

In practice, we further re�ne this model to take into account the number and kind of tensor accesses
at each loop.

Optimization Algorithm. To optimize the loop order, we combine this cost model with a branch-
and-bound, dynamic programming algorithm. In the �rst pass, the optimization algorithm selects
the cheapest loop index at each step until reaching a full loop order. This produces an upper bound
on the optimal execution cost, which the algorithm uses to prune loop orders in the second step.
This step applies a dynamic programming algorithm. Taking inspiration from Selinger’s algorithm
for join ordering, each key in the DP table is a set of index variables and a set of inputs. The former
represents the loops that have been iterated so far, and the latter represents a set of inputs that
must be transposed.

5.2 Intermediate Formats

Once the loop order has been determined, the physical optimizer selects the optimal format for
each query’s output. First, Galley sets the order of the indices to be concordant with either the
loop order of the kernel where it will be consumed or the order requested by the user. Then, it
selects a format for each index (e.g., dense vector, hash table, etc.). Two factors a�ect this decision:
(1) the kind of writes being performed (sequential vs random) and (2) the sparsity of the tensor
at this index. The former is important because many formats (e.g., sorted list formats) only allow
sequential construction. These formats can only be used if the output indices form a pre�x of the
loop order.
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When considering sparsity, Galley balances the fact that dense formats have better baseline
e�ciency, while sparse formats are asymptotically more e�cient for highly sparse outputs. To
describe this trade-o�, we hand selected sparsity cuto�s between fully sparse, bytemap, and
fully dense formats. To determine a particular output index’s format, the physical optimizer �rst
determines the sparsity at this index level and uses our cuto�s to determine which category of
formats to consider. Then, it checks whether sequential or random writes are being performed and
selects the most e�cient format that supports the write pattern.

5.3 Merge Algorithms

The �nal decision the physical optimizer makes concerns the algorithm it will use to perform each
loop’s intersection. While there are more complex strategies, we adopt instead a minimal approach
and select a single input to iterate over for each loop. The physical optimizer then probes into the
remaining inputs. It makes this selection by estimating the number of non-zero indices that each
input has, conditioned on the indices in the outer loops. This resembles the approach taken in [51]
for optimizing WCOJ.

5.4 Common Sub-Expression Elimination

Galley takes a straightforward approach to avoiding redundant computation. Once a physical plan
has been generated, the right hand side of each physical query is canonicalized and hashed. When
two physical queries result in the same hash, the latter query is removed from the plan and all
references to it are replaced with a reference to the result of the former. This is helpful for caching
small computations like transpositions, but it is also useful for reducing the overhead of applying
distributivity which often results in duplicate sub-expressions.

6 Sparsity Estimation

We now describe how Galley performs the sparsity estimation that guides our logical and physical
optimizers. First, we explore the subtle correspondence between sparsity and cardinality estimation.
We then present a minimal interface for sparsity estimation inspired by this correspondence, after
which we examine two implementations of this framework, i.e., the uniform estimator and the
chain bound.

6.1 Sparsity and Cardinality Estimation

Sparsity estimation is highly related to cardinality estimation in databases. However, translating
methods for the latter to the former requires analyzing the algebraic properties of our tensor
programs. For example, let �8 9 and � 9: be sparse matrices with a �ll value of 0, and let '� (� , � ) and
'� (� ,  ) be relations that store the indices of their non-zero entries. Assume we are performing
the following,

�8 9: = �8 9� 9:

In this case, the number of non-zero values in � is precisely equal to the size of the conjunctive
query

==I (�) = |'� (� , � ) ⊲⊳ '� (� ,  ) |
The correspondence results from the fact that 0 is the annihilator of multiplication (i.e., G ∗ 0 = 0∀G ),
so any non-zero entry 8 9: in the output must correspond to a non-zero 8 9 in � and a non-zero 9:
in �. Consider the following instead:

�8 9: = �8 9 + � 9:
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In this case, a nonzero 8 9: in the output can result from a non-zero 8 9 in � or a non-zero 9: in �. In
traditional relational algebra, where relations are over in�nite domains, this kind of disjunction
would result in an in�nite relation. However, tensors have �nite dimensions, so we can introduce
relations that represent the �nite domains of each index, e.g., �8 = {1, ..., =8 }. This lets us represent
the index relation of the output as

==I (�) = | ('� (� , � ) ⊲⊳ �: ( )) ∪ (�8 (� ) ⊲⊳ '� (� ,  )) |
Finally, we can translate aggregations to the tensor setting as projection operations. Given the
statement

�8: =

∑
9

�8 9:

we can express the non-zeros entries of � as

==I (�) = |c� , ('� (� , � ,  )) |

6.2 The Sparsity Statistics Interface

We use our statistics interface to annotate every node of the AST with statistics. Surprisingly, to
support sparsity estimation over arbitrary tensor algebra expressions, we only need a few core
functions: (1) a constructor, which produces statistics from a materialized tensor for Input and
Alias nodes, (2-3) a function for (non) annihilating Map nodes (i.e., those whose children’s �ll
values are the annihilator of its pointwise function), which merges the children’s statistics, (4) a
function for Agg, which adjusts the input’s statistics to re�ect an aggregation over some set of
indices, and (5) an estimation procedure, which estimates the sparsity of a tensor based on its
statistics.

6.3 Supported Sparsity Estimators

6.3.1 Uniform Estimator. The simplest statistic that can be kept about a tensor is the number of
non-�ll (e.g., non-zero) entries. The uniform estimator uses only this statistic and assumes these
entries are uniformly distributed across the dimension space. This corresponds to System-R’s
cardinality estimator with the added assumption that the active domain is the whole dimension for
each index [42].
Constructor. This function simply counts the non-�ll values in the tensor, ==I (�), and notes

the dimension sizes =81 , . . . , =8: .

Map (Annihilating). To handle an annihilating pointwise operation, this function calculates the
probability that a point in the output was non-�ll in all inputs, then multiplies this by the dimension

space of the output. For a set of inputs �
(1)
�1
. . . �

(; )
�;

and output��� , where each � 9 is a set of indices,

this probability is

==I (�) ≈
(∏
8∈��

=8

)
·
(∏
9

==I (� 9 )∏
8∈� 9 =8

)

Map (Non-Annihilating). To handle an non-annihilating pointwise operation, this function
calculates the probability that an entry in the output was �ll in all inputs. Then, it takes the
compliment to get the probability that it was non-�ll in all inputs and multiplies this by the output
dimension space. Using the preceding notation:

==I (�) ≈
(∏
8∈��

=8

)
·
(
1 −

∏
9

(
1 −

==I (� 9 )∏
8∈� 9 =8

))
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Aggregate. Given an input tensor �� to aggregate over the indices � ′, this function computes the
probability that an output entry is non-�ll by calculating the probability that at least one entry in
the subspace of the input tensor was not �ll:

==I (�) ≈ ©­
«
∏
8∈�\� ′

=8
ª®
¬
·
(
1 −

(
1 − ==I (�� )∏

8∈� =8

)∏
8∈� ′ =8

)
.

Estimate. The estimation function simply returns the current tensor’s stored cardinality statistic.

Example 7. Suppose �8 9 and � 9: are 100G100 sparse matrices with ==I (�) = 1000, ==I (�) = 200,

and we want to estimate ==I (∑9 �8 9� 9: ). We �rst compute ==I (�8 9� 9: ) as 1003 ∗ 1000
1002

∗ 200
1002

= 2000.
The fractions are the probability that 8, 9 or 9, : was zero in � or �, respectively. Next, we factor in

the aggregation over 9 to get ==I (∑9 �8 9� 9: ) = 1002 ∗ (1 − (1 − ==I (�8 9� 9: )
1003

)100) ≈ 1800. Here, the

expression (1 − ==I (�8 9� 9: )
1003

)100 is the probability that all entries were zero for a particular 8, : pair.

6.3.2 Degree Statistics and the Chain Bound. Galley stores degree statistics by default uses them to
compute upper bounds on tensors’ sparsities. A degree statistic, denoted as �� (- |. ), stores the
maximum number of non-�ll entries in the - dimensions conditioned on the . dimensions for a
tensor �. For example, given a matrix �8 9 , �� (8 | 9) is the maximum number of non-�ll entries per
column, and �� (8 9 |∅) is the total number of non-�ll entries in the matrix. This approach follows
work in cardinality bounding that has been shown to produce e�cient query plans in the relational
setting [16, 20, 25].

Constructor. This function �rst computes the boolean tensor representing the input’s sparsity
pattern. Then, to calculate each degree statistic, it sums over the - dimensions and takes the
maximum over the . dimensions. The set of degree statistics for a tensor �� is denoted D��

.
Map (Annihilating). Annihilating map operations can only reduce the degree for any - ,

. pair. Therefore, every input’s degree statistics are also valid for the output. If the inputs are
� (1)�1 , ..., � (:)�: , then the output’s statistics are,

D� =

⋃
9

D
�

( 9 )
� 9

Map (Non-Annihilating). In this case, Galley extends the degree constraints from each input
to cover the full set of indices. Then, it computes degree statistics about the output, � , from the

inputs �
(1)
�1
, . . . , �

(: )
�:

by addition:

�� (- |. ) =
∑
9

�� ( 9 ) (- |. )

Estimator. This function calculates an upper bound (eq. performs sparsity estimation) using the
breadth-�rst search approach described in [17]. Intuitively, each set of indices forms a node in the
graph, and each degree constraint is a weighted edge from . to - . Its search begins with the empty
set; it then uses a breadth-�rst search to �nd the shortest weighted path to the full set of indices � .
The product of the weights along this path bounds the number of non-zeros in the result.

Example 8. Suppose �8 9 and � 9: are 100G100 sparse matrices with �� (8 9 |∅) = 1000, �� (8 | 9) =
10, �� ( 9: |∅) = 200, and we want to bound ==I (∑9 �8 9� 9: ). Because multiplication is an annihilating

operation in this case, the degree constraints of
∑
9 �8 9� 9: are simply the union of the constraints for �

and �. To get a bound, we start by conditioning on the empty set and try to reach the output’s index

set, 8, : , via the constraints, e.g. �� ( 9: |∅) ∗ �� (8 | 9) = 2000.
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Table 1. Experimental Dataset Sizes

Dataset Size

TPCH (SF .25 - SF 5.0) .3-6 GB

aids 11 MB

human 1.5 MB

yeast 1.2 MB

dblp 21 MB

youtube 63 MB

Epinions 5.1 MB

Kron 34 MB

LiveJournal .5 GB

Orkut 1.7 GB

RoadNet 41 MB

with mixtures of dense and sparse inputs and non-linear operators; core linear algebra expressions
demonstrate the broad utility of Galley; subgraph counting requires both logical and physical
optimization of complex sum-product expressions over highly sparse inputs and demonstrates
Galley’s advantage over a relational engine even for very sparse workloads; breadth-�rst search
requires careful selection of tensor formats over the course of the computation, showing the bene�t
of physical optimization for even simple computations. Compared to hand-optimized solutions and
alternative approaches, Galley is highly computationally e�cient while requiring only a concise,
declarative input program from the user. Overall, we show that Galley:

• Performs logical optimizations resulting in 1-300× faster execution for ML algorithms over
joins compared to hand-optimized and Pandas implementations and .5-20× faster runtime when
including optimization.

• Optimizes in a mean time of at most 0.1 seconds for all subgraph counting workloads, with
5-20× faster median execution than DuckDB.

• Selects optimal formats for intermediates, outperforming both fully dense and sparse formats for
4/5 graphs in a BFS application.

Experiment Setup. These experiments are run on a server with an AMD EPYC 7443P Processor
and 256 GB of memory. We implemented Galley in the programming language Julia, and the code is
available at https://anonymous.4open.science/r/Galley-21BF/. We used the sparse tensor compiler
Finch2 for execution, and all experiments are executed using a single thread. Unless otherwise
stated, Galley uses the chain bound described in Sec. 6.3.2 for sparsity estimation. Experiments for
all methods are run �ve times, and the mean execution time is reported. We perform all experiments
on a warm cache, and we separately report the compilation and optimization times.

7.1 Machine Learning Over Joins

To explore end-to-end program optimization, we experiment with simple ML algorithms over joins.
This represents a typical machine learning use case where the feature matrix is constructed from a
variety of tables stored within an enterprise database that are joined together before training. Prior
work has shown that co-optimizing these mixed RA/LA problems can yield signi�cant bene�ts
[18, 22, 31, 34, 40]. For this, we consider two join queries over the TPC-H benchmark: a star join
and a self join, at scale factor 5 and .25, respectively. The star join is expressed as follows, where

2https://github.com/FinchTensor/Finch.jl
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Table 2. Total Subgraph Counting Execution Time (S)

Workload Galley (Greedy) Galley+DuckDB DuckDB Umbra 1 (24)

human .17 (.43) .156 .12 .04 (.02)

aids 32.1 (29.43) 43.32 78.16 7.47 (1.89)

yeast_lite 2.96 (3.85) 8.91 1633 367.28 (51.56)

dblp_lite 32.31 (30.44) 39.31 3294 75.51 (18.23)

youtube_lite 240.24 (219.47) 1591.27 17203 14208 (13866)

!, (, %,$, and � are tensors representing the line items, suppliers, parts, orders, and customers
tables, respectively:

-8 9 =
∑
B?>2

!8B?>2 ((B 9 + %? 9 +$> 9 +�2 9 )

The non-zero values in (, %,$ and � are disjoint along the 9 axis, so the addition in this expression
serves to concatenate features from each source, resulting in 139 features after one-hot encoding
categorical features. The self-join query compares line items for the same part based on part and
supplier features. In this case, the feature data is a 3D tensor because the data points are keyed by
pairs of line items:

-8182 9 =
∑
B1B2?

!81B1?!82B2? ((B1 9 + (B2 9 + %? 9 )

We consider a range of ML algorithms: (1) linear regression inference, (2) logistic regression
inference, (3) covariance matrix calculation, and (4) neural network inference. We implement two
versions of each of these using the Finch compiler. The dense version uses a dense feature matrix,
and the sparse version uses CSR matrix to compress the one-hot encoding. We also implemented
two standard baselines; 1) using Pandas for the joins and Numpy for the linear algebra 2) using
Polars for the joins and PyTorch for the linear algebra. The latter supports parallelism, so we’ve
included parallel results for it as well (marking the parallel bars with P and serial bars with S).
These algorithms stress the ability of Galley to handle complex operators and combinations of

sparse and dense inputs. The de�nitions of the feature tensors combine pointwise multiplication
and addition, and algorithms like logistic regression and neural networks wrap these de�nitions in
non-linear operators (e.g. relu and sigmoid) and aggregates. Further, while the line item tensor is
highly sparse, both the feature and parameter tensors are moderately to fully dense.

Execution Time. Fig. 6 shows that the execution time of Galley’s optimized programs is .5−300×
faster than the sparse Finch implementation. For the regression/neural network problems, this
stems from pushing the multiplication with the parameter vector/matrix down to the feature
matrices. For the covariance calculation over the self join, Galley fully distributes the multiplication
over the addition then aggregates away the sparse 81, 82 dimensions. This produces small, dense
intermediates which can be used to calculate the covariance e�ciently.

Optimization Time. Fig. 6 also shows that Galley’s optimizer has a reasonable overhead in this
setting. Concretely, optimization takes .5 − 5.0 seconds across all workloads.

7.2 Linear Algebra Kernels

In Fig. 7, we show how Galley can provide signi�cant bene�ts even for simple workloads without
structured data. In these experiments, �, �, and � are 2000 × 2000 uniformly sparse matrices. �
and � have a density of .1, and the density of� varies on the X axis. In the �rst experiment, Fig. 7a,
Galley improves on PyTorch’s execution in two ways: 1) when the matrices are less sparse, it
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(a) Subgraph Counting Execution Time (b) Subgraph Counting Optimization Time

(c) Sparsity Estimator Comparison (d) Subgraph Counting Compilation Time

Fig. 8. Subgraph Counting Experiments

chooses fully dense formats to store then intermediates and outputs 2) when � is heavily sparse,
it uses a right-to-left execution strategy for the chain, i.e. (�(��)). In the second experiment,
Fig. 7b, Galley is able to fuse the computation when PyTorch is unable to, removing an intermediate
materialization. Further, when � is highly sparse, Galley iterates over the non-zeros of � and
looks them up in � and �, rather than doing a symmetric intersection algorithm. In the third
experiment, Fig. 7c, Galley’s logical optimizer pushes down the outer summation to � and � �rst
which avoids doing any expensive matrix multiplications. In almost all cases, Galley’s optimizations
even overcome the bene�ts of parallelism when PyTorch is provided with 24 cores.

7.3 Subgraph Counting

In this section, we stress test Galley’s ability to optimize programs with a large number of highly
sparse inputs by implementing several sub-graph counting benchmarks. These workloads represent
the far end of the complexity and sparsity spectrum for sparse tensor compilers. Suppose you are
counting the occurrences of � (+ , �) in a data graph � with adjacency matrix " ; we can represent
the count as,

2 =
∑
E8 ∈+

∏
(E8 ,E9 ) ∈�

"E8 E9

We add sparse binary vector factors for each labeled vertex. We use subgraph workloads from the
G-Care benchmark and the paper "In-Memory Subgraph: an In-Depth Study" [35, 45]. We restrict
them to query graphs with up to 8 vertices and 24 edges. Because this is a relational workload,
we compare it with DuckDB and Umbra, two state-of-the-art modern OLAP databases [33, 38].
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The latter is known to be one of the fastest databases for complex joins and aggregations, and
we include both serial and parallel execution [1]. We did not include these systems in our other
experiments due to the di�culty of framing the problems in SQL and because prior work has
already demonstrated their challenges on pure LA workloads [41]. To separately discern the impact
of logical vs physical optimization and our use of Finch, we provide a version of Galley that executes
each logical query with a SQL query run on DuckDB. We also provide results for the greedy logical
optimizer.
Logical Optimization. Fig. 8a shows the execution time for each method and benchmark.

The comparison between ‘DuckDB‘ and ‘Galley + DuckDB Backend‘ demonstrates the bene�ts
of Galley’s logical optimizer. Galley’s logical optimizer breaks down the program into a series of
aggregations which minimizes the necessary computation and materialization. This has the largest
impact on graphs with high skew like the social network graphs, ‘dblp_lite‘ and ‘youtube_lite‘.
In these cases, pushing down aggregates avoids very large intermediate results. DuckDB hits the
300 second timeout on 56 out of 120 queries in the youtube_lite benchmark, as does Umbra on 46
queries. In contrast, Galley never times out across all workloads.
Physical Optimization. The impact of Galley’s physical optimizer can be seen by comparing

‘Galley‘ with ‘Galley + DuckDB‘. Galley’s median execution is up to 8x faster than DuckDB even
with the same logical plan. This shows that Galley is selecting e�cient loop orders and formats,
e�ectively leveraging STCs.
Optimization Time. Fig. 8b shows the mean optimization time for each method on each

workload. Galley has a mean optimization time of less than .15 seconds across all workloads, faster
than Umbra’s optimizer for 2 workloads.
Compilation Time. Because it performs compilation at runtime, Galley incurs a compilation

overhead when it invokes an STC kernel. These kernels are cached by Finch, reducing this cost
when workloads repeatedly use similar kernels. We show the mean compilation time for each
subgraph workload in Fig. 8d. On the simpler workloads, which often reuse kernels, this cost is
lower. More complex workloads reuse kernels less, signi�cantly increasing compilation time.
Comparing Figures 8 and 9, Galley’s optimization overhead is minimal (generally less than 1%)

compared to the compilation overhead. Reducing this requires performance improvements to the
underlying compiler which are out of scope for this work. Fortunately, the Finch project is working
to improve this in two ways (1) by caching compilation to disk and (2) by migrating to the MLIR
compiler infrastructure. As these improvements are made, Galley will immediately reap the bene�ts.

Sparsity Estimation. Finally, in Fig. 8c, we use the sub-graph matching workloads to compare
sparsity estimators and their e�ect on performance. Across all workloads, we see that the chain
bound has signi�cantly better tail performance. This is because it encourages more conservative
query plans which better handle correlated and skewed queries/datasets.

7.4 Breadth-First Search

To demonstrate the importance of format selection, we implement a breadth-�rst search algorithm
using Galley and hand-coded Finch implementations. Both systems receive a single iteration at a
time, and the total execution time is reported. The core computation is a masked sparse matrix
times sparse vector to compute the new frontier vector. The main decision is the visited and frontier
vectors’ formats. The former’s sparsity grows monotonically over iterations, while the latter peaks
in the middle iterations. We provide two implementations of Finch, using either a sparse or a dense
vector for both. Fig. 9 shows that Galley’s mixture of sparse and dense formats is signi�cantly
fastest for 4 of the 5 graphs and is competitive for all graphs. For 4/5 graphs, the total optimization
time (not depicted in the �gure) is less than .25 seconds. This experiment demonstrates the utility
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Fig. 9. BFS Execution Time

of sparsity-aware format selection, and future work should consider ways to amortize optimization
time for iterative workloads.

8 Related Work

Galley di�ers from other work on cost-based optimization for tensor processing due to its targeting
of STCs and its expressive input language. SystemDS, formerly SystemML, focuses on end-to-endML
over matrices and tabular data [10, 13, 14]; it takes as input linear algebra (LA) programs and targets
a combination of LA libraries and distributed computing via Spark. Later work, SPORES, extended
its logical optimizer to leverage relational algebra when optimizing sum-product expressions[50];
their core insight was that LA rewrites, which always match and produce 0-2D expressions, are
not su�cient and that optimal rewrites must pass through higher order intermediate expressions.
Other related work translated sum-product expressions to SQL to leverage highly e�cient database
execution engines [12]. These systems can perform well for highly sparse inputs but struggle on
mixed dense-sparse workloads. Tensor relational algebra proposes a relational layer on top of dense
tensor algebra that provides a strong foundation for automatically optimizing distributed dense
tensor computations [15, 52]. The compiler community has made attempts to automatically optimize
sparse tensor sum-product kernels based on asymptotic performance analyses[6, 21]. These systems
each target a di�erent execution context and focus on di�erent aspects of optimization. Galley
expands on this line of work by targeting a new execution engine, proposing novel optimization
techniques, and handling a wider range of tensor programs.

9 Limitations

We are excited to enrich Galley with new optimizations in the future. Currently, Galley lacks
support for complex loop structures (e.g., a single outer FOR loop that wraps multiple inner FOR
loops), higher order functions (e.g. matrix inversion) or parallelism. However, we believe that these
areas could bene�t from cost-based optimization. Similarly, Galley does not consider hard memory
constraints during optimization, but our use of cardinality bound methods provides an avenue for
addressing this in future work.
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