1/ 42

2025:12 TheoretiCS

PANDA: Query Evaluation feciens 2o

Accepted Feb 28, 2025

in Submodular Width

Key words and phrases

Shannon inequalities, submodular
width, disjunctive datalog, query
evaluation, degree constraints

Mahmoud Abo Khamisa = ® a Relational Al, Berkeley, USA
a b University of Washington,
Hung Q. Ngo >4 @ Seattle, USA

Dan Suciu? = e

ABSTRACT. Inrecent years, several information-theoretic upper bounds have been intro-
duced on the output size and evaluation cost of database join queries. These bounds vary in their
power depending on both the type of statistics on input relations and the query plans that they
support. This motivated the search for algorithms that can compute the output of a join query
in times that are bounded by the corresponding information-theoretic bounds. In this paper, we
describe PANDA, an algorithm that takes a Shannon-inequality that underlies the bound, and
translates each proof step into an algorithmic step corresponding to some database operation.
PANDA computes answers to a conjunctive query in time given by the submodular width plus
the output size of the query. The version in this paper represents a significant simplification of
the original version in [6].

1. Introduction

Answering conjunctive queries efficiently is a fundamental problem in the theory and practice
of database management, graph algorithms, logic, constraint satisfaction, and graphical model
inference, among others [4, 19, 22, 1]. In a full conjunctive query, the input is a set of relations
(or tables, or constraints), each with a set of attributes (or variables), and the task is to list all
satisfying assignments, i.e., assignments to all variables that simultaneously satisfy all input
relations. Each such assignment is called an output tuple, and their number is the output size.

A preliminary version of this article appeared at PODS 2017 [6].
Part of this work was conducted while the authors participated in the Fall 2023 Simons Program on Logic and Algorithms in
Databases and Al. We thank the anonymous reviewers for many insightful comments.

Cite as Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu. PANDA: Query Evaluation https://theoretics.episciences.org
in Submodular Width. TheoretiCS, Volume 4 (2025), Article 12, 1-42. DOI 10.46298/theoretics.25.12

2/ 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

For example, the query
Q(a,b,c) -E(a,b) AN E(b,c) A E(c,a) (1

is a full conjunctive query asking for the list of all triangles in a (directed) graph with edge
relation E. In contrast, in a Boolean conjunctive query, we only ask whether one such assignment
exists. The query

Q() -E(a,b) NE(b,c) AN E(c,a)

asks whether there is a triangle in the graph. More generally, in a proper conjunctive query,
any subset of variables can occur in the head of the query. These are called free variables. For
example, the query

Q(a) :- E(a,b) AN E(b,c) AN E(c,a)

asks for the list of all nodes a that are part of a triangle. Other variants of the query evalu-
ation problem include counting output tuples, performing some aggregation over them, or
enumerating them under some restrictions.

In the case of a full conjunctive query, the runtime of any algorithm is at least as large as
the size of the output. This has motivated the study of upper bounds on the sizes of the query
outputs. The corresponding graph-theoretic problem is to bound the number of homomorphic
images of a small graph within a larger graph; this problem has a long history in graph theory
and isoperimetric inequalities [27, 7, 16, 13, 31, 18]. One such bound is the AGM bound, which is
a formula that, given only the cardinalities of the input relations, returns an upper bound on
the output size of the query [10]. Moreover, the bound is tight, meaning that there exist relations
of the given cardinalities where the query’s output has size equal to the AGM bound (up to a
query-dependent factor). This immediately implies that no algorithm can run in time lower
than the AGM bound in the worst-case. Thus, an algorithm that runs in this time is called a
Worst-Case Optimal Join algorithm. The AGM bound for query (1) is O(|E|*/?); algorithms for
listing all triangles within this amount of time has been known for decades [24]. For general
full conjunctive queries, Grohe and Marx [23], and Atserias, Grohe, and Marx [10, 9] devised
a join-project query plan that can compute the output of a full conjunctive query to within a
linear factor of the AGM bound, which is very close to optimality. They also showed that a
join-only query plan cannot achieve this bound. A few years later, a new class of join algorithm:s,
not based on join and project operators, was able to achieve the AGM bound [36, 32] and thus
achieve worst-case optimality:.

In practice, especially in database systems, the input cardinalities are not sufficient to
model what we know about the data, and definitely not sufficient to predict how good or bad a
query plan is. Other data characteristics such as functional dependencies and distinct value
counts are often collected and used to optimize queries [30, 25]; furthermore, practical queries
often have “relations” that are infinite in pure cardinalities. For example, the output size of this

3/ 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

query
Q(a,b) :-R(a) AS(b) Aa+b =10

is obviously at most min{|R|, |S|}, but the AGM bound is |R| - |S|. The relation a + b = 10 has
infinite cardinality. There has thus been a line of research to strengthen the AGM bound
to account for increasingly finer classes of input statistics. Specifically, Gottlob, Lee, Valiant
and Valiant [21, 20] applied the entropy argument to derive a bound on the output size of a
full conjunctive query under general functional dependencies. Their bound, generalizing the
AGM-bound, is an optimization problem whose constraints are the Shannon inequalities. This
idea was a seed for a series of works that extended the entropy argument to account for finer
classes of constraints, including degree constraints [5, 6, 3], and £,-norm bounds on degree
sequences [3].

Designing WCOJ algorithms that match these stronger bounds becomes harder since the
bounds under more constraints are tighter. An algorithm called CSMA is described in [5], which
only accounts for relation cardinalities and functional dependencies.

In database management systems jargon, a WCO]J algorithm is a multi-way join operator;
this operator, for some classes of queries, is asymptotically faster than the traditional binary
join operator [32]. Given a complicated conjunctive query, however, before applying a WCO]J
algorithm, it is often beneficial to come up with a query plan that decomposes the query into
simpler subqueries. Query plans guided by (hyper)tree decompositions have proved to be very
useful both in theory and in practice [19]. In particular, query plans represented by a single
tree decomposition can be used to answer a Boolean conjunctive query or a full conjunctive
query in time bounded by O(N™W + |output|), where fhtw is the fractional hypertree width [22]
of the query, and |output| is the size of the output. This runtime is sensitive to the output
size, and thus it is more adaptive than a single WCO]J application.’ For example, using tree-
decomposition-based query plans, we can identify whether a large graph with N edges contains
the homomorphic images of a k-cycle in time O(N?) (assuming a constant k).

Motivated by finding the fixed-parameter tractability boundary for Boolean conjunctive
queries, or equivalently constraint satisfaction problems, under the regime of unbounded-arity
inputs, Marx [28] came up with a beautifully novel idea: instead of fixing a single query plan
(i.e., tree-decomposition) up front, we can consider multiple query plans, and partition the data
to make use of different plans for different parts of the data. The improved complexity measure
that Marx introduced is called the submodular width, Subw, which is always less than or equal
to fhtw.

The subw algorithm from Marx [28] has some limitations. First, it assumes all input
relations have the same cardinality N; in particular, it is not known how to define the width
and design similar algorithms under functional dependencies or degree constraints. Second,

1 It should be noted, however, that the sub-queries of the plan are still being answered with a WCOJ operator.

4/ 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

the runtime of the algorithm is not O(NS'°"), but a polynomial in this quantity. Third, the
subw-notion and the algorithm were not defined for general conjunctive queries with arbitrary
free variables.

Contributions. This paper connects all three of these lines of research: WCO]J algorithm:s,
fractional hypertree width, and submodular width into a single framework, while dealing
with arbitrary input degree constraints (which is a superset of functional dependencies and
cardinality constraints), and arbitrary conjunctive queries. The bridge that connects these
algorithms and concepts is information theory. In particular, our contributions include the
following:

We show how a generalized version of the classic Shearer’s inequality [18] can be used
to derive upper bounds on the output size of a disjunctive datalog rule (DDR), which is a gen-
eralization of a conjunctive query. The upper bound is a generalization of the AGM bound to
include degree constraints and DDRs. The introduction of DDR and its information theoretic
output size bound in studying conjunctive queries is our first major technical novelty. DDRs
are interesting in their own right. They form the building blocks of disjunctive datalog [17],
which is a significant extension of datalog. Disjunctive datalog has a long history: it emerged in
logic programming [26, 29], and is used for knowledge representation, representing incomplete
information, and constraint satisfaction. Our bound on the output size of a DDR represents a
bound on the output size of the minimal model of the disjunctive datalog program consisting of
that single rule.

Next, we show that certain symbolic manipulations of the information inequality can
be converted into a query evaluation plan for the DDR that runs in time bounded by the
predicted upper bound. This idea of converting a proof of an information inequality into a
query evaluation plan is our second major technical novelty. The algorithm is called PANDA,
which stands for “Proof-Assisted eNtropic Degree-Aware”. In particular, PANDA is worst-case
optimal for DDRs under arbitrary degree constraints. Even when restricted to only conjunctive
queries, this is already beyond the state of the art in WCOJ algorithms because previous WCO]J
algorithms cannot meet the tightened bounds under degree constraints.

Lastly, we explain how to define the notions of fhtw and subw under degree constraints
and for conjunctive queries with arbitrary free variables. We show how PANDA can be used
to answer arbitrary conjunctive queries with arbitrary degree constraints, in time bounded
by O(NSUPW 1 |output|), where O hides a polylogarithmic factor in N. These results close the
gaps left by Marx’ work. For example, with PANDA, the k-cycle query can now be answered
in O(N%1/Tk/21y time, which is sub-quadratic, and matches the specialized cycle detection
algorithm from Alon, Yuster, and Zwick [8].

The results in this paper were first announced in a conference paper [6]. The current

paper makes several significant improvements:

5/ 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

— In [6], we used both the primal and the dual linear program to guide PANDA: the primal
gives an optimal polymatroid h, while the dual represents the basic Shannon inequalities.
In the new version, we use only the dual, which significantly simplifies the algorithm. The
algorithm is described only in terms of an information inequality and its proof (called a
witness), which correspond precisely to a feasible solution to the dual program. We only
need to describe the primal and dual programs later, in Sec. 6, where we introduce the
degree-aware submodular width, which is defined in terms of the primal.

— Previously, we needed a proof sequence to drive the algorithm; it was difficult to prove that a
proof sequence exists; for example, no proof sequence existed in our earlier framework [5].
In the new version, we describe PANDA without the need for an explicit proof sequence,
which again simplifies it. If needed, a proof sequence can still be extracted from the new
version of the algorithm.

— One difficulty in the earlier presentation of PANDA was the need to recompute the proof
sequence after a reset step. This is no longer necessary here.

Paper Outline This paper is organized as follows. Section 2 presents background concepts
needed to understand the techniques and results of the paper; in particular, it introduces
disjunctive datalog rules (DDR), a generalization of conjunctive queries, reviews necessary
background on information theory, and defines the class of statistics on input relations that
the PANDA algorithm supports, which are called degree constraints. Section 3 discusses the
class of information inequalities that are at the center of our work, where they are used to
both derive upper bounds on the output size of a query and guide the PANDA algorithm.
Section 4 states the main algorithmic result, which says that the PANDA algorithm meets
this information-theoretic upper bound if the bound is a Shannon inequality, i.e., it does not
involve non-Shannon inequalities [40, 39]. Section 5 presents the core PANDA algorithm, which
constructs a step-by-step proof of the Shannon inequality, and converts each step into a database
operation. Section 6 defines the degree-constraint aware submodular width, and shows how to
use disjunctive datalog rules to compute a conjunctive query in time given by the submodular
width. We conclude in Section 7.

2. Preliminaries

2.1 Database instances and conjunctive queries (CQ)

Fix a set V of variables (or attributes). An atom is an expression of the form R(X) where R is a
relation name and X C V is a set of attributes. A schema, Z, is a set of atoms. We shall assume
throughout that distinct atoms in X have distinct attribute sets. If R is a relation name in X, we
write vars(R) for its attribute set, and define vars(X) L'V to be the set of all attributes in the
schema X.

6/ 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

Given a countably infinite domain Dom, we use Dom* to denote the set of tuples with
attributes X C V. A X-instance is a map D that assigns to each relation name R in £ a finite
subset R? ¢ Dom"2™™® Technically, we should use = def (RP)ger to denote the Z-instance;
however, to reduce notational burden, instead of writing RP and =P, we will often write R and
X when the instance is clear from the context. Given X C V and a tuple t € DomV, we write
1tx (t) to denote the projection of t onto the variables X.

The full natural join (or full join for short) of the X-instance is the set of tuples t Dom"

that satisfy all atoms in X:

DAL € {t € Dom” | mryars(r) () € R, VR € 5} 2)
This set of tuples is sometimes called in the literature the universal table of the instance X.
Given a schema X, a conjunctive query is the expression

oF) - /\ RX) 3)

R(X)ex

where F C V is called the set of free variables, and Q(F) is the head atom of the query. Atoms in
¥ are called the body atoms of the query. The output Q(F) of an input instance X is the projection
of the full join (2) onto the free variables F: Q(F) def p(XL).

When F =V, we call the query a full conjunctive query. When F = (), we call the query a
Boolean conjunctive query, whose answer Q() is either true or false, and it is true if and only if
the full join (2) is non-empty.

Our complexity results are expressed in terms of data complexity; in particular, we consider
the number of atoms and variables to be a constant, i.e., |[Z| + |V| = O(1), and the complexity is

a function of the instance size. We define the size of a Z-instance as:

1= = > IRI. 4)

R(X)ex

The notation ||Z|| is used in part to distinguish it from || which counts the number of atoms
in Z.

2.2 Tree decompositions and free-connex queries

Consider a conjunctive query in the form (3). A tree decomposition of Q is a pair (T, y), where
T is a tree and y : hodes(T) — 2¥3'5(Q) js a map from the nodes of T to subsets of vars(Q)
that satisfies the following properties: for all atoms R(X) in X, there is a node t € nodes(T)
such that X C y(t); and, for any variable X € vars(Q), the set {t | X € y(t)} forms a connected
subtree of T. Each set y(t) is called a bag of the tree-decomposition, and we will assume w.l.o.g.
that the bags are distinct, i.e., y(t) # x(t’) when t # t’ are nodesin T.

A free-connex tree decomposition for Q is a tree-decomposition for Q with an additional
property that there is a connected subtree T’ of T for which F = {J;enodes(rv) X(t)- The query Q

7/ 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

is free-connex acyclic iff there is a free-connex tree decomposition (T, y) in which every bag is
covered by an input atom; namely, for every t € nodes(T), there exists an input atom R(X) € £
where y(t) C X.

The following result is well-known [37, 11].

LEMMA 2.1. IfQ is a free-connex acyclic conjunctive query of the form (3), then we can compute
its output in time O(||Z|| + |Q(F)|). In particular, after a preprocessing time of O(||Z||), we can list
the output tuples one by one with constant-delay between them.

In particular, for this class of queries, the runtime is the best one can hope for: input size
plus output size.

2.3 Disjunctive Datalog rules (DDR)

Disjunctive Datalog rules [17] are a generalization of conjunctive queries, where the head of the
query can be a disjunction, formalized as follows. Let Zj,, and Loyt be two schemas, called input
and output schema respectively. We associate to these two schemas the following disjunctive
Datalog rule (DDR)

\V/ e@:= A RX) 5)
Q(Z)€Xout R(X)€L,

The DDR is uniquely defined by the two schemas L, and Zoyt. The syntax in (5) does not add

any new information, but is intended to be suggestive for the following semantics:

DEFINITION 2.2. Let %j, be an input instance. A model (or feasible output) for the rule (5) is
an instance Zoyt, such that the following condition holds: for every tuple t € P, there is an
output atom Q(Z) € Loyt for which 71z(t) € Q. Similar to (4), the size of the output instance Loyt
is defined as

def
IZoutl € > l0l. (6)
Q(Z)€eLout

A model is minimal if we cannot remove a tuple from any output relation without violating the

feasibility condition.

In English, a feasible output needs to store each tuple t € DXE;, in at least one of the output
relations Q(Z) € Loyt. The query evaluation problem is to compute a minimal model. Note that
a conjunctive query is a disjunctive Datalog rule where Xoyt has a single atom.

DDRs are interesting. We illustrate the concept here with a few examples.

EXAMPLE 2.3. Consider the following DDR,

Q(X,Z) -R(X,Y) AS(Y,Z)

8/ 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

where Zj, = {R(X,Y),S(Y,Z)} and Loyt = {Q(X,Z)}. A model (or feasible output) to the DDR is
any superset of xz (R = S). Consider now the following DDR:

A(X)V B(Y) - R(X,Y)

One model is A := mx(R), B := (0. Another model is A := (, B := rry (R). Both are minimal. Many
other models exist.
A non-trivial DDR is the following:

A(X,Y,Z)V B(Y,Z, W) :-R(X,Y) AS(Y,Z) AU(Z, W) 7)

To compute the rule, for each tuple (x, y, z, w) in the full join, we must either insert (x, y, z)
into A, or insert (y, z, w) into B. The output size is the larger of the resulting relations A and
B. We shall see later in the paper that, for this rule, there is a model of size O(\/m),
which is a non-trivial result. L 2

2.4 Entropic vectors and polymatroids

For general background on information theory and polymatroids, we refer the reader to [38].
Given a discrete (tuple of) random variable(s) X over a domain Dom(X) with distribution p,

the (Shannon) entropy of X is defined as

X)€=Y p(X =x)logp(X =x)
xeDom(X)
The support of the distribution is the set of all x where p(X = x) > 0. We will only work with
distributions of finite support. Let N be the support size, then it is known that 0 < h(X) < log N.
The upper bound follows from the concavity of h and Jensen’s inequality. Moreover, h(X) =0
iff X is deterministic, i.e., it has a singleton support, and h(X) = log N iff X is uniform, meaning
that p(X = x) = 1/N for all x in the support.

If V is a set of jointly distributed random variables, then the vector h = (h(X))xcy € R?FV is
called an entropic vector.? Implicitly, h(0) = 0; thus, this vector is actually of dimension 2!V — 1.
We will often write XY for the union X U Y. In particular, h(XY) = h(X UY).

Starting with Shannon himself, the study of linear functions on entropic vectors has been
a central topic in information theory. The two basic linear functions are defined by the so-called
information measures. An information measure is an expression u = (Y|X) or o = (Y; Z|X),
where X, Y, Z are disjoint subsets of the set of variables V. We call u a monotonicity and ¢ a
submodularity information measure respectively. A monotonicity measure u = (Y|X) is called
unconditional iff X = (. Similarly, a submodularity measure o = (Y; Z|X) is called unconditional

2 Given two sets A and B, we use B# to denote the set of all functions f: A — B.

9/ 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

iff X = (. For any vector h € Riv, we define the linear functions:

h(w) € r(XY) - h(X) u=(Y|X)

h(o) & h(XY) + h(XZ) - h(X) - h(XYZ) o = (Y; Z|X)
We write MON for the set of monotonicity measures, i.e., the set of all u = (Y|X) where
X,Y C V are disjoint. Similarly, we write SUB for the set of submodularity measures.
A polymatroid is a vector h that satisfies the basic Shannon inequalities:

h(0) =0, Vu € MON, h(y) > 0, Vo € SUB, h(a) = 0 8)

The latter two are called monotonicity and submodularity constraints respectively. Every
entropic vector is a polymatroid, but the converse is not true [40]. A Shannon inequality is a
linear inequality that is derived from the basic Shannon inequalities; equivalently, a linear
inequality is a Shannon inequality iff it is satisfied by all polymatroids.

Discussion In the literature, the basic Shannon inequalities are often restricted to elemental
ones, which are submodularity measures of the form (A; B|X) and monotonicity measures of
the form (A|V — {A}), where A, B € V are single variables, and X C V — {A, B}. The reason is
that the elemental inequalities are sufficient to prove every Shannon inequality; for example
h(B;CD|A) = h(B;C|A) + h(B; D|AC) > 0, when both h(B;C|A) > 0 and h(B; D|AC) > 0. Given
m & |V|, the total number of elemental basic Shannon inequalities is m(m — 1)2™3 + m. 3
However, for the purpose of the PANDA algorithm, it is preferable to consider all basic Shannon
inequalities, because this may lead to a smaller exponent of the polylog factor of the algorithm,

as we will see in Section 5.

2.5 Statistics on the data

In typical database engines, various statistics about the data are maintained and used for
cardinality estimation, query optimization, and other purposes. Common statistics include
the number of distinct values in a column, the number of tuples in a relation, and functional
dependencies. A robust abstraction called “degree constraints” was introduced in [6] that
captures many of these statistics. This section provides a formal definition of degree constraints,
which are also the constraints that PANDA can support.

Let § = (Y|X) be a monotonicity measure, X be a database instance with schema X, R € £
be a relation in this instance, and x € Dom* be a tuple with schema X. We define the quantity
degree of x with respect to Y in R, denoted by deg,(Y|X = x), as follows:

— When both X C vars(R) and Y C vars(R), then deg,(Y|X = x) is the number of times

the given X-tuple x occurs in mxy (R).

3 Specifically, there are (}) ways to choose A and B and 2™~ ways to choose X resulting in (%) - 2"~ elemental

submodularities. Additionally, there are m elemental monotonicities.

10 / 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

— When X and Y are arbitrary with respect to vars(R), then we define the restriction of R to
X UY to be the relation R/(XY) := Dom*"¥ x R,% and set

degx(YIX = x) = degp (YIX = x)

Finally, define the degree of the monotonicity measure § = (Y|X) in R, denoted by deg,(6),
to be

deg,(Y]X) & max_degy(¥|X = X) 9)

xeDom

Note that, for infinite Dom, if ¥ ¢ vars(R), then deg,(Y|X) = oo, unless R = (), in which case
degi(Y|X) = 0. We say that R is a guard of § = (Y|X) if Y C vars(R), and note that, if R # 0,
then R is a guard of § iff deg,(Y|X) < co.

If X = 0 and Y = vars(R), then the degree is the cardinality of R, deg,(Y|0) = |R|. If
degr(6) = 1 then there is a functional dependency in R from X to Y. If the number of unique
values in a column A of R is k, then deg, (A|0) = k. Given a schema instance X, define the degree
of § = (Y|X) in the instance X as:

deg,(5) &' min degy (6). (10)

Let A € MON be a set of monotonicity measures and N : A — R, be numerical values for
each § € A. Throughout this paper, we write Ns instead of N (6§), and define ng & log N for all
§ € A. We view the pair (A, N) as a set of degree constraints, and we say that an instance £ satisfies
the degree constraints (A, N) iff deg;(8) < Ns for all § € A. In that case, we write & = (A, N).

3. OnaClass Information Inequalities

The entropy argument and Shearer’s lemma in particular [16] is a powerful information-
theoretic tool in extremal combinatorics [33]. Friedgut and Kahn [18] applied the argument to
bound the number of homomorphic copies of a graph in a larger graph; this is a special case
of the full conjunctive query problem. Grohe and Marx [23], with further elaboration in [9]
showed how Shearer’s lemma can be used to bound the output size of a full CQ given input
cardinality constraints. Briefly, let £ be the input schema of a full CQ of the form (3),

QW)= /\ R(X). (11)
R(X)exr

where the head atom Q(V) has all the variables. Given any non-negative weight vector w =
(Wx)r(x)ex that forms a fractional edge cover of the hypergraph (V, E) where E := {X | R(X) €

4 S < T denotes the semi-join reduce operator defined by S < T def Tvars(s) (S > T).

1/ 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

¥}, the output size of the full CQ is bounded by

ol< [] IR (12)

R(X)ex
This is known the AGM-bound [10]. The bound is a direct consequence of Shearer’s inequality [16],
which states that the inequality

hv)< > wx-h(X), (13)
R(X)ex
holds for every entropic vector h € R_{V if and only if the weights w form a fractional edge cover
of the hypergraph (V, E) defined above.

The above results can only deal with cardinality constraints of input relations, and if
the input query is a conjunctive query. We extend these results to disjunctive Datalog rules
and handle general degree constraints. We start in the next section with a generalization of
Shearer’s inequality and show how that implies an output cardinality bound for DDRs. In later
sections, we use the information inequality to drive the PANDA algorithm.

3.1 Size Bound for DDRs from Information Inequalities

This section develops an information-theoretic bound for the output size of a DDR under general
degree constraints. Inequality (14) below is a generalization of Shearer’s inequality (13), and the
bound (15) is a generalization of the AGM bound (12) for DDRs and general degree constraints.
(Recall the notation for the size of a model Xyt in (6).) In what follows, for a given schema
X and an atom R(X) € X, for brevity we will also write X € L as we assume a one-to-one
correspondence between atoms and their variables.

THEOREM 3.1. Consider a DDR of the form (5) with input and output schemas Xj, and Loyt
respectively. Let A C MON be a set of monotonicity measures. Suppose that there exist two
non-negative weight vectors w := (Ws)sea and A := (Az)zes,, With ||A||1 = 1, where the following
inequality holds for all entropic vectors h:

> Az-h(Z) <) ws-h(S) (14)

ZGZout (SGA

Then, for any input instance L, for the DDR (5), there exists a model Loyt for the DDR that satisfies:
(Recall that |Zoyt| is the number of atoms in Loyt.)

Ws
1Zoutl < [Zoul - | | (degy, (6)) (15)
SeA
PROOF. The plan is to use the entropy argument [16], where we define a uniform probabil-
ity distribution on a certain subset Q C P4Zj,, denote h its entropic vector, then use (14) to
prove (15).

12 / 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

LetV & va rs(Zjn) be the set of all input variables. Notice that, for any joint distribution

on V with entropic vector h, we have h(5) < logdegy, (6) for all § € A. This is trivially true if
§ € Aisnot guarded by any relation in X, (see Sec 2.5 for the notion of guardedness). Otherwise,
the inequality follows from the fact that the uniform distribution on a finite support has the

maximum entropy:

h(8) = h(Y|X) = Z p(X = x)h(Y|X = X)
xeDomX

< > p(X=x)logdegy, (Y|X =x)

xeDom*

<), p(X=x)logdeg, (5)

xeDom*

= logdegy, (6)

Next, we construct both the set @ and a model Loyt for the DDR as follows. Initially, set
Q =0,and Q = 0 for all Q € Zoyt. Iterate over the tuples t € PL;, in some arbitrary order.
For each t: if 3Q € Loyt S.t. 7vars(g) (t) € Q, then ignore t; otherwise, insert t into O and insert
Tlyars(o) (t) into Q for every Q € Loyt. In the end, we have constructed a model Loyt for the DDR.
Furthermore, |Q| = ||Zout]|-

Finally, consider the uniform distribution on Q, i.e., the distribution where each tuple in
Q is chosen randomly with probability 1/|Q|. Let h be the entropy vector of this distribution.
Notice that for each Q € Zyyt, the marginal distribution on vars(Q) is also uniform, because
|0| = |QJ; in particular, h(Z) = log |Q| = log |Q| for all Q(Z) € Zout. Then, noting that ||A]|; = 1,
the following holds:

[Zoutll _, 1o
log "2 = 10g|Ql = Y Az-h(Z) < Y, ws+h(§) < Y ws-log degs, (6)

|Zout| ZeTout Sel Sel

In order to obtain the best bound, we need to choose the weights w and A to minimize
w,
quantity [[sea (degzin (6)) * on the right-hand side of (15). Specifically, we want to minimize
the linear objective

r}rllin Z ws - log degy, () (16)
W sen

subject to the constraints that w > 0, A > 0, ||A]l; = 1, and that inequality (14) holds for all
entropic vectors h.

For general monotonicity measure A, it is an open problem to characterize the weight
vectors w and A for which (14) holds for all entropic vectors h. In particular, the difficulty is
related to the problem of characterizing the entropic region in information theory [38]. Hence,

13 / 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

to make the problem tractable, we relax the upper bound by requiring (14) to hold for all
polymatroids h.

DEFINITION 3.2 (Polymatroid bound). The following bound is called the polymatroid bound

for disjunctive datalog rules:

by = min) ws-logdegs, (8) (17)
Seh
subjectto: [|A|l1 =1
inequality (14) holds for all polymatroids h € R_%V (18)
w>0,A>0

Note that the bound is stated in log-scale, so that the objective is linear. The constraint (18)
is a linear constraint, as explained below. In particular, the polymatroid bound is a linear

program.

PROPOSITION 3.3. The constraint that (14) holds for all polymatroids h is a linear constraint
in the weight vectors w and A and auxiliary variables.

PROOF. In the space R, the set of polymatroids is a polyhedron of the form {h | Ah > 0} for
an appropriately defined matrix A. Inequality (14) is a linear inequality of the form b"h > 0,
where b is a linear function of the weights w and A. From the Gale-Kuhn-Tucker variant of
Farkas’ lemma?®, inequality (14) holds for all polymatroids h if and only if there is no h for which
b"h < 0 and Ah > 0, which holds if and only if there is a vector x such that ATx = b and x > 0.
The last condition is a linear constraint in the weights w and A, and in the dual variables x. =

The following proposition says that the polymatroid bound linear program always has a
rational solution. Therefore, given any degree constraints (A, N) and vectors (A, w) that define
a valid Shannon inequality (14), there are always rational vectors (A%, w*) that also define a
valid Shannon inequality and satisfy:

> wj-logdegy, (8) < > ws-logdegdy, (6)

SeA SeA

PROPOSITION 3.4. Given any degree constraints (A, N), the polymatroid bound linear program
from Eq. (17) has an optimal solution (A*, w*) which is rational and independent of (A, N).

PROOF. The constraints of the linear program have integer coefficients. Moreover, these
coefficients are independent of the given statistics (A, N). (The statistics are only used in the

5 https://en.wikipedia.org/wiki/Farkas%27 lemma

14 | 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

objective function.) Consider the polytope defined by the constraints of the linear program. No
matter what the objective function is, there is always an optimal solution which is a vertex of
this polytope. By Cramer’s rule, all these vertices are rational. u

The question of how tight the polymatroid bound is (and its entropic counterpart) has an
intriguing connection to information theory. We refer the reader to [6, 35] for more in-depth
discussions and results.

3.2 Equivalent Formulations of Inequality (14)

Shearer’s result [16] states that inequality (13) holds for all polymatroids h iff the weights form a
fractional edge cover of a certain hypergraph. This section shows an analogous characterization
for the generalization (14), and states an “integral” version of this characterization that shall be
used by the PANDA algorithm. The following lemma is a variant of Farkas’ lemma [34] applied
to our specific setting.

LEMMA 3.5. Leta € R? bea coefficient vector. The following inequality is a Shannon inequality:

Z axh(X) =0 (19)

X<V

if and of only if there exist non-negative coefficients m = (my), emon and s = (Sg)gesug Such that
the following equality holds as an identity over 2!V! symbolic variables h(X), X C V:

Zaxh(Xl(D): Z myh(u) + Z sch(0) (20)

Xcv ueMON 0eSUB

We call the tuple (m, s) a witness of (19). If a is rational, then there exists a rational witness.
Furthermore, m and s are a function of a and |V|.

PROOF. Clearly if (20) holds as an identity, then (19) follows trivially. The converse is a direct
consequence of a variant of Farkas’ lemma, in particular Corollary 7.1h in Schrijver’s classic
text [34], which states: if the polyhedron P = {x | Ax > b} is not empty, and if inequality
(¢,x) > d holds for all x € P, then there exists d’ > d for which (c,x) > d’ is a non-negative
linear combination of the inequalities in Ax > b.®

In our context, P is the polyhedron defined by (8) and b = 0, and the inequality is defined
by ¢ = a and d = 0. Farkas’ lemma thus implies that if (19) is a Shannon inequality, then
(a,h) > 0is a non-negative linear combination of the Shannon inequalities in (8), namely there

are coefficients m, s, e*, e~ such that the following identity holds over the variables h(X), X C V:

(a,h) = Z myh(u) + Z ssh(0) + (e — e)h(0). (21)

ueMON 0eSUB

6 We thank the anonymous reviewer for pointing out this specific variant that helps simplify our proof.

15 / 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

where e* and e~ are coefficients associated with h(0) > 0 and —h(0) > 0. Setting h(X) = 1 for
all X in (21), we conclude that (a,1) = e* — e~, and thus (20) holds.

The fact that m and s are a function of a and |V| (and the bounds on their representation
sizes) can be found in Chapter 10 of Schrijver’s book [34].]

In words, Lemma 3.5 says that the LHS of (19) is a positive linear combination of mono-
tonicity and submodularity measures. From the lemma, it is not hard to show that Shearer’s
inequality (13) holds whenever the weights form a fractional edge cover of the corresponding
hypergraph. Given a Shannon inequality of the form (19), the witness (m, s) from Lemma 3.5
can be computed by solving the following linear program: The variables are m, and s,, which
are non-negative. The constraints ensure that Eq. (20) is an identity. Specifically, for each X C V,
there is a constraint that says that ax must be equal to the weighted sum of terms m, and s,
that contribute to the coefficient of h(X) on the RHS of Eq. (20). The linear program has no
objective. Instead, we just compute a feasible solution.

To guide the PANDA algorithm later; we will need an “integral” version of the lemma above.
Given a set S, a multiset S over S is a multiset whose members are in S. The size of a multiset S,
denoted by |S], is the number of its members, counting multiplicity. If the coefficients A and w
in Eq. (14) are rational, then the above linear program has a rational solution (m, s), hence the
inequality (14) has a rational witness (m, s). By multiplying the rational vectors A, w, m, and s
with the least common multiple of their denominators, we can convert them to integer vectors.
Moreover, the vectors A, w, m, and s are non-negative. We can represent a non-negative integer
vector A = (Az)zex,,, @s @ multiset Z over Loyt where for every Z € Zoyt, the multiplicity of Z
in Z is equal to Az. Similarly, we can represent w, m, and s as multisets D, M, and S over A,
MON, and SUB respectively, leading to the following corollary.

COROLLARY 3.6. For rational coefficients A and w, inequality (14) holds for all polymatroids if
and only if there exist multisets Z, D, M, and S over Loyt, A, MON, and SUB respectively, such
that the following identity holds symbolically over the variables h(X), X C V:

D, zlo)=) hS)~) h(w) -) k(o) (22)
ZeZ 6eD uemM oeS
In particular, if we set h(Q) = 0, then the identity (22) becomes:

Z h(Z) = Z h(S) — Z h(p) - Z h(o) (23)

ZeZ 6eD ueM oeS
The sizes of the multisets Z, D, M, S are bounded by functions of w and |V]|.
DEFINITION 3.7. We call the terms h(6) in (22) and (23) statistics terms, and call the terms

h(u) and h(o) witness terms. Specifically, we call terms h(u) monotonicity terms, and terms h(o)
submodularity terms. After removing the common denominator in (14), the resulting inequality

16 / 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

is called an integral Shannon inequality and has the format:

Z h(Z) < Z h(S) (24)

ZcZ SeD

3.3 The Reset Lemma

To conclude this section on information inequalities, we present a combinatorial lemma that
plays a key role in our algorithm. The lemma says that, given a valid integral Shannon inequal-
ity (24), if we would like to remove an unconditional term h(8y) from the RHS while retaining
its validity, then it suffices to remove at most one term h(Z) from the LHS. We may be able
to remove even more terms from the RHS, in addition to h(§y), but, importantly, it suffices to
remove a single term from the LHS.

LEMMA 3.8 (Reset Lemma). Consider an integral Shannon inequality (24):

> h(Z) <) h(s)

YAV SeD

Suppose some term &y € D is unconditional, then there are two multisets D’ C D \ {60} and
Z' € Zwith |Z’| = |Z| — 1 such that the following is also an integral Shannon inequality:

Z h(Z) < Z h(8)

ZeZ’ SeD’

PROOF. By Corollary 3.6, there exists an integral witness such that equation (23) is an identity
(with h(0) set to 0). As mentioned before, this integral witness can be computed by solving a
linear program which gives a rational solution (m, s), and then multiplying the rational vectors
with the least common multiple of their denominators to convert them to integer vectors, which
are then represented as the multisets M and S respectively. We prove the lemma by induction
on the “potential” quantity q := |D| + | M| + 2|S|. The base case when g < 1 is trivial. Consider
the case when g > 2. Suppose §, = (W | 0), i.e., h(6g) = h(W).

Since (23) is an identity, the term h(W') must cancel out with some other term. If W € Z,
then we can remove h(W) from both sides (i.e,, setting Z' = Z - {W}and D' = D — {(W|0)}).
Otherwise, there are three cases:

Case 1 There exists (Y|W) € D. Then, from
h(Y|W) + h(W|0) = h(YW|0) (25)

identity (23) remains an identity if we add (YW|0) and remove {(Y|W), (W|0)} from D. The
potential g decreases by 1, and thus by induction, we can drop the newly added statistics term
h(YW) from the RHS of (24) while dropping at most one term from the LHS.

17 | 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

Case 2 h(W) cancels with a monotonicity term h(u) where y = (Y|X). In other words, W = XY,
and the RHS of (23) contains the terms:

h(W) — h(Y|X) = h(W) - h(XY) + h(X) = h(X) (26)

We add (X|0) to D, remove (W|0) from D, and remove u = (Y|X) from M, thus decreasing the
potential g by 1. Then, we proceed inductively to eliminate the newly added statistics term h(X).
Case 3 h(W) cancels with a submodularity term h(o) where o = (Y;Z|X) and W = XY. In
particular, the RHS of (23) contains the terms:

h(W) — h(Y; Z|X) = h(W) — h(XY) — h(XZ) + h(X) + h(XY Z)
- h(XYZ) - h(Z|X) 27)

We add (XY Z|0) to D, drop (W|0) from D, drop g = (Y; Z|X) from S, and add a new mono-
tonicity measure (Z|X) to M. Overall, the potential q decreases by 1. The proof follows by
induction where we can eliminate the newly added statistics term h(XYZ) from the RHS.

We illustrate the reset lemma with the following simple examples:

EXAMPLE 3.9. Consider Shearer’s inequality 2h(XYZ) < h(XY) + h(YZ) + h(XZ), which we
write in the form (24) as:”

h(XYZ) + h(XYZ) <h(XY) + h(YZ) + h(XZ) (28)

To drop the term h(XZ) on the RHS of (28) while retaining the validity of the inequality, we can
also delete one term on the LHS (we can choose any term since they are identical), and obtain
the following Shannon inequality:

h(XYZ) < h(XY) + h(YZ)

The proof of the Reset Lemma “explains” how we can do this dropping by reasoning from the
identity counterpart of (28) (i.e., an identity of the form (23)):

R(XYZ) + h(XYZ) = h(XY) + h(YZ) + h(XZ)

— (R(XY) + h(XZ) — h(X) — h(XYZ)) this is h(Y; Z|X)
— (h(X) + h(YZ) — h(XYZ) — h(0)) thisis R(X;YZ|0) (29)

7 To be consistent with (24), we should write it as h(XYZ) + h(XYZ) < h(XY|0) + h(YZ|0) + h(XZ|0).

18 / 42

TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

By canceling out h(XYZ) from both sides, we obtain a different identity:

h(XYZ) = h(XY) + h(YZ)
— (h(XY) - h(X)) this is a monotonicity h(Y|X)
— (h(X)+h(YZ) — h(XYZ) — h(0)) this is h(X;YZ|0) (30)

which is what Case 3 from the proof of the Reset Lemma does. The resulting identity witnesses
the fact that h(XYZ) < h(XY) + h(YZ) is a Shannon inequality. *

EXAMPLE 3.10. Consider the following Shannon inequality:
h(XYZW) + h(Y) < h(XY) + h(YZ) + h(W|XYZ),
which follows from the following identity of the form (23):
R(XYZW) + h(Y) = h(XY) + h(YZ) + h(W|XYZ) — h(X; Z|Y)

Suppose that we want to drop h(XY) from the RHS. The first step is going to follow Case 3 of
the proof of the Reset Lemma by replacing the submodularity h(X; Z|Y) with an additional
monotonicity h(Z|Y), thus leading to the identity:

R(XYZW) + h(Y) = h(XYZ) + h(YZ) + h(W|XYZ) — h(Z|Y)

where our target now is to remove the term h(XYZ) from the RHS. But now, our only option is
to use Case 1 and combine h(XYZ) with h(W|XYZ), leading to

R(XYZW) + h(Y) = h(XYZW) + h(YZ) — h(Z|Y)
And now, we drop h(XYZW) from both sides. The resulting inequality is h(Y) < h(YZ). *

We will also need the following simple proposition to explain a step in PANDA.

PROPOSITION 3.11. Consider an integral Shannon inequality of the form (24). The number of
unconditional statistics terms in D (counting multiplicities) is at least | Z|.

PROOF. It is straightforward to verify that the following vector h is a polymatroid, i.e., satis-
fies (8):

0 ifw=20

h(W) =

1 otherwise
Applying h to (23), the LHS is | Z|, while the RHS is < to the number of unconditional terms,
because h(Y|0) = 1, and h(Y|X) = 0 when X # (), while all witness terms are non-negative:
h(u) > 0, h(o) > 0.]

19 / 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

4. Overview of PANDA and statement of main result

This section states and explains the main result in this paper, which shows that the Shannon
inequality (14) is not only useful for bounding the output size of a DDR as shown in Theorem 3.1,
but it can also be used to guide an algorithm to evaluate a DDR in time proportional to the
bound (15), modulo a polylogarithmic factor. We formally state this result in Section 4.1, and
present an illustrative example in Section 4.2. The detailed algorithm description and its proof
of correctness are presented in Section 5.

4.1 An Efficient Algorithm to Evaluate Disjunctive Datalog Rules

Given the coefficients w and A of inequality (14) (where recall ||A||; = 1), we denote by:

def def
Byn = | |N§V6 ban = logBan = § Wshs (31)
SeA el

Theorem 3.1 implies that, if &, satisfies the degree constraints (see Sec 2.5), i.e., Ziy F (A, N),
then there exists a feasible output Loyt that satisfies ||Zout|| < |Zout| - Ban. Our main result states
that such an output can be computed in time O(||Zi,|| + Ban) if inequality (14) is a Shannon
inequality: (We use O to hide a polylogarithmic factor in the input size ||Zin]|.)

THEOREM 4.1 (The PANDA algorithm for a DDR). Given the following inputs:
— A disjunctive datalog rule (DDR) of the form (5).
— An input instance L;, to the DDR.
— Degree constraints (A, N) that are satisfied by the instance L., i.e., Ziy | (A, N).
— Coefficients w = (Wg)sep, and A = (Az)zex,,» With ||A||1 = 1 that define a valid Shannon
inequality (14).

Let By n be the bound defined in (31), in terms of the statistics (A, N) and the coefficients w. Then,
we can compute a feasible output Loyt to the DDR in time O(||Zi, || + Ban). This feasible output is
of size O(Ban).

We will prove the theorem over the next few sections. We illustrate with a simple example:

EXAMPLE 4.2. Continuing the example in Eq. (7), assume that |R| = |S| = |U| = N. Consider
the following Shannon inequality, proved by applying two submodularities:

h(XY)+h(YZ)+ h(ZW) > h(XYZ) + h(Y) + h(ZW) > h(XYZ) + h(YZW)
Rearranging it to the form (14), we obtain:
1 1 1 1 1
Eh(XYZ) + Eh(YZW) < Eh(XY) + Eh(YZ) + Eh(ZW) (32)

Theorem 3.1 proves that there exists a feasible solution (A, B) of size |A| + |B| < 2N3/2, while
Theorem 4.1 says that we can compute a feasible solution of size O(N3/?) in time O(N3/2). &

20 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

Theorem 4.1 (and PANDA) can be used to compute a full conjunctive query; because a
full conjunctive query is a special case of a DDR, where the output schema consists of a single
atom containing all variables. To that end, after computing a feasible output of the DDR, we can
add this output as an extra atom to the input schema and semijoin-reduce this atom with every
other atom in order to obtain a solution to the full conjunctive query. Notice that because this
extra atom contains all variables, adding it to the input schema makes the query acyclic, hence
semijoin reductions are now guaranteed to produce the correct output to the full conjunctive
query with no extra tuples [37]. Note also that the output of the full conjunctive query is a
minimal model to the DDR (Definition 2.2).

COROLLARY 4.3 (The PANDA algorithm for a full conjunctive query). Suppose that the
DDR from Theorem 4.1 corresponds to a full conjunctive query Q, i.e., the output schema of the
DDR consists of a single atom containing all variables Loyt = {Q(V)}, in which case the DDR (5)
collapses back to (11), where L := X;,. Moreover; suppose that the conditions of Theorem 4.1 are
satisfied. Then, the output of the full conjunctive query Q satisfies |Q| < Ba n, and can be computed
in time O(||Z|| + Ban).

For the best-possible runtime, we want to seed PANDA with parameters minimizing the
quantity B y (or equivalently, ba), which is the polymatroid bound (17) for the query Q. In the
case of full CQs, there is ony one A-parameter, set to A = 1, and it remains to find w minimizing
Bp n. The minimum value is BZ’N Ll obin , defined by

ban = 1“3}{ E wsns | h(V) < E wsh(6) for all polymatroids h € R_%V}
’ w
Sel SeA

= mazé{h(V) | h(6) < nsforall§ e Aandhisa polymatroid}
heR?

The second equality follows from simple duality arguments. PANDA would be worst-case
optimal if B, is tight, in the sense that we can construct a database instance X that satisfies
the degree constraints (A, N) and has output size |Q| = Q(BZ,N). There are two special cases
where Bj y; is known to be tight in data complexity: when all degree constraints are “simple”
(see [2, 35]), or when the degree constraints are “acyclic” (see [5, 31]). The degree constraints
are simple if | X| < 1 for all § = (Y|X) € A, and they are acyclic if there is a global order of the
variables in V such that for every § = (Y|X) € A, all variables in X precede all variables in Y in
the order. If A contains only cardinality constraints, then it is both simple and acyclic, and By,
is exactly the AGM bound because (14) reduces back to (13).

21/ 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

4.2 Example: Preview of PANDA
We illustrate the algorithm with the DDR (7):
AX,Y,Z)VB(Y,Z,W):-R(X,Y) ANS(Y,Z) NU(Z, W)
Following Example 4.2, we assume we only have cardinality statistics / constraints:
A ={(XY10), (YZ]0), (ZW0)}, Nxy =Nyz = Nzw = N.

We further assume that N is a power of 2. Each constraint has a “guard”, i.e., a relation that
“sponsors” (satisfies) the constraint: Txy := R, Tyz := S, Tz := U. We name all guards T. to be
consistent with the formal description of the algorithm presented in Section 5.

Suppose that the input Shannon inequality given is the one in Eq (32). This inequality is in
the shape of (14) with Axyz = Ayzw = 1/2 and wxy|p = Wyzjo = Wzwp = 1/2. The fact that this is
a Shannon inequality was shown above in Example 4.2.

From Corollary 3.6, the Shannon inequality (32) must have a corresponding identity (23)
over symbolic variables h(X) where h(0) = 0. We show one such identity below:?

h(XYZ) + R(YZW) = h(XY|0) + h(YZ|0) + h(ZW|0) — h(X; Z|Y) - h(Y;ZW|0) (33)

The bound from (31) is by y = (nxy + nyz + nzw)/2 = 3n/2 where n def log N, or equivalently,

Ban = N3/2; this is the runtime budget the algorithm cannot exceed, in order to compute a
feasible solution (A, B) to the DDR.

Our algorithm operates by observing and manipulating identity (33), while maintaining
its identity invariant. Every step of the algorithm applies a modification to the identity and
mirrors this modification with an algorithmic computation to create one or more sub-problems.
Each sub-problem is then equipped with the newly created identity, the newly created input
data, and carry on the next step on their own. The spawned sub-problems form a (sub-problem)
tree. In the end, we gather results from the leaves of this tree to answer the original query.

In identity (33), the statistics terms h(XY|0), h(YZ|0), and h(ZW|0) correspond to input
data (input relations) R, S, and U. When we modify the identity, we will be transforming
some subsets of these statistics terms into different statistics terms; correspondingly, the input
relations are manipulated to create new input relations that are associated with the new
statistics terms. We next describe this idea in more details. The steps of the algorithm are also
shown in Figure 1.

In the first step, we grab an unconditional statistics term (from P) in (33). Let’s say the
term we grab is h(XY|0) = h(XY). Since (33) is an identity, there must be another term that
cancels out the symbolic variable h(XY). In this case, it is —h(X; Z|Y); so we combines h(XY)

8 Our witness is not elemental, because h(Y;ZW|0) is not elemental: if we replaced the latter with h(Y; W|0) + h(Y; Z|W),
then we obtain an elemental witness. Also note that the witness is not unique; for example, we could have used the
witness h(XY;Z|0) + h(Y; W|Z).

22 /| 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

R(XYZ) +h(YZW) =h(XY|0) + h(YZ|0) + h(ZW|0) — h(X; Z|Y) — h(Y; ZW|0)

B Partition Tyy —Ty b T)ile
- Extend T)i(‘y _’T)iqyz
h(XYZ) + R(YZW)
" N ») A N = h(Y[0) + h(X|YZ) + h(YZ|0) + h(ZW0)
ﬁn ﬁm+1 ﬂm Bl .
— h(Y;ZW|0)
Join Ty, > Tyz OR Reset?
Join Reset
v Y v v \ y
B Bma11 Bm,1 B11
BOCFZ) + h(YZW) h(YZW) = h(Y|0) + h(ZW|0) — h(Y; ZW|0)
= R(Y|0) + h(X¥Z{0) + h(ZW|0) Extend Ty — Ty,
— h(Y;ZW|0)
Terminal leafs! v v
Bm,1,1 B1,11
h(YZW) = h(Y|ZW) + h(ZW|0)
]oin Tll’|ZW > Ty
\ \ \
Bm,1.1.1 P11
h(YZW) = h(YZW10)

Terminal leafs!

Figure 1. An example illustrating the PANDA algorithm over the disjunctive rule (7). Here, n aef logN and

m % 2. For each node in the sub-problem tree, the corresponding identity (23) is in blue while the
corresponding algorithmic operation is in red.

with the canceling term to obtain new statistics terms:

h(XY|0) — h(X; Z|Y) = h(XY) — h(0) — h(XY) — h(YZ) + h(XYZ) + h(Y)
= h(Y) — h(0) + h(XYZ) — h(YZ)
= h(Y]0) + h(X|YZ)

This rewriting-by-cancellation changed our identity (33) into a new one:
h(XYZ) + h(YZW) = h(Y|0) + h(X|YZ) + h(YZ|0) + h(ZW|0) — h(Y; ZW|0) (34)

The change amounts to replacing a statistics term with two new ones: h(XY|0) — h(Y|0) +
h(X|YZ). We mimic this symbolic change with an actual relational change that shall alter the
structure of the problem. The rough idea is to create inputs to the new problem by creating two
new guards for the two new statistics terms:
— The guard for h(Y|0) will be the table Ty = 7y (R).
— The guard for h(X|YZ) is obtained by using R(X,Y) to construct a “dictionary” (a lookup
table) which supports the following operation: given a tuple (y, z), return the list of all

23 / 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

x-values such that (x, y) € R. (Note that this operation does not use the given z-value.) We
denote this dictionary as Tx|y_.

The aim is for us to be able to join all 4 guards (corresponding to the four statistics terms on
the RHS of (34)) to answer the same query as before. However, implementing this idea straight
up does not work, because the new degree constraint for Ty is Ny € |7y (R)| and for Txyz is
Nx|yz def degp (X[Y), and they are too large: the product Ny - Nxyz can be much greater than the
original statistics of Nyy = N = |R| (guarding h(XY) that we started with). If this product is too
large, we cannot apply induction to solve the sub-problem in our time budget of By y = N3/,

The reason this product Ny - Nx|yz is too large is that Ny counts both high-degree and
low-degree y-values, while the new statistics Nx|yz is the maximum degree. Thus, the product
is an over-estimation of what the size of the join Ty ~ Tx|yz can be. To remedy the situation,
we uniformize the problem by partitioning R into a logarithmic number of sub-relations R =
R' U --- U RX, where each sub-relation contains tuples whose y-values have similar degrees.
In effect, uniformization is an algorithmic technique for dealing with skews, a notoriously
well-known reason for why query plans might blow up in practice.®

Concretely, the partitioning is done as follows. Relation R! contains all tuples (x, y) € R

where:

N
We set T} L v (RY), thus IT}| < 2'. We further partition T} into two equal-sized buckets (which
we will continue to name “buckets i”, with some abuse). The two new guards Tlﬁ and R! have

statistics N. and N)i(|YZ’ which (by our partition-into-two trick) satisfy the following:

N T < 2t
Ni o % deg(X|Y) <
X|\yz — eng(|)— 9i-1
Nli/ ’ N)i(|YZ <N

To be consistent with the notation used in describing PANDA, all guards will be called T: in

particular, the two new guards 7y (R') and R' are called T} and T)i(|YZ respectively.

9 To briefly explain this insight, consider the triangle query Q(x, y,z) :- R(x, y) AS(y,z) AT(x, z). It is straightforward to
construct input instances for which |R| = |S| = |T| = N, and |R = S|, |S = T|, and |R T| are all Q(N?), by having high-
degree (i.e., skewed) values to join [32]. To overcome this limitation of join-project query plans, one variant of worst-

case optimal join algorithms does the following. Partition R = R" UR?, where R" %' {(x, y) € R | degy(Y|X = x) > VN}

and R? %" R\ Y.

The query can be rewritten as Q(x, y, z) :- R"(x, y) AS(y,z) AT(x,z) VR!(x, y) AS(y,2) AT(x, z). The joins R"(x, y) AS(y, z)
and R%(x, y) AT(x, z) are both cardinality-bounded by N*? and computable within O(N3/?)-time. Thus, the entire query
can be computed within O(N?%/?)-time.

Our uniformization step is a generalization of this idea to the setting of DDRs. We needed to partition R into k
parts instead of 2 parts to maintain our algorithmic invariants. For some special classes of queries, Bringmann and
Gorbachev [14] show that heavy/light partitioning is sufficient to achieve the same result.

24 | 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

After partitioning, we now have O(log N) sub-problems, each equipped with identity (34).
In the second step, we again grab an unconditional statistics term h(YZ|0), and find a term
from (34) to cancel it.’® This time, the cancellation is:

h(X|YZ) + h(YZ|0) = h(XYZ) — h(YZ) + h(YZ) — h(0) = h(XY Z|0),
leading to a new identity
h(XYZ) + h(YZW) = h(Y|0) + h(XYZ|0) + h(ZW|0) — h(Y; ZW|0) (35)

The change h(X|YZ) + h(YZ|0) — h(XYZ) is suggestive of a join, where for the ith subproblem,

vz > Tvz. Recall that N)iqyz < N/2t1 hence for

i > 1log N performing this join won’t take time over the budget of O(N*/2). On the other hand,

we will join the corresponding guards : T)i(

wheni < % log N, we will need an additional idea, to use the reset lemma (Lemma 3.8) to reroute

the sub-problem away from the “heavy-hitter hotspot”, i.e., join over the high-degree Y-values.

In addition to uniformization, the reset lemma is our second ingredient to deal with skews.
Concretely, for the ith sub-problem, we do the following:

— When i > 1log N, then PANDA performs a join T%,,, := T)i(|YZ < Tyz. The output size of
this join is within the bound By = N 3/2, After computing this join, there will be no more
sub-problems because we have computed a relation that fits the output schema, namely it

y7 to the output relation A(X,Y, Z).
— In the case where i < 1logN, the algorithm attempts to perform the same join Tj

corresponds to A(X,Y,Z). We add tuples from T)"(

Yz =
T)iqyz < Tyz, but its output size now exceeds the bound B,y = N%2. Therefore, the
algorithm does not compute a guard T)i(YZ for h(XYZ|0), but instead uses the reset lemma
to cancel out this term with the term h(XYZ|0) on the LHS. The new identity (for these

sub-problems) is now
h(YZW) = h(Y|0) + h(ZW|0) — h(Y; ZW|0)
We again grab an unconditional statistics term h(Y|() and cancel it with h(Y; ZW|0):
h(Y|0) — h(Y; ZW|0) = h(Y|ZW)

The guard T, for h(Y|0) has size |T}| < N'/2, thanks to the fact that |T}| < 2" and
[< %log N, The above step replaces h(Y|0) with a new statistics term h(Y|ZW). Its guard

is computed from TZ, by extending it into a dictionary T; w- given (z, w), this dictionary

V4
returns all y-values for which (y) € Té. In particular, this silly dictionary always returns

the entire table Té, no matter what the given (z, w) are." After the dictionary extension,

=T! >t Tz . This join is feasible since the output

the algorithm performs a join TéZW =Ty w

10 Note how “greedy” the algorithm is. This is one of the reasons for the large polylog factor it suffers.

11 To be more precise, before PANDA extends T} into T;|zw' it will “uniformize” T\ by partitioning the table T} into log|T|

buckets based on the “degree” degTé(YW)). However, this partition is vacuous since only one bucket will be non-empty.

25 / 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

size is within the bound By y = N%/2. Now, the algorithm reaches a terminal node since

the join result Tlﬁ is in the output schema; namely, it corresponds to B(Y,Z, W).

W

At the end of the algorithm, the tables T)i(
relation A(X,Y,Z), while tables T},
relation B(Y, Z, W). These two relations are the final output of the algorithm for the DDR (7).
Note that the input table Tz does not contribute to the output table A(X,Y, Z), and similarly
the input table Ty, does not contribute to the output table B(Y, Z, W). Nevertheless, the tables
A(X,Y,Z) and B(Y,Z,W) are still a valid output to the DDR. This is because Definition 2.2 only
requires that if a tuple (x, y, z, w) satisfies the conjunction R(x, y) A S(y, z) AU(z,w), then it

yz from all branches are unioned into the output

from all branches are unioned into the other output

must satisfy the disjunction A(x, y, z) V B(y, z, w). We do not require the converse to hold in
DDR semantics. (The converse is only required in CQ semantics, as we will see in Section 6.)

Note that, for the particular query (7), there is a way to compute a feasible output without
the polylog factor as described above. The above strategy is only meant to illustrate the PANDA
algorithm in its full generality.

5. Detailed Description of PANDA

This section describes the PANDA algorithm in detail. Section 5.1 presents the main data
structures (called tables and dictionaries) used by the algorithm. Section 5.2 presents the

algorithm and its proof of correctness and runtime analysis.

51 Tables and Dictionaries

For a given statistics term § = (Y|X), PANDA uses two kinds of data structures: tables and
dictionaries, denoted Ts. When X = (), then we call it a table; otherwise, we call it a dictionary.
There will be at most one table/dictionary Ts for a given §. As usual, we abbreviate Y| with
just Y, and statistics Nyjg, ny|p with just Ny and ny. Specifically, a table is a set Ty C Dom?* of
tuples over the Y variables, and a dictionary is a function Ty|x : Dom* —s 20°M" that gives a
set of tuples over the Y variables given a specific binding X = x of the X-variables.

For a statistics term 6 = (Y|X), each table/dictionary Ty is associated with a statistics N.
We say that T satisfies the statistics, and we write Ts = Ng, iff |Ts(x)| < Ns for all x € Dom?®.
As a special case, a table Ty satisfies a statistics Ny iff |Ty| < Ny.

The algorithm performs the following operations on tables and dictionaries: join, projec-
tion, extension, construction, and partition. Each operation yields the corresponding statistics
on the results, as described below.

— Join of a table with a dictionary, Txy := Tx > Ty|x. This operation constructs a new table
. . def . .
with statistics Nxy =N xNy|x. The join takes time O(NxNy|x).

26 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

— Projection of a table, Tx := mx(Txy). This operation takes a table Txy over variables X UY,
with statistics Nxy, and constructs a new table Tx with statistics Nx def Nxy. The projection
takes time O(Nxy).

— Extension of a dictionary Ty|x into another dictionary Ty|xz, where Z is disjoint from
XY. This operation takes as input a dictionary Ty x and returns a new dictionary Ty|xz
defined as Ty xz(x, z) def Ty|x(x) for all (x,z) € Dom*Z. 1ts statistics is Ny |xz def Ny x.
This operation takes O(1) time, because the operation does not touch the data, but only
constructs a new function that calls the existing function Tyx.

— Construction. Given a table Txy over variables X U Y with statistics Nxy, construct a
dictionary Ty|x, with statistics Ny x def degr, ., (Y|X). This operation takes O(Nxy) time
because it involves scanning the table Txy and constructing an index. The operation
returns a function that looks up in this index.

— Partition. Given a table Txy over variables X U Y with statistics Nxy, partition Txy into
k := 2[log |Txy|] many sub-tables T, ..., TX satisfying the conditions stated in Lemma 5.1
below. This operation takes time O(Nxy).

LEMMA 5.1. Let Txy be a table over variables X U Y with statistics Nxy. Then, Txy can be
partitioned into at most k := 2[log |Txy|] sub-tables T, ..., TX satisfying

Imx (TY)| - deg(Y|X) < Nxy, Vi€ [k]. (36)

PROOF. To obtain the sub-tables T, observe that the number of tuples x € mx(Txy) with
log-degree in the interval [i,i + 1) is at most |Txy|/2! < 2™¥~I Hence, if we partition Txy based
on which of the buckets [i,i + 1) the log-degree falls into, we will almost attain the required
inequality, just off by a factor of 2:

x (T)] - degp (V1) < 2050 . 264D = opyy

To get rid of the factor of 2, we partition each T' into two tables whose projections onto X are
equally sized. Overall, we need k := 2[log |Txy|] partitions. |

5.2 Algorithm

This section describes PANDA and proves Theorem 4.1. The main input to PANDA contains
an input instance Xj,, an output schema Loyt # 0, and statistics (A, N) satisfied by the input
instance, i.e., Ziy = (A, N) as defined in Section 2.5. In addition, we are also given the coefficients
A and w for which (14) is a Shannon inequality. By Proposition 3.4, we can assume that A and w
are rational and independent of the statistics (A, N). From Corollary 3.6, we can also assume
that PANDA was given the multisets Z, D, M, S for which identity (23) holds. In particular, as

27 | 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

in the proof of Corollary 3.6, given vectors A and w that make Eq. (14) a Shannon inequality, the
witness (m, s) can be computed by solving a linear program. Since A and w are rational and
independent of the data, the solution (m, s) is also rational and independent of the data. By
multiplying the vectors A, w, m, and s with the least common multiple of their denominators,
we can convert them to integer vectors. And now we can represent the integral A, w, m and
s as multisets Z, D, M, and S respectively. All the above steps take constant time in data
complexity; see Section 2.1. This is because the vectors A, w, m, and s have dimension O(1) in
data complexity. Moreover, since the values of these vectors don’t depend on the data, they are
considered constants in data complexity.

We shall show that a feasible output Zoyt to the DDR (5) can be computed in time O(||Zi, || +
Ban), defined in (31). In terms of these multisets, the bounds defined in (31) have the following

equivalent expressions:

1/1Z|
1
Ban = (l—[Na) ban =1ogBan = Zl Z ns (37)

€D seD

For each statistics term § = (Y|X) € D, there is a guard which is a table/dictionary instance
Ty|x with statistics Ny x, i.e., Ty|x = Ny|x as defined in Section 5.1. Creating the initial guards can
be done in time O(||Zi,||). We adopt the convention that the lower case letters ngs, by , represent
the logarithms of the upper case Ng, Bp y respectively.

Summarized in Algorithm 1, PANDA works as follows. Starting from an initial node, it
grows a tree of sub-problems. New sub-problems are spawned from a “non-terminal” leaf node
of the tree. The process stops when every leaf node is terminal, a concept we shall define shortly.
After the tree growing stops, a feasible output of the problem is gathered from the leaves of the
tree.

To every node, there associates a sub-problem parameterized by a tuple (Z, D, M, S, T, n)
where

— The multisets Z, D, M, and S are over the base sets Zout, A, MON, and SUB, respectively.

These multisets will maintain the invariant that identity (23) holds, as we shall show in

the next section.

— n s a collection of non-negative real numbers (logs of statistics), one statistics ngs for each

6 € D. (Recall that, ns := log Ng, for convenience.)

— T is a collection of dictionaries, one dictionary Ts for each § € D; these shall be the guards

for Ns = 2", In particular, Ts |= Ns for each § € D.

DEFINITION 5.2 (Terminal leaf). A leaf node of the tree is “terminal” (it won’t spawn off
new sub-problem(s) anymore) if its parameters (Z, D, M, S, T, n) are such that, there is an
unconditional statistics term (Z|0) € D for which Z € Z.

28 /| 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

We next briefly explain in words the key steps of Algorithm 1. A proof that the algorithm

is correct and an analysis of its runtime to show Theorem 4.1 are described in Section 5.3. The

main loop looks for a non-terminal leaf node B of the sub-problem tree. If there is no such

leaf node, then the code-block starting at line 31 gathers the results from the parameters of the

(terminal) leaf nodes to construct the final output Zgyt.

If there is a non-terminal leaf node B, then we pick an arbitrary unconditional’? statistics

term § = (W|0) € D (line 4) and start considering cases in parallel with the cases in the proof

of Lemma 3.8, except that Case 3 will be handled differently. The major insight of our work is

that we can design an algorithm where the algorithmic steps mirror the Shannon inequality

inference steps:

Case 1: Join or Reset There exists a statistics term (Y|W) € D (line 5). If the statistics are such

that the join-size of Tw > Tyw is smaller than the budget B, n, checked at line 6, then we
compute the join result Tyw as shown, and let it guard the new statistics term (YW|0Q). This
case corresponds precisely to applying Eq. (25), and the new multiset 9’ defined in line 8
reflects that. After joining Ty and Ty w to form Tyy, we remove the old dictionaries from T
and add the new dictionary to T. Similarly, the statistics in n are replaced in the same way.
On the other hand, if the join Tw > Tyw is larger than the budget, then we perform a reset
step. The Shannon inequality reasoning is as follows. Initially 3}~ h(Z) < > scp h(S)
holds, with witness terms M and S. After applying the change in Eq. (25), inequality
2zez M(Z) < Y s 5 h(6) is still a Shannon inequality with the same witness. (Note that Dis
defined in line 12). Now, we apply Lemma 3.8 to drop 8, = (YW|0) from D, obtaining new
parameters (Z’, D', M’, 8’) to make progress on our algorithm. We remove from T and n
the terms that were dropped from D.

Case 2: Projection There exists a monotonicity term (Y|X) € M with W = XY (line 16). Here,

the Shannon inequality is modified by applying the monotonicity-statistics cancellation in
Eq. (26). This change is reflected in M’ and 9’. The new statistics term (X|0) € D’ has a
guard which is the projection Ty.

Case 3: Partition There exists a submodularity measure (Y; Z|X) € S with W = XY (line 22). In

this case, instead of applying identity (27) from Lemma 3.8, we apply the following identity
to maintain the Shannon inequality:

h(W) - h(Y;Z|X) =h(W) - h(XY) - h(XZ) + h(X) + h(XYZ)
=h(X)+h(Y|XZ) (38)
Identity (38) says that we have two new statistics terms, h(X|0) and h(Y|XZ), which need

guards; this is where we will need to create a logarithmic number of sub-problems in order

to create the guards of the right statistics.

12

We shall show that an unconditional § exists in Section 5.3.

29 / 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

1: Initialize the sub-problem tree with a single node with input parameters
(Z,D, M,S8,T,n)
2: while 3 a non-terminal leaf B do > Tree-growing Loop
3: Let (Z,D, M,S,T,n) be the parameters of this leaf
4: Pick 6§ = (W|0) € D arbitrarily > See Prop 5.3 for why such § exists
5: if 3 (Y|W) € D then > Case 1 of Lemma 3.8: apply (25)
6: if nw +nyw < ban then
7: n'=nU {nyw} — {nw + nyjw}, where nyw = nw + nyw
8: D' =D u{(¥Yw[0)} - {(W]0), (Y|W)}
9: T'=TU{Tyw} - {Tw, Tyjw}, where Tyw :=Tw > Ty;w, which guards
(YW|0)
10: Create a child of B, with parameters (Z,D’, M,S,T',n’)
11: else
12 D =D U{(YW|0)} - {(W]0), (YW)}
13: Apply Lemma 3.8 to (Z,D,M,S) to obtain (', D', M’',S’) where
D' CD-{(YW]|0)}
14: Let T',n’ be T,n with only the terms corresponding to 9’ retained
15: Create a child of B, with parameters (Z’, D', M, S8, T’,n’)
16: else if I(Y|X) e M with W = XY then > Case 2 of Lemma 3.8: apply (26)
17: n =nuU{nx} - {nw} where nx i=nyw
18: M =M-{(Y|X)}
19: D' =D u{(X]0)} - {(W|0)}
20: T'=TU{Tx} — {Tw} where Tx :=mx(Tw), which guards (X]0)
21: Create a child of B, with parameters (Z,D’, M',S,T’,n’)
22: else if 3(Y;Z|X) € S with W = XY then - Case 3 of Lemma 3.8: apply (38) instead of (27)
23: Partition Tw =T"UT?2U---UTX with k:=0(log|Tw]|), using Lemma 5.1
24 for i — 1 to k do
25: n' =nu{nf, n;/|xz} — {nw} where n% :=log|mx(T")| and
”;/|Xz = log deg;(Y|X)
26: D'=DU{(X|0),(Y|XZ)} - {(W]0)}
27: S' =8 -{(Y;Z|X)}
28: T =T U {T! ,Tl",lxz} —{Tw}, where T} :=mx(T") and TII.(IXZ is an extension
of TxI/|X
29: Create the ith-child of B, with parameters (Z,D', M,S',T',n')

30:
31: Q(Z) «— 0 for a-l.-L Q(Z) € zOut

32: for each terminal leaf S do > Result-gathering phase
33: Let (Z,D, M,S,T,n) be the parameters of this leaf

34 Pick 6§ = (Z|0) € D such that Z € Xyt > By Definition 5.2
35: Q(Z) —Q(Z2)UTy

Algorithm 1. PANDA

30/ 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

In particular, the algorithm performs a “partitioning step”: it uniformizes Tw (= Txy) by
applying Lemma 5.1. Each of the sub-problems has the corresponding statistics as defined
in the for-loop starting at line 24. The table T' is on variables W = XY. Thus, in order to
have it guard the new term (Y|XZ), we will need to apply a dictionary extension to it (see
Section 5.1). Note that (36) guarantees that n’, + n;l xz < Nxy = Ny

5.3 Proof of correctness and runtime analysis

In this section, we prove that the algorithm is correct and analyzes its runtime, to complete the
proof of Theorem 4.1. Both of these tasks are accomplished by showing that PANDA maintains
the invariants described below.

Recall that every sub-problem in the tree is parameterized by a tuple (Z, D, M, S, T, n).
For any sub-problem S that is parameterized by (Z, D, M, S, T, n), define

]B = DomV > M(SEZ)Tg

to be the join of all its dictionary guards. At time t in the algorithm, let £; denote the set of
current leaf nodes in the sub-problem tree. While spawning new sub-problems, (we will show
that) PANDA maintains the following invariants over all tuples (Z, D, M, S, T, n): (Recall that

Ns % ons for all § € D)

Shannon inequality: Identity (23) holds w.r.t. the tuple (Z, D, M, S) (39)
Non-empty output: Z#0 (40)
Lossless join: Xy, U I vt (41)
pel;
Small tables: Ny < ban, VYD) e D (42)
Guarded statistics: Ts &= Ns, V6 e D (43)
1
Upper bound: — Z ns < ban (44)
<l

We start by showing that, if the invariants hold, then the answer is correct with the desired

runtime.

d : : :
PROPOSITION 5.3. Let N Y maxsep Ns. Suppose the invariants above are satisfied, then
PANDA returns a feasible solution to the input disjunctive datalog rule in time O(Ba y - (log N)IS1),
where S is the input multiset of submodularity measures.

PROOF. For a given non-terminal leaf B, the number of unconditional statistics terms in D is
at least | Z|. This follows from Proposition 3.11 and invariant (39). Invariant (40) ensures that
|Z| > 1, and thus the unconditional statistics term § exists for line 4 of the algorithm to proceed.

31/ 42

TheoretiCS PANDA: Query Evaluation in Submodular Width

Thanks to invariant (39), at least one of the three cases considered in the main loop must hold.
Invariant (43) guarantees that we can proceed to perform the join or the partition steps using
corresponding tables / dictionaries when we need them in the algorithm. In summary, the body
of the main loop can proceed as explained without getting stuck somewhere.

For every node in the sub-problem tree that the algorithm creates, with parameter tuple
(Z, D, M,S, T, n), define the “potential” quantity |D|+ | M| +2|S]| as in the proof of Lemma 3.8.
Then, similar to what happens in the lemma’s proof, the potential of the child is at least 1 less
than the potential of the parent.’14 Thus, the depth of the sub-problem tree is bounded by the
original potential |D| + | M| + 2|S|. This proves that the algorithm terminates.

The time spent within each node B of the tree is dominated by either the join step Tyw :=
Tw ™ Tyw in Case 1, the projection Tx := 7ix (Tw) in Case 2, or the partition step in Case 3 whose
cost is O(|Tw|). In Case 2 and Case 3, the cost is bounded by B, y, thanks to invariant (42). In
Case 1, the join is only computed if nw + nyjw < ban, thus it is also within the budget of Bp n.
Overall, the total time spent on all the nodes of the tree is bounded by B, y times the number
of nodes. As we observed above, the depth of the tree is at most |D| + | M| + 2|S|. Every node
has a fanout of either 1, or k = O(log Bon) = O(log N). Every time the fanout is more than 1,
the number of submodularity measures in S is reduced by 1. Thus, the total runtime in data
complexity is O(Ban - (log N)ISI).

Last but not least, we prove that the answer computed starting at line 31 is correct, which
means according to Definition 2.2 that for every tuple t € XX, there must exist Q(Z) € Loyt
for which mz(t) € Q(Z). Note that Definition 2.2 does not require the converse to hold.’ In
particular, the output may contain tuples that are not in P%;,. In order to show that for every
tuple t € ML, there exists Q(Z) € Xoyt for which 7z(t) € Q(Z), we rely on invariant (41).
In particular, let £ denote the set of all final leaf nodes in the sub-problem tree. Then, every
t € P, belongs to g for some B € L. Since B is a terminal leaf node, there must exist
§ = (Z]0) € D such that Q(Z) € Lout, and so 1tz (t) € Q(Z) thanks to line 35 of Algorithm 1. =

PROPOSITION 5.4. Algorithm 1 maintains invariants (39) to (44) throughout its execution.

PROOF. We verify that every invariant from (39) to (44) holds one by one, by induction. For
the input, only invariant (42) may not hold, because some input tables may be larger than the
desired bound Bj n. We deal with this situation by repeatedly applying the reset lemma as was
done in the else branch of Case 1 (line 11), dropping input tables that are too large. After this
pre-processing step to make sure that all invariants are satisfied initially, we verify that they
remain satisfied by induction.

13 Unlike Case 3 of Lemma 3.8 where applying Eq. (27) reduces |S| by one and increases | M| by one, in Case 3 of the
algorithm, we apply Eq. (38) which reduces |S| by one and increases |D| by one.

14 Note that the else branch of Case 1 (line 11) also reduces the potential by at least one, and applying the reset lemma
in line 13 never increases the potential.

15 The converse will only become relevant in Section 6 when we discuss the evaluation of conjunctive queries.

32 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

Invariant (39) is guaranteed by constructing the multisets (Z’, D', M’, S’) for the sub-
problems while keeping (23) intact. This is easy to verify in all three cases as we apply Eq. (25),
(26), (38) or Lemma 3.8.

For invariant 40, the only place where Z is changed is at line 15. This happens when
nw + Nyjw > ban. Since inequality (44) holds (at the previous iteration), we have

1 1 1
ban > — ns > —(nw +n > ——-b

It follows that | Z| > 2. Thus, when applying Lemma 3.8, we end up with |Z’| > |Z| -1 > 1,
which means Z’ is not empty.
Invariants (41), (42), (43), and (44) can be verified one by one by simple case analysis.
Below, we highlight the most prominent cases:
— Case 1 of the algorithm maintains invariant (42) specifically because we only do the join
Tyw = Tw > Ty x when nyw = nw + nyjw < ban.

— The else branch of Case 1 (line 11) maintains invariant (44) because of the following:

Z n = Z ng < Z Ns — Ny — Ny|w (by Lemma 3.8)
seD’ seD’ 6eD
< Z ns — ban (nw + nyw > ban)
6eD
< |Z| ban—ban (by invariant (44) before)
< |Z’'| - ban (because |Z'| = |Z|-1)
— Case 3 of the algorithm maintains invariant (44) because Eq. (36) implies that n’, + Nyxz <
nxy = nw. (Recall the definition of n}, and ni,l 4z inline 25.) m

6. Answering Conjunctive Queries in Submodular-Width Time

The main aim of this section is to explain how PANDA can be used to compute a conjunctive
query in time given by its submodular width (plus the output size). Recall the definition of
a conjunctive query in Equation (3). In Marx’s work [28], the submodular width was only
defined for Boolean conjunctive queries (i.e., F is empty) where all input relations are set to
be of size N. In Section 6.1, we generalize this notion to the case when F is arbitrary and the
input relations satisfy given degree constraints, which are much more general than a single
relation size, and also subsume functional dependencies. Marx [28] gave an algorithm that
can answer Boolean conjunctive queries in time O(f(|V|) - N¢SUoW(@)) where |V| is the number
of variables, f is some computable function, N is the input size, c is a constant greater than
1, and subw(Q) is the submodular width of Q. Therefore, Marx’s algorithm establishes fixed-
parameter tractability of the class of Boolean conjunctive queries where the submodular width

33 / 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

subw(Q) is bounded.’® In contrast, in Section 6.2, we present our algorithm, which in addition
to handling arbitrary F and degree constraints, removes the constant ¢ from the runtime at
the expense of introducing a polylogarithmic factor in N. In particular, our algorithm solves
a Boolean conjunctive query in time O(f; (|V|) - NSUeW(@) . (1og N)~2(VD) where f; and f, are
two computable functions. Due to the extra term (log N)/2(VD_ our algorithm cannot be used to
establish fixed-parameter tractability of the class of Boolean conjunctive queries with bounded
submodular width. However, it is more useful than Marx’s algorithm when considering the
fine-grained complexity of these queries.

6.1 Width parameters for conjunctive queries under degree constraints

Given a conjunctive query Q in the form (3):

QF) - N\ RX),
R(X)ex
let 7(Q) denote the set of all free-connex tree decompositions of the query.'” (See Section 2.2
for the definition of a free-connex tree decomposition.) Let (A, N) be a set of degree constraints,
as defined in Sec. 2.5. As usual, we denote by (A, n) the associated log-degree constraints. We
say that a polymatroid h satisfies the constraints, and write h |= (A, n), if h(§) < ngfor all § € A.

DEFINITION 6.1. The degree-aware fractional hypertree width and the degree-aware submodu-
lar width of Q under the degree constraints (A, n) are:

def .
fhtw(Q,A, n) = h(y(t 45
@ % min I, K R =
subw(Q, A, n) © max min max h(y(t)) (46)

hi=(An) (Tx)eT (Q) tenodes(T)

(Note that h = (A, n) requires h to both be a polymatroid and satisfy the degree constraints.)

REMARK 6.2. Eq. (45) and (46) collapse back to the standard definitions of the fractional
hypertree width [22] and submodular width [28], respectively, when the degree constraints
(A, N) only contain cardinality constraints of the form |Ty| < N for a single number N that
represents the input size; see [6] for a proof. Note, however, that in the standard definitions
of fhtw and subw, the base of the log function was N, the input size, and thus runtimes were
stated in the form O(N™™W) and O(NSYPW). In our generalization, the base of the log function is
2, and thus runtimes are stated in the form 0(2"™W) and O(25UeW),

16 Marx’s work [28] also proves the converse but only for self-join-free queries, where a self-join-free query is a query
whose body atoms have distinct relation symbols. In particular, Marx’s work proves that the class of self-join-free
Boolean conjunctive queries where the submodular width is unbounded is not fixed-parameter tractable, conditioned
on the ETH conjecture.

17 For a fixed query Q, there are at most 22" tree decompositions, since any two trees that have the same set of bags
can be considered equal for our purposes.

34 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

It is straightforward to use PANDA to answer a conjunctive query in time O (||£||+21™W), but
we will only describe the algorithm for the submodular width. The key advantage of fhtw over
subw is that we can answer sum-product queries over any semiring in time O(||Z||+2"™%) using
variable elimination [4], since the query plan involves only one (optimal) tree decomposition.

We will also show how to use PANDA to support constant-delay enumeration'® of the
output of a conjunctive query after a preprocessing time of O(||Z|| + 25U°%).1® Another line
of work [12] shows how to support constant-delay enumeration after a preprocessing time of
O(||Z]| + 2¢5UPW) for some constant ¢ > 1.

The two definitions (45) and (46) differ only in the first two operations: min max v.s.
max min. It is easy to see that subw < fhtw, as it follows immediately from the max-min
inequality, which states that max, miny f(x, y) < miny, max, f(x, y) for any function f. As
mentioned above, the degree-aware submodular width generalizes the submodular width
considering richer sets of statistics on the input data. The original definition assumed only
cardinality constraints: there is one cardinality constraint for each input relation, and they are
all equal. In that case, both subw and fhtw are finite. In our generalization, subw can be oo,
for example when A = §. When no confusion arises, we will simply call fhtw and subw the

fractional hypertree width and submodular width, dropping the term degree-aware.

EXAMPLE 6.3 (fhtw and subw of the k-cycle with k > 4). Consider the Boolean k-cycle
query with k > 4:

Q() -R12(X1,X2) A+ A Ri—1 x(Xk-1, Xk) A Ri1(Xk, X1).

Suppose we have input cardinality statisticS N := |Ry 3| = - -+ = |Rk-1k

= |Rk.1|. For instance, in
the query where all input relations are the edge set of a graph, N is the number of edges. We
will show that subw < (2 —1/[k/27) log N and fhtw > 21log N for this query.

To show the bound on the fhtw, note that, in any tree decomposition (T, y), there must be
at least one bag y(t) that contains some three consecutive variables {X;_1, X;, Xi+1} on the cycle.
Fix i accordingly and consider the polymatroid h defined by:

h(X) = |X N{X;_1,Xis1}| - log N forall X C {Xy,..., Xk}

It is straightforward to verify that this is a polymatroid with h(y(t)) = 2log N and h |= (A, n).
To prove the bound on subw, consider any polymatroid h |= (A, n). Let 6 be a parameter
to be determined. Consider two cases.

18 By that, we mean reporting the output tuples one by one where the time needed to report the next tuple (or report
that none exists) remains a constant throughout the entire process. The constant here is in data complexity.

19 In particular, within the mentioned preprocessing time, we can produce a constant number of tree decompositions
that cover the full join of the input relations. However, the same output tuple might be duplicated across multiple tree
decompositions. Nevertheless, we can use the Cheater’s Lemma [15] to deduplicate the output while maintaining
constant delay. See the proof of Theorem 6.5 for more details.

35/ 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

— There exists X; for which h(X;) < 6. Without loss of generality, assume h(X;) < 6. Consider
the tree decomposition:

For every bag B = {Xl,Xl-,Xm} we have h(B) < h(X1) + h(X;X;+1) < 0+1ogN.

— h(X;) > 6foralli € [k]. Consider the tree decomposition
Bag B Bag B;

From submodularity,

[k/2]+1
h(Bi) < h(XiXp)+ Y h(XilXi1) < [k/2]logN - ([k/2]-1)0
i=3
k-1
h(B2) < h(XxX1)+ . h(XilXu1) < |k/2]logN - ([k/2] - 1)6.
i=[k/2]+1
Setting 8 = (1 — 1/[k/27) log N to balance the two cases, we conclude that subw < (2 —

1/[k/2]) log N. .

6.2 Achieving submodular width runtime with PANDA

Before explaining how PANDA can be used to achieve the submodular width runtime, we need

a technical lemma.

LEMMA 6.4. Let Z denote a finite collection?® of subsets of V. Let (A, n) denote given input
degree constraints. If the following quantity is finite:

opt := max minh(Z), 47)
hi=(An) ZeZ

then we can compute coefficients A = (Az)zez and w = (ws)sea such that the following are
satisfied:

(a) |[AlL=1,42>0,andw > 0,

(b) Inequality Y.z 7 Az - hN(Z) < Y scp Ws - h(6) is a Shannon inequality,

(c) opt = 2 scp Wsns.

PROOF. Let I denote the (polyhedral) set of all polymatroids over V. We write opt in a slightly
different form, where we introduce a new unconstrained variable ¢ to replace the inner min:

opt = rr;la}ri{t |VZ e Z:t <h(Z), andV$§ € A: h(6) < ns} (48)
t,he

20 Note that Z is not a multiset here.

36 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

Introduce a Lagrangian multiplier Az for every constraint t < h(Z), and w; for every constraint
h(8) < ns. The Lagrange dual function is

L(A,w) = max | ¢+ Z Az(h(Z) - t) + Z ws(ns — h(5)))

ZeZ SeA

= Z wsns +max(1 - ||A[|)t + max (z;; Azh(Z) - Z Wsh(S))

SeA SeA

Let A* and w* denote an optimal solution to the Lagrangian dual problem min{L(A,w) | A >
0, w > 0}, then by strong duality?'

opt = L(A*, w*) = ; wjns +max(1 — [[A°[|1)t + max (Z% Ash(Z) - ; wj:,h(S))
From the assumption that opt is finite, it follows that ||[A*||; = 1 because t is unconstrained.
Furthermore, if there is any polymatroid h for which 7.7 AZh(Z) — Y s Wsh(8) > 0 then
L(A*, w*) is unbounded, because any positive multiple of a polymatroid is a polymatroid. Thus,
(b) is satisfied. Furthermore, as the expression inside maxpcr is non-positive, the maximum it
can achieve is 0 with h = 0. Consequently, A* and w* satisfy the three conditions (a), (b), and (c)

above, and we can compute them with standard linear programming algorithms.]

Equipped with this tool, we are now ready to show how PANDA can be used to answer a

conjunctive query in submodular width time:

THEOREM 6.5. Given a set of degree constraints (A, N), a conjunctive query Q of the form (3)
can be computed in time
O(||Z]| + 25UPWQAM 4 |output])

on any database instance L that satisfies the degree constraints. In particular, within a prepro-
cessing time of O(||Z|| + 25UPW(QAM) "ye can support constant-delay enumeration of the output.

PROOF. Let 7(Q) = {(T1,x1),.--, (Tm, xm)} be all free-connex tree decompositions of Q. For
every tree decomposition (Tj, i) € 7 (Q) and every node j € nhodes(T;), create a fresh atom
Aij(Z;;) over variables Z;; := x;(j). In other words, every bag of every tree decomposition is
associated with an atom. Let £! := {A; i(Zi;) |] € nodes(T;)} denote a schema corresponding to
the bags of the ith tree decomposition. The algorithm will compute relation instances A;;(Z;;),
foralli € [m] and j € nodes(T;), such that the tree decompositions together cover the full join
of the input relations:

DMy U D5 (49)

ie[m]

21 Which holds because the problem is linear.

37 | 42 TheoretiCS PANDA: Query Evaluation in Submodular Width

From these instances, there are m separate free-connex acyclic conjunctive queries of the form

Q'(F) - /\ Aij(Zy)),
Aij(Zij)ezt
which can be computed in O(||Z!|| + |Q'(F)|) time, using Lemma 2.1. Before computing these
queries, we semijoin reduce each A;;(Z;;) in ! with all the input relations in X. Recall that by
definition of a tree decomposition, every input relation R(X) in £ must have its variables X
appear in some bag of the tree decomposition (T;, x;), hence in some Z;; in 2!, Therefore, this
semijoin reduction ensures that the output of each query Q'(F) is a subset of the full join of the
input relations MXZX. This turns (49) into an equality.

To support constant-delay enumeration of the output after a preprocessing time of O(||Z|| +
25UbW(QAN)) yve will use constant-delay enumeration of the output of each Q!(F) after a prepro-
cessing time of O(||Z!||), as explained in Lemma 2.1. Note that the same output tuple might be
duplicated across multiple queries Q'(F). Nevertheless, we can use the Cheater’s Lemma [15] to
deduplicate the output while maintaining constant delay.??

It remains to show that we can compute all the instances I' satisfying (49) in time
O(25UPW(Q.AM)) Obviously, to compute them in time O(25UPW(Q-AM) ‘it is necessary that ||Zi|| =
O(25UbW(@An)) Tg this end, for every combination of nodes j = (ji, ja, ..., jm) € Nodes(T;) x
---xnodes(Ty,), we will compute a feasible output B Yo B{'n to the following DDR (whose input
schema is X):

\/ B/(Zy) - /\ R(X). (the jth DDR) (50)
]

ie[m R(X)eXL

In words, for this DDR, there is a representative bag B{ from each tree decomposition (Tj, ;).
After feasible solutions to all these DDRs are computed, then we set 4;; := |J jiii=j B{ .

We first prove that the instances A;; defined as such satisfy property (49). Suppose there
is a tuple t € XX that is not in the RHS of (49). Then, for every i € [m], there exists a node
Jji € nodes(T;) such that Tz, (t) ¢ Ayji. Collect these j; into a tuple j, then this implies that we
did not compute a feasible output to the jth DDR (50), a contradiction.

Last but not least, we show that the DDRs (50) can be computed in time O(25UPW(QAR)) Fix
a tuple of nodes j = (ji,..., jm). Let Z denote the set of all bags Z;;, for i € [m]. Define

opt := hﬂ%ﬁ) I’Zrélél h(Z).
Then,

opt = max min h(Z;;) £ max min max h(y(t)) = subw(Q,A, n).
P hi(8,n) i€[m] (i) hi=(A,n) i€[m] tenodes(T;) () (Q)

22 Recall that the number of tree decompositions is constant in data complexity.

38 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

<AZ>

Figure 2. Query (51) with the two free-connex tree decompositions.

WLOG, we assume that subw is finite, which means opt is finite. By Lemma 6.4, we
can compute coefficients A and w such that the three conditions in Lemma 6.4 are satisfied.

Hence, from Theorem 4.1, we can compute a feasible output to the DDR (50) in time O(2°P!) =
é(zsubW(Q,A,n)). -

6.3 Example: Solving a conjunctive query in submodular width time

Consider the following query Q whose body is a 4-cycle:
QX,Y)-R(X,Y)AS(Y,Z) NU(Z,W) ANV(W,X) (51)

Suppose we only have cardinality statistics where all input relation sizes are upper bounded by

N for some number N, i.e.,
A ={(XY10), (YZ|0), (ZW10), (WX]|0)}, Nxy =Nyz = Nziw = Nwx = N.

Let n := log N. This query has two free-connex tree decompositions, depicted in Figure 2
(ignoring the trivial tree decomposition with a single bag):

— One with two bags A11(X,Y,Z) and A,(Z, W, X).

— One with two bags A,1(Y,Z, W) and A (W, X,Y).

It is not hard to see that the degree-aware fractional hypertree width of Q, given by (45), is
exactly 2n, and we leave this as an exercise. Next, we show that the degree-aware submodular

width is 3n/2. In particular, Eq. (46) for this query becomes:

subw(Q,A,n) = hrlil(i\x) min(max(h(XYZ),h(ZWX)), max(h(YZW),h(WXY)))

39 /42 TheoretiCS PANDA: Query Evaluation in Submodular Width

By distributing the min over the inner max, and then swapping the two max operators, we get:

subw(Q, A, n) = max(

max min(h(XYZ),h(YZW)), (52)
hi(a,n)
max min(h(XYZ),h(WXY)), (53)
hE=(4,n)
max min(h(ZWX),h(YZW)), (54)
h=(A,n)
max min(h(ZWX),h(WXY))) (55)
hE(A,n)

Note that each of the expressions (52)...(55) has the same format as the optimization prob-
lem (47) in Lemma 6.4 and is equivalent to the linear program (48). Let’s take the first ex-
pression (52). (The other three are similar.) For this expression, a linear program solver gives
opt = 3n/2. Lemma (6.4) guarantees for us the existence of the following Shannon inequality,
which is the same as (32) from Section 4.2:

1 1 1 1 1
SMXYZ) + Sh(YZW) <Zh(XY10) + Zh(YZ|0) + Zh(ZW|0)

In particular, by item (c) of the lemma, we have:

ot—ln +1n +1n —3n
p—zXY vz + olzw = o

The other three expressions (53)-(55) also have opt = 3n/2, leading to subw(Q, A, n) = 3n/2.

Next, we describe the algorithm to compute the query (51) in time O(N3/% + |output]), as
claimed in Theorem 6.5. The algorithm starts by constructing the following four DDRs, which
mirror the four expressions (52)—(55):

BiY(X,Y,Z) vV By (Y,Z,W) - R(X,Y) AS(Y,Z) AU(Z,W) AV(W, X) (56)
BI*(X,Y,Z) V Bj*(W,X,Y) :-R(X,Y) AS(Y,Z) NU(Z,W) A V(W, X) (57)
BN Z,W,X) vV B:N(Y,Z,W) - R(X,Y) AS(Y,Z) AU(Z,W) AV (W, X) (58)
B3*(Z,W,X) V B3*(W,X,Y) :-R(X,Y) AS(Y,Z) ANU(Z, W) AV (W, X) (59)

Let’s take the first DDR (56) as an example. We can compute a feasible output to this DDR by
computing a feasible output to the following DDR instead:

BIY(X,Y,Z) v Bj*(Y,Z,W) -R(X,Y) AS(Y,Z) AU(Z, W)

The above DDR is identical to (7), and we saw in Section 4.2 that we can compute a feasible
output to it in time O(N3/2). The other 3 DDRs (57)—(59) can be computed in the same way.

40 / 42 TheoretiCS M. Abo Khamis, H.Q. Ngo, D. Suciu

Afterwards, we compute:

. 11 12
. 21 22
. 11 21

Ay = B}* U B3

Using Lemma (2.1), we compute the following two free-connex acyclic conjunctive queries (after
semijoin-reducing each of the A;; relations with the input relations R, S,U and V):

QU(X,Y) - A (X,Y,Z) A A12(Z, W, X)
Q*(X,Y) - Ap1(Y,Z,W) A Apa(W, X,Y)

Finally, we take the union of Q! and Q? above as the output Q to the query in (51). The overall
runtime is O(N3/2 + |output]|).

In order to prove the correctness of this algorithm, we show that the full join R(X,Y)
S(Y,Z) «U(Z,W) = V(W, X) is identical to the set of tuples (x, y, z, w) that satisfy:

(A11(X, ¥,2) A A12(Z, W, X)) V (A21(y, 2, w) A Ap2(W, X, y)) (60)

The containment 2 is immediate from the definition of A;; (and thanks to the semijoin reduction
of A;; with the inputrelations R, S, U and V). For the other containment C, note that condition (60)
is equivalent to the following:

(A11(x, y,2) V A (Y, z, w))A (61)
(A11(X, y,2) V Aza(w, X, y))A

(A12(z, w, x) V Az (y, z, w))A

(A12(z, w,Xx) V Az (W, X, y))

By (56)... (59), every tuple (x, y, z, w) that satisfies the conjunction R(x, y) AS(y,z) AU(z,w) A
V(w, x) must also satisfy (61). This completes the proof of correctness.

7. Conclusion

We presented PANDA, an algorithm that computes a conjunctive query in time given by its
submodular width. For this purpose, we have used a generalization of the notion of submodular
width in [28], by incorporating a rich class of statistics on the input relations, including cardi-
nality constraints and degree constraints; the latter can also express functional dependencies.
The PANDA algorithm described here is a significant simplification of its preliminary version
in [6]. PANDA can also be used as a Worst-Case-Optimal-Join algorithm to compute the output
of a full conjunctive query in time bounded by the information-theoretic upper bound of the

a1 | 42

TheoretiCS

PANDA: Query Evaluation in Submodular Width

output size. A recent extension showed that it can also be extended to account for £,-norms of

degree sequences in the input [3].

We leave some open problems. The first is an analysis of the complexity of the witness

of a Shannon inequality. The number of submodularities in the Shannon inequality appears

as the exponent of a logarithmic factor in the runtime of PANDA, and it would be very useful

to study this number as a function of the query. Another question concerns the number of

tree decompositions needed to compute the submodular width: our current bound is double

exponential, and the question is whether this can be reduced. Finally, one open problem is

whether PANDA can be generalized to achieve information-theoretic bounds corresponding to

non-Shannon inequalities [40, 39].

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

References

Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.
URL Q)

Mahmoud Abo Khamis, Phokion G. Kolaitis,

Hung Q. Ngo, and Dan Suciu. Bag query
containment and information theory. ACM Trans.
Database Syst. 46(3):12:1-12:39, 2021. [BEI} (20)

Mahmoud Abo Khamis, Vasileios Nakos,

Dan Olteanu, and Dan Suciu. Join size bounds
using Ip-norms on degree sequences. Proc. ACM
Manag. Data, 2(2), May 2024. BB} (3, 41)

Mahmoud Abo Khamis, Hung Q. Ngo, and
Atri Rudra. FAQ: questions asked frequently.
Proceedings of the 35th ACM Symposium on
Principles of Database Systems, PODS 2016,
pages 13-28. ACM, 2016. Il (1, 34)

Mahmoud Abo Khamis, Hung Q. Ngo, and

Dan Suciu. Computing join queries with functional
dependencies. Proceedings of the 35th ACM
Symposium on Principles of Database Systems,
PODS 2016, pages 327-342. ACM, 2016. BB} (3,
5, 20)

Mahmoud Abo Khamis, Hung Q. Ngo, and

Dan Suciu. What do shannon-type inequalities,
submodular width, and disjunctive datalog have to
do with one another? Proceedings of the 36th ACM
Symposium on Principles of Database Systems,
PODS 2017, pages 429-444. ACM, 2017. [l

B (1, 3-5,9, 14, 33, 40)

Noga Alon. On the number of subgraphs of
prescribed type of graphs with a given number of
edges. Israel J. Math. 38(1-2):116-130, 1981. [EEll
(2)

Noga Alon, Raphael Yuster, and Uri Zwick. Finding
and counting given length cycles. Algorithmica,
17(3):209-223,1997. [l (4)

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Albert Atserias, Martin Grohe, and Daniel Marx.
Size bounds and query plans for relational joins.
49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, pages 739-748.
IEEE Computer Society, 2008. BB} (2, 10)

Albert Atserias, Martin Grohe, and Daniel Marx.
Size bounds and query plans for relational joins.
SIAM J. Comput. 42(4):1737-1767, 2013. B} (2,
11)

Guillaume Bagan, Arnaud Durand, and

Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. Computer
Science Logic, 21st International Workshop, CSL
2007, 16th Annual Conference of the EACSL,
volume 4646 of Lecture Notes in Computer Science,
pages 208-222. Springer, 2007. BRIl (7)

Christoph Berkholz and Nicole Schweikardt.
Constant Delay Enumeration with
FPT-Preprocessing for Conjunctive Queries of
Bounded Submodular Width. 44th International
Symposium on Mathematical Foundations of
Computer Science (MFCS 2019), volume 138 of
Leibniz International Proceedings in Informatics
(LIPIcs), 58:1-58:15, 2019. [l (34)

Béla Bollobas and Andrew Thomason. Projections
of bodies and hereditary properties of hypergraphs.
Bull. London Math. Soc. 27(5):417-424,1995. [l
(2)

Karl Bringmann and Egor Gorbachev. A
fine-grained classification of subquadratic patterns
for subgraph listing and friends. Proceedings of the
57th Annual ACM Symposium on Theory of
Computing, STOC 2025. ACM, 2025. (23)

Nofar Carmeli and Markus Kroll. On the
enumeration complexity of unions of conjunctive
queries. ACM Trans. Database Syst. 46(2), May
2021. BRI (34, 37)

F.R. K. Chung, R. L. Graham, P. Frankl, and

J. B. Shearer. Some intersection theorems for
ordered sets and graphs. J. Combin. Theory Ser. A,
43(1):23-37,1986. BRIl (2,10, 11, 14)

42 | 42 TheoretiCS

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Thomas Eiter, Georg Gottlob, and Heikki Mannila.
Disjunctive datalog. ACM Trans. Database Syst.
22(3):364-418,1997. [Ell (4, 7)

Ehud Friedgut and Jeff Kahn. On the number of
copies of one hypergraph in another. Israel J. Math.
105:251-256, 1998. [l (2, 4, 10)

Georg Gottlob, Gianluigi Greco, Nicola Leone, and
Francesco Scarcello. Hypertree decompositions:
questions and answers. Proceedings of the 35th
ACM Symposium on Principles of Database
Systems, PODS 2016, pages 57-74. ACM, 2016.

B (1,3)

Georg Gottlob, Stephanie Tien Lee, and
Gregory Valiant. Size and treewidth bounds for
conjunctive queries. Proceedings of the
Twenty-Eigth ACM Symposium on Principles of
Database Systems, PODS 2009, pages 45-54.
ACM, 2009. Bl (3)

Georg Gottlob, Stephanie Tien Lee,

Gregory Valiant, and Paul Valiant. Size and
treewidth bounds for conjunctive queries. J. ACM,
59(3):16:1-16:35, 2012. BBl (3)

Martin Grohe and Daniel Marx. Constraint solving
via fractional edge covers. ACM Trans. Algorithms,
11(1):4:1-4:20, 2014. BE (1, 3, 33)

Martin Grohe and Daniel Marx. Constraint solving
via fractional edge covers. Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, pages 289-298.
ACM Press, 2006. (2,10)

Alon Itai and Michael Rodeh. Finding a minimum
circuit in a graph. Proceedings of the 9th Annual
ACM Symposium on Theory of Computing, STOC
1977, pages 1-10. ACM, 1977. BB} (2)

Viktor Leis, Andrey Gubichev, Atanas Mirchev,
Peter A. Boncz, Alfons Kemper, and

Thomas Neumann. How good are query optimizers,
really? Proc. VLDB Endow. 9(3):204-215, 2015.

Bl (2

Jorge Lobo, Jack Minker, and Arcot Rajasekar.
Foundations of disjunctive logic programming.
Logic Programming. MIT Press, 1992. (4)

L. H. Loomis and H. Whitney. An inequality related
to the isoperimetric inequality. Bull. Amer. Math.
Soc, 55:961-962,1949. (2)

Daniel Marx. Tractable hypergraph properties for
constraint satisfaction and conjunctive queries. J.
ACM, 60(6):42:1-42:51, 2013. Bl (3, 32, 33, 40)

2025:12

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Abo Khamis, H.Q. Ngo, D. Suciu

Jack Minker. Overview of disjunctive logic
programming. Ann. Math. Artif. Intell. 12(1-2):1-24,

1904. [&1 (4)

Hung Q. Ngo. On an information theoretic approach
to cardinality estimation (invited talk). 25th
International Conference on Database Theory, ICDT
2022, volume 220 of LIPIcs, 1:1-1:21. Schloss
Dagstuhl - Leibniz-Zentrum fir Informatik, 2022.

El @

Hung Q. Ngo. Worst-case optimal join algorithms:
techniques, results, and open problems.
Proceedings of the 37th ACM Symposium on
Principles of Database Systems, PODS 18,

pages 111-124. ACM, 2018. [Bell (2, 20)

Hung Q. Ngo, Ely Porat, Christopher Ré, and
Atri Rudra. Worst-case optimal join algorithms. J.
ACM, 65(3):16:1-16:40, 2018. B} (2, 3, 23)

J. Radhakrishnan. Entropy and counting.
Computational Mathematics, Modelling and
Algorithms, 2003. J. C. Misra, editor (10)

A. Schrijver. Combinatorial Optimization -

Polyhedra and Efficiency. Springer, 2003. (14, 15)

Dan Suciu. Applications of information inequalities
to database theory problems. 2023 38th Annual
ACMY/IEEE Symposium on Logic in Computer
Science (LICS), pages 1-30, 2023. [BEll (14, 20)

Todd L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. Proc. 17th International
Conference on Database Theory (ICDT) 2014,
pages 96-106. OpenProceedings.org, 2014. [EEll
(2)

Mihalis Yannakakis. Algorithms for acyclic
database schemes. Very Large Data Bases, 7th
International Conference, VLDB 1981, pages 82-94.
IEEE Computer Society, 1981. (7, 20)

Raymond W. Yeung. Information Theory and
Network Coding. Springer Publishing Company,
Incorporated, 1st edition, 2008. (8, 12)

Zhen Zhang and Raymond W Yeung. On
characterization of entropy function via information
inequalities. IEEE Transactions on Information
Theory, 44(4):1440-1452,1998. (5, 41)

Zhen Zhang and Raymond W. Yeung. A
non-shannon-type conditional inequality of
information quantities. IEEE Trans. Information
Theory, 43(6):1982-1986, 1997. (5, 9, 41)

TheoretiCS

This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu.

	Introduction
	Preliminaries
	Database instances and conjunctive queries (CQ)
	Tree decompositions and free-connex queries
	Disjunctive Datalog rules (DDR)
	Entropic vectors and polymatroids
	Statistics on the data

	On a Class Information Inequalities
	Size Bound for DDRs from Information Inequalities
	Equivalent Formulations of Inequality (14)
	The Reset Lemma

	Overview of PANDA and statement of main result
	An Efficient Algorithm to Evaluate Disjunctive Datalog Rules
	Example: Preview of PANDA

	Detailed Description of PANDA
	Tables and Dictionaries
	Algorithm
	Proof of correctness and runtime analysis

	Answering Conjunctive Queries in Submodular-Width Time
	Width parameters for conjunctive queries under degree constraints
	Achieving submodular width runtime with PANDA
	Example: Solving a conjunctive query in submodular width time

	Conclusion
	References

