Galley: Modern Query Optimization for Sparse Tensor
Programs

KYLE DEEDS, University of Washington, United States

WILLOW AHRENS, Massachusetts Institute of Technology, United States
MAGDA BALAZINSKA, University of Washington, United States

DAN SUCIU, University of Washington, United States

The tensor programming abstraction is a foundational paradigm which allows users to write high performance
programs via a high-level imperative interface. Recent work on sparse tensor compilers has extended this
paradigm to sparse tensors (i.e., tensors where most entries are not explicitly represented). With these systems,
users define the semantics of the program and the algorithmic decisions in a concise language that can be
compiled to efficient low-level code. However, these systems still require users to make complex decisions
about program structure and memory layouts to write efficient programs.

This work presents Galley, a system for declarative tensor programming that allows users to write efficient
tensor programs without making complex algorithmic decisions. Galley is the first system to perform cost
based lowering of sparse tensor algebra to the imperative language of sparse tensor compilers, and the first
to optimize arbitrary operators beyond) and x. First, it decomposes the input program into a sequence of
aggregation steps through a novel extension of the FAQ framework. Second, Galley optimizes and converts
each aggregation step to a concrete program, which is compiled and executed with a sparse tensor compiler.
We show that Galley produces programs that are 1 —300x faster than competing methods for machine learning
over joins and 5 — 20X faster than a state-of-the-art relational database for subgraph counting workloads with
a minimal optimization overhead.

CCS Concepts: » Information systems — Query optimization; » Software and its engineering —
Domain specific languages; « Mathematics of computing — Mathematical software.

Additional Key Words and Phrases: Query Optimization, Sparse Tensors, Array Programming, Program
Optimization

ACM Reference Format:

Kyle Deeds, Willow Ahrens, Magda Balazinska, and Dan Suciu. 2025. Galley: Modern Query Optimization
for Sparse Tensor Programs. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 164 (June 2025), 24 pages.
https://doi.org/10.1145/3725301

1 Introduction

In recent years, the tensor programming (eq. array programming) model has become ubiquitous for
high performance computing tasks. It has been applied to problems such as deep learning [2, 8, 23,
36], data cleaning [46], graph algorithms [47], relational query processing [9, 24, 30], and scientific
computing [32, 44, 49], among others. While this approach was originally limited to dense arrays,
data from many domains is fundamentally sparse (i.e., most entries are a fill value like 0), including
graph data, one-hot encodings, relational data, 3D physics meshes, sparse neural networks, and

Authors’ Contact Information: Kyle Deeds, kdeeds@cs.washington.edu, University of Washington, United States; Willow
Ahrens, wahrens@mit.edu, Massachusetts Institute of Technology, United States; Magda Balazinska, magda@cs.washington.
edu, University of Washington, United States; Dan Suciu, suciu@cs.washington.edu, University of Washington, United
States.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART164

https://doi.org/10.1145/3725301

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:2 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

@. # Manually specified format for input tensors

1. FUNC log_regression(X::Dense(Sparse()), 0::Dense())
2 # Manually defined intermediate format

3 R = Dense()

4. # Manually defined loop order

5. FOR i=_

6 FOR j=_

7 # Manually defined iteration algorithm
8. R[i] += X[i::iter,j::iter]*0[j::lookup]
9. END

10. END

11. P = Dense()

12. FOR i=_

13. P[i]l = o(R[i::iter])

14. END

15. END

Fig. 1. Logistic regression implemented in the language of a sparse tensor compiler.

others. However, modern tensor programming systems like NumPy, PyTorch, and sparse tensor
compilers lack the advanced optimization capabilities of relational databases. Instead, users are
forced to optimize their programs manually which is challenging and time consuming. In this
work, we address this by introducing Galley, a system for declarative sparse tensor programming
powered by advanced, cost-based program optimization.

Efficiently processing sparse tensors is challenging. Traditional tensor processing frameworks
are collections of hand-optimized functions over dense tensors [2, 8, 23, 36]. To take advantage of
sparsity, these frameworks need to provide implementations for every combination of input tensors’
formats, resulting in spotty coverage for operations over sparse data [27]. Sparse tensor compilers
(STCs) have been developed to automatically produce these implementations [4, 11, 26, 29, 43].
However, these compilers expose even more performance decisions than traditional frameworks,
and they similarly lack automatic optimization capabilities.!

ExampLE 1. Consider Fig. 1 which implements logistic regression inference in the language of Finch,
an STC[4]. Here, the user must choose the output format for the intermediate R (line 3). In this case,
she chose a Dense rather than a Sparse format, which would be ~ 10X slower. Then, the user chooses
the loop order (lines 5-6). In this case, she chose i-then-j, which is asymptotically faster than j-then-i
because each out-of-order access to X requires a full scan of the tensor. Finally, the user picks a merge
algorithm for each loop that describes how to iterate through the non-zero indices (line 8). Here, X is
iterated through, and each non-zero j is looked up in 0. If she chose to iterate through 0, each
inner loop would scan the entire vector. Even for a simple kernel, these decisions represent a minefield
of potential slowdowns.

In this paper, we propose Galley, a system for declarative sparse tensor programming. Galley
makes algorithmic decisions on the users’ behalf, freeing them to focus on the high-level semantics
of their program without sacrificing computational efficiency. It accepts input programs written
in a declarative language, equivalent to the core of the NumPy API, and automatically produces
an optimized STC implementation using the Finch compiler [4]. To do so, it first restructures the
program into a sequence of aggregation steps, minimizing total computation and materialization

1Some systems separate declarative and imperative concerns with a scheduling language. However, the user still
controls both aspects. For a more detailed description of the prototypical STC, we direct the reader to [29].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:3

costs (Sec. 4). It then optimizes each step by selecting the loop order, the optimal formats for all
intermediate tensors, and the merge algorithm for each loop (Sec. 5). These decisions are all guided
by a system for estimating sparsity via statistics on the input tensors (Sec. 6). Galley builds on
fundamental principles from cost-based query optimization while developing new techniques that are
specific to producing optimized code for sparse tensor compilers.

Designing Galley required overcoming three key challenges. First, the high-level optimization
requires a complex rewriting of the original program which must respect the algebraic properties
of the program. We addressed this by introducing a novel extension of the FAQ framework that
can handle arbitrary sparse tensor programs [28]. Second, STCs provide a vast design space for
kernel implementations which makes the per-aggregate optimization challenging. Galley’s physical
optimizer searches through this space efficiently by separating concerns (loop order, output format,
and intersection algorithm) and applying branch-and-bound optimization. Lastly, the computational
cost of a sparse tensor program depends on the data distribution of the input data which complicates
the optimization process. Galley produces these data-dependent cost estimates by leveraging
the similarity of sparsity estimation and relational cardinality estimation. By overcoming these
challenges, we have attempted to design Galley for a broad set of use cases ranging from sparse
ML to graph algorithms and scientific simulations. To this end, we have incorporated Galley into
the PyData/Sparse library which implements the full NumPy API for sparse arrays [3, 23].

ExAMPLE 2. Let A, B, and C be sparse matrices, and suppose that you want to compute the matrix
chain ABC. Because they do not consider the sparsity of the inputs, traditional systems will always
perform this in the order (AB)C where the intermediate, AB, is stored as a sparse matrix. When given
this problem, Galley will optimize at runtime for the input’s sparsities. This allows it to consider plans
that are only efficient for specific inputs. For example, it may: 1) re-order the operations to perform BC
before multiplying with A 2) store the intermediate as a dense matrix 3) transpose B to iterate over the
shared dimension first. In Sec. 7, we show that this can provide a 10x speedup over state-of-the-art
tensor frameworks for this example.

Contributions We claim the following contributions:

o We present Galley, a system for declarative sparse tensor programming (Sec.3). Galley is the first
system to perform cost based lowering of sparse tensor algebra to the imperative language of
sparse tensor compilers, and the first to optimize arbitrary operators beyond }} and *.

o Galley supports a highly expressive language for sparse tensor algebra with arbitrary algebraic
operators, aggregates within expressions, and multiple outputs (Sec.3).

o Galley performs cost-based logical optimization with a novel extension of the variable elimination
framework to handle arbitrary aggregations and pointwise operators (Sec.4). Galley performs
cost-based physical optimization to determine loop orders, tensor formats, and merge algorithms
(Sec.5).

e We propose a minimal interface for sparsity estimation to guide optimizations and implement two
estimators (Sec.6).

o We evaluate Galley and show that it is 1-300x faster than hand-optimized kernels for mixed
dense-sparse workloads and .25-100x faster than a SOTA database for highly sparse workloads
(Sec.7).

e We have implemented Galley as part of the PyData/Sparse sparse array project and the Finch
tensor compiler[4, 37].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:4 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

Minimal Statistics
Interface

Sparsity
Estimator

Input Program Logical .)
e S Optimizer Logical Plan Physical Plan
Figure 4.A Aggregate Figure 4.B Loop Order Figure 4.C Finch Sparse
Ordering Output Format Tensor Compiler

Access Protocols

Fig. 2. Galley overview.

2 Background
2.1 Tensor Index Notation

Input to Galley is written in an extended version of Einstein Summation (Einsum) notation that
we call tensor index notation[7]. Traditional Einsum notation permits a single summation wrapped
around a multiplication. For instance, you can describe triangle counting in a graph with adjacency
matrix E;; using the following statement:

t= Z EijEjkEik
ijk
To capture the diverse workloads of tensor programming, we additionally allow the use of arbi-
trary functions for both aggregates and pointwise operations, nesting aggregates and pointwise
operations, and defining multiple outputs. For example, a user could perform logistic regression to
predict entities that might be laundering money. Then, they could filter this set based on whether
the entities occur in a triangle in the transactions graph. This is represented by max i (E;;EjxEjx),
which is 1 if i occurs in at least one triangle and 0. This can be written in tensor index notation as:

Li=0() Xi;0) > 5
J
Vi = Li . m%X(EijEjkEik)
j

Tensor compilers like Halide, TACO, and Finch each build off of similar core notations, adding
additional structures like FOR-loops to let users specify algorithmic choices [4, 29, 39]. Crucially,
the vast majority of operations in array programming frameworks like NumPy can be expressed as
operations in tensor index notation. Therefore, though we focus here on this notation, traditional
tensor workflows can be captured and optimized in this framework.

2.2 Sparse Tensor Compilers

Over the last decade, compiler researchers have developed a series of sparse tensor compilers and
shown that they produce highly efficient code for sparse tensor computations[4, 29]. We use this
work as our execution engine, so we briefly explain its important concepts below.

Tensor Formats. There are many different ways to represent sparse tensors, and the optimal
approach depends on the data distribution and the workload. Work in this space has converged
on the fibertree abstraction for describing the space of formats [29, 48]. In this formalism, a tensor

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:5

Abstract Fiber Tree

Row
1 0 0 4 0 Level:
0 0 0 0 |12
Column
24 0 | 8|0 o | Levek

o o o 3] e (DO OO O

Fig. 3. Fibertree format abstraction.

A. Input Program

Plan := Query... Query := (Name, Expr)

Agg := (Op, Idx..., Expr) Map := (Op, Expr...)
Expr := Agg | Map | Input | Alias

Input := Tensor[Idx...] Alias := Name[Idx...]
B. Logical Plan

Plan := Query... Query := (Name, Agg)

Agg := (Op, Idx..., Expr) Map := (Op, Expr...)
Expr := Map | Input | Alias

Input := Tensor[Idx...] Alias := Name[Idx...]
C. Physical Plan

Plan := Query... Query := (Name, Mat, Idx...)
Mat := (Format..., Idx..., Agg)

Agg := (Op, Idx..., Expr) Map := (Op, Expr...)
Expr := Map | Input | Alias
Input := Tensor[PIdx...] Alias :
PIdx := Idx::Protocol

Name[PIdx...]

Fig. 4. Query plan dialects.

format is a nested data structure resembling the one in Fig. 3. Each layer stores the non-fill (e.g.,
non-zero) indices in a particular dimension, conditioned on earlier dimensions, and pointers to
the next dimension’s non-fill indices. These layers can be represented in any format that enables
iteration and lookup.

In this work, we consider sorted lists, hash tables, bytemaps, and dense vectors, which each
perform differently in terms of iteration, lookup, and memory footprint. For example, the compressed
sparse row (CSR) is a common format for sparse matrices. It stores the row dimension as a dense
vector, where each entry points to the set of non-zero columns for that particular row. This set of
non-zero columns is then stored in a sorted list, i.e., in a compressed sparse format. Importantly,
this abstraction requires tensors to be accessed in the order in which they are stored (e.g., row-
then-column in the case of CSR), which restricts the set of valid loop orders, as we describe next.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:6 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

Loop Execution Model. The input to a Sparse Tensor Compiler is a high-level domain specific
language (DSL); it consists of for-loops, in-place aggregates (e.g., + =), and arithmetic over indexed
tensors (e.g., A[i, j] * B[J, k]). Crucially, the for-loops in these expressions are not executed in a
dense manner. Instead, these compilers analyze the input formats and the algebraic properties of the
expression to determine which index combinations will produce non-fill entries. In Fig. 1, because 0
is the annihilator of multiplication (i.e., x * 0 = 0), only the values of i that map to non-zero entries
in X and 6 are processed. All other index values will return a zero. So, the outer loop is compiled
to an iteration over the intersection of the non-zero i indices in X and 6; Fig. 3 shows how this
is simply co-iteration over the top levels of their formats. The inner loop then iterates over the j
indices that are non-zero in X[i,], i.e., the non-zero columns that occur in each row.

Merge Algorithms. Once the compiler has determined which tensors’ non-zero indices must be
merged to iterate over a particular index, it can apply several algorithms. All formats enable both
ordered iteration and lookup operations; therefore, one algorithm iterates through the indices of
all inputs, similar to a merge join, which is highly efficient per operation. However, this algorithm
is linear in the total size of all inputs even if one is much smaller than the others. Another method
is to iterate through a single input’s level and lookup that index in the others. In this work, we take
the latter approach, as described in Sec. 5.3. We refer to the mode of an individual tensor (such as
“iterate” or “lookup”) as an access protocol and the overall strategy as a merge algorithm [5].

3 Galley Overview

We now provide a high-level view of Galley. We show how it transforms an input program to a
logical plan then to a physical plan that is executed by an STC, as illustrated in Fig. 2. These steps
are each represented by a dialect of our query plan language, whose grammar is defined in Fig. 4.
In the following discussion, we use this grammar as a guide to show how our example program,
i.e., logistic regression, would be transformed through these steps.

3.1 Input Program Space

The input program dialect is equivalent to the tensor index notation defined in Sec. 2.1. Pointwise
functions such as A;; * Bj, are represented with Map. Aggregates such as }}; are denoted by Agg.
Each assignment is a Query, and previous assignments are referenced with an Alias. Crucially, the
Op terminal used in both Map and Agg can be any user defined function (e.g. f(x,y) = sin(1+x *y))
as long as it accepts the correct number of arguments (i.e. the number of expressions in the Map and
two arguments in Agg). Galley takes advantage of properties of these functions during optimization,
specifically distributivity, commutativity, associativity, identity, idempotency, and the existence of
an annihilator. Further, users can declare these properties to Galley at runtime. This extensibility
is a benefit of Galley’s formal framework. Lastly, Idxs are named symbols (e.g. i, j), and Tensors
are memory-resident input tensors. Our logistic regression example from Fig. 1 is defined in this
dialect as

Query(P, Map(o, Agg(+, j, Map(x, X[i,3], 0[31))))

Note that this notation is compatible with array APIs like Numpy that do not have named indices.
Operations like ‘matmul’ can be automatically mapped into this language by generating index
names for inputs on the fly and renaming whenever operations imply equality between indices.

3.2 Logical Plan

The first task in our optimization pipeline, handled by the logical optimizer, breaks down the input
program into a sequence of simple aggregates. This is enforced by converting the input program
(4.A) to a logical plan (4.B). This dialect is a restriction of the input dialect, where each query

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:7

contains a single aggregate statement that wraps an arbitrary combination of Map, Input, and
Alias statements. Intuitively, each logical query corresponds to a single STC kernel that produces
a single intermediate tensor, but it does not specify details like loop orders and output formats.
To perform this conversion soundly, each input query must correspond to a logical query, which
produces a semantically equivalent output. To do this efficiently, Galley must minimize the total
cost of all queries in the logical plan.

Our logistic regression program above is not a valid logical plan because the outer expression is
a pointwise function not an aggregate. However, it can be translated into the following logical plan

Query(R, Agg(+, j, Map(*, X[i,jl1, 6[3iD)))

Query(P, Agg(no-op, Map(o, RLil)))

In this plan, the first query isolates the sum over the j index, while the second query performs the
remaining sigmoid operation on the result. Note that the latter query uses a no-op aggregate to
represent an element-wise operation while conforming to the logical dialect.

3.3 Physical Plan

Given the logical plan, Galley’s physical optimizer determines the implementation details needed
to convert each logical query to an STC kernel. Specifically, it defines the loop order of each
compiled kernel, the format of each output, and the merge algorithm for each index. As above, this
is expressed by converting the logical plan to a physical plan described in the most constrained
dialect. To avoid out-of-order accesses, we require that the index order of inputs and aliases are
concordant with the loop order, so the physical optimizer may insert additional queries to transpose
inputs. Therefore, each logical query corresponds to one or more physical queries.

Using this language, we can precisely express the program from Fig. 1 as follows, where it
means iterate and 1u means lookup.
Query(R,Mat(dense,i,Agg(+,j,Map(*, X[i::it,j::it],

0Cj::1ul))), 1,)

Query(P,Mat(dense,i, Map(c, P1[i::it])), 1)
The first query computes the sum by iterating over the valid i indices for X, iterating over the j
indices in the intersection of X[i,_] and 6, and materializing (hence Mat) their product in a dense
vector over the i indices. The second query runs over this output and applies the sigmoid function,
returning the result as a dense vector.

3.4 Execution

Once Galley has generated a physical plan, the execution is very simple. For each physical query, it
first translates the expression into an STC kernel definition and calls the STC to compile it. Then,
Galley injects the tensors referenced by inputs and aliases and executes the kernel, storing the
resulting tensor in a dictionary by name. After all queries have been computed, it returns the
tensors requested in the input program by looking them up in this dictionary.

4 Logical Optimizer

Given the plan dialects above, we now describe the logical optimizer, which receives an input
program (Dialect 4.A) and outputs a semantically equivalent logical plan (Dialect 4.B). Specifically,
the logical optimizer converts each query in the input program to a sequence of logical queries,
where the last query produces the same output as the input query. There are many valid plans, and
the optimizer searches this space to identify the cheapest one. We now briefly define "cheapest" in
this context before outlining the complex space of logical plans that are considered. Finally, we
explain the algorithms that we use to perform this search.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:8 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

4.1 Normalization & Pointwise Distributivity

The first step in logical optimization is to normalize the input program with a few simple rules
that we apply exhaustively: (1) merge nested Map operators, (2) merge nested Agg operators, (3) lift
Agg operators above Map operators, when possible, and (4) rename indices to ensure uniqueness.
Applying these rules compresses the input program and makes our reasoning simpler in later steps
by ensuring that operator boundaries are semantically meaningful.

Next, we consider whether to distribute pointwise expressions. Doing so may or may not yield a
better plan because it both makes operations more sparse and produces larger expressions.

ExampLE 3. Consider the following expression which computes the loss function for the alternating
least squares (ALS) algorithm and its distributed form:

DXy = UV = 3 X =2) XyUVi+) U)V
ij ij ij i J

If all inputs are dense, the non-distributed form is more efficient because it results in fewer terms and
has the same computational cost per term. However, if X;; is sparse and U;, V; are dense, then the
distributed form is more efficient because all terms can be computed in time linear w.r.t. the sparsity of
X;j. Note that the squaring operation here is a pointwise function, not a matrix multiplication.

To take advantage of this potentially asymptotic performance improvement, Galley performs
a greedy search for the optimally distributed expression. At each step, it considers all single
applications of distributivity in the expression. It then runs variable elimination for each (described
later in this section) and computes the cost an optimal logical plan. If applying distributivity
improved on the cost of the original expression, it continues. If not, it returns the optimal logical
plan discovered so far. Lastly, we additionally consider the expression derived from applying
distributivity exhaustively.

4.2 Cost Model

Overall, Galley’s logical optimizer attempts to minimize the time required to execute the logical
program. Because logical queries do not correspond to concrete implementations, our logical cost
model aims to approximate this time without reference to the particular implementation that
the physical optimizer will eventually decide on. This approximation considers two factors: (1)
the number of non-fill entries in the output tensor and (2) the amount of computation (i.e., the
number of FLOPs) needed to produce the output. The former corresponds to the size of the tensor
represented by Agg, nnz(Agg), and the latter corresponds to the tensor size represented by the
MapExpr within, nnz(MapExpr). We assume that the inputs are in memory; hence, there is no cost
for reading inputs from disk. We then perform a simple regression to associate each cost with a
constant, and we add them to produce our overall cost, ¢, as follows:

cost ~ a * nnz(Agg) + b = nnz(MapExpr)

To estimate nnz(Agg) and nnz(MapExpr), we use the sparsity estimation framework described in
Sec. 6.

4.3 Variable Elimination

The core of our logical optimizer is an extension of the variable elimination (VE) (eq. FAQ) framework
[19, 28]. In its original context, this algorithm described a means of marginalization for probabilistic
models by removing one variable at a time. When applied to our setting, it allows us to define the
logical plan for an input query via an order on the indices being aggregated over, i.e., an elimination
order. If we are given this order, we can construct a valid logical plan by iterating through the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:9

elimination order one index at a time in order to (1) identify the minimal sub-expression needed
to aggregate over it, (2) create a new logical query representing the result of that sub-expression,
and (3) replace it in the original query with an alias to the result. At the end of this process, the
remaining query no longer requires any aggregation and therefore is itself a logical query.

ExaMPLE 4. Consider optimizing the following matrix chain multiplication:

Eim = ZAiijkalDlm
jkl

The elimination order jkl corresponds to a left-to-right multiplication strategy because eliminating j
from the expression first requires performing the matrix multiplication between A and B. Eliminating
k then requires multiplying that intermediate result with C, and so on. Concretely, this produces the
following sequence of logical queries:

Query(I1, Agg(+, j, Map(x, ALi,]], BLj,k1)))

Query(I2, Agg(+, k, Map(x, I1[i, k1, CLk,11)))

Query(E, Agg(+, 1, Map(x, I2[i,1], DL1,ml)))
Similarly, the elimination order lkj corresponds to a right-to-left strategy, and the order klj to a
middle-first strategy.

Unlike traditional VE for sum-product queries, we support complex trees of pointwise operators
and aggregates. This makes identifying minimal sub-queries challenging since we must carefully
examine the expression’s algebraic properties. Given a strategy for this, the core problem of
optimizing VE is to search the space of elimination orders for the most efficient one. In the worst
case, this takes exponential time w.r.t. the number of indices being aggregated over. In the following
sections, we describe how we identify minimal sub-queries and our search algorithm for finding
the optimal elimination order.

4.4 Identifying Minimal Sub-Expressions

We now explain how to identify the minimal sub-expressions (MSEs) needed to eliminate an index.
In sum-product expressions, the MSE is simply the product of the tensors that are indexed by
it. For more complex input programs, we show that identifying MSEs corresponds to a careful
traversal down the annotated expression tree, examining the algebraic properties of each operation
to determine how to proceed.

NSNLY

N
Sz’pc */+\

o
v
% 2

*
v\

py~J] ~¢c 7]
Fig. 5. Annotated expression tree for logistic regression over joins o(3 jpc Sipc(Ppj0; + Ccj0;))

Annotated Expression Tree. The annotated expression tree (AET) is constructed by examining
the nested structure of Agg, Map, Input, and Alias nodes in the input query. To do this, Galley

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:10 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

first removes all Agg nodes and annotates their inner expressions with (Idx, Op). It then replaces
all Map nodes with their operator to get the final tree, where every internal node is a pointwise
function and every leaf is either an Input or an Alias.

ExAMPLE 5. Fig. 5 shows the annotated expression tree for logistic regression where the input matrix
is defined by a join-like expression X;; = Sipc(Ppj + Ccj). Further, Galley has pushed down 0; into this
expression. The sigmoid function is the outermost layer of the expression, so it appears at the top of the
tree. The summations all occur just inside the sigmoid function, so they annotate the top multiplication
operator.

Given the AET, Galley identifies an index’s MSEs by starting at the node where it is annotated
and traversing downwards according to the algebraic properties of each internal node. We now
describe the traversal rules for functions that are distributive, non-distributive, and commutative
with respect to the aggregation operator.

Distributive Functions. When we reach a function that distributes over the aggregate (e.g., *
and), we examine how many of the children, subtrees of the AET, contain the current index. If
one child contains the index, we traverse down that child’s branch, i.e., we factor the other children
out of the aggregate. If multiple children contain the index, we wrap the sub-tree rooted at that
node in the aggregate and return it as our MSE. If the function is commutative and associative, we
only include the children that contain the index.

Commutative, Identical Functions. When the node’s function is the same as the aggregate
function and is commutative, we can push the aggregate down to each child independently. For
example, we can transform the expression }; A; + B; into)}; A; + >; B;. For all children that contain
the index, we add the result of traversing down its branch to the list of MSEs and replace it with an
alias to the result. If a child does not contain the index, then we need to account for the repeated
application of the aggregate function. For example, }}; B = N; = B where N; is the size of the i
dimension.

Blocking Functions. A function that does not distribute or commute with our aggregate
function is called a blocking function. When we reach a blocking function in our traversal, we
simply wrap it in our aggregate and return the sub-tree as an MSE. For example, the expression
2.j VAijBjk cannot be rewritten as /2. ; A;j 2. ; Bjx because Yisa blocking function.

Discussion. Galley builds upon and extends the theoretical FAQ framework for optimizing
conjunctive queries with aggregation[28]. This framework explored the optimization of queries

with the following form, where each @(i) is either equal to or forms a semi-ring with ®:

1) (k)

1 k
.. @ FV]®”'®FV,C

4] Uk

Similarly to Galley, the FAQ paper described the optimization problem as selecting an optimal
elimination order over the aggregated variables. Though this framework captures many important
problems, it lacks the flexibility needed to support a general tensor processing system. Consider a
slightly modified version of the SDDMM kernel:

Z Aik(Bij + Cji)
J

This expression is not an FAQ query because it mixes addition and multiplication in the pointwise
expression. Galley extends this framework to accommodate arbitrary pointwise expressions and
placement of aggregates within expressions.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:11

4.5 Restricted Elimination Orders

Depending on the program structure, the order in which indices can be eliminated might be
restricted. This could be due to non-commutative aggregates or aggregate placement. The former is
when an aggregate wraps another aggregate that it does not commute with. For example, given
max;)} ; A;j, we must perform the summation before handling the maximum because max and
do not commute. The latter is when an aggregate wraps another aggregate but cannot reach it via
the traversal described above, e.g., 3}; 4/ ; A;j; in this case, the inner aggregate must be performed
first. Collectively, these restrictions form a partial ordering on the index variables that must be
respected when we enumerate elimination orders.

4.6 Search Algorithms

With the VE approach, we have simplified the complicated issue of high-level optimization to
the discrete problem of choosing an optimal order on the aggregated index variables. We start by
revisiting our example from Fig. 5. The input query is the following,
Query (X, Map(o,
Agg(+,p,¢,],
Map(*,S[i,p,c],
Map(+,
Map(x, PLp,j1, 6[3D),
Map(x, C[c,31, 0031))))
The elimination order for this expression is an ordering of the indices {p, ¢, j}. Galley’s logical
optimizer searches through these possible orders to find the most efficient one. In this case, it would
choose [}, p, c], resulting in the following logical plan,
Query(A1, Agg(+, j, Map(x, PLp,j1, 6[31))
Query(A2, Agg(+, j, Map(*, C[c,jl, 0[iD)))
Query(A3, Agg(+, p, c, Map(*, S[i,p,c],
Map(+, A1lpl, A2[cI))))
Query (X, Map(o, A3[i]))
We now present two algorithms to search for that optimal order using the tools described above.

Greedy. The greedy approach chooses the cheapest index to aggregate at each step by finding the
minimal sub-query for each index and computing its cost. The cheapest index’s minimal sub-query
is removed from the expression, appended to the logical plan, and replaced with an alias to the
result. This continues until no aggregates remain in the expression.

Branch-and-Bound. The branch-and-bound approach computes the optimal variable order
and occurs in two steps. The first step uses the greedy algorithm to produce an upper bound
on the cost of the overall plan; the second performs a dynamic programming algorithm. In the
dynamic programming step, the keys of the memo table are unordered sets of indices, and the
values are tuples containing a partial elimination order, residual query, and cost. The algorithm
initializes the table with the empty set and a cost of zero. At each step, it iterates through table
entries and attempts to aggregate out another index. It then uses the cost bound from the first step
to prune entries from the memo table whose cost exceeds the bound; doing so is valid because costs
monotonically increase as more indices are added to the set. At the end of this step, the algorithm
returns the index order associated with the full set of indices.

5 Physical Optimizer

Each query in the logical dialect roughly corresponds to a single loop nest and materialized
intermediate. However, several decisions remain about how the kernel is computed, including: (1)

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:12 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

the loop order over the indices, (2) the format of the result, and (3) the merge algorithm for each
index. The physical optimizer makes these decisions.

5.1 Loop Order

The loop order determines that inputs are accessed. An good loop order prunes the iteration space
due to early intersection of sparse inputs. Intuitively, this is similar to selecting a variable order for
a worst-case optimal join algorithm. Galley’s physical optimizer searches the space of loop orders
to find one with the minimum cost, defined below.

Cost Model. The cost of a loop order is composed of each loop’s number of iterations and the
cost of transposing inputs to make them concordant with the loop order.

ExAMPLE 6. Consider matrix chain multiplication over three sparse matrices, A, B, and C, where

D[il] =)" A[ij] * BLjk] = C[Kl] (1)
Jjk

Suppose that A has only a single non-zero entry and that B and C have 5 non-zero entries per column
and per row. In this case, the loop order ijkl is significantly more efficient than lkji. In the former, the
first two loops, over i and j, incur only a single iteration because they are bounded by the size of A.
The third and fourth incur 5 and 5 iterations, respectively, because there are only 5 non-zero k’s per j
in B and 5 non-zero I’s per k in C. In the latter, the first two loops iterate over the full matrix C despite
most of those iterations not leading to useful computation.

Formally, let Q be the pointwise expression in our kernel, and let Q(;, ;) be the restriction of

,,,,,

that expression to just the index variables iy, ..., it. Let AU~%) be the input tensors that are not
concordant with iy, ..., ix. Then, we can define the cost of a loop order as follows,
k
cost(Q, (ig, ..., 0x)) = Z nnz(Q(i"""if)) + Z |A]
J=1 AecAik)

In practice, we further refine this model to take into account the number and kind of tensor accesses
at each loop.

Optimization Algorithm. To optimize the loop order, we combine this cost model with a branch-
and-bound, dynamic programming algorithm. In the first pass, the optimization algorithm selects
the cheapest loop index at each step until reaching a full loop order. This produces an upper bound
on the optimal execution cost, which the algorithm uses to prune loop orders in the second step.
This step applies a dynamic programming algorithm. Taking inspiration from Selinger’s algorithm
for join ordering, each key in the DP table is a set of index variables and a set of inputs. The former
represents the loops that have been iterated so far, and the latter represents a set of inputs that
must be transposed.

5.2 Intermediate Formats

Once the loop order has been determined, the physical optimizer selects the optimal format for
each query’s output. First, Galley sets the order of the indices to be concordant with either the
loop order of the kernel where it will be consumed or the order requested by the user. Then, it
selects a format for each index (e.g., dense vector, hash table, etc.). Two factors affect this decision:
(1) the kind of writes being performed (sequential vs random) and (2) the sparsity of the tensor
at this index. The former is important because many formats (e.g., sorted list formats) only allow
sequential construction. These formats can only be used if the output indices form a prefix of the
loop order.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:13

When considering sparsity, Galley balances the fact that dense formats have better baseline
efficiency, while sparse formats are asymptotically more efficient for highly sparse outputs. To
describe this trade-off, we hand selected sparsity cutoffs between fully sparse, bytemap, and
fully dense formats. To determine a particular output index’s format, the physical optimizer first
determines the sparsity at this index level and uses our cutoffs to determine which category of
formats to consider. Then, it checks whether sequential or random writes are being performed and
selects the most efficient format that supports the write pattern.

5.3 Merge Algorithms

The final decision the physical optimizer makes concerns the algorithm it will use to perform each
loop’s intersection. While there are more complex strategies, we adopt instead a minimal approach
and select a single input to iterate over for each loop. The physical optimizer then probes into the
remaining inputs. It makes this selection by estimating the number of non-zero indices that each
input has, conditioned on the indices in the outer loops. This resembles the approach taken in [51]
for optimizing WCO].

5.4 Common Sub-Expression Elimination

Galley takes a straightforward approach to avoiding redundant computation. Once a physical plan
has been generated, the right hand side of each physical query is canonicalized and hashed. When
two physical queries result in the same hash, the latter query is removed from the plan and all
references to it are replaced with a reference to the result of the former. This is helpful for caching
small computations like transpositions, but it is also useful for reducing the overhead of applying
distributivity which often results in duplicate sub-expressions.

6 Sparsity Estimation

We now describe how Galley performs the sparsity estimation that guides our logical and physical
optimizers. First, we explore the subtle correspondence between sparsity and cardinality estimation.
We then present a minimal interface for sparsity estimation inspired by this correspondence, after
which we examine two implementations of this framework, i.e., the uniform estimator and the
chain bound.

6.1 Sparsity and Cardinality Estimation
Sparsity estimation is highly related to cardinality estimation in databases. However, translating
methods for the latter to the former requires analyzing the algebraic properties of our tensor
programs. For example, let A;; and Bj; be sparse matrices with a fill value of 0, and let R4 (I, J) and
Rg(J, K) be relations that store the indices of their non-zero entries. Assume we are performing
the following,
Cijk = AijBjk

In this case, the number of non-zero values in C is precisely equal to the size of the conjunctive
query

nnz(C) = [Ra(1,J) »< Rp(J, K)|
The correspondence results from the fact that 0 is the annihilator of multiplication (i.e., x * 0 = 0Vx),

so any non-zero entry ijk in the output must correspond to a non-zero ij in A and a non-zero jk
in B. Consider the following instead:

Cijk = Aij + Bjk

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:14 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

In this case, a nonzero ijk in the output can result from a non-zero ij in A or a non-zero jk in B. In
traditional relational algebra, where relations are over infinite domains, this kind of disjunction
would result in an infinite relation. However, tensors have finite dimensions, so we can introduce
relations that represent the finite domains of each index, e.g., D; = {1, ..., n;}. This lets us represent
the index relation of the output as

nnz(C) = |(Ra(L J) »< Dr(K)) U (Di(I) > Rp(J. K))|

Finally, we can translate aggregations to the tensor setting as projection operations. Given the

Cir = ZAi ik
J
we can express the non-zeros entries of C as

nnz(C) = |mx(Ra(l, J,K))|

statement

6.2 The Sparsity Statistics Interface

We use our statistics interface to annotate every node of the AST with statistics. Surprisingly, to
support sparsity estimation over arbitrary tensor algebra expressions, we only need a few core
functions: (1) a constructor, which produces statistics from a materialized tensor for Input and
Alias nodes, (2-3) a function for (non) annihilating Map nodes (i.e., those whose children’s fill
values are the annihilator of its pointwise function), which merges the children’s statistics, (4) a
function for Agg, which adjusts the input’s statistics to reflect an aggregation over some set of
indices, and (5) an estimation procedure, which estimates the sparsity of a tensor based on its
statistics.

6.3 Supported Sparsity Estimators

6.3.1 Uniform Estimator. The simplest statistic that can be kept about a tensor is the number of
non-fill (e.g., non-zero) entries. The uniform estimator uses only this statistic and assumes these
entries are uniformly distributed across the dimension space. This corresponds to System-R’s
cardinality estimator with the added assumption that the active domain is the whole dimension for
each index [42].

Constructor. This function simply counts the non-fill values in the tensor, nnz(A), and notes
the dimension sizes n;,, ..., n;,.

Map (Annihilating). To handle an annihilating pointwise operation, this function calculates the
probability that a point in the output was non-fill in all inputs, then multiplies this by the dimension
space of the output. For a set of inputs A;ll) . .A;ll) and output Cy., where each I; is a set of indices,
this probability is

nnz(A;)
nnz(C) = (ni) . (_—
iel_ll lj[Hielj ni

Map (Non-Annihilating). To handle an non-annihilating pointwise operation, this function
calculates the probability that an entry in the output was fill in all inputs. Then, it takes the
compliment to get the probability that it was non-fill in all inputs and multiplies this by the output
dimension space. Using the preceding notation:

o

ielc J

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:15

Aggregate. Given an input tensor Ay to aggregate over the indices I’, this function computes the
probability that an output entry is non-fill by calculating the probability that at least one entry in
the subspace of the input tensor was not fill:

nnz(A) [Ticr n:
nnz(C) ~ nni -(1—(1—%))

iel\r
Estimate. The estimation function simply returns the current tensor’s stored cardinality statistic.

EXAMPLE 7. Suppose A;; and Bj are 100x100 sparse matrices with nnz(A) = 1000, nnz(B) = 200,
and we want to estimate nnz (3, ; A;jBjk). We first compute nnz(A;;Bji) as 1003 » 1000, 200 _ 9000,
The fractions are the probability that i, j or j, k was zero in A or B, respectively. Next, we factor in

(AijBjk)
""Zlo—oézk)loo) ~ 1800. Here, the

is the probability that all entries were zero for a particular i, k pair.

the aggregation over j to get nnz(3.; A;jBjx) = 1002 * (1 — (1 —
nnz(A;jBji))100

expression (1 — — 5o

6.3.2 Degree Statistics and the Chain Bound. Galley stores degree statistics by default uses them to
compute upper bounds on tensors’ sparsities. A degree statistic, denoted as D4 (X|Y), stores the
maximum number of non-fill entries in the X dimensions conditioned on the Y dimensions for a
tensor A. For example, given a matrix A;;, D4 (i|j) is the maximum number of non-fill entries per
column, and D4 (ij|0) is the total number of non-fill entries in the matrix. This approach follows
work in cardinality bounding that has been shown to produce efficient query plans in the relational
setting [16, 20, 25].

Constructor. This function first computes the boolean tensor representing the input’s sparsity
pattern. Then, to calculate each degree statistic, it sums over the X dimensions and takes the
maximum over the Y dimensions. The set of degree statistics for a tensor Ay is denoted Dy, .

Map (Annihilating). Annihilating map operations can only reduce the degree for any X,
Y pair. Therefore, every input’s degree statistics are also valid for the output. If the inputs are
A(l)h, ...,A(k)Ik, then the output’s statistics are,

De = U Dy
J

Map (Non-Annihilating). In this case, Galley extends the degree constraints from each input
to cover the full set of indices. Then, it computes degree statistics about the output, C, from the
inputs A;Il), e ,A;f) by addition:

De(X[Y) =) D (X]Y)
J

Estimator. This function calculates an upper bound (eq. performs sparsity estimation) using the
breadth-first search approach described in [17]. Intuitively, each set of indices forms a node in the
graph, and each degree constraint is a weighted edge from Y to X. Its search begins with the empty
set; it then uses a breadth-first search to find the shortest weighted path to the full set of indices I.
The product of the weights along this path bounds the number of non-zeros in the result.

ExAMPLE 8. Suppose A;; and Bj are 100x100 sparse matrices with Da(ij|0) = 1000, D(ilj) =
10, Dg(jk|0) = 200, and we want to bound nnz(2.; A;;jBjk). Because multiplication is an annihilating
operation in this case, the degree constraints of . ; A;;jBjx are simply the union of the constraints for A
and B. To get a bound, we start by conditioning on the empty set and try to reach the output’s index
set, i, k, via the constraints, e.g. D(jk|0) * Da(i|j) = 2000.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:16

Relative Runtime

.01

.001

o

Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

[Galley (Opt, Exec, 1 Core) [Pandas+Numpy (1 Core)
=== Finch (Dense, 1 Core) [Polars+PyTorch (1 Core)
BB Finch (Sparse, 1 Core) [Polars+PyTorch (24 Core)

5S

Fig. 6. ML Inference Over Joins

10" .Galley (1 Core) 10" .Galley (1 Core)
- PyTorch (1 Core) - PyTorch (1 Core)
0 0 E=PyTorch (24 Core) n E=PyTorch (24 Core)
o 10]
€ €
[= =
§107t 5
-~ -~
> >
|9} [}
L. 2 2
w 10 i}
103 1073
1 .01 .001 .0001 .00001 1 .01 .001 .0001 .00001
Density of C Density of C
(a) Matrix Chain Multiplication (ABC) (b) Elementwise Matrix Multiplication (A*"B*C)
10 Galley (1 Core)
— PyTorch (1 Core)
n 0 PyTorch (24 Core)
o 107
£
'_
S0ty
=
3
3
& 1072
-3
10 1 .01 .001 .0001 .00001
Density of C

7 Experimental Evaluation

(c) Sum of Matrix Chain (SUM(ABC))

Fig. 7. Linear Algebra Kernels

In this section, we evaluate the effectiveness of our optimizer on a variety of workloads: (1) ML
algorithms over joins, (2) unstructured sparse linear algebra (3) subgraph counting, and (4) breadth-
first search. We choose those workloads because they exercise different aspects of our optimizer on
real-world use-cases: ML algorithms over joins require careful logical optimizations over programs

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:17

Table 1. Experimental Dataset Sizes

Dataset Size
TPCH (SF .25 - SF 5.0) .3-6 GB
aids 11 MB
human 1.5 MB
yeast 1.2 MB
dblp 21 MB
youtube 63 MB
Epinions 5.1 MB
Kron 34 MB
LiveJournal .5 GB
Orkut 1.7 GB
RoadNet 41 MB

with mixtures of dense and sparse inputs and non-linear operators; core linear algebra expressions
demonstrate the broad utility of Galley; subgraph counting requires both logical and physical
optimization of complex sum-product expressions over highly sparse inputs and demonstrates
Galley’s advantage over a relational engine even for very sparse workloads; breadth-first search
requires careful selection of tensor formats over the course of the computation, showing the benefit
of physical optimization for even simple computations. Compared to hand-optimized solutions and
alternative approaches, Galley is highly computationally efficient while requiring only a concise,
declarative input program from the user. Overall, we show that Galley:

e Performs logical optimizations resulting in 1-300x faster execution for ML algorithms over
joins compared to hand-optimized and Pandas implementations and .5-20X% faster runtime when
including optimization.

e Optimizes in a mean time of at most 0.1 seconds for all subgraph counting workloads, with
5-20% faster median execution than DuckDB.

e Selects optimal formats for intermediates, outperforming both fully dense and sparse formats for
4/5 graphs in a BFS application.

Experiment Setup. These experiments are run on a server with an AMD EPYC 7443P Processor
and 256 GB of memory. We implemented Galley in the programming language Julia, and the code is
available at https://anonymous.4open.science/r/Galley-21BF/. We used the sparse tensor compiler
Finch? for execution, and all experiments are executed using a single thread. Unless otherwise
stated, Galley uses the chain bound described in Sec. 6.3.2 for sparsity estimation. Experiments for
all methods are run five times, and the mean execution time is reported. We perform all experiments
on a warm cache, and we separately report the compilation and optimization times.

7.1 Machine Learning Over Joins

To explore end-to-end program optimization, we experiment with simple ML algorithms over joins.
This represents a typical machine learning use case where the feature matrix is constructed from a
variety of tables stored within an enterprise database that are joined together before training. Prior
work has shown that co-optimizing these mixed RA/LA problems can yield significant benefits
[18, 22, 31, 34, 40]. For this, we consider two join queries over the TPC-H benchmark: a star join
and a self join, at scale factor 5 and .25, respectively. The star join is expressed as follows, where

Zhttps://github.com/FinchTensor/Finch.jl

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:18 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

Table 2. Total Subgraph Counting Execution Time (S)

Workload Galley (Greedy) Galley+DuckDB DuckDB Umbra 1 (24)

human 17 (43) 156 12 .04 (.02)
aids 32.1(29.43) 43.32 78.16 7.47 (1.89)
yeast_lite 2.96 (3.85) 8.91 1633 367.28 (51.56)
dblp_lite 32.31 (30.44) 39.31 3294 75.51(18.23)
youtube_lite 240.24 (219.47) 1591.27 17203 14208 (13866)

L,S,P,0, and C are tensors representing the line items, suppliers, parts, orders, and customers
tables, respectively:

Xij = Z Lispoc(Ssj + Ppj + Ooj + Ccj)
spoc
The non-zero values in S, P, O and C are disjoint along the j axis, so the addition in this expression
serves to concatenate features from each source, resulting in 139 features after one-hot encoding
categorical features. The self-join query compares line items for the same part based on part and
supplier features. In this case, the feature data is a 3D tensor because the data points are keyed by
pairs of line items:

Xiyipj = Z Li,s,pLiys,p(Ssyj + Ss,j + Ppj)
s182p
We consider a range of ML algorithms: (1) linear regression inference, (2) logistic regression
inference, (3) covariance matrix calculation, and (4) neural network inference. We implement two
versions of each of these using the Finch compiler. The dense version uses a dense feature matrix,
and the sparse version uses CSR matrix to compress the one-hot encoding. We also implemented
two standard baselines; 1) using Pandas for the joins and Numpy for the linear algebra 2) using
Polars for the joins and PyTorch for the linear algebra. The latter supports parallelism, so we’ve
included parallel results for it as well (marking the parallel bars with P and serial bars with S).

These algorithms stress the ability of Galley to handle complex operators and combinations of
sparse and dense inputs. The definitions of the feature tensors combine pointwise multiplication
and addition, and algorithms like logistic regression and neural networks wrap these definitions in
non-linear operators (e.g. relu and sigmoid) and aggregates. Further, while the line item tensor is
highly sparse, both the feature and parameter tensors are moderately to fully dense.

Execution Time. Fig. 6 shows that the execution time of Galley’s optimized programs is .5—300x
faster than the sparse Finch implementation. For the regression/neural network problems, this
stems from pushing the multiplication with the parameter vector/matrix down to the feature
matrices. For the covariance calculation over the self join, Galley fully distributes the multiplication
over the addition then aggregates away the sparse iy, i; dimensions. This produces small, dense
intermediates which can be used to calculate the covariance efficiently.

Optimization Time. Fig. 6 also shows that Galley’s optimizer has a reasonable overhead in this
setting. Concretely, optimization takes .5 — 5.0 seconds across all workloads.

7.2 Linear Algebra Kernels

In Fig. 7, we show how Galley can provide significant benefits even for simple workloads without
structured data. In these experiments, A, B, and C are 2000 X 2000 uniformly sparse matrices. A
and B have a density of .1, and the density of C varies on the X axis. In the first experiment, Fig. 7a,
Galley improves on PyTorch’s execution in two ways: 1) when the matrices are less sparse, it

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:19

10°
[Galley (Greedy) 83
10 Galley + DuckDB Backend | g l © : o =8§H§§ (Greedy)
DuckDB tee 0o @ 10" [|[I Galley + DuckDB Backend
10t Umbra (1 Core) s 6@ P 2] DuckDB
% B Umbra (24 Core) N . ohe £ B Umbra (1 Core)
Py °f o Lt [Umbra (24 Core)
£ 1 ° 2107
o] . 3
S N
5 10 . £
Q
& e e O .2
10
oz 8 i 5
b :
-3
10 % 107
1074 human yeast_lite dblp_lite youtube_lite
human aids yeast_lite dblp_lite youtube_lite
(a) Subgraph Counting Execution Time (b) Subgraph Counting Optimization Time

[Chain Bound ° 10°
10? - | Uniform Estimator . . ! [Galley

N [Galley (Greedy)
10t ° e l 10° Umbra

- !if iﬁ " -

human aids yeast_lite dblp_lite youtube_lite

Execute Time
-
)
Mean Compile Time (s)

aids human yeast_lite dblp_lite youtube_lite

(c) Sparsity Estimator Comparison (d) Subgraph Counting Compilation Time

Fig. 8. Subgraph Counting Experiments

chooses fully dense formats to store then intermediates and outputs 2) when C is heavily sparse,
it uses a right-to-left execution strategy for the chain, i.e. (A(BC)). In the second experiment,
Fig. 7b, Galley is able to fuse the computation when PyTorch is unable to, removing an intermediate
materialization. Further, when C is highly sparse, Galley iterates over the non-zeros of C and
looks them up in A and B, rather than doing a symmetric intersection algorithm. In the third
experiment, Fig. 7c, Galley’s logical optimizer pushes down the outer summation to A and C first
which avoids doing any expensive matrix multiplications. In almost all cases, Galley’s optimizations
even overcome the benefits of parallelism when PyTorch is provided with 24 cores.

7.3 Subgraph Counting

In this section, we stress test Galley’s ability to optimize programs with a large number of highly
sparse inputs by implementing several sub-graph counting benchmarks. These workloads represent
the far end of the complexity and sparsity spectrum for sparse tensor compilers. Suppose you are
counting the occurrences of H(V, E) in a data graph G with adjacency matrix M; we can represent

the count as,
€= Z l_[Moy,

0; €V (v;,0;)€E

We add sparse binary vector factors for each labeled vertex. We use subgraph workloads from the
G-Care benchmark and the paper "In-Memory Subgraph: an In-Depth Study" [35, 45]. We restrict
them to query graphs with up to 8 vertices and 24 edges. Because this is a relational workload,
we compare it with DuckDB and Umbra, two state-of-the-art modern OLAP databases [33, 38].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:20 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

The latter is known to be one of the fastest databases for complex joins and aggregations, and
we include both serial and parallel execution [1]. We did not include these systems in our other
experiments due to the difficulty of framing the problems in SQL and because prior work has
already demonstrated their challenges on pure LA workloads [41]. To separately discern the impact
of logical vs physical optimization and our use of Finch, we provide a version of Galley that executes
each logical query with a SQL query run on DuckDB. We also provide results for the greedy logical
optimizer.

Logical Optimization. Fig. 8a shows the execution time for each method and benchmark.
The comparison between ‘DuckDB‘ and ‘Galley + DuckDB Backend’ demonstrates the benefits
of Galley’s logical optimizer. Galley’s logical optimizer breaks down the program into a series of
aggregations which minimizes the necessary computation and materialization. This has the largest
impact on graphs with high skew like the social network graphs, ‘dblp_lite* and ‘youtube_lite".
In these cases, pushing down aggregates avoids very large intermediate results. DuckDB hits the
300 second timeout on 56 out of 120 queries in the youtube_lite benchmark, as does Umbra on 46
queries. In contrast, Galley never times out across all workloads.

Physical Optimization. The impact of Galley’s physical optimizer can be seen by comparing
‘Galley* with ‘Galley + DuckDB". Galley’s median execution is up to 8x faster than DuckDB even
with the same logical plan. This shows that Galley is selecting efficient loop orders and formats,
effectively leveraging STCs.

Optimization Time. Fig. 8b shows the mean optimization time for each method on each
workload. Galley has a mean optimization time of less than .15 seconds across all workloads, faster
than Umbra’s optimizer for 2 workloads.

Compilation Time. Because it performs compilation at runtime, Galley incurs a compilation
overhead when it invokes an STC kernel. These kernels are cached by Finch, reducing this cost
when workloads repeatedly use similar kernels. We show the mean compilation time for each
subgraph workload in Fig. 8d. On the simpler workloads, which often reuse kernels, this cost is
lower. More complex workloads reuse kernels less, significantly increasing compilation time.

Comparing Figures 8 and 9, Galley’s optimization overhead is minimal (generally less than 1%)
compared to the compilation overhead. Reducing this requires performance improvements to the
underlying compiler which are out of scope for this work. Fortunately, the Finch project is working
to improve this in two ways (1) by caching compilation to disk and (2) by migrating to the MLIR
compiler infrastructure. As these improvements are made, Galley will immediately reap the benefits.

Sparsity Estimation. Finally, in Fig. 8c, we use the sub-graph matching workloads to compare
sparsity estimators and their effect on performance. Across all workloads, we see that the chain
bound has significantly better tail performance. This is because it encourages more conservative
query plans which better handle correlated and skewed queries/datasets.

7.4 Breadth-First Search

To demonstrate the importance of format selection, we implement a breadth-first search algorithm
using Galley and hand-coded Finch implementations. Both systems receive a single iteration at a
time, and the total execution time is reported. The core computation is a masked sparse matrix
times sparse vector to compute the new frontier vector. The main decision is the visited and frontier
vectors’ formats. The former’s sparsity grows monotonically over iterations, while the latter peaks
in the middle iterations. We provide two implementations of Finch, using either a sparse or a dense
vector for both. Fig. 9 shows that Galley’s mixture of sparse and dense formats is significantly
fastest for 4 of the 5 graphs and is competitive for all graphs. For 4/5 graphs, the total optimization
time (not depicted in the figure) is less than .25 seconds. This experiment demonstrates the utility

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:21

10°
I Galley
[Dense
10t | | Sparse

Execute Time (s)
=
(=]

0© ot @\ e et
?,(5\“\0 W« A\‘e\O\)ﬁ\ o oo 3‘5“
W

Fig. 9. BFS Execution Time

of sparsity-aware format selection, and future work should consider ways to amortize optimization
time for iterative workloads.

8 Related Work

Galley differs from other work on cost-based optimization for tensor processing due to its targeting
of STCs and its expressive input language. SystemDS, formerly SystemML, focuses on end-to-end ML
over matrices and tabular data [10, 13, 14]; it takes as input linear algebra (LA) programs and targets
a combination of LA libraries and distributed computing via Spark. Later work, SPORES, extended
its logical optimizer to leverage relational algebra when optimizing sum-product expressions[50];
their core insight was that LA rewrites, which always match and produce 0-2D expressions, are
not sufficient and that optimal rewrites must pass through higher order intermediate expressions.
Other related work translated sum-product expressions to SQL to leverage highly efficient database
execution engines [12]. These systems can perform well for highly sparse inputs but struggle on
mixed dense-sparse workloads. Tensor relational algebra proposes a relational layer on top of dense
tensor algebra that provides a strong foundation for automatically optimizing distributed dense
tensor computations [15, 52]. The compiler community has made attempts to automatically optimize
sparse tensor sum-product kernels based on asymptotic performance analyses[6, 21]. These systems
each target a different execution context and focus on different aspects of optimization. Galley
expands on this line of work by targeting a new execution engine, proposing novel optimization
techniques, and handling a wider range of tensor programs.

9 Limitations

We are excited to enrich Galley with new optimizations in the future. Currently, Galley lacks
support for complex loop structures (e.g., a single outer FOR loop that wraps multiple inner FOR
loops), higher order functions (e.g. matrix inversion) or parallelism. However, we believe that these
areas could benefit from cost-based optimization. Similarly, Galley does not consider hard memory
constraints during optimization, but our use of cardinality bound methods provides an avenue for
addressing this in future work.

References

[1] [n.d.]. https://benchmark.clickhouse.com/
[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:22 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zhang. 2016. TensorFlow: A system for large-scale machine learning. CoRR abs/1605.08695 (2016). arXiv:1605.08695
http://arxiv.org/abs/1605.08695

Hameer Abbasi. 2018. Sparse: A more modern sparse array library.. In SciPy. 65-68.

Willow Ahrens, Teodoro Fields Collin, Radha Patel, Kyle Deeds, Changwan Hong, and Saman P. Amarasinghe. 2024.

Finch: Sparse and Structured Array Programming with Control Flow. CoRR abs/2404.16730 (2024). doi:10.48550/ARXIV.

2404.16730 arXiv:2404.16730

[5] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe. 2023. Looplets: A Language for Structured
Coiteration. In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization (CGO
2023). Association for Computing Machinery, New York, NY, USA, 41-54. doi:10.1145/3579990.3580020

[6] Willow Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling for sparse tensor algebra with an
asymptotic cost model. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 269-285. doi:10.
1145/3519939.3523442

[7] Einstein Albert, W Perrett, and G Jeffery. 1916. The foundation of the general theory of relativity. Annalen der Physik
354, 7 (1916), 769.

[8] Edward C. Anderson, Zhaojun Bai, Jack J. Dongarra, Anne Greenbaum, A. McKenney, Jeremy Du Croz, Sven Hammar-
ling, James Demmel, Christian H. Bischof, and Danny C. Sorensen. 1990. LAPACK: a portable linear algebra library for
high-performance computers. In Proceedings Supercomputing *90, New York, NY, USA, November 12-16, 1990, Joanne L.
Martin, Daniel V. Pryor, and Gary R. Montry (Eds.). IEEE Computer Society, 2-11. doi:10.1109/SUPERC.1990.129995

[9] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Vivek Gupta, Ehi Nosakhare, Dalitso Banda,

Rathijit Sen, and Matteo Interlandi. 2022. Share the Tensor Tea: How Databases can Leverage the Machine Learning

Ecosystem. Proc. VLDB Endow. 15, 12 (2022), 3598-3601. doi:10.14778/3554821.3554853

Sebastian Baunsgaard and Matthias Boehm. 2023. AWARE: Workload-aware, Redundancy-exploiting Linear Algebra.

Proc. ACM Manag. Data 1, 1 (2023), 2:1-2:28. doi:10.1145/3588682

Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia Zheng, and Fredrik Kjolstad. 2022.

Compiler Support for Sparse Tensor Computations in MLIR. ACM Transactions on Architecture and Code Optimization

19, 4 (Sept. 2022), 50:1-50:25. do0i:10.1145/3544559

Mark Blacher, Julien Klaus, Christoph Staudt, Séren Laue, Viktor Leis, and Joachim Giesen. 2023. Efficient and portable

einstein summation in SQL. Proceedings of the ACM on Management of Data 1, 2 (2023), 1-19.

Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert Ginthor, Kevin Innerebner, Florijan Klezin,

Stefanie N. Lindstaedt, Arnab Phani, Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin

Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. In 10th

Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online

Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf

Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski, Faraz Makari Manshadi, Niketan

Pansare, Berthold Reinwald, Frederick Reiss, Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. 2016. SystemML:

Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13 (2016), 1425-1436. doi:10.14778/3007263.3007279

Daniel Bourgeois, Zhimin Ding, Dimitrije Jankov, Jiehui Li, Mahmoud Sleem, Yuxin Tang, Jiawen Yao, Xinyu Yao,

and Chris Jermaine. 2024. EinDecomp: Decomposition of Declaratively-Specified Machine Learning and Numerical

Computations for Parallel Execution. arXiv preprint arXiv:2410.02682 (2024).

Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardinality Estimation: Tighter Upper Bounds for

Intermediate Join Cardinalities. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD

Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia

Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 18-35. doi:10.1145/3299869.3319894

[17] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Kenneth Salem. 2023. Accurate Summary-based

Cardinality Estimation Through the Lens of Cardinality Estimation Graphs. SIGMOD Rec. 52, 1 (2023), 94-102.

doi:10.1145/3604437.3604458
Lingjiao Chen, Arun Kumar, Jeffrey Naughton, and Jignesh M Patel. 2016. Towards linear algebra over normalized
data. arXiv preprint arXiv:1612.07448 (2016).
[19] Rina Dechter. 1999. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 1-2 (1999),
41-85.

[20] Kyle B. Deeds, Dan Suciu, and Magdalena Balazinska. 2023. SafeBound: A Practical System for Generating Cardinality
Bounds. Proc. ACM Manag. Data 1, 1 (2023), 53:1-53:26. doi:10.1145/3588907

[21] Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni. 2023. SparseAuto:
An Auto-Scheduler for Sparse Tensor Computations Using Recursive Loop Nest Restructuring. CoRR abs/2311.09549
(2023). doi:10.48550/ARXIV.2311.09549 arXiv:2311.09549

— r—
oW
it

[10

—

[11

—

(12

—

(13

[t

[14

—

(15

—

[16

—

[18

[t

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

Galley: Modern Query Optimization for Sparse Tensor Programs 164:23

[22]

[23

[t

[24

=

[25

—

[26

—

[27]

[28

—

[29

—

[30

—

[31

—

(32

—

[33

—

[34

=

[35

—

[36

—

[37

—

[38]

Yordan Grigorov, Haralampos Gavriilidis, Sergey Redyuk, Kaustubh Beedkar, and Volker Markl. 2023. P2D: A Transpiler
Framework for Optimizing Data Science Pipelines. In Proceedings of the Seventh Workshop on Data Management for
End-to-End Machine Learning. 1-4.

Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nat. 585 (2020), 357-362. doi:10.1038/S41586-020-2649-2

Dong He, Supun Chathuranga Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun Park, Carlo Curino, Jests
Camacho-Rodriguez, Konstantinos Karanasos, and Matteo Interlandi. 2022. Query Processing on Tensor Computation
Runtimes. Proc. VLDB Endow. 15, 11 (2022), 2811-2825. doi:10.14778/3551793.3551833

Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021. Simplicity Done Right for Join
Ordering. In 11th Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. 2019. Taichi: a language for
high-performance computation on spatially sparse data structures. ACM Transactions on Graphics 38, 6 (Nov. 2019),
201:1-201:16. doi:10.1145/3355089.3356506

Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Saleh Ashkboos, and Torsten Hoefler. 2023. Sten: Productive and efficient
sparsity in pytorch. arXiv preprint arXiv:2304.07613 (2023).

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions Asked Frequently. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA,
FJune 26 - July 01, 2016, Tova Milo and Wang-Chiew Tan (Eds.). ACM, 13-28. doi:10.1145/2902251.2902280

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman P. Amarasinghe. 2017. The tensor algebra
compiler. Proc. ACM Program. Lang. 1, OOPSLA (2017), 77:1-77:29. doi:10.1145/3133901

Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur, Gustavo Alonso, and Matteo Interlandi.
2021. Tensors: an abstraction for general data processing. Proceedings of the VLDB Endowment 14, 10 (June 2021),
1797-1804. doi:10.14778/3467861.3467869

Arun Kumar, Jeffrey Naughton, and Jignesh M Patel. 2015. Learning generalized linear models over normalized data.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 1969-1984.

Chirag Modi, Francois Lanusse, and Uros Seljak. 2021. FlowPM: Distributed TensorFlow implementation of the FastPM
cosmological N-body solver. Astron. Comput. 37 (2021), 100505. doi:10.1016/J. ASCOM.2021.100505

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System with In-Memory Performance. In 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and Konstantinos Karanasos. 2022. End-
to-end optimization of machine learning prediction queries. In Proceedings of the 2022 International Conference on
Management of Data. 587-601.

Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong, and Wook-Shin Han. 2020. G-CARE:
A Framework for Performance Benchmarking of Cardinality Estimation Techniques for Subgraph Matching. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam
Alawini, and Hung Q. Ngo (Eds.). ACM, 1099-1114. doi:10.1145/3318464.3389702

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Képf, Edward Z. Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 8024-8035. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html

Pydata. [n. d.]. Pydata/sparse: Sparse multi-dimensional arrays for the PyData ecosystem. https://github.com/pydata/
sparse

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: an Embeddable Analytical Database. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM,
1981-1984. doi:10.1145/3299869.3320212

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

164:24 Kyle Deeds, Willow Ahrens, Magda Balazinska, & Dan Suciu

[39]

[40

—

[41

—

[42

—

[43

—

[44

[l

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe.
2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 519-530. doi:10.1145/2491956.2462176
Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning linear regression models over factorized joins.
In Proceedings of the 2016 International Conference on Management of Data. 3-18.

Maximilian E. Schiile, Thomas Neumann, and Alfons Kemper. 2023. The Duck’s Brain: Training and Inference of Neural
Networks in Modern Database Engines. CoRR abs/2312.17355 (2023). doi:10.48550/ARXIV.2312.17355 arXiv:2312.17355
Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G. Price. 1979. Access
Path Selection in a Relational Database Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1, Philip A. Bernstein (Ed.). ACM, 23-34.
doi:10.1145/582095.582099

Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2022. Functional collection programming with
semi-ring dictionaries. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (April 2022), 89:1-89:33.
doi:10.1145/3527333

Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. 2013. SciDB: A database management system for
applications with complex analytics. Computing in Science & Engineering 15, 3 (2013), 54-62.

Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-depth Study. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo
(Eds.). ACM, 1083-1098. doi:10.1145/3318464.3380581

Wenbo Sun, Asterios Katsifodimos, and Rihan Hai. 2023. Accelerating Machine Learning Queries with Linear Algebra
Query Processing. In Proceedings of the 35th International Conference on Scientific and Statistical Database Management,
SSDBM 2023, Los Angeles, CA, USA, July 10-12, 2023, Robert Schuler, Carl Kesselman, Kyle Chard, and Alejandro
Bugacov (Eds.). ACM, 13:1-13:12. doi:10.1145/3603719.3603726

Gabor Szarnyas, David A. Bader, Timothy A. Davis, James Kitchen, Timothy G. Mattson, Scott McMillan, and Erik
Welch. 2021. LAGraph: Linear Algebra, Network Analysis Libraries, and the Study of Graph Algorithms. In IEEE
International Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2021, Portland, OR, USA, June
17-21, 2021. IEEE, 243-252. d0i:10.1109/IPDPSW52791.2021.00046

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proc. IEEE 105, 12 (2017), 2295-2329.

Qing Wang, Matthias IThme, Yi-Fan Chen, and John R. Anderson. 2022. A TensorFlow simulation framework for
scientific computing of fluid flows on tensor processing units. Comput. Phys. Commun. 274 (2022), 108292. doi:10.1016/
J.CPC.2022.108292

Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang. 2020. SPORES: Sum-Product Optimiza-
tion via Relational Equality Saturation for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 11 (2020), 1919-1932.
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf

Yisu Remy Wang, Max Willsey, and Dan Suciu. 2024. From Binary Join to Free Join. SIGMOD Rec. 53, 1 (2024), 25-31.
doi:10.1145/3665252.3665259

Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and Chris Jermaine. 2021. Tensor Relational
Algebra for Distributed Machine Learning System Design. Proc. VLDB Endow. 14, 8 (2021), 1338-1350. doi:10.14778/
3457390.3457399

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 164. Publication date: June 2025.

	Abstract
	1 Introduction
	2 Background
	2.1 Tensor Index Notation
	2.2 Sparse Tensor Compilers

	3 Galley Overview
	3.1 Input Program Space
	3.2 Logical Plan
	3.3 Physical Plan
	3.4 Execution

	4 Logical Optimizer
	4.1 Normalization & Pointwise Distributivity
	4.2 Cost Model
	4.3 Variable Elimination
	4.4 Identifying Minimal Sub-Expressions
	4.5 Restricted Elimination Orders
	4.6 Search Algorithms

	5 Physical Optimizer
	5.1 Loop Order
	5.2 Intermediate Formats
	5.3 Merge Algorithms
	5.4 Common Sub-Expression Elimination

	6 Sparsity Estimation
	6.1 Sparsity and Cardinality Estimation
	6.2 The Sparsity Statistics Interface
	6.3 Supported Sparsity Estimators

	7 Experimental Evaluation
	7.1 Machine Learning Over Joins
	7.2 Linear Algebra Kernels
	7.3 Subgraph Counting
	7.4 Breadth-First Search

	8 Related Work
	9 Limitations
	References

