
1 / 42 2025 : 12

PANDA: Query Evaluation
in Submodular Width

Received Jun 5, 2024
Revised Jan 7, 2025
Accepted Feb 28, 2025
Published Apr 30, 2025

Key words and phrases
Shannon inequalities, submodular
width, disjunctive datalog, query
evaluation, degree constraints

Mahmoud Abo Khamisa � �

Hung Q. Ngoa � �

Dan Suciub � �

a Relational AI, Berkeley, USA

b University of Washington,
Seattle, USA

ABSTRACT. In recent years, several information-theoretic upper bounds have been intro-

duced on the output size and evaluation cost of database join queries. These bounds vary in their

power depending on both the type of statistics on input relations and the query plans that they

support. This motivated the search for algorithms that can compute the output of a join query

in times that are bounded by the corresponding information-theoretic bounds. In this paper, we

describe PANDA, an algorithm that takes a Shannon-inequality that underlies the bound, and

translates each proof step into an algorithmic step corresponding to some database operation.

PANDA computes answers to a conjunctive query in time given by the submodular width plus

the output size of the query. The version in this paper represents a significant simplification of

the original version in [6].

1. Introduction

Answering conjunctive queries e�ciently is a fundamental problem in the theory and practice

of database management, graph algorithms, logic, constraint satisfaction, and graphical model

inference, among others [4, 19, 22, 1]. In a full conjunctive query, the input is a set of relations

(or tables, or constraints), each with a set of attributes (or variables), and the task is to list all

satisfying assignments, i.e., assignments to all variables that simultaneously satisfy all input

relations. Each such assignment is called an output tuple, and their number is the output size.

A preliminary version of this article appeared at PODS 2017 [6].
Part of this work was conducted while the authors participated in the Fall 2023 Simons Program on Logic and Algorithms in
Databases and AI.We thank the anonymous reviewers for many insightful comments.

Cite as Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu. PANDA: Query Evaluation
in Submodular Width. TheoretiCS, Volume 4 (2025), Article 12, 1-42.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.12

2 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

For example, the query

&(0, 1, 2) :- �(0, 1) ∧ �(1, 2) ∧ �(2, 0) (1)

is a full conjunctive query asking for the list of all triangles in a (directed) graph with edge

relation �. In contrast, in a Boolean conjunctive query, we only ask whether one such assignment

exists. The query

&() :- �(0, 1) ∧ �(1, 2) ∧ �(2, 0)

asks whether there is a triangle in the graph. More generally, in a proper conjunctive query,

any subset of variables can occur in the head of the query. These are called free variables. For

example, the query

&(0) :- �(0, 1) ∧ �(1, 2) ∧ �(2, 0)

asks for the list of all nodes 0 that are part of a triangle. Other variants of the query evalu-

ation problem include counting output tuples, performing some aggregation over them, or

enumerating them under some restrictions.

In the case of a full conjunctive query, the runtime of any algorithm is at least as large as

the size of the output. This has motivated the study of upper bounds on the sizes of the query

outputs. The corresponding graph-theoretic problem is to bound the number of homomorphic

images of a small graph within a larger graph; this problem has a long history in graph theory

and isoperimetric inequalities [27, 7, 16, 13, 31, 18]. One such bound is the AGM bound, which is

a formula that, given only the cardinalities of the input relations, returns an upper bound on

the output size of the query [10]. Moreover, the bound is tight, meaning that there exist relations

of the given cardinalities where the query’s output has size equal to the AGM bound (up to a

query-dependent factor). This immediately implies that no algorithm can run in time lower

than the AGM bound in the worst-case. Thus, an algorithm that runs in this time is called a

Worst-Case Optimal Join algorithm. The AGM bound for query (1) is $(|� |3/2); algorithms for

listing all triangles within this amount of time has been known for decades [24]. For general

full conjunctive queries, Grohe and Marx [23], and Atserias, Grohe, and Marx [10, 9] devised

a join-project query plan that can compute the output of a full conjunctive query to within a

linear factor of the AGM bound, which is very close to optimality. They also showed that a

join-only query plan cannot achieve this bound. A few years later, a new class of join algorithms,

not based on join and project operators, was able to achieve the AGM bound [36, 32] and thus

achieve worst-case optimality.

In practice, especially in database systems, the input cardinalities are not su�cient to

model what we know about the data, and definitely not su�cient to predict how good or bad a

query plan is. Other data characteristics such as functional dependencies and distinct value

counts are often collected and used to optimize queries [30, 25]; furthermore, practical queries

often have “relations” that are infinite in pure cardinalities. For example, the output size of this

3 / 42 PANDA: Query Evaluation in Submodular Width

query

&(0, 1) :- '(0) ∧ ((1) ∧ 0 + 1 = 10

is obviously at most min{|' |, |(|}, but the AGM bound is |' | · |(|. The relation 0 + 1 = 10 has

infinite cardinality. There has thus been a line of research to strengthen the AGM bound

to account for increasingly finer classes of input statistics. Specifically, Gottlob, Lee, Valiant

and Valiant [21, 20] applied the entropy argument to derive a bound on the output size of a

full conjunctive query under general functional dependencies. Their bound, generalizing the

AGM-bound, is an optimization problem whose constraints are the Shannon inequalities. This

idea was a seed for a series of works that extended the entropy argument to account for finer

classes of constraints, including degree constraints [5, 6, 3], and �>-norm bounds on degree

sequences [3].

Designing WCOJ algorithms that match these stronger bounds becomes harder since the

bounds under more constraints are tighter. An algorithm calledCSMA is described in [5], which

only accounts for relation cardinalities and functional dependencies.

In database management systems jargon, a WCOJ algorithm is amulti-way join operator;

this operator, for some classes of queries, is asymptotically faster than the traditional binary

join operator [32]. Given a complicated conjunctive query, however, before applying a WCOJ

algorithm, it is often beneficial to come up with a query plan that decomposes the query into

simpler subqueries. Query plans guided by (hyper)tree decompositions have proved to be very

useful both in theory and in practice [19]. In particular, query plans represented by a single

tree decomposition can be used to answer a Boolean conjunctive query or a full conjunctive

query in time bounded by $(# fhtw + |output|), where fhtw is the fractional hypertree width [22]

of the query, and |output| is the size of the output. This runtime is sensitive to the output

size, and thus it is more adaptive than a single WCOJ application.1 For example, using tree-

decomposition-based query plans, we can identify whether a large graph with # edges contains

the homomorphic images of a 9-cycle in time $(#2) (assuming a constant 9).

Motivated by finding the fixed-parameter tractability boundary for Boolean conjunctive

queries, or equivalently constraint satisfaction problems, under the regime of unbounded-arity

inputs, Marx [28] came up with a beautifully novel idea: instead of fixing a single query plan

(i.e., tree-decomposition) up front, we can consider multiple query plans, and partition the data

to make use of di�erent plans for di�erent parts of the data. The improved complexity measure

that Marx introduced is called the submodular width, subw, which is always less than or equal

to fhtw.

The subw algorithm from Marx [28] has some limitations. First, it assumes all input

relations have the same cardinality # ; in particular, it is not known how to define the width

and design similar algorithms under functional dependencies or degree constraints. Second,

1 It should be noted, however, that the sub-queries of the plan are still being answered with a WCOJ operator.

4 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

the runtime of the algorithm is not $(#subw), but a polynomial in this quantity. Third, the

subw-notion and the algorithmwere not defined for general conjunctive queries with arbitrary

free variables.

Contributions. This paper connects all three of these lines of research: WCOJ algorithms,

fractional hypertree width, and submodular width into a single framework, while dealing

with arbitrary input degree constraints (which is a superset of functional dependencies and

cardinality constraints), and arbitrary conjunctive queries. The bridge that connects these

algorithms and concepts is information theory. In particular, our contributions include the

following:

We show how a generalized version of the classic Shearer’s inequality [18] can be used

to derive upper bounds on the output size of a disjunctive datalog rule (DDR), which is a gen-

eralization of a conjunctive query. The upper bound is a generalization of the AGM bound to

include degree constraints and DDRs. The introduction of DDR and its information theoretic

output size bound in studying conjunctive queries is our first major technical novelty. DDRs

are interesting in their own right. They form the building blocks of disjunctive datalog [17],

which is a significant extension of datalog. Disjunctive datalog has a long history: it emerged in

logic programming [26, 29], and is used for knowledge representation, representing incomplete

information, and constraint satisfaction. Our bound on the output size of a DDR represents a

bound on the output size of theminimal model of the disjunctive datalog program consisting of

that single rule.

Next, we show that certain symbolic manipulations of the information inequality can

be converted into a query evaluation plan for the DDR that runs in time bounded by the

predicted upper bound. This idea of converting a proof of an information inequality into a

query evaluation plan is our second major technical novelty. The algorithm is called PANDA,

which stands for “Proof-Assisted eNtropic Degree-Aware”. In particular, PANDA is worst-case

optimal for DDRs under arbitrary degree constraints. Even when restricted to only conjunctive

queries, this is already beyond the state of the art in WCOJ algorithms because previous WCOJ

algorithms cannot meet the tightened bounds under degree constraints.

Lastly, we explain how to define the notions of fhtw and subw under degree constraints

and for conjunctive queries with arbitrary free variables. We show how PANDA can be used

to answer arbitrary conjunctive queries with arbitrary degree constraints, in time bounded

by $̃(#subw + |output|), where $̃ hides a polylogarithmic factor in # . These results close the

gaps left by Marx’ work. For example, with PANDA, the 9-cycle query can now be answered

in $̃(#2−1/⌈9/2⌉) time, which is sub-quadratic, and matches the specialized cycle detection

algorithm from Alon, Yuster, and Zwick [8].

The results in this paper were first announced in a conference paper [6]. The current

paper makes several significant improvements:

5 / 42 PANDA: Query Evaluation in Submodular Width

In [6], we used both the primal and the dual linear program to guide PANDA: the primal

gives an optimal polymatroid h, while the dual represents the basic Shannon inequalities.

In the new version, we use only the dual, which significantly simplifies the algorithm. The

algorithm is described only in terms of an information inequality and its proof (called a

witness), which correspond precisely to a feasible solution to the dual program. We only

need to describe the primal and dual programs later, in Sec. 6, where we introduce the

degree-aware submodular width, which is defined in terms of the primal.

Previously, we needed a proof sequence to drive the algorithm; it was di�cult to prove that a

proof sequence exists; for example, no proof sequence existed in our earlier framework [5].

In the new version, we describe PANDA without the need for an explicit proof sequence,

which again simplifies it. If needed, a proof sequence can still be extracted from the new

version of the algorithm.

One di�culty in the earlier presentation of PANDA was the need to recompute the proof

sequence after a reset step. This is no longer necessary here.

Paper Outline This paper is organized as follows. Section 2 presents background concepts

needed to understand the techniques and results of the paper; in particular, it introduces

disjunctive datalog rules (DDR), a generalization of conjunctive queries, reviews necessary

background on information theory, and defines the class of statistics on input relations that

the PANDA algorithm supports, which are called degree constraints. Section 3 discusses the

class of information inequalities that are at the center of our work, where they are used to

both derive upper bounds on the output size of a query and guide the PANDA algorithm.

Section 4 states the main algorithmic result, which says that the PANDA algorithm meets

this information-theoretic upper bound if the bound is a Shannon inequality, i.e., it does not

involve non-Shannon inequalities [40, 39]. Section 5 presents the core PANDA algorithm, which

constructs a step-by-step proof of the Shannon inequality, and converts each step into a database

operation. Section 6 defines the degree-constraint aware submodular width, and shows how to

use disjunctive datalog rules to compute a conjunctive query in time given by the submodular

width. We conclude in Section 7.

2. Preliminaries

2.1 Database instances and conjunctive queries (CQ)

Fix a set\ of variables (or attributes). An atom is an expression of the form '(^) where ' is a

relation name and ^ ⊆ \ is a set of attributes. A schema, Σ, is a set of atoms. We shall assume

throughout that distinct atoms in Σ have distinct attribute sets. If ' is a relation name in Σ, we

write vars(') for its attribute set, and define vars(Σ) def= \ to be the set of all attributes in the

schema Σ.

6 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Given a countably infinite domain Dom, we use Dom^ to denote the set of tuples with

attributes ^ ⊆ \ . A Σ-instance is a map � that assigns to each relation name ' in Σ a finite

subset '� ⊆ Domvars(') . Technically, we should use Σ�
def
= ('�)'∈Σ to denote the Σ-instance;

however, to reduce notational burden, instead of writing '� and Σ�, we will often write ' and

Σ when the instance is clear from the context. Given ^ ⊆ \ and a tuple t ∈ Dom\ , we write

c^ (t) to denote the projection of t onto the variables ^ .
The full natural join (or full join for short) of the Σ-instance is the set of tuples t ∈ Dom\

that satisfy all atoms in Σ:

ZΣ
def
= {t ∈ Dom\ | cvars(') (t) ∈ ',∀' ∈ Σ} (2)

This set of tuples is sometimes called in the literature the universal table of the instance Σ.

Given a schema Σ, a conjunctive query is the expression

&(L) :-
∧

'(^)∈Σ
'(^) (3)

where L ⊆ \ is called the set of free variables, and &(L) is the head atom of the query. Atoms in

Σ are called the body atoms of the query. The output&(L) of an input instance Σ is the projection
of the full join (2) onto the free variables L: &(L) def= cL (ZΣ).

When L = \ , we call the query a full conjunctive query. When L = ∅, we call the query a
Boolean conjunctive query, whose answer &() is either true or false, and it is true if and only if
the full join (2) is non-empty.

Our complexity results are expressed in terms of data complexity; in particular, we consider

the number of atoms and variables to be a constant, i.e., |Σ| + |\ | = $(1), and the complexity is

a function of the instance size. We define the size of a Σ-instance as:

∥Σ∥ def=
∑

'(^)∈Σ
|' |. (4)

The notation ∥Σ∥ is used in part to distinguish it from |Σ| which counts the number of atoms

in Σ.

2.2 Tree decompositions and free-connex queries

Consider a conjunctive query in the form (3). A tree decomposition of & is a pair (), j), where
) is a tree and j : nodes()) → 2vars(&) is a map from the nodes of) to subsets of vars(&)
that satisfies the following properties: for all atoms '(^) in Σ, there is a node B ∈ nodes())
such that ^ ⊆ j(B); and, for any variable - ∈ vars(&), the set {B | - ∈ j(B)} forms a connected

subtree of) . Each set j(B) is called a bag of the tree-decomposition, and we will assume w.l.o.g.

that the bags are distinct, i.e., j(B) ≠ j(B′) when B ≠ B′ are nodes in) .

A free-connex tree decomposition for & is a tree-decomposition for & with an additional

property that there is a connected subtree) ′ of) for which L =
⋃

B∈nodes() ′) j(B). The query &

7 / 42 PANDA: Query Evaluation in Submodular Width

is free-connex acyclic i� there is a free-connex tree decomposition (), j) in which every bag is

covered by an input atom; namely, for every B ∈ nodes()), there exists an input atom '(^) ∈ Σ
where j(B) ⊆ ^ .

The following result is well-known [37, 11].

LEMMA 2.1. If & is a free-connex acyclic conjunctive query of the form (3), then we can compute

its output in time $̃(∥Σ∥ + |&(L) |). In particular, after a preprocessing time of $̃(∥Σ∥), we can list
the output tuples one by one with constant-delay between them.

In particular, for this class of queries, the runtime is the best one can hope for: input size

plus output size.

2.3 Disjunctive Datalog rules (DDR)

Disjunctive Datalog rules [17] are a generalization of conjunctive queries, where the head of the

query can be a disjunction, formalized as follows. Let Σin and Σout be two schemas, called input

and output schema respectively. We associate to these two schemas the following disjunctive

Datalog rule (DDR)

∨

&(`)∈Σout
&(`) :-

∧

'(^)∈Σin

'(^) (5)

The DDR is uniquely defined by the two schemas Σin and Σout. The syntax in (5) does not add

any new information, but is intended to be suggestive for the following semantics:

DEF IN IT ION 2 .2. Let Σin be an input instance. Amodel (or feasible output) for the rule (5) is

an instance Σout, such that the following condition holds: for every tuple t ∈ ZΣin, there is an

output atom &(`) ∈ Σout for which c` (t) ∈ &. Similar to (4), the size of the output instance Σout

is defined as

∥Σout∥
def
=

∑

&(`)∈Σout
|&|. (6)

A model isminimal if we cannot remove a tuple from any output relation without violating the

feasibility condition.

In English, a feasible output needs to store each tuple t ∈ ZΣin in at least one of the output

relations &(`) ∈ Σout. The query evaluation problem is to compute a minimal model. Note that

a conjunctive query is a disjunctive Datalog rule where Σout has a single atom.

DDRs are interesting. We illustrate the concept here with a few examples.

EXAMPLE 2 .3. Consider the following DDR,

&(-, /) :- '(-,.) ∧ ((., /)

8 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

where Σin = {'(-,.), ((., /)} and Σout = {&(-, /)}. A model (or feasible output) to the DDR is

any superset of c-/ (' Z (). Consider now the following DDR:

�(-) ∨ �(.) :- '(-,.)

One model is � := c- ('), � := ∅. Another model is � := ∅, � := c. ('). Both are minimal. Many

other models exist.

A non-trivial DDR is the following:

�(-,. , /) ∨ �(., /,,) :- '(-,.) ∧ ((., /) ∧* (/,,) (7)

To compute the rule, for each tuple (F, G, H, E) in the full join, we must either insert (F, G, H)
into �, or insert (G, H, E) into �. The output size is the larger of the resulting relations � and

�. We shall see later in the paper that, for this rule, there is a model of size $(
√
|'| · |(| · |* |),

which is a non-trivial result. ■

2.4 Entropic vectors and polymatroids

For general background on information theory and polymatroids, we refer the reader to [38].

Given a discrete (tuple of) random variable(s) ^ over a domain Dom(^) with distribution >,

the (Shannon) entropy of ^ is defined as

ℎ(^) def= −
∑

x∈Dom(^)
>(^ = x) log >(^ = x)

The support of the distribution is the set of all x where >(^ = x) > 0. We will only work with

distributions of finite support. Let # be the support size, then it is known that 0 ≤ ℎ(^) ≤ log# .

The upper bound follows from the concavity of ℎ and Jensen’s inequality. Moreover, ℎ(^) = 0

i� - is deterministic, i.e., it has a singleton support, and ℎ(^) = log# i� - is uniform, meaning

that >(^ = x) = 1/# for all x in the support.

If\ is a set of jointly distributed random variables, then the vector h = (ℎ(^))^⊆\ ∈ R2
\

+ is

called an entropic vector.2 Implicitly, ℎ(∅) = 0; thus, this vector is actually of dimension 2|\ | − 1.
We will often write ^_ for the union ^ ∪_ . In particular, ℎ(^_) = ℎ(^ ∪_).

Starting with Shannon himself, the study of linear functions on entropic vectors has been

a central topic in information theory. The two basic linear functions are defined by the so-called

information measures. An information measure is an expression ` = (_ |^) or f = (_ ;` |^),
where ^ ,_ ,` are disjoint subsets of the set of variables \ . We call ` a monotonicity and f a

submodularity information measure respectively. A monotonicity measure ` = (_ |^) is called
unconditional i� ^ = ∅. Similarly, a submodularity measure f = (_ ;` |^) is called unconditional

2 Given two sets � and �, we use �� to denote the set of all functions 5 : �→ �.

9 / 42 PANDA: Query Evaluation in Submodular Width

i� ^ = ∅. For any vector h ∈ R2\+ , we define the linear functions:

ℎ(`) def= ℎ(^_) − ℎ(^) ` = (_ |^)

ℎ(f) def= ℎ(^_) + ℎ(^`) − ℎ(^) − ℎ(^_`) f = (_ ;` |^)

We writeMON for the set of monotonicity measures, i.e., the set of all ` = (_ |^) where
^ ,_ ⊆ \ are disjoint. Similarly, we write SUB for the set of submodularity measures.

A polymatroid is a vector h that satisfies the basic Shannon inequalities:

ℎ(∅) = 0, ∀` ∈ MON, ℎ(`) ≥ 0, ∀f ∈ SUB, ℎ(f) ≥ 0 (8)

The latter two are called monotonicity and submodularity constraints respectively. Every

entropic vector is a polymatroid, but the converse is not true [40]. A Shannon inequality is a

linear inequality that is derived from the basic Shannon inequalities; equivalently, a linear

inequality is a Shannon inequality i� it is satisfied by all polymatroids.

Discussion In the literature, the basic Shannon inequalities are often restricted to elemental

ones, which are submodularity measures of the form (�; �|^) and monotonicity measures of

the form (�|\ − {�}), where �, � ∈ \ are single variables, and ^ ⊆ \ − {�, �}. The reason is

that the elemental inequalities are su�cient to prove every Shannon inequality; for example

ℎ(�;��|�) = ℎ(�;� |�) + ℎ(�; �|��) ≥ 0, when both ℎ(�;� |�) ≥ 0 and ℎ(�; �|��) ≥ 0. Given

;
def
= |\ |, the total number of elemental basic Shannon inequalities is ;(; − 1)2;−3 + ;. 3

However, for the purpose of the PANDA algorithm, it is preferable to consider all basic Shannon

inequalities, because this may lead to a smaller exponent of the polylog factor of the algorithm,

as we will see in Section 5.

2.5 Statistics on the data

In typical database engines, various statistics about the data are maintained and used for

cardinality estimation, query optimization, and other purposes. Common statistics include

the number of distinct values in a column, the number of tuples in a relation, and functional

dependencies. A robust abstraction called “degree constraints” was introduced in [6] that

captures many of these statistics. This section provides a formal definition of degree constraints,

which are also the constraints that PANDA can support.

Let X = (_ |^) be a monotonicity measure, Σ be a database instance with schema Σ, ' ∈ Σ
be a relation in this instance, and x ∈ Dom^ be a tuple with schema ^ . We define the quantity

degree of x with respect to_ in ', denoted by deg'(_ |^ = x), as follows:
When both ^ ⊆ vars(') and _ ⊆ vars('), then deg'(_ |^ = x) is the number of times

the given ^ -tuple x occurs in c^_ (').

3 Specifically, there are
(;
2

)
ways to choose � and � and 2;−2 ways to choose ^ resulting in

(;
2

)
· 2;−2 elemental

submodularities. Additionally, there are ; elemental monotonicities.

10 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

When ^ and_ are arbitrary with respect to vars('), then we define the restriction of ' to

^ ∪_ to be the relation '′(^_) := Dom^∪_
⋉ ',4 and set

deg'(_ |^ = x) def= deg'′ (_ |^ = x)

Finally, define the degree of the monotonicity measure X = (_ |^) in ', denoted by deg'(X),
to be

deg'(_ |^)
def
= max

x∈Dom^
deg'(_ |^ = x) (9)

Note that, for infinite Dom, if_ ⊈ vars('), then deg'(_ |^) = ∞, unless ' = ∅, in which case

deg'(_ |^) = 0. We say that ' is a guard of X = (_ |^) if _ ⊆ vars('), and note that, if ' ≠ ∅,
then ' is a guard of X i� deg'(_ |^) < ∞.

If ^ = ∅ and _ = vars('), then the degree is the cardinality of ', deg'(_ |∅) = |'|. If
deg'(X) = 1 then there is a functional dependency in ' from ^ to _ . If the number of unique

values in a column � of ' is 9, then deg'(�|∅) = 9. Given a schema instance Σ, define the degree

of X = (_ |^) in the instance Σ as:

degΣ(X)
def
= min

'∈Σ
deg'(X). (10)

Let Δ ⊆ MON be a set of monotonicity measures and T : Δ→ R+ be numerical values for

each X ∈ Δ. Throughout this paper, we write #X instead of # (X), and define <X
def
= log#X for all

X ∈ Δ. We view the pair (Δ,T) as a set of degree constraints, andwe say that an instance Σ satisfies
the degree constraints (Δ,T) i� degΣ(X) ≤ #X for all X ∈ Δ. In that case, we write Σ |= (Δ,T).

3. On a Class Information Inequalities

The entropy argument and Shearer’s lemma in particular [16] is a powerful information-

theoretic tool in extremal combinatorics [33]. Friedgut and Kahn [18] applied the argument to

bound the number of homomorphic copies of a graph in a larger graph; this is a special case

of the full conjunctive query problem. Grohe and Marx [23], with further elaboration in [9]

showed how Shearer’s lemma can be used to bound the output size of a full CQ given input

cardinality constraints. Briefly, let Σ be the input schema of a full CQ of the form (3),

&(\) :-
∧

'(^)∈Σ
'(^). (11)

where the head atom &(\) has all the variables. Given any non-negative weight vector w =

(E^)'(^)∈Σ that forms a fractional edge cover of the hypergraph (\ , K) where K := {^ | '(^) ∈

4 (⋉) denotes the semi-join reduce operator defined by (⋉) def= cvars(() ((Z)).

11 / 42 PANDA: Query Evaluation in Submodular Width

Σ}, the output size of the full CQ is bounded by

|&| ≤
∏

'(^)∈Σ
|' |E^ . (12)

This is known the AGM-bound [10]. The bound is a direct consequence of Shearer’s inequality [16],

which states that the inequality

ℎ(\) ≤
∑

'(^)∈Σ
E^ · ℎ(^), (13)

holds for every entropic vector h ∈ R2\+ if and only if the weightsw form a fractional edge cover

of the hypergraph (\ , K) defined above.
The above results can only deal with cardinality constraints of input relations, and if

the input query is a conjunctive query. We extend these results to disjunctive Datalog rules

and handle general degree constraints. We start in the next section with a generalization of

Shearer’s inequality and show how that implies an output cardinality bound for DDRs. In later

sections, we use the information inequality to drive the PANDA algorithm.

3.1 Size Bound for DDRs from Information Inequalities

This section develops an information-theoretic bound for the output size of a DDR under general

degree constraints. Inequality (14) below is a generalization of Shearer’s inequality (13), and the

bound (15) is a generalization of the AGM bound (12) for DDRs and general degree constraints.

(Recall the notation for the size of a model Σout in (6).) In what follows, for a given schema

Σ and an atom '(^) ∈ Σ, for brevity we will also write ^ ∈ Σ as we assume a one-to-one

correspondence between atoms and their variables.

THEOREM 3.1. Consider a DDR of the form (5) with input and output schemas Σin and Σout

respectively. Let Δ ⊆ MON be a set of monotonicity measures. Suppose that there exist two

non-negative weight vectorsw := (EX)X∈Δ and , := (_`)`∈Σout with ∥,∥1 = 1, where the following

inequality holds for all entropic vectors h:

∑

`∈Σout
_` · ℎ(`) ≤

∑

X∈Δ
EX · ℎ(X) (14)

Then, for any input instance Σin for the DDR (5), there exists a model Σout for the DDR that satisfies:

(Recall that |Σout | is the number of atoms in Σout.)

∥Σout∥ ≤ |Σout | ·
∏

X∈Δ

(
degΣin (X)

)EX

(15)

PROOF . The plan is to use the entropy argument [16], where we define a uniform probabil-

ity distribution on a certain subset &̄ ⊆ ZΣin, denote h its entropic vector, then use (14) to

prove (15).

12 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Let\
def
= vars(Σin) be the set of all input variables. Notice that, for any joint distribution

on\ with entropic vector h, we have ℎ(X) ≤ logdegΣin (X) for all X ∈ Δ. This is trivially true if
X ∈ Δ is not guarded by any relation in Σin (see Sec 2.5 for the notion of guardedness). Otherwise,
the inequality follows from the fact that the uniform distribution on a finite support has the

maximum entropy:

ℎ(X) = ℎ(_ |^) =
∑

F∈Dom^

>(^ = x)ℎ(_ |^ = x)

≤
∑

F∈Dom^

>(^ = x) logdegΣin (_ |^ = x)

≤
∑

F∈Dom^

>(^ = x) logdegΣin (X)

= logdegΣin (X)

Next, we construct both the set &̄ and a model Σout for the DDR as follows. Initially, set

&̄ = ∅, and & = ∅ for all & ∈ Σout. Iterate over the tuples t ∈ ZΣin in some arbitrary order.

For each t: if ∃& ∈ Σout s.t. cvars(&) (t) ∈ &, then ignore t; otherwise, insert t into &̄ and insert

cvars(&) (t) into & for every & ∈ Σout. In the end, we have constructed a model Σout for the DDR.

Furthermore, |&̄| = ∥Σout∥.
Finally, consider the uniform distribution on &̄, i.e., the distribution where each tuple in

&̄ is chosen randomly with probability 1/|&̄|. Let h be the entropy vector of this distribution.

Notice that for each & ∈ Σout, the marginal distribution on vars(&) is also uniform, because

|&| = |&̄|; in particular, ℎ(`) = log |&| = log |&̄| for all &(`) ∈ Σout. Then, noting that ∥,∥1 = 1,

the following holds:

log
∥Σout∥
|Σout |

= log |&̄| =
∑

`∈Σout
_` · ℎ(`) ≤

∑

X∈Δ
EX · ℎ(X) ≤

∑

X∈Δ
EX · logdegΣin (X)

■

In order to obtain the best bound, we need to choose the weights w and , to minimize

quantity
∏

X∈Δ

(
degΣin (X)

)EX

on the right-hand side of (15). Specifically, we want to minimize

the linear objective

min
,,w

∑

X∈Δ
EX · logdegΣin (X) (16)

subject to the constraints that w ≥ 0, , ≥ 0, ∥,∥1 = 1, and that inequality (14) holds for all

entropic vectors h.

For general monotonicity measure Δ, it is an open problem to characterize the weight

vectors w and , for which (14) holds for all entropic vectors h. In particular, the di�culty is

related to the problem of characterizing the entropic region in information theory [38]. Hence,

13 / 42 PANDA: Query Evaluation in Submodular Width

to make the problem tractable, we relax the upper bound by requiring (14) to hold for all

polymatroids h.

DEF IN IT ION 3.2 (Polymatroid bound). The following bound is called the polymatroid bound

for disjunctive datalog rules:

1∗Δ,T
def
= min

∑

X∈Δ
EX · logdegΣin (X) (17)

subject to: ∥,∥1 = 1

inequality (14) holds for all polymatroids h ∈ R2\+ (18)

w ≥ 0, , ≥ 0

Note that the bound is stated in log-scale, so that the objective is linear. The constraint (18)

is a linear constraint, as explained below. In particular, the polymatroid bound is a linear

program.

PROPOS IT ION 3.3. The constraint that (14) holds for all polymatroids h is a linear constraint

in the weight vectorsw and , and auxiliary variables.

PROOF . In the space R2
\

, the set of polymatroids is a polyhedron of the form {h | Gh ≥ 0} for
an appropriately defined matrix G. Inequality (14) is a linear inequality of the form b⊤h ≥ 0,

where b is a linear function of the weights w and ,. From the Gale-Kuhn-Tucker variant of

Farkas’ lemma5, inequality (14) holds for all polymatroids h if and only if there is no h for which

b⊤h < 0 and Gh ≥ 0, which holds if and only if there is a vector x such that G⊤x = b and x ≥ 0.

The last condition is a linear constraint in the weightsw and ,, and in the dual variables x. ■

The following proposition says that the polymatroid bound linear program always has a

rational solution. Therefore, given any degree constraints (Δ,T) and vectors (,,w) that define
a valid Shannon inequality (14), there are always rational vectors (,∗,w∗) that also define a
valid Shannon inequality and satisfy:

∑

X∈Δ
E∗X · logdegΣin (X) ≤

∑

X∈Δ
EX · logdegΣin (X)

PROPOS IT ION 3.4. Given any degree constraints (Δ,T), the polymatroid bound linear program
from Eq. (17) has an optimal solution (,∗,w∗) which is rational and independent of (Δ,T).

PROOF . The constraints of the linear program have integer coe�cients. Moreover, these

coe�cients are independent of the given statistics (Δ,T). (The statistics are only used in the

5 https://en.wikipedia.org/wiki/Farkas%27_lemma

14 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

objective function.) Consider the polytope defined by the constraints of the linear program. No

matter what the objective function is, there is always an optimal solution which is a vertex of

this polytope. By Cramer’s rule, all these vertices are rational. ■

The question of how tight the polymatroid bound is (and its entropic counterpart) has an

intriguing connection to information theory. We refer the reader to [6, 35] for more in-depth

discussions and results.

3.2 Equivalent Formulations of Inequality (14)

Shearer’s result [16] states that inequality (13) holds for all polymatroids h i� the weights form a

fractional edge cover of a certain hypergraph. This section shows an analogous characterization

for the generalization (14), and states an “integral” version of this characterization that shall be

used by the PANDA algorithm. The following lemma is a variant of Farkas’ lemma [34] applied

to our specific setting.

LEMMA 3.5. Let a ∈ R2\ be a coe�cient vector. The following inequality is a Shannon inequality:
∑

^⊆\
0^ℎ(^) ≥0 (19)

if and of only if there exist non-negative coe�cientsm = (;`)`∈MON and s = (Af)f∈SUB such that
the following equality holds as an identity over 2|\ | symbolic variables ℎ(^), ^ ⊆ \ :

∑

^⊆\
0^ℎ(^ |∅) =

∑

`∈MON
;`ℎ(`) +

∑

f∈SUB
Afℎ(f) (20)

We call the tuple (m, s) a witness of (19). If a is rational, then there exists a rational witness.

Furthermore,m and s are a function of a and |\ |.

PROOF . Clearly if (20) holds as an identity, then (19) follows trivially. The converse is a direct

consequence of a variant of Farkas’ lemma, in particular Corollary 7.1h in Schrijver’s classic

text [34], which states: if the polyhedron % = {x | Gx ≥ b} is not empty, and if inequality

⟨c, x⟩ ≥ 3 holds for all x ∈ %, then there exists 3′ ≥ 3 for which ⟨c, x⟩ ≥ 3′ is a non-negative

linear combination of the inequalities in Gx ≥ b.6

In our context, % is the polyhedron defined by (8) and b = 0, and the inequality is defined

by c = a and 3 = 0. Farkas’ lemma thus implies that if (19) is a Shannon inequality, then

⟨a,h⟩ ≥ 0 is a non-negative linear combination of the Shannon inequalities in (8), namely there

are coe�cientsm, s, 4+, 4− such that the following identity holds over the variables ℎ(^), ^ ⊆ \ :

⟨a,h⟩ =
∑

`∈MON
;`ℎ(`) +

∑

f∈SUB
Afℎ(f) + (4+ − 4−)ℎ(∅). (21)

6 We thank the anonymous reviewer for pointing out this specific variant that helps simplify our proof.

15 / 42 PANDA: Query Evaluation in Submodular Width

where 4+ and 4− are coe�cients associated with ℎ(∅) ≥ 0 and −ℎ(∅) ≥ 0. Setting ℎ(^) = 1 for

all ^ in (21), we conclude that ⟨a, 1⟩ = 4+ − 4−, and thus (20) holds.
The fact thatm and s are a function of a and |\ | (and the bounds on their representation

sizes) can be found in Chapter 10 of Schrijver’s book [34]. ■

In words, Lemma 3.5 says that the LHS of (19) is a positive linear combination of mono-

tonicity and submodularity measures. From the lemma, it is not hard to show that Shearer’s

inequality (13) holds whenever the weights form a fractional edge cover of the corresponding

hypergraph. Given a Shannon inequality of the form (19), the witness (m, s) from Lemma 3.5

can be computed by solving the following linear program: The variables are ;` and Af, which

are non-negative. The constraints ensure that Eq. (20) is an identity. Specifically, for each ^ ⊆ \ ,

there is a constraint that says that 0^ must be equal to the weighted sum of terms ;` and Af

that contribute to the coe�cient of ℎ(^) on the RHS of Eq. (20). The linear program has no

objective. Instead, we just compute a feasible solution.

To guide thePANDA algorithm later, wewill need an “integral” version of the lemma above.

Given a set (, a multiset S over (is a multiset whose members are in (. The size of a multiset S,
denoted by |S|, is the number of its members, counting multiplicity. If the coe�cients , andw

in Eq. (14) are rational, then the above linear program has a rational solution (m, s), hence the
inequality (14) has a rational witness (m, s). By multiplying the rational vectors ,,w,m, and s

with the least common multiple of their denominators, we can convert them to integer vectors.

Moreover, the vectors ,,w,m, and s are non-negative. We can represent a non-negative integer

vector , = (_`)`∈Σout as a multisetZ over Σout where for every ` ∈ Σout, the multiplicity of `

inZ is equal to _` . Similarly, we can representw,m, and s as multisetsD,M, and S over Δ,

MON, and SUB respectively, leading to the following corollary.

COROLLARY 3.6. For rational coe�cients , andw, inequality (14) holds for all polymatroids if

and only if there exist multisetsZ,D,M, and S over Σout, Δ,MON, and SUB respectively, such

that the following identity holds symbolically over the variables ℎ(^), ^ ⊆ \ :

∑

`∈Z
ℎ(` |∅) =

∑

X∈D
ℎ(X) −

∑

`∈M
ℎ(`) −

∑

f∈S
ℎ(f) (22)

In particular, if we set ℎ(∅) = 0, then the identity (22) becomes:

∑

`∈Z
ℎ(`) =

∑

X∈D
ℎ(X) −

∑

`∈M
ℎ(`) −

∑

f∈S
ℎ(f) (23)

The sizes of the multisetsZ,D,M,S are bounded by functions ofw and |\ |.

DEF IN IT ION 3.7. We call the terms ℎ(X) in (22) and (23) statistics terms, and call the terms

ℎ(`) and ℎ(f) witness terms. Specifically, we call terms ℎ(`) monotonicity terms, and terms ℎ(f)
submodularity terms. After removing the common denominator in (14), the resulting inequality

16 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

is called an integral Shannon inequality and has the format:

∑

`∈Z
ℎ(`) ≤

∑

X∈D
ℎ(X) (24)

3.3 The Reset Lemma

To conclude this section on information inequalities, we present a combinatorial lemma that

plays a key role in our algorithm. The lemma says that, given a valid integral Shannon inequal-

ity (24), if we would like to remove an unconditional term ℎ(X0) from the RHS while retaining

its validity, then it su�ces to remove at most one term ℎ(`) from the LHS. We may be able

to remove even more terms from the RHS, in addition to ℎ(X0), but, importantly, it su�ces to

remove a single term from the LHS.

LEMMA 3.8 (Reset Lemma). Consider an integral Shannon inequality (24):

∑

`∈Z
ℎ(`) ≤

∑

X∈D
ℎ(X)

Suppose some term X0 ∈ D is unconditional, then there are two multisets D′ ⊆ D \ {X0} and
Z′ ⊆ Z with |Z′| ≥ |Z| − 1 such that the following is also an integral Shannon inequality:

∑

`∈Z′
ℎ(`) ≤

∑

X∈D′
ℎ(X)

PROOF . By Corollary 3.6, there exists an integral witness such that equation (23) is an identity

(with ℎ(∅) set to 0). As mentioned before, this integral witness can be computed by solving a

linear program which gives a rational solution (m, s), and then multiplying the rational vectors

with the least commonmultiple of their denominators to convert them to integer vectors, which

are then represented as the multisetsM and S respectively. We prove the lemma by induction

on the “potential” quantity ? := |D| + |M| + 2|S|. The base case when ? ≤ 1 is trivial. Consider

the case when ? ≥ 2. Suppose X0 = (] | ∅), i.e., ℎ(X0) = ℎ(]).
Since (23) is an identity, the term ℎ(]) must cancel out with some other term. If] ∈ Z,

then we can remove ℎ(]) from both sides (i.e., settingZ′ = Z − {] } andD′ = D − {(] |∅)}).
Otherwise, there are three cases:

Case 1 There exists (_ |]) ∈ D. Then, from

ℎ(_ |]) + ℎ(] |∅) = ℎ(_] |∅) (25)

identity (23) remains an identity if we add (_] |∅) and remove {(_ |]), (] |∅)} fromD. The
potential ? decreases by 1, and thus by induction, we can drop the newly added statistics term

ℎ(_]) from the RHS of (24) while dropping at most one term from the LHS.

17 / 42 PANDA: Query Evaluation in Submodular Width

Case 2 ℎ(]) cancels with a monotonicity term ℎ(`) where ` = (_ |^). In other words,] = ^_ ,

and the RHS of (23) contains the terms:

ℎ(]) − ℎ(_ |^) = ℎ(]) − ℎ(^_) + ℎ(^) = ℎ(^) (26)

We add (^ |∅) toD, remove (] |∅) fromD, and remove ` = (_ |^) fromM, thus decreasing the

potential ? by 1. Then, we proceed inductively to eliminate the newly added statistics term ℎ(^).
Case 3 ℎ(]) cancels with a submodularity term ℎ(f) where f = (_ ;` |^) and] = ^_ . In

particular, the RHS of (23) contains the terms:

ℎ(]) − ℎ(_ ;` |^) = ℎ(]) − ℎ(^_) − ℎ(^`) + ℎ(^) + ℎ(^_`)
= ℎ(^_`) − ℎ(` |^) (27)

We add (^_` |∅) to D, drop (] |∅) from D, drop f = (_ ;` |^) from S, and add a new mono-

tonicity measure (` |^) toM. Overall, the potential ? decreases by 1. The proof follows by

induction where we can eliminate the newly added statistics term ℎ(^_`) from the RHS.

■

We illustrate the reset lemma with the following simple examples:

EXAMPLE 3.9. Consider Shearer’s inequality 2ℎ(-./) ≤ ℎ(-.) + ℎ(./) + ℎ(-/), which we
write in the form (24) as:7

ℎ(-./) + ℎ(-./) ≤ℎ(-.) + ℎ(./) + ℎ(-/) (28)

To drop the term ℎ(-/) on the RHS of (28) while retaining the validity of the inequality, we can

also delete one term on the LHS (we can choose any term since they are identical), and obtain

the following Shannon inequality:

ℎ(-./) ≤ ℎ(-.) + ℎ(./)

The proof of the Reset Lemma “explains” how we can do this dropping by reasoning from the

identity counterpart of (28) (i.e., an identity of the form (23)):

ℎ(-./) + ℎ(-./) = ℎ(-.) + ℎ(./) + ℎ(-/)
− (ℎ(-.) + ℎ(-/) − ℎ(-) − ℎ(-./)) this is ℎ(. ; / |-)
− (ℎ(-) + ℎ(./) − ℎ(-./) − ℎ(∅)) this is ℎ(- ;./ |∅) (29)

7 To be consistent with (24), we should write it as ℎ(-./) + ℎ(-./) ≤ ℎ(-. |∅) + ℎ(./ |∅) + ℎ(-/ |∅).

18 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

By canceling out ℎ(-./) from both sides, we obtain a di�erent identity:

ℎ(-./) = ℎ(-.) + ℎ(./)
− (ℎ(-.) − ℎ(-)) this is a monotonicity ℎ(. |-)
− (ℎ(-) + ℎ(./) − ℎ(-./) − ℎ(∅)) this is ℎ(- ;./ |∅) (30)

which is what Case 3 from the proof of the Reset Lemma does. The resulting identity witnesses

the fact that ℎ(-./) ≤ ℎ(-.) + ℎ(./) is a Shannon inequality. ■

EXAMPLE 3.10. Consider the following Shannon inequality:

ℎ(-./,) + ℎ(.) ≤ ℎ(-.) + ℎ(./) + ℎ(, |-./),

which follows from the following identity of the form (23):

ℎ(-./,) + ℎ(.) = ℎ(-.) + ℎ(./) + ℎ(, |-./) − ℎ(- ; / |.)

Suppose that we want to drop ℎ(-.) from the RHS. The first step is going to follow Case 3 of

the proof of the Reset Lemma by replacing the submodularity ℎ(- ; / |.) with an additional

monotonicity ℎ(/ |.), thus leading to the identity:

ℎ(-./,) + ℎ(.) = ℎ(-./) + ℎ(./) + ℎ(, |-./) − ℎ(/ |.)

where our target now is to remove the term ℎ(-./) from the RHS. But now, our only option is

to use Case 1 and combine ℎ(-./) with ℎ(, |-./), leading to

ℎ(-./,) + ℎ(.) = ℎ(-./,) + ℎ(./) − ℎ(/ |.)

And now, we drop ℎ(-./,) from both sides. The resulting inequality is ℎ(.) ≤ ℎ(./). ■

We will also need the following simple proposition to explain a step in PANDA.

PROPOS IT ION 3.1 1. Consider an integral Shannon inequality of the form (24). The number of

unconditional statistics terms inD (counting multiplicities) is at least |Z|.

PROOF . It is straightforward to verify that the following vector h is a polymatroid, i.e., satis-

fies (8):

ℎ(]) =




0 if] = ∅

1 otherwise

Applying h to (23), the LHS is |Z|, while the RHS is ≤ to the number of unconditional terms,

because ℎ(_ |∅) = 1, and ℎ(_ |^) = 0 when ^ ≠ ∅, while all witness terms are non-negative:

ℎ(`) ≥ 0, ℎ(f) ≥ 0. ■

19 / 42 PANDA: Query Evaluation in Submodular Width

4. Overview of PANDA and statement of main result

This section states and explains the main result in this paper, which shows that the Shannon

inequality (14) is not only useful for bounding the output size of a DDR as shown in Theorem 3.1,

but it can also be used to guide an algorithm to evaluate a DDR in time proportional to the

bound (15), modulo a polylogarithmic factor. We formally state this result in Section 4.1, and

present an illustrative example in Section 4.2. The detailed algorithm description and its proof

of correctness are presented in Section 5.

4.1 An Efficient Algorithm to Evaluate Disjunctive Datalog Rules

Given the coe�cientsw and , of inequality (14) (where recall ∥,∥1 = 1), we denote by:

�Δ,T
def
=

∏

X∈Δ
#

EX

X
1Δ,n

def
= log �Δ,T =

∑

X∈Δ
EX<X (31)

Theorem 3.1 implies that, if Σin satisfies the degree constraints (see Sec 2.5), i.e., Σin |= (Δ,T),
then there exists a feasible output Σout that satisfies ∥Σout∥ ≤ |Σout | · �Δ,T . Our main result states

that such an output can be computed in time $̃(∥Σin∥ + �Δ,T) if inequality (14) is a Shannon
inequality: (We use $̃ to hide a polylogarithmic factor in the input size ∥Σin∥.)

THEOREM 4.1 (The PANDA algorithm for a DDR). Given the following inputs:

A disjunctive datalog rule (DDR) of the form (5).

An input instance Σin to the DDR.

Degree constraints (Δ,T) that are satisfied by the instance Σin, i.e., Σin |= (Δ,T).
Coe�cients w = (EX)X∈Δ, and , = (_`)`∈Σout , with ∥,∥1 = 1 that define a valid Shannon

inequality (14).

Let �Δ,T be the bound defined in (31), in terms of the statistics (Δ,T) and the coe�cientsw. Then,
we can compute a feasible output Σout to the DDR in time $̃(∥Σin∥ + �Δ,T). This feasible output is
of size $̃(�Δ,T).

Wewill prove the theorem over the next few sections. We illustrate with a simple example:

EXAMPLE 4.2. Continuing the example in Eq. (7), assume that |'| = |(| = |* | = # . Consider

the following Shannon inequality, proved by applying two submodularities:

ℎ(-.) + ℎ(./) + ℎ(/,) ≥ ℎ(-./) + ℎ(.) + ℎ(/,) ≥ ℎ(-./) + ℎ(./,)

Rearranging it to the form (14), we obtain:

1

2
ℎ(-./) + 1

2
ℎ(./,) ≤ 1

2
ℎ(-.) + 1

2
ℎ(./) + 1

2
ℎ(/,) (32)

Theorem 3.1 proves that there exists a feasible solution (�, �) of size |�| + |�| ≤ 2#3/2, while

Theorem 4.1 says that we can compute a feasible solution of size $̃(#3/2) in time $̃(#3/2). ■

20 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Theorem 4.1 (and PANDA) can be used to compute a full conjunctive query; because a

full conjunctive query is a special case of a DDR, where the output schema consists of a single

atom containing all variables. To that end, after computing a feasible output of the DDR, we can

add this output as an extra atom to the input schema and semijoin-reduce this atom with every

other atom in order to obtain a solution to the full conjunctive query. Notice that because this

extra atom contains all variables, adding it to the input schema makes the query acyclic, hence

semijoin reductions are now guaranteed to produce the correct output to the full conjunctive

query with no extra tuples [37]. Note also that the output of the full conjunctive query is a

minimalmodel to the DDR (Definition 2.2).

COROLLARY 4.3 (The PANDA algorithm for a full conjunctive query). Suppose that the

DDR from Theorem 4.1 corresponds to a full conjunctive query &, i.e., the output schema of the

DDR consists of a single atom containing all variables Σout = {&(\)}, in which case the DDR (5)

collapses back to (11), where Σ := Σin. Moreover, suppose that the conditions of Theorem 4.1 are

satisfied. Then, the output of the full conjunctive query& satisfies |&| ≤ �Δ,T , and can be computed

in time $̃(∥Σ∥ + �Δ,T).

For the best-possible runtime, we want to seed PANDAwith parameters minimizing the

quantity �Δ,T (or equivalently, 1Δ,T), which is the polymatroid bound (17) for the query&. In the

case of full CQs, there is ony one ,-parameter, set to _ = 1, and it remains to findwminimizing

�Δ,T . The minimum value is �∗Δ,T
def
= 21

∗
Δ,T , defined by

1∗Δ,T
def
= min

w≥0

{
∑

X∈Δ
EX<X | ℎ(\) ≤

∑

X∈Δ
EXℎ(X) for all polymatroids h ∈ R2\+

}

= max
h∈R2\+

{
ℎ(\) | ℎ(X) ≤ <X for all X ∈ Δ and h is a polymatroid

}

The second equality follows from simple duality arguments. PANDA would be worst-case

optimal if �∗Δ,T is tight, in the sense that we can construct a database instance Σ that satisfies

the degree constraints (Δ,T) and has output size |&| = Ω(�∗Δ,T). There are two special cases
where �∗Δ,T is known to be tight in data complexity: when all degree constraints are “simple”

(see [2, 35]), or when the degree constraints are “acyclic” (see [5, 31]). The degree constraints

are simple if |^ | ≤ 1 for all X = (_ |^) ∈ Δ, and they are acyclic if there is a global order of the
variables in\ such that for every X = (_ |^) ∈ Δ, all variables in ^ precede all variables in_ in

the order. If Δ contains only cardinality constraints, then it is both simple and acyclic, and �∗Δ,T
is exactly the AGM bound because (14) reduces back to (13).

21 / 42 PANDA: Query Evaluation in Submodular Width

4.2 Example: Preview of PANDA

We illustrate the algorithm with the DDR (7):

�(-,. , /) ∨ �(., /,,) :- '(-,.) ∧ ((., /) ∧* (/,,)

Following Example 4.2, we assume we only have cardinality statistics / constraints:

Δ ={(-. |∅), (./ |∅), (/, |∅)}, #-. =#./ = #/, = #.

We further assume that # is a power of 2. Each constraint has a “guard”, i.e., a relation that

“sponsors” (satisfies) the constraint:)-. := ',)./ := (,)/, := * . We name all guards)· to be

consistent with the formal description of the algorithm presented in Section 5.

Suppose that the input Shannon inequality given is the one in Eq (32). This inequality is in

the shape of (14) with _-./ = _./, = 1/2 and E-. |∅ = E./ |∅ = E/, |∅ = 1/2. The fact that this is
a Shannon inequality was shown above in Example 4.2.

From Corollary 3.6, the Shannon inequality (32) must have a corresponding identity (23)

over symbolic variables ℎ(^) where ℎ(∅) = 0. We show one such identity below:8

ℎ(-./) + ℎ(./,) = ℎ(-. |∅) + ℎ(./ |∅) + ℎ(/, |∅) − ℎ(- ; / |.) − ℎ(. ; /, |∅) (33)

The bound from (31) is 1Δ,T = (<-. + <./ + </,)/2 = 3</2 where < def
= log# , or equivalently,

�Δ,T = #3/2; this is the runtime budget the algorithm cannot exceed, in order to compute a

feasible solution (�, �) to the DDR.
Our algorithm operates by observing and manipulating identity (33), while maintaining

its identity invariant. Every step of the algorithm applies a modification to the identity and

mirrors this modification with an algorithmic computation to create one or more sub-problems.

Each sub-problem is then equipped with the newly created identity, the newly created input

data, and carry on the next step on their own. The spawned sub-problems form a (sub-problem)

tree. In the end, we gather results from the leaves of this tree to answer the original query.

In identity (33), the statistics terms ℎ(-. |∅), ℎ(./ |∅), and ℎ(/, |∅) correspond to input
data (input relations) ', (, and * . When we modify the identity, we will be transforming

some subsets of these statistics terms into di�erent statistics terms; correspondingly, the input

relations are manipulated to create new input relations that are associated with the new

statistics terms. We next describe this idea in more details. The steps of the algorithm are also

shown in Figure 1.

In the first step, we grab an unconditional statistics term (from D) in (33). Let’s say the

term we grab is ℎ(-. |∅) = ℎ(-.). Since (33) is an identity, there must be another term that

cancels out the symbolic variable ℎ(-.). In this case, it is −ℎ(- ; / |.); so we combines ℎ(-.)

8 Our witness is not elemental, because ℎ(. ; /, |∅) is not elemental: if we replaced the latter with ℎ(. ;, |∅) + ℎ(. ; / |,),
then we obtain an elemental witness. Also note that the witness is not unique; for example, we could have used the
witness ℎ(-. ; / |∅) + ℎ(. ;, |/).

22 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

V0

V<

V<,1

...

...

V;+1

V;+1,1

V;

V;,1

V;,1,1

V;,1,1,1

...

...

...

...

V1

V1,1

V1,1,1

V1,1,1,1

ℎ(-./) + ℎ(./,) =ℎ(-. |∅) + ℎ(./ |∅) + ℎ(/, |∅) − ℎ(- ; / |.) − ℎ(. ; /, |∅)

Partition)-. →) 7
. Z) 7

- |.

Extend) 7
- |. →) 7

- |./

ℎ(-./) + ℎ(./,)

= ℎ(. |∅) + ℎ(- |./) + ℎ(./ |∅) + ℎ(/, |∅)

− ℎ(. ; /, |∅)

Join) 7
- |./ Z)./ OR Reset?

Reset

ℎ(./,) = ℎ(. |∅) + ℎ(/, |∅) − ℎ(. ; /, |∅)

Extend) 7
.
→) 7

. |/,

ℎ(./,) = ℎ(. |/,) + ℎ(/, |∅)

Join) 7
. |/,

Z)/,

�
�

�
�

ℎ(./,) =
�

�
�

��ℎ(./, |∅)

Terminal leafs!

Join

�
�
��ℎ(-./) + ℎ(./,)

= ℎ(. |∅) +
�
�
�
��

ℎ(-./ |∅) + ℎ(/, |∅)

− ℎ(. ; /, |∅)

Terminal leafs!

Figure 1. An example illustrating the PANDA algorithm over the disjunctive rule (7). Here, < def= log# and

;
def
=

<
2
. For each node in the sub-problem tree, the corresponding identity (23) is in blue while the

corresponding algorithmic operation is in red.

with the canceling term to obtain new statistics terms:

ℎ(-. |∅) − ℎ(- ; / |.) = ℎ(-.) − ℎ(∅) − ℎ(-.) − ℎ(./) + ℎ(-./) + ℎ(.)
= ℎ(.) − ℎ(∅) + ℎ(-./) − ℎ(./)
= ℎ(. |∅) + ℎ(- |./)

This rewriting-by-cancellation changed our identity (33) into a new one:

ℎ(-./) + ℎ(./,) = ℎ(. |∅) + ℎ(- |./) + ℎ(./ |∅) + ℎ(/, |∅) − ℎ(. ; /, |∅) (34)

The change amounts to replacing a statistics term with two new ones: ℎ(-. |∅) → ℎ(. |∅) +
ℎ(- |./). We mimic this symbolic change with an actual relational change that shall alter the

structure of the problem. The rough idea is to create inputs to the new problem by creating two

new guards for the two new statistics terms:

The guard for ℎ(. |∅) will be the table).
def
= c. (').

The guard for ℎ(- |./) is obtained by using '(-,.) to construct a “dictionary” (a lookup
table) which supports the following operation: given a tuple (G, H), return the list of all

23 / 42 PANDA: Query Evaluation in Submodular Width

F-values such that (F, G) ∈ '. (Note that this operation does not use the given H-value.) We

denote this dictionary as)- |./.

The aim is for us to be able to join all 4 guards (corresponding to the four statistics terms on

the RHS of (34)) to answer the same query as before. However, implementing this idea straight

up does not work, because the new degree constraint for). is #.
def
= |c. (') | and for)- |./ is

#- |./
def
= deg'(- |.), and they are too large: the product #. ·#- |./ can be much greater than the

original statistics of #-. = # = |'| (guarding ℎ(-.) that we started with). If this product is too
large, we cannot apply induction to solve the sub-problem in our time budget of �Δ,T = #3/2.

The reason this product #. · #- |./ is too large is that #. counts both high-degree and

low-degree G-values, while the new statistics #- |./ is the maximum degree. Thus, the product

is an over-estimation of what the size of the join). Z)- |./ can be. To remedy the situation,

we uniformize the problem by partitioning ' into a logarithmic number of sub-relations ' =

'1 ∪ · · · ∪ '9, where each sub-relation contains tuples whose G-values have similar degrees.

In e�ect, uniformization is an algorithmic technique for dealing with skews, a notoriously

well-known reason for why query plans might blow up in practice.9

Concretely, the partitioning is done as follows. Relation '7 contains all tuples (F, G) ∈ '
where:

#

27
≤deg'(- |. = G) < #

27−1

We set) 7
.

def
= c. ('7), thus |) 7

.
| ≤ 27 . We further partition) 7

.
into two equal-sized buckets (which

we will continue to name “buckets 7”, with some abuse). The two new guards) 7
.
and '7 have

statistics # 7
.
and # 7

- |./, which (by our partition-into-two trick) satisfy the following:

7
.

def
= |) 7

. | ≤ 27−1

7
- |./

def
= deg'7 (- |.) ≤

#

27−1

7
. · # 7

- |./ ≤ #

To be consistent with the notation used in describing PANDA, all guards will be called) : in

particular, the two new guards c. ('7) and '7 are called) 7
.
and) 7

- |./ respectively.

9 To briefly explain this insight, consider the triangle query &(F, G, H) :- '(F, G) ∧ ((G, H) ∧) (F, H). It is straightforward to
construct input instances for which |' | = |(| = |) | = # , and |' Z (|, |(Z) |, and |' Z) | are all Ω(#2), by having high-
degree (i.e., skewed) values to join [32]. To overcome this limitation of join-project query plans, one variant of worst-

case optimal join algorithms does the following. Partition ' = 'ℎ ∪ '�, where 'ℎ def
= {(F, G) ∈ ' | deg' (. |- = F) >

√
#}

and '� def
= ' \ 'ℎ.

The query can be rewritten as &(F, G, H) :- 'ℎ (F, G) ∧((G, H) ∧) (F, H) ∨'� (F, G) ∧((G, H) ∧) (F, H). The joins 'ℎ (F, G) ∧((G, H)
and '� (F, G) ∧) (F, H) are both cardinality-bounded by #3/2 and computable within $(#3/2)-time. Thus, the entire query
can be computed within $(#3/2)-time.
Our uniformization step is a generalization of this idea to the setting of DDRs. We needed to partition ' into 9

parts instead of 2 parts to maintain our algorithmic invariants. For some special classes of queries, Bringmann and
Gorbachev [14] show that heavy/light partitioning is sufficient to achieve the same result.

24 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

After partitioning, we now have $(log#) sub-problems, each equipped with identity (34).

In the second step, we again grab an unconditional statistics term ℎ(./ |∅), and find a term

from (34) to cancel it.10 This time, the cancellation is:

ℎ(- |./) + ℎ(./ |∅) = ℎ(-./) − ℎ(./) + ℎ(./) − ℎ(∅) = ℎ(-./ |∅),

leading to a new identity

ℎ(-./) + ℎ(./,) = ℎ(. |∅) + ℎ(-./ |∅) + ℎ(/, |∅) − ℎ(. ; /, |∅) (35)

The change ℎ(- |./) + ℎ(./ |∅) → ℎ(-./) is suggestive of a join, where for the 7th subproblem,

we will join the corresponding guards :) 7
- |./ Z)./. Recall that #

7
- |./ ≤ #/27−1, hence for

7 > 1
2 log# performing this join won’t take time over the budget of $(#3/2). On the other hand,

when 7 ≤ 1
2 log# , we will need an additional idea, to use the reset lemma (Lemma 3.8) to reroute

the sub-problem away from the “heavy-hitter hotspot”, i.e., join over the high-degree . -values.

In addition to uniformization, the reset lemma is our second ingredient to deal with skews.

Concretely, for the 7th sub-problem, we do the following:

When 7 > 1
2 log# , then PANDA performs a join) 7

-./
:=) 7

- |./ Z)./. The output size of

this join is within the bound �Δ,T = #3/2. After computing this join, there will be no more

sub-problems because we have computed a relation that fits the output schema, namely it

corresponds to �(-,. , /). We add tuples from) 7
-./

to the output relation �(-,. , /).
In the case where 7 ≤ 1

2 log# , the algorithm attempts to perform the same join) 7
-./

:=

) 7
- |./ Z)./, but its output size now exceeds the bound �Δ,T = #3/2. Therefore, the

algorithm does not compute a guard) 7
-./

for ℎ(-./ |∅), but instead uses the reset lemma

to cancel out this term with the term ℎ(-./ |∅) on the LHS. The new identity (for these

sub-problems) is now

ℎ(./,) = ℎ(. |∅) + ℎ(/, |∅) − ℎ(. ; /, |∅)

We again grab an unconditional statistics term ℎ(. |∅) and cancel it with ℎ(. ; /, |∅):

ℎ(. |∅) − ℎ(. ; /, |∅) = ℎ(. |/,)

The guard) 7
.
for ℎ(. |∅) has size |) 7

.
| ≤ #1/2, thanks to the fact that |) 7

.
| ≤ 27−1 and

7 ≤ 1
2 log# , The above step replaces ℎ(. |∅) with a new statistics term ℎ(. |/,). Its guard

is computed from) 7
.
, by extending it into a dictionary) 7

. |/, : given (H, E), this dictionary
returns all G-values for which (G) ∈) 7

.
. In particular, this silly dictionary always returns

the entire table) 7
.
, no matter what the given (H, E) are.11 After the dictionary extension,

the algorithm performs a join) 7
./,

:=) 7
. |/, Z)/, . This join is feasible since the output

10 Note how “greedy” the algorithm is. This is one of the reasons for the large polylog factor it suffers.

11 To be more precise, before PANDA extends) 7
.
into) 7

. |/, , it will “uniformize”)
7
.
by partitioning the table) 7

.
into log |) 7

.
|

buckets based on the “degree” deg) 7
.
(. |∅). However, this partition is vacuous since only one bucket will be non-empty.

25 / 42 PANDA: Query Evaluation in Submodular Width

size is within the bound �Δ,T = #3/2. Now, the algorithm reaches a terminal node since

the join result) 7
./,

is in the output schema; namely, it corresponds to �(., /,,).

At the end of the algorithm, the tables) 7
-./

from all branches are unioned into the output

relation �(-,. , /), while tables) 7
./,

from all branches are unioned into the other output

relation �(., /,,). These two relations are the final output of the algorithm for the DDR (7).

Note that the input table)/, does not contribute to the output table �(-,. , /), and similarly

the input table)./ does not contribute to the output table �(., /,,). Nevertheless, the tables
�(-,. , /) and �(., /,,) are still a valid output to the DDR. This is because Definition 2.2 only

requires that if a tuple (F, G, H, E) satisfies the conjunction '(F, G) ∧ ((G, H) ∧* (H, E), then it
must satisfy the disjunction �(F, G, H) ∨ �(G, H, E). We do not require the converse to hold in

DDR semantics. (The converse is only required in CQ semantics, as we will see in Section 6.)

Note that, for the particular query (7), there is a way to compute a feasible output without

the polylog factor as described above. The above strategy is only meant to illustrate the PANDA

algorithm in its full generality.

5. Detailed Description of PANDA

This section describes the PANDA algorithm in detail. Section 5.1 presents the main data

structures (called tables and dictionaries) used by the algorithm. Section 5.2 presents the

algorithm and its proof of correctness and runtime analysis.

5.1 Tables and Dictionaries

For a given statistics term X = (_ |^), PANDA uses two kinds of data structures: tables and

dictionaries, denoted)X. When ^ = ∅, then we call it a table; otherwise, we call it a dictionary.

There will be at most one table/dictionary)X for a given X. As usual, we abbreviate _ |∅ with
just _ , and statistics #_ |∅, <_ |∅ with just #_ and <_ . Specifically, a table is a set)_ ⊆ Dom_ of

tuples over the _ variables, and a dictionary is a function)_ |^ : Dom^ → 2Dom
_

that gives a

set of tuples over the_ variables given a specific binding ^ = x of the ^ -variables.

For a statistics term X = (_ |^), each table/dictionary)X is associated with a statistics #X.

We say that)X satisfies the statistics, and we write)X |= #X, i� |)X(x) | ≤ #X for all x ∈ Dom^ .

As a special case, a table)_ satisfies a statistics #_ i� |)_ | ≤ #_ .

The algorithm performs the following operations on tables and dictionaries: join, projec-

tion, extension, construction, and partition. Each operation yields the corresponding statistics

on the results, as described below.

Join of a table with a dictionary,)^_ :=)^ Z)_ |^ . This operation constructs a new table

with statistics #^_
def
= #^#_ |^ . The join takes time $(#^#_ |^).

26 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Projection of a table,)^ := c^ ()^_). This operation takes a table)^_ over variables ^ ∪_ ,
with statistics #^_ , and constructs a new table)^ with statistics #^

def
= #^_ . The projection

takes time $(#^_).
Extension of a dictionary)_ |^ into another dictionary)_ |^` , where ` is disjoint from

^_ . This operation takes as input a dictionary)_ |^ and returns a new dictionary)_ |^`

defined as)_ |^` (x, z)
def
=)_ |^ (x) for all (x, z) ∈ Dom^` . Its statistics is #_ |^`

def
= #_ |^ .

This operation takes $(1) time, because the operation does not touch the data, but only

constructs a new function that calls the existing function)_ |^ .

Construction. Given a table)^_ over variables ^ ∪ _ with statistics #^_ , construct a

dictionary)_ |^ , with statistics #_ |^
def
= deg)^_ (_ |^). This operation takes $(#^_) time

because it involves scanning the table)^_ and constructing an index. The operation

returns a function that looks up in this index.

Partition. Given a table)^_ over variables ^ ∪_ with statistics #^_ , partition)^_ into

9 := 2⌈log |)^_ |⌉ many sub-tables)1, . . . ,)9 satisfying the conditions stated in Lemma 5.1

below. This operation takes time $(#^_).

LEMMA 5.1. Let)^_ be a table over variables ^ ∪ _ with statistics #^_ . Then,)^_ can be

partitioned into at most 9 := 2⌈log |)^_ |⌉ sub-tables)1, . . . ,)9 satisfying

|c^ () 7) | · deg) 7 (_ |^) ≤ #^_ , ∀7 ∈ [9] . (36)

PROOF . To obtain the sub-tables) 7 , observe that the number of tuples x ∈ c^ ()^_) with
log-degree in the interval [7, 7 + 1) is at most |)^_ |/27 ≤ 2<^_−7 . Hence, if we partition)^_ based

on which of the buckets [7, 7 + 1) the log-degree falls into, we will almost attain the required

inequality, just o� by a factor of 2:

|c^ () 7) | · deg) 7 (_ |^) ≤ 2(<^_−7) · 2(7+1) = 2#^_ .

To get rid of the factor of 2, we partition each) 7 into two tables whose projections onto ^ are

equally sized. Overall, we need 9 := 2⌈log |)^_ |⌉ partitions. ■

5.2 Algorithm

This section describes PANDA and proves Theorem 4.1. The main input to PANDA contains

an input instance Σin, an output schema Σout ≠ ∅, and statistics (Δ,T) satisfied by the input

instance, i.e., Σin |= (Δ,T) as defined in Section 2.5. In addition, we are also given the coe�cients

, andw for which (14) is a Shannon inequality. By Proposition 3.4, we can assume that , andw

are rational and independent of the statistics (Δ,T). From Corollary 3.6, we can also assume

that PANDA was given the multisetsZ,D,M,S for which identity (23) holds. In particular, as

27 / 42 PANDA: Query Evaluation in Submodular Width

in the proof of Corollary 3.6, given vectors , andw that make Eq. (14) a Shannon inequality, the

witness (m, s) can be computed by solving a linear program. Since , andw are rational and

independent of the data, the solution (m, s) is also rational and independent of the data. By
multiplying the vectors ,,w,m, and s with the least common multiple of their denominators,

we can convert them to integer vectors. And now we can represent the integral ,,w,m and

s as multisets Z, D,M, and S respectively. All the above steps take constant time in data

complexity; see Section 2.1. This is because the vectors ,,w,m, and s have dimension $(1) in
data complexity. Moreover, since the values of these vectors don’t depend on the data, they are

considered constants in data complexity.

We shall show that a feasible output Σout to the DDR (5) can be computed in time $̃(∥Σin∥ +
�Δ,T), defined in (31). In terms of these multisets, the bounds defined in (31) have the following

equivalent expressions:

�Δ,T =

(
∏

X∈D
#X

)1/|Z|
1Δ,n = log �Δ,T =

1

|Z|
∑

X∈D
<X (37)

For each statistics term X = (_ |^) ∈ D, there is a guardwhich is a table/dictionary instance

)_ |^ with statistics#_ |^ , i.e.,)_ |^ |= #_ |^ as defined in Section 5.1. Creating the initial guards can

be done in time $̃(∥Σin∥). We adopt the convention that the lower case letters <X, 1Δ,n represent

the logarithms of the upper case #X, �Δ,T respectively.

Summarized in Algorithm 1, PANDA works as follows. Starting from an initial node, it

grows a tree of sub-problems. New sub-problems are spawned from a “non-terminal” leaf node

of the tree. The process stops when every leaf node is terminal, a concept we shall define shortly.

After the tree growing stops, a feasible output of the problem is gathered from the leaves of the

tree.

To every node, there associates a sub-problem parameterized by a tuple (Z,D,M,S,Z , n)
where

The multisetsZ,D,M, and S are over the base sets Σout, Δ,MON, and SUB, respectively.

These multisets will maintain the invariant that identity (23) holds, as we shall show in

the next section.

n is a collection of non-negative real numbers (logs of statistics), one statistics <X for each

X ∈ D. (Recall that, <X := log#X, for convenience.)

Z is a collection of dictionaries, one dictionary)X for each X ∈ D; these shall be the guards

for #X = 2<X . In particular,)X |= #X for each X ∈ D.

DEF IN IT ION 5.2 (Terminal leaf). A leaf node of the tree is “terminal” (it won’t spawn o�

new sub-problem(s) anymore) if its parameters (Z,D,M,S,Z , n) are such that, there is an

unconditional statistics term (` |∅) ∈ D for which ` ∈ Z.

28 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

We next briefly explain in words the key steps of Algorithm 1. A proof that the algorithm

is correct and an analysis of its runtime to show Theorem 4.1 are described in Section 5.3. The

main loop looks for a non-terminal leaf node V of the sub-problem tree. If there is no such

leaf node, then the code-block starting at line 31 gathers the results from the parameters of the

(terminal) leaf nodes to construct the final output Σout.

If there is a non-terminal leaf node V, then we pick an arbitrary unconditional12 statistics

term X = (] |∅) ∈ D (line 4) and start considering cases in parallel with the cases in the proof

of Lemma 3.8, except that Case 3 will be handled di�erently. The major insight of our work is

that we can design an algorithm where the algorithmic steps mirror the Shannon inequality

inference steps:

Case 1: Join or Reset There exists a statistics term (_ |]) ∈ D (line 5). If the statistics are such

that the join-size of)] Z)_ |] is smaller than the budget �Δ,T , checked at line 6, then we

compute the join result)_] as shown, and let it guard the new statistics term (_] |∅). This
case corresponds precisely to applying Eq. (25), and the new multisetD′ defined in line 8

reflects that. After joining)] and)_ |] to form)_] , we remove the old dictionaries from Z

and add the new dictionary to Z . Similarly, the statistics in n are replaced in the same way.

On the other hand, if the join)] Z)_ |] is larger than the budget, then we perform a reset

step. The Shannon inequality reasoning is as follows. Initially
∑

`∈Z ℎ(`) ≤ ∑
X∈D ℎ(X)

holds, with witness terms M and S. After applying the change in Eq. (25), inequality
∑

`∈Z ℎ(`) ≤ ∑
X∈D ℎ(X) is still a Shannon inequality with the same witness. (Note thatD is

defined in line 12). Now, we apply Lemma 3.8 to drop X0 = (_] |∅) fromD, obtaining new
parameters (Z′,D′,M′,S′) to make progress on our algorithm. We remove from Z and n

the terms that were dropped fromD.
Case 2: Projection There exists a monotonicity term (_ |^) ∈ M with] = ^_ (line 16). Here,

the Shannon inequality is modified by applying the monotonicity-statistics cancellation in

Eq. (26). This change is reflected inM′ and D′. The new statistics term (^ |∅) ∈ D′ has a
guard which is the projection)^ .

Case 3: Partition There exists a submodularitymeasure (_ ;` |^) ∈ Swith] = ^_ (line 22). In

this case, instead of applying identity (27) from Lemma 3.8, we apply the following identity

to maintain the Shannon inequality:

ℎ(]) − ℎ(_ ;` |^) = ℎ(]) − ℎ(^_) − ℎ(^`) + ℎ(^) + ℎ(^_`)
= ℎ(^) + ℎ(_ |^`) (38)

Identity (38) says that we have two new statistics terms, ℎ(^ |∅) and ℎ(_ |^`), which need
guards; this is where we will need to create a logarithmic number of sub-problems in order

to create the guards of the right statistics.

12 We shall show that an unconditional X exists in Section 5.3.

29 / 42 PANDA: Query Evaluation in Submodular Width

1: Initialize the sub-problem tree with a single node with input parameters

(Z,D,M,S,Z , n)
2: while ∃ a non-terminal leaf V do ⊲ Tree-growing Loop

3: Let (Z,D,M,S,Z , n) be the parameters of this leaf

4: Pick X = (] |∅) ∈ D arbitrarily ⊲ See Prop 5.3 for why such X exists

5: if ∃ (_ |]) ∈ D then ⊲ Case 1 of Lemma 3.8: apply (25)

6: if <] + <_ |] ≤ 1Δ,n then

7: n′ = n ∪ {<_] } − {<] + <_ |] }, where <_] := <] + <_ |]
8: D′ = D ∪ {(_] |∅)} − {(] |∅), (_ |])}
9: Z ′ = Z ∪ {)_] } − {)] ,)_ |] }, where)_] :=)] Z)_ |], which guards

(_] |∅)
10: Create a child of V, with parameters (Z,D′,M,S,Z ′, n′)
11: else

12: D = D ∪ {(_] |∅)} − {(] |∅), (_ |])}
13: Apply Lemma 3.8 to (Z,D,M,S) to obtain (Z′,D′,M′,S′) where

D′ ⊆ D − {(_] |∅)}
14: Let Z ′, n′ be Z , n with only the terms corresponding to D′ retained
15: Create a child of V, with parameters (Z′,D′,M′,S′,Z ′, n′)
16: else if ∃(_ |^) ∈ M with] = ^_ then ⊲ Case 2 of Lemma 3.8: apply (26)

17: n′ = n ∪ {<^ } − {<] } where <^ := <]

18: M′ =M − {(_ |^)}
19: D′ = D ∪ {(^ |∅)} − {(] |∅)}
20: Z ′ = Z ∪ {)^ } − {)] } where)^ := c^ ()]), which guards (^ |∅)
21: Create a child of V, with parameters (Z,D′,M′,S,Z ′, n′)
22: else if ∃(_ ;` |^) ∈ S with] = ^_ then ⊲ Case 3 of Lemma 3.8: apply (38) instead of (27)

23: Partition)] =)1 ∪)2 ∪ · · · ∪)9 with 9 := $(log |)] |), using Lemma 5.1

24: for 7 ← 1 to 9 do

25: n7
= n ∪ {<7^ , <7_ |^`} − {<] } where <7^ := log |c^ () 7) | and

<7
_ |^` := log deg) 7 (_ |^)

26: D 7
= D ∪ {(^ |∅), (_ |^`)} − {(] |∅)}

27: S 7
= S − {(_ ;` |^)}

28: Z 7
= Z ∪ {) 7^ ,) 7_ |^`} − {)] }, where) 7^ := c^ () 7) and) 7

_ |^` is an extension

of) 7
_ |^

29: Create the 7th-child of V, with parameters (Z,D 7,M,S 7,Z 7, n7)
30:

31: &(`) ← ∅ for all &(`) ∈ Σout
32: for each terminal leaf V do ⊲ Result-gathering phase

33: Let (Z,D,M,S,Z , n) be the parameters of this leaf

34: Pick X = (` |∅) ∈ D such that ` ∈ Σout ⊲ By Definition 5.2

35: &(`) ← &(`) ∪)`

Algorithm 1. PANDA

30 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

In particular, the algorithm performs a “partitioning step”: it uniformizes)] (=)^_) by
applying Lemma 5.1. Each of the sub-problems has the corresponding statistics as defined

in the for-loop starting at line 24. The table) 7 is on variables] = ^_ . Thus, in order to

have it guard the new term (_ |^`), we will need to apply a dictionary extension to it (see

Section 5.1). Note that (36) guarantees that <7
^
+ <7

_ |^` ≤ <^_ = <] .

5.3 Proof of correctness and runtime analysis

In this section, we prove that the algorithm is correct and analyzes its runtime, to complete the

proof of Theorem 4.1. Both of these tasks are accomplished by showing that PANDAmaintains

the invariants described below.

Recall that every sub-problem in the tree is parameterized by a tuple (Z,D,M,S,Z , n).
For any sub-problem V that is parameterized by (Z,D,M,S,Z , n), define

�V := Dom
\
ZZX∈D)X

to be the join of all its dictionary guards. At time B in the algorithm, let LB denote the set of

current leaf nodes in the sub-problem tree. While spawning new sub-problems, (we will show

that) PANDAmaintains the following invariants over all tuples (Z,D,M,S,Z , n): (Recall that
#X

def
= 2<X for all X ∈ D.)

Shannon inequality: Identity (23) holds w.r.t. the tuple (Z,D,M,S) (39)

Non-empty output: Z ≠ ∅ (40)

Lossless join: ZΣin ⊆
⋃

V∈LB

�V ∀B (41)

Small tables: <_ ≤ 1Δ,n, ∀(_ |∅) ∈ D (42)

Guarded statistics:)X |= #X, ∀X ∈ D (43)

Upper bound:
1

|Z|
∑

X∈D
<X ≤ 1Δ,n (44)

We start by showing that, if the invariants hold, then the answer is correct with the desired

runtime.

PROPOS IT ION 5.3. Let #
def
= maxX∈Δ #X. Suppose the invariants above are satisfied, then

PANDA returns a feasible solution to the input disjunctive datalog rule in time$(�Δ,T · (log#) |S|),
where S is the inputmultiset of submodularity measures.

PROOF . For a given non-terminal leaf V, the number of unconditional statistics terms inD is

at least |Z|. This follows from Proposition 3.11 and invariant (39). Invariant (40) ensures that

|Z| ≥ 1, and thus the unconditional statistics term X exists for line 4 of the algorithm to proceed.

31 / 42 PANDA: Query Evaluation in Submodular Width

Thanks to invariant (39), at least one of the three cases considered in the main loop must hold.

Invariant (43) guarantees that we can proceed to perform the join or the partition steps using

corresponding tables / dictionaries when we need them in the algorithm. In summary, the body

of the main loop can proceed as explained without getting stuck somewhere.

For every node in the sub-problem tree that the algorithm creates, with parameter tuple

(Z,D,M,S,Z , n), define the “potential” quantity |D| + |M| +2|S| as in the proof of Lemma 3.8.

Then, similar to what happens in the lemma’s proof, the potential of the child is at least 1 less

than the potential of the parent.13 14 Thus, the depth of the sub-problem tree is bounded by the

original potential |D| + |M| + 2|S|. This proves that the algorithm terminates.

The time spent within each node V of the tree is dominated by either the join step)_] :=

)] Z)_ |] in Case 1, the projection)^ := c^ ()]) in Case 2, or the partition step in Case 3 whose
cost is $(|)] |). In Case 2 and Case 3, the cost is bounded by �Δ,T , thanks to invariant (42). In

Case 1, the join is only computed if <] + <_ |] ≤ 1Δ,n, thus it is also within the budget of �Δ,T .

Overall, the total time spent on all the nodes of the tree is bounded by �Δ,T times the number

of nodes. As we observed above, the depth of the tree is at most |D| + |M| + 2|S|. Every node
has a fanout of either 1, or 9 = $(log �Δ,T) = $(log#). Every time the fanout is more than 1,

the number of submodularity measures in S is reduced by 1. Thus, the total runtime in data

complexity is $(�Δ,T · (log#) |S|).
Last but not least, we prove that the answer computed starting at line 31 is correct, which

means according to Definition 2.2 that for every tuple t ∈ ZΣin, there must exist &(`) ∈ Σout
for which c` (t) ∈ &(`). Note that Definition 2.2 does not require the converse to hold.15 In

particular, the output may contain tuples that are not inZΣin. In order to show that for every

tuple t ∈ ZΣin, there exists &(`) ∈ Σout for which c` (t) ∈ &(`), we rely on invariant (41).

In particular, let L denote the set of all final leaf nodes in the sub-problem tree. Then, every

t ∈ ZΣin belongs to �V for some V ∈ L. Since V is a terminal leaf node, there must exist

X = (` |∅) ∈ D such that &(`) ∈ Σout, and so c` (t) ∈ &(`) thanks to line 35 of Algorithm 1. ■

PROPOS IT ION 5.4. Algorithm 1 maintains invariants (39) to (44) throughout its execution.

PROOF . We verify that every invariant from (39) to (44) holds one by one, by induction. For

the input, only invariant (42) may not hold, because some input tables may be larger than the

desired bound �Δ,T . We deal with this situation by repeatedly applying the reset lemma as was

done in the else branch of Case 1 (line 11), dropping input tables that are too large. After this

pre-processing step to make sure that all invariants are satisfied initially, we verify that they

remain satisfied by induction.

13 Unlike Case 3 of Lemma 3.8 where applying Eq. (27) reduces |S| by one and increases |M| by one, in Case 3 of the
algorithm, we apply Eq. (38) which reduces |S| by one and increases |D| by one.

14 Note that the else branch of Case 1 (line 11) also reduces the potential by at least one, and applying the reset lemma
in line 13 never increases the potential.

15 The converse will only become relevant in Section 6 when we discuss the evaluation of conjunctive queries.

32 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Invariant (39) is guaranteed by constructing the multisets (Z′,D′,M′,S′) for the sub-
problems while keeping (23) intact. This is easy to verify in all three cases as we apply Eq. (25),

(26), (38) or Lemma 3.8.

For invariant 40, the only place where Z is changed is at line 15. This happens when

<] + <_ |] > 1Δ,n. Since inequality (44) holds (at the previous iteration), we have

1Δ,n ≥
1

|Z|
∑

X∈D
<X ≥

1

|Z| (<] + <_ |]) >
1

|Z| · 1Δ,n

It follows that |Z| ≥ 2. Thus, when applying Lemma 3.8, we end up with |Z′| ≥ |Z| − 1 ≥ 1,

which meansZ′ is not empty.

Invariants (41), (42), (43), and (44) can be verified one by one by simple case analysis.

Below, we highlight the most prominent cases:

Case 1 of the algorithm maintains invariant (42) specifically because we only do the join

)_] :=)] Z)_ |^ when <_] := <] + <_ |] ≤ 1Δ,n.

The else branch of Case 1 (line 11) maintains invariant (44) because of the following:

∑

X∈D′
<′X =

∑

X∈D′
<X ≤

∑

X∈D
<X − <] − <_ |] (by Lemma 3.8)

<
∑

X∈D
<X − 1Δ,n (<] + <_] > 1Δ,n)

≤ |Z| · 1Δ,n − 1Δ,n (by invariant (44) before)

≤ |Z′| · 1Δ,n (because |Z′| ≥ |Z| − 1)

Case 3 of the algorithmmaintains invariant (44) because Eq. (36) implies that <7
^
+ <7

_ |^` ≤
<^_ = <] . (Recall the definition of <7

^
and <7

_ |^` in line 25.) ■

6. Answering Conjunctive Queries in Submodular-Width Time

The main aim of this section is to explain how PANDA can be used to compute a conjunctive

query in time given by its submodular width (plus the output size). Recall the definition of

a conjunctive query in Equation (3). In Marx’s work [28], the submodular width was only

defined for Boolean conjunctive queries (i.e., L is empty) where all input relations are set to

be of size # . In Section 6.1, we generalize this notion to the case when L is arbitrary and the

input relations satisfy given degree constraints, which are much more general than a single

relation size, and also subsume functional dependencies. Marx [28] gave an algorithm that

can answer Boolean conjunctive queries in time $(5 (|\ |) · # 2·subw(&)) where |\ | is the number

of variables, 5 is some computable function, # is the input size, 2 is a constant greater than

1, and subw(&) is the submodular width of &. Therefore, Marx’s algorithm establishes fixed-

parameter tractability of the class of Boolean conjunctive queries where the submodular width

33 / 42 PANDA: Query Evaluation in Submodular Width

subw(&) is bounded.16 In contrast, in Section 6.2, we present our algorithm, which in addition

to handling arbitrary L and degree constraints, removes the constant 2 from the runtime at

the expense of introducing a polylogarithmic factor in # . In particular, our algorithm solves

a Boolean conjunctive query in time $(51(|\ |) · #subw(&) · (log#) 52(|\ |)), where 51 and 52 are

two computable functions. Due to the extra term (log#) 52(|\ |) , our algorithm cannot be used to

establish fixed-parameter tractability of the class of Boolean conjunctive queries with bounded

submodular width. However, it is more useful than Marx’s algorithm when considering the

fine-grained complexity of these queries.

6.1 Width parameters for conjunctive queries under degree constraints

Given a conjunctive query & in the form (3):

&(L) :-
∧

'(^)∈Σ
'(^),

let T (&) denote the set of all free-connex tree decompositions of the query.17 (See Section 2.2

for the definition of a free-connex tree decomposition.) Let (Δ,T) be a set of degree constraints,
as defined in Sec. 2.5. As usual, we denote by (Δ, n) the associated log-degree constraints. We

say that a polymatroid h satisfies the constraints, and write h |= (Δ, n), if ℎ(X) ≤ <X for all X ∈ Δ.

DEF IN IT ION 6.1. The degree-aware fractional hypertree width and the degree-aware submodu-

lar width of & under the degree constraints (Δ, n) are:

fhtw(&, Δ, n) def= min
(),j)∈T (&)

max
h|=(Δ,n)

max
B∈nodes())

ℎ(j(B)) (45)

subw(&, Δ, n) def= max
h|=(Δ,n)

min
(),j)∈T (&)

max
B∈nodes())

ℎ(j(B)) (46)

(Note that h |= (Δ, n) requires h to both be a polymatroid and satisfy the degree constraints.)

REMARK 6.2. Eq. (45) and (46) collapse back to the standard definitions of the fractional

hypertree width [22] and submodular width [28], respectively, when the degree constraints

(Δ,T) only contain cardinality constraints of the form |)_ | ≤ # for a single number # that

represents the input size; see [6] for a proof. Note, however, that in the standard definitions

of fhtw and subw, the base of the log function was # , the input size, and thus runtimes were

stated in the form $(# fhtw) and $(#subw). In our generalization, the base of the log function is

2, and thus runtimes are stated in the form $(2fhtw) and $(2subw).

16 Marx’s work [28] also proves the converse but only for self-join-free queries, where a self-join-free query is a query
whose body atoms have distinct relation symbols. In particular, Marx’s work proves that the class of self-join-free
Boolean conjunctive queries where the submodular width is unbounded is not fixed-parameter tractable, conditioned
on the ETH conjecture.

17 For a fixed query &, there are at most 22
|\ |
tree decompositions, since any two trees that have the same set of bags

can be considered equal for our purposes.

34 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

It is straightforward to usePANDA to answer a conjunctive query in time $̃(∥Σ∥+2fhtw), but
we will only describe the algorithm for the submodular width. The key advantage of fhtw over

subw is that we can answer sum-product queries over any semiring in time $̃(∥Σ∥ +2fhtw) using
variable elimination [4], since the query plan involves only one (optimal) tree decomposition.

We will also show how to use PANDA to support constant-delay enumeration18 of the

output of a conjunctive query after a preprocessing time of $̃(∥Σ∥ + 2subw).19 Another line

of work [12] shows how to support constant-delay enumeration after a preprocessing time of

$̃(∥Σ∥ + 22·subw) for some constant 2 > 1.

The two definitions (45) and (46) di�er only in the first two operations: minmax v.s.

maxmin. It is easy to see that subw ≤ fhtw, as it follows immediately from the max-min

inequality, which states that maxF minG 5 (F, G) ≤ minGmaxF 5 (F, G) for any function 5 . As

mentioned above, the degree-aware submodular width generalizes the submodular width

considering richer sets of statistics on the input data. The original definition assumed only

cardinality constraints: there is one cardinality constraint for each input relation, and they are

all equal. In that case, both subw and fhtw are finite. In our generalization, subw can be∞,
for example when Δ = ∅. When no confusion arises, we will simply call fhtw and subw the

fractional hypertree width and submodular width, dropping the term degree-aware.

EXAMPLE 6.3 (fhtw and subw of the 9-cycle with 9 ≥ 4). Consider the Boolean 9-cycle

query with 9 ≥ 4:

&() :- '1,2(-1, -2) ∧ · · · ∧ '9−1,9 (-9−1, -9) ∧ '9,1(-9, -1).

Suppose we have input cardinality statistics # := |'1,2 | = · · · = |'9−1,9 | = |'9,1 |. For instance, in
the query where all input relations are the edge set of a graph, # is the number of edges. We

will show that subw ≤ (2 − 1/⌈9/2⌉) log# and fhtw ≥ 2 log# for this query.

To show the bound on the fhtw, note that, in any tree decomposition (), j), there must be

at least one bag j(B) that contains some three consecutive variables {-7−1, -7 , -7+1} on the cycle.

Fix 7 accordingly and consider the polymatroid h defined by:

ℎ(^) = |^ ∩ {-7−1, -7+1}| · log# for all ^ ⊆ {-1, . . . , -9}

It is straightforward to verify that this is a polymatroid with ℎ(j(B)) = 2 log# and h |= (Δ, n).
To prove the bound on subw, consider any polymatroid h |= (Δ, n). Let \ be a parameter

to be determined. Consider two cases.

18 By that, we mean reporting the output tuples one by one where the time needed to report the next tuple (or report
that none exists) remains a constant throughout the entire process. The constant here is in data complexity.

19 In particular, within the mentioned preprocessing time, we can produce a constant number of tree decompositions
that cover the full join of the input relations. However, the same output tuple might be duplicated across multiple tree
decompositions. Nevertheless, we can use the Cheater’s Lemma [15] to deduplicate the output while maintaining
constant delay. See the proof of Theorem 6.5 for more details.

35 / 42 PANDA: Query Evaluation in Submodular Width

There exists -7 for which ℎ(-7) ≤ \. Without loss of generality, assume ℎ(-1) ≤ \. Consider

the tree decomposition:

-1, -2, -3 -1, -3, -4 -1, -9−1, -9

For every bag � = {-1, -7 , -7+1}, we have ℎ(�) ≤ ℎ(-1) + ℎ(-7-7+1) ≤ \ + log# .
ℎ(-7) > \ for all 7 ∈ [9]. Consider the tree decomposition

-1-2 · · · -⌈9/2⌉+1 -⌈9/2⌉+1-⌈9/2⌉+2 · · · -9-1

Bag �1 Bag �2

From submodularity,

ℎ(�1) ≤ ℎ(-1-2) +
⌈9/2⌉+1∑

7=3

ℎ(-7 |-7−1) ≤ ⌈9/2⌉ log# − (⌈9/2⌉ − 1)\

ℎ(�2) ≤ ℎ(-9-1) +
9−1∑

7=⌈9/2⌉+1
ℎ(-7 |-7+1) ≤ ⌊9/2⌋ log# − (⌊9/2⌋ − 1)\.

Setting \ = (1 − 1/⌈9/2⌉) log# to balance the two cases, we conclude that subw ≤ (2 −
1/⌈9/2⌉) log# . ■

6.2 Achieving submodular width runtime with PANDA

Before explaining how PANDA can be used to achieve the submodular width runtime, we need

a technical lemma.

LEMMA 6.4. Let Z denote a finite collection20 of subsets of \ . Let (Δ, n) denote given input
degree constraints. If the following quantity is finite:

opt := max
h|=(Δ,n)

min
`∈Z

ℎ(`), (47)

then we can compute coe�cients , = (_`)`∈Z and w = (EX)X∈Δ such that the following are

satisfied:

(a) ∥,∥1 = 1, , ≥ 0, andw ≥ 0,

(b) Inequality
∑

`∈Z _` · ℎ(`) ≤
∑

X∈ΔEX · ℎ(X) is a Shannon inequality,
(c) opt =

∑
X∈ΔEX<X.

PROOF . Let Γ denote the (polyhedral) set of all polymatroids over\ . We write opt in a slightly

di�erent form, where we introduce a new unconstrained variable B to replace the inner min:

opt = max
B,h∈Γ
{B | ∀` ∈ Z : B ≤ ℎ(`), and ∀X ∈ Δ : ℎ(X) ≤ <X} (48)

20 Note that Z is not a multiset here.

36 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Introduce a Lagrangian multiplier _` for every constraint B ≤ ℎ(`), andEX for every constraint

ℎ(X) ≤ <X. The Lagrange dual function is

L(,,w) = max
B,h∈Γ

(

B +
∑

`∈Z
_` (ℎ(`) − B) +

∑

X∈Δ
EX(<X − ℎ(X))

)

=

∑

X∈Δ
EX<X +max

B
(1 − ∥,∥1)B +max

h∈Γ

(
∑

`∈Z
_`ℎ(`) −

∑

X∈Δ
EXℎ(X)

)

Let ,∗ andw∗ denote an optimal solution to the Lagrangian dual problem min{L(,,w) | , ≥
0,w ≥ 0}, then by strong duality21

opt = L(,∗,w∗) =
∑

X∈Δ
E∗X<X +max

B
(1 − ∥,∗∥1)B +max

h∈Γ

(
∑

`∈Z
_∗`ℎ(`) −

∑

X∈Δ
E∗Xℎ(X)

)

From the assumption that opt is finite, it follows that ∥,∗∥1 = 1 because B is unconstrained.

Furthermore, if there is any polymatroid h for which
∑

`∈Z _∗`ℎ(`) −
∑

X∈ΔE
∗
X
ℎ(X) > 0 then

L(,∗,w∗) is unbounded, because any positive multiple of a polymatroid is a polymatroid. Thus,

(1) is satisfied. Furthermore, as the expression inside maxh∈Γ is non-positive, the maximum it

can achieve is 0 with h = 0. Consequently, ,∗ andw∗ satisfy the three conditions (a), (b), and (c)

above, and we can compute them with standard linear programming algorithms. ■

Equipped with this tool, we are now ready to show how PANDA can be used to answer a

conjunctive query in submodular width time:

THEOREM 6.5. Given a set of degree constraints (Δ,T), a conjunctive query & of the form (3)

can be computed in time

$̃(∥Σ∥ + 2subw(&,Δ,n) + |output|)

on any database instance Σ that satisfies the degree constraints. In particular, within a prepro-

cessing time of $̃(∥Σ∥ + 2subw(&,Δ,n)), we can support constant-delay enumeration of the output.

PROOF . Let T (&) = {()1, j1), . . . , ();, j;)} be all free-connex tree decompositions of &. For

every tree decomposition ()7 , j7) ∈ T (&) and every node 8 ∈ nodes()7), create a fresh atom

�7 8 (`7 8) over variables `7 8 := j7 (8). In other words, every bag of every tree decomposition is

associated with an atom. Let Σ7 := {�7 8 (`7 8) | 8 ∈ nodes()7)} denote a schema corresponding to

the bags of the 7th tree decomposition. The algorithm will compute relation instances �7 8 (`7 8),
for all 7 ∈ [;] and 8 ∈ nodes()7), such that the tree decompositions together cover the full join

of the input relations:

ZΣ ⊆
⋃

7∈[;]
ZΣ7 (49)

21 Which holds because the problem is linear.

37 / 42 PANDA: Query Evaluation in Submodular Width

From these instances, there are ; separate free-connex acyclic conjunctive queries of the form

&7 (L) :-
∧

�7 8 (`7 8)∈Σ7
�7 8 (`7 8),

which can be computed in $̃(∥Σ7 ∥ + |&7 (L) |) time, using Lemma 2.1. Before computing these

queries, we semijoin reduce each �7 8 (`7 8) in Σ7 with all the input relations in Σ. Recall that by

definition of a tree decomposition, every input relation '(^) in Σ must have its variables ^

appear in some bag of the tree decomposition ()7 , j7), hence in some `7 8 in Σ7 . Therefore, this

semijoin reduction ensures that the output of each query &7 (L) is a subset of the full join of the

input relationsZΣ. This turns (49) into an equality.

To support constant-delay enumeration of the output after a preprocessing time of $̃(∥Σ∥ +
2subw(&,Δ,n)), we will use constant-delay enumeration of the output of each &7 (L) after a prepro-
cessing time of $̃(∥Σ7 ∥), as explained in Lemma 2.1. Note that the same output tuple might be

duplicated across multiple queries &7 (L). Nevertheless, we can use the Cheater’s Lemma [15] to

deduplicate the output while maintaining constant delay.22

It remains to show that we can compute all the instances Σ7 satisfying (49) in time

$̃(2subw(&,Δ,n)). Obviously, to compute them in time $̃(2subw(&,Δ,n)), it is necessary that ∥Σ7 ∥ =
$̃(2subw(&,Δ,n)). To this end, for every combination of nodes j = (81, 82, . . . , 8;) ∈ nodes()1) ×
· · · ×nodes();), we will compute a feasible output �

j

1, . . . �
j
; to the following DDR (whose input

schema is Σ):

∨

7∈[;]
�
j

7
(`7 87) :-

∧

'(^)∈Σ
'(^). (the jth DDR) (50)

In words, for this DDR, there is a representative bag �
j

7
from each tree decomposition ()7 , j7).

After feasible solutions to all these DDRs are computed, then we set �7 8 :=
⋃

j: 87= 8 �
j

7
.

We first prove that the instances �7 8 defined as such satisfy property (49). Suppose there

is a tuple t ∈ ZΣ that is not in the RHS of (49). Then, for every 7 ∈ [;], there exists a node
87 ∈ nodes()7) such that c`7 87

(t) ∉ �7 87 . Collect these 87 into a tuple j, then this implies that we

did not compute a feasible output to the jth DDR (50), a contradiction.

Last but not least, we show that the DDRs (50) can be computed in time $̃(2subw(&,Δ,n)). Fix
a tuple of nodes j = (81, . . . , 8;). LetZ denote the set of all bags `7 87 for 7 ∈ [;]. Define

opt := max
h|=(Δ,n)

min
/∈Z

ℎ(/).

Then,

opt = max
h|=(Δ,n)

min
7∈[;]

ℎ(/7 87) ≤ max
h|=(Δ,n)

min
7∈[;]

max
B∈nodes()7)

ℎ(j(B)) = subw(&, Δ, n).

22 Recall that the number of tree decompositions is constant in data complexity.

38 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

- /

.

,

' (

*+

-,. , /

/,,, -

,, -,. . , /,,

Figure 2. Query (51) with the two free-connex tree decompositions.

WLOG, we assume that subw is finite, which means opt is finite. By Lemma 6.4, we

can compute coe�cients , and w such that the three conditions in Lemma 6.4 are satisfied.

Hence, from Theorem 4.1, we can compute a feasible output to the DDR (50) in time $̃(2opt) =
$̃(2subw(&,Δ,n)). ■

6.3 Example: Solving a conjunctive query in submodular width time

Consider the following query & whose body is a 4-cycle:

&(-,.) :- '(-,.) ∧ ((., /) ∧* (/,,) ∧+ (,, -) (51)

Suppose we only have cardinality statistics where all input relation sizes are upper bounded by

for some number # , i.e.,

Δ ={(-. |∅), (./ |∅), (/, |∅), (,- |∅)}, #-. =#./ = #/, = #,- = #.

Let < := log# . This query has two free-connex tree decompositions, depicted in Figure 2

(ignoring the trivial tree decomposition with a single bag):

One with two bags �11(-,. , /) and �12(/,,, -).
One with two bags �21(., /,,) and �22(,, -,.).

It is not hard to see that the degree-aware fractional hypertree width of &, given by (45), is

exactly 2<, and we leave this as an exercise. Next, we show that the degree-aware submodular

width is 3</2. In particular, Eq. (46) for this query becomes:

subw(&, Δ, n) = max
h|=(Δ,n)

min(max(ℎ(-./), ℎ(/,-)),max(ℎ(./,), ℎ(,-.)))

39 / 42 PANDA: Query Evaluation in Submodular Width

By distributing the min over the inner max, and then swapping the two max operators, we get:

subw(&, Δ, n) = max(
max
h|=(Δ,n)

min(ℎ(-./), ℎ(./,)), (52)

max
h|=(Δ,n)

min(ℎ(-./), ℎ(,-.)), (53)

max
h|=(Δ,n)

min(ℎ(/,-), ℎ(./,)), (54)

max
h|=(Δ,n)

min(ℎ(/,-), ℎ(,-.))) (55)

Note that each of the expressions (52). . . (55) has the same format as the optimization prob-

lem (47) in Lemma 6.4 and is equivalent to the linear program (48). Let’s take the first ex-

pression (52). (The other three are similar.) For this expression, a linear program solver gives

opt = 3</2. Lemma (6.4) guarantees for us the existence of the following Shannon inequality,

which is the same as (32) from Section 4.2:

1

2
ℎ(-./) + 1

2
ℎ(./,) ≤1

2
ℎ(-. |∅) + 1

2
ℎ(./ |∅) + 1

2
ℎ(/, |∅)

In particular, by item (c) of the lemma, we have:

opt =
1

2
<-. +

1

2
<./ +

1

2
</, =

3

2
<.

The other three expressions (53)–(55) also have opt = 3</2, leading to subw(&, Δ, n) = 3</2.
Next, we describe the algorithm to compute the query (51) in time $̃(#3/2 + |output|), as

claimed in Theorem 6.5. The algorithm starts by constructing the following four DDRs, which

mirror the four expressions (52)–(55):

�111 (-,. , /) ∨ �112 (., /,,) :- '(-,.) ∧ ((., /) ∧* (/,,) ∧+ (,, -) (56)

�121 (-,. , /) ∨ �122 (,, -,.) :- '(-,.) ∧ ((., /) ∧* (/,,) ∧+ (,, -) (57)

�211 (/,,, -) ∨ �212 (., /,,) :- '(-,.) ∧ ((., /) ∧* (/,,) ∧+ (,, -) (58)

�221 (/,,, -) ∨ �222 (,, -,.) :- '(-,.) ∧ ((., /) ∧* (/,,) ∧+ (,, -) (59)

Let’s take the first DDR (56) as an example. We can compute a feasible output to this DDR by

computing a feasible output to the following DDR instead:

�111 (-,. , /) ∨ �112 (., /,,) :- '(-,.) ∧ ((., /) ∧* (/,,)

The above DDR is identical to (7), and we saw in Section 4.2 that we can compute a feasible

output to it in time $̃(#3/2). The other 3 DDRs (57)–(59) can be computed in the same way.

40 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

Afterwards, we compute:

�11 := �111 ∪ �121

�12 := �211 ∪ �221

�21 := �112 ∪ �212

�22 := �122 ∪ �222

Using Lemma (2.1), we compute the following two free-connex acyclic conjunctive queries (after

semijoin-reducing each of the �7 8 relations with the input relations ', (,* and +):

&1(-,.) :- �11(-,. , /) ∧ �12(/,,, -)
&2(-,.) :- �21(., /,,) ∧ �22(,, -,.)

Finally, we take the union of &1 and &2 above as the output & to the query in (51). The overall

runtime is $̃(#3/2 + |output|).
In order to prove the correctness of this algorithm, we show that the full join '(-,.) Z

((., /) Z * (/,,) Z + (,, -) is identical to the set of tuples (F, G, H, E) that satisfy:

(�11(F, G, H) ∧ �12(H, E, F)) ∨ (�21(G, H, E) ∧ �22(E, F, G)) (60)

The containment ⊇ is immediate from the definition of �7 8 (and thanks to the semijoin reduction

of �7 8 with the input relations', (,* and+). For the other containment⊆, note that condition (60)
is equivalent to the following:

(�11(F, G, H) ∨ �21(G, H, E))∧ (61)

(�11(F, G, H) ∨ �22(E, F, G))∧
(�12(H, E, F) ∨ �21(G, H, E))∧
(�12(H, E, F) ∨ �22(E, F, G))

By (56). . . (59), every tuple (F, G, H, E) that satisfies the conjunction '(F, G) ∧ ((G, H) ∧* (H, E) ∧
+ (E, F) must also satisfy (61). This completes the proof of correctness.

7. Conclusion

We presented PANDA, an algorithm that computes a conjunctive query in time given by its

submodular width. For this purpose, we have used a generalization of the notion of submodular

width in [28], by incorporating a rich class of statistics on the input relations, including cardi-

nality constraints and degree constraints; the latter can also express functional dependencies.

The PANDA algorithm described here is a significant simplification of its preliminary version

in [6]. PANDA can also be used as a Worst-Case-Optimal-Join algorithm to compute the output

of a full conjunctive query in time bounded by the information-theoretic upper bound of the

41 / 42 PANDA: Query Evaluation in Submodular Width

output size. A recent extension showed that it can also be extended to account for �>-norms of

degree sequences in the input [3].

We leave some open problems. The first is an analysis of the complexity of the witness

of a Shannon inequality. The number of submodularities in the Shannon inequality appears

as the exponent of a logarithmic factor in the runtime of PANDA, and it would be very useful

to study this number as a function of the query. Another question concerns the number of

tree decompositions needed to compute the submodular width: our current bound is double

exponential, and the question is whether this can be reduced. Finally, one open problem is

whether PANDA can be generalized to achieve information-theoretic bounds corresponding to

non-Shannon inequalities [40, 39].

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.
URL (1)

[2] Mahmoud Abo Khamis, Phokion G. Kolaitis,
Hung Q. Ngo, and Dan Suciu. Bag query
containment and information theory. ACM Trans.
Database Syst. 46(3):12:1–12:39, 2021. DOI (20)

[3] Mahmoud Abo Khamis, Vasileios Nakos,
Dan Olteanu, and Dan Suciu. Join size bounds
using lp-norms on degree sequences. Proc. ACM
Manag. Data, 2(2), May 2024. DOI (3, 41)

[4] Mahmoud Abo Khamis, Hung Q. Ngo, and
Atri Rudra. FAQ: questions asked frequently.
Proceedings of the 35th ACM Symposium on
Principles of Database Systems, PODS 2016,
pages 13–28. ACM, 2016. DOI (1, 34)

[5] Mahmoud Abo Khamis, Hung Q. Ngo, and
Dan Suciu. Computing join queries with functional
dependencies. Proceedings of the 35th ACM
Symposium on Principles of Database Systems,
PODS 2016, pages 327–342. ACM, 2016. DOI (3,
5, 20)

[6] Mahmoud Abo Khamis, Hung Q. Ngo, and
Dan Suciu.What do shannon-type inequalities,
submodular width, and disjunctive datalog have to
do with one another? Proceedings of the 36th ACM
Symposium on Principles of Database Systems,
PODS 2017, pages 429–444. ACM, 2017. DOI
ePrint (1, 3–5, 9, 14, 33, 40)

[7] Noga Alon. On the number of subgraphs of
prescribed type of graphs with a given number of
edges. Israel J. Math. 38(1-2):116–130, 1981. DOI
(2)

[8] Noga Alon, Raphael Yuster, and Uri Zwick. Finding
and counting given length cycles. Algorithmica,
17(3):209–223, 1997. DOI (4)

[9] Albert Atserias, Martin Grohe, and Dániel Marx.
Size bounds and query plans for relational joins.
49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, pages 739–748.
IEEE Computer Society, 2008. DOI (2, 10)

[10] Albert Atserias, Martin Grohe, and Dániel Marx.
Size bounds and query plans for relational joins.
SIAM J. Comput. 42(4):1737–1767, 2013. DOI (2,
11)

[11] Guillaume Bagan, Arnaud Durand, and
Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. Computer
Science Logic, 21st International Workshop, CSL
2007, 16th Annual Conference of the EACSL,
volume 4646 of Lecture Notes in Computer Science,
pages 208–222. Springer, 2007. DOI (7)

[12] Christoph Berkholz and Nicole Schweikardt.
Constant Delay Enumeration with
FPT-Preprocessing for Conjunctive Queries of
Bounded Submodular Width. 44th International
Symposium on Mathematical Foundations of
Computer Science (MFCS 2019), volume 138 of
Leibniz International Proceedings in Informatics
(LIPIcs), 58:1–58:15, 2019. DOI (34)

[13] Béla Bollobás and Andrew Thomason. Projections
of bodies and hereditary properties of hypergraphs.
Bull. London Math. Soc. 27(5):417–424, 1995. DOI
(2)

[14] Karl Bringmann and Egor Gorbachev. A
fine-grained classification of subquadratic patterns
for subgraph listing and friends. Proceedings of the
57th Annual ACM Symposium on Theory of
Computing, STOC 2025. ACM, 2025. (23)

[15] Nofar Carmeli and Markus Kröll. On the
enumeration complexity of unions of conjunctive
queries. ACM Trans. Database Syst. 46(2), May
2021. DOI (34, 37)

[16] F. R. K. Chung, R. L. Graham, P. Frankl, and
J. B. Shearer. Some intersection theorems for
ordered sets and graphs. J. Combin. Theory Ser. A,
43(1):23–37, 1986. DOI (2, 10, 11, 14)

42 / 42 M. Abo Khamis, H.Q. Ngo, D. Suciu

[17] Thomas Eiter, Georg Gottlob, and Heikki Mannila.
Disjunctive datalog. ACM Trans. Database Syst.
22(3):364–418, 1997. DOI (4, 7)

[18] Ehud Friedgut and Jeff Kahn. On the number of
copies of one hypergraph in another. Israel J. Math.
105:251–256, 1998. DOI (2, 4, 10)

[19] Georg Gottlob, Gianluigi Greco, Nicola Leone, and
Francesco Scarcello. Hypertree decompositions:
questions and answers. Proceedings of the 35th
ACM Symposium on Principles of Database
Systems, PODS 2016, pages 57–74. ACM, 2016.
DOI (1, 3)

[20] Georg Gottlob, Stephanie Tien Lee, and
Gregory Valiant. Size and treewidth bounds for
conjunctive queries. Proceedings of the
Twenty-Eigth ACM Symposium on Principles of
Database Systems, PODS 2009, pages 45–54.
ACM, 2009. DOI (3)

[21] Georg Gottlob, Stephanie Tien Lee,
Gregory Valiant, and Paul Valiant. Size and
treewidth bounds for conjunctive queries. J. ACM,
59(3):16:1–16:35, 2012. DOI (3)

[22] Martin Grohe and Dániel Marx. Constraint solving
via fractional edge covers. ACM Trans. Algorithms,
11(1):4:1–4:20, 2014. DOI (1, 3, 33)

[23] Martin Grohe and Dániel Marx. Constraint solving
via fractional edge covers. Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, pages 289–298.
ACM Press, 2006. URL (2, 10)

[24] Alon Itai and Michael Rodeh. Finding a minimum
circuit in a graph. Proceedings of the 9th Annual
ACM Symposium on Theory of Computing, STOC
1977, pages 1–10. ACM, 1977. DOI (2)

[25] Viktor Leis, Andrey Gubichev, Atanas Mirchev,
Peter A. Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers,
really? Proc. VLDB Endow. 9(3):204–215, 2015.
DOI (2)

[26] Jorge Lobo, Jack Minker, and Arcot Rajasekar.
Foundations of disjunctive logic programming.
Logic Programming. MIT Press, 1992. (4)

[27] L. H. Loomis and H. Whitney. An inequality related
to the isoperimetric inequality. Bull. Amer. Math.
Soc, 55:961–962, 1949. (2)

[28] Dániel Marx. Tractable hypergraph properties for
constraint satisfaction and conjunctive queries. J.
ACM, 60(6):42:1–42:51, 2013. DOI (3, 32, 33, 40)

[29] Jack Minker. Overview of disjunctive logic
programming. Ann. Math. Artif. Intell. 12(1-2):1–24,
1994. DOI (4)

[30] Hung Q. Ngo. On an information theoretic approach
to cardinality estimation (invited talk). 25th
International Conference on Database Theory, ICDT
2022, volume 220 of LIPIcs, 1:1–1:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
DOI (2)

[31] Hung Q. Ngo.Worst-case optimal join algorithms:
techniques, results, and open problems.
Proceedings of the 37th ACM Symposium on
Principles of Database Systems, PODS ’18,
pages 111–124. ACM, 2018. DOI (2, 20)

[32] Hung Q. Ngo, Ely Porat, Christopher Ré, and
Atri Rudra.Worst-case optimal join algorithms. J.
ACM, 65(3):16:1–16:40, 2018. DOI (2, 3, 23)

[33] J. Radhakrishnan. Entropy and counting.
Computational Mathematics, Modelling and
Algorithms, 2003. J. C. Misra, editor (10)

[34] A. Schrijver. Combinatorial Optimization -
Polyhedra and Efficiency. Springer, 2003. (14, 15)

[35] Dan Suciu. Applications of information inequalities
to database theory problems. 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–30, 2023. DOI (14, 20)

[36] Todd L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. Proc. 17th International
Conference on Database Theory (ICDT) 2014,
pages 96–106. OpenProceedings.org, 2014. DOI
(2)

[37] Mihalis Yannakakis. Algorithms for acyclic
database schemes. Very Large Data Bases, 7th
International Conference, VLDB 1981, pages 82–94.
IEEE Computer Society, 1981. (7, 20)

[38] Raymond W. Yeung. Information Theory and
Network Coding. Springer Publishing Company,
Incorporated, 1st edition, 2008. (8, 12)

[39] Zhen Zhang and Raymond W Yeung. On
characterization of entropy function via information
inequalities. IEEE Transactions on Information
Theory, 44(4):1440–1452, 1998. (5, 41)

[40] Zhen Zhang and Raymond W. Yeung. A
non-shannon-type conditional inequality of
information quantities. IEEE Trans. Information
Theory, 43(6):1982–1986, 1997. (5, 9, 41)

2025 : 12

This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu.

	Introduction
	Preliminaries
	Database instances and conjunctive queries (CQ)
	Tree decompositions and free-connex queries
	Disjunctive Datalog rules (DDR)
	Entropic vectors and polymatroids
	Statistics on the data

	On a Class Information Inequalities
	Size Bound for DDRs from Information Inequalities
	Equivalent Formulations of Inequality (14)
	The Reset Lemma

	Overview of PANDA and statement of main result
	An Efficient Algorithm to Evaluate Disjunctive Datalog Rules
	Example: Preview of PANDA

	Detailed Description of PANDA
	Tables and Dictionaries
	Algorithm
	Proof of correctness and runtime analysis

	Answering Conjunctive Queries in Submodular-Width Time
	Width parameters for conjunctive queries under degree constraints
	Achieving submodular width runtime with PANDA
	Example: Solving a conjunctive query in submodular width time

	Conclusion
	References

