
Insert-Only versus Insert-Delete in Dynamic �ery

Evaluation

MAHMOUD ABO KHAMIS, RelationalAI, USA
AHMET KARA, OTH Regensburg, Germany

DAN OLTEANU, University of Zurich, Switzerland

DAN SUCIU, University of Washington, USA

We study the dynamic query evaluation problem: Given a full conjunctive query & and a sequence of updates

to the input database, we construct a data structure that supports constant-delay enumeration of the tuples in

the query output after each update.

We show that a sequence of # insert-only updates to an initially empty database can be executed in total

time O(#w(&)), where w(&) is the fractional hypertree width of & . This matches the complexity of the

static query evaluation problem for & and a database of size # . One corollary is that the amortized time per

single-tuple insert is constant for U-acyclic full conjunctive queries.

In contrast, we show that a sequence of# inserts and deletes can be executed in total time Õ(#w(&̂)), where

&̂ is obtained from & by extending every relational atom with extra variables that represent the “lifespans” of

tuples in the database. We show that this reduction is optimal in the sense that the static evaluation runtime

of &̂ provides a lower bound on the total update time for the output of & . Our approach achieves amortized

optimal update times for the hierarchical and Loomis-Whitney join queries.

CCS Concepts: • Theory of computation→ Database query processing and optimization (theory);

Online algorithms.

Additional Key Words and Phrases: incremental view maintenance; optimality; intersection joins

ACM Reference Format:

Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, and Dan Suciu. 2024. Insert-Only versus Insert-Delete

in Dynamic Query Evaluation. Proc. ACM Manag. Data 2, 5 (PODS), Article 219 (November 2024), 26 pages.

https://doi.org/10.1145/3695837

1 Introduction

Answering queries under updates to the database, also called dynamic query evaluation, is a fun-
damental problem in data management, with recent work addressing it from both systems and
theoretical perspectives. There have been recent e�orts on building systems for dynamic query
evaluation, such as DBToaster [28], DynYannakakis [18, 19], F-IVM [26, 37, 38], and CROWN [44].
By allowing tuples to carry payloads with elements from rings [27], such systems can main-
tain complex analytics over database queries, such as linear algebra computation [36], collection
programming [29], and machine learning models [26]. There has also been work on dynamic com-
putation for intersection joins [42] and for expressive languages such as Datalog [32], Di�erential

Authors’ Contact Information: Mahmoud Abo Khamis, mahmoudabo@gmail.com, RelationalAI, Berkeley, CA, USA; Ahmet

Kara, ahmet.kara@oth-regensburg.de, OTH Regensburg, Department of Computer Science & Mathematics, Regensburg,

Germany; Dan Olteanu, olteanu@i�.uzh.ch, University of Zurich, Department of Informatics, Zurich, Switzerland; Dan

Suciu, suciu@cs.washington.edu, University of Washington, Department of Computer Science & Engineering, Seattle, WA,

USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/11-ART219

https://doi.org/10.1145/3695837

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:2 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

Datalog [1], and DBSP [11]. The descriptive complexity of various recursive Datalog queries under
updates, such as reachability, has also been investigated [13, 40]. Dynamic query evaluation has
also been utilized for complex event recognition [15, 16].

While this problem attracted continuous interest in academia and industry over the past decades,
it is only relatively recently that the �rst results on the �ne-grained complexity and in particular on
the optimality of this problem have emerged. These e�orts aim to mirror the breakthrough made
by the introduction of worst-case optimal join algorithms [7, 34, 43]. Beyond notable yet limited
explorations, understanding the optimality of maintenance for the entire language of conjunctive
queries remains open. Prime examples of progress towards the optimality of query maintenance are
the characterizations of queries that admit (worst-case or amortized) constant time per single-tuple
update (insert or delete): the @-hierarchical queries [9, 18, 26, 44], queries that become @-hierarchical
in the presence of free access patterns [24] or by rewriting under functional dependencies [26], or
queries on update sequences whose enclosureness is bounded by a constant [45]. The X1-hierarchical
queries [23–25] and the triangle queries [21, 22] admit optimal, albeit non-constant, update time
conditioned on the Online Matrix-Vector Multiplication (OMv) conjecture [17].

In this paper, we introduce a new approach to incremental view maintenance for full conjunctive
queries (or queries for short). Our approach complements prior work in four ways.
First, we give reductions from the dynamic query evaluation problem for a query & to the

static query evaluation problem of a derived query &̂ (called the multivariate extension of &), and
vice versa. Our reductions link the complexities of the two problems and allow to transfer both
algorithms and lower bounds from one problem to the other. Speci�cally, we give a reduction
from dynamic query evaluation to a wide class of algorithms for static query evaluation, namely
algorithms that meet the fractional hypertree width, thus allowing us to use those algorithms for
dynamic query evaluation. Moreover, we give a reduction from static query evaluation to any

algorithm for dynamic query evaluation, thus allowing us to use lower bounds on static query
evaluation to infer lower bounds on dynamic query evaluation. Both reductions use a translation
of the time dimension in the dynamic problem into a spatial dimension in the static problem, so
that the maintenance under a stream of updates corresponds to taking the intersection of intervals
representing the “lifespans” of tuples in the update stream.
Second, we devise new dynamic query evaluation algorithms that use our reductions. We call

them MVIVM (short for MultiVariate IVM). Their single-tuple update times are amortized. For any
U-acyclic query in the insert-only setting, MVIVM take amortized constant single-tuple update
time. This recovers a prior result [44], when restricted from free-connex to full conjunctive queries.

For Loomis-Whitney queries in the insert-delete setting, MVIVM take amortized Õ(|D|1/2) update
time, where |D| is the database size at update time; this is optimal up to a polylogarithmic factor
in the database size. This recovers prior work on the triangle query, which is the Loomis-Whitney
query with three variables [22]. For hierarchical queries in the insert-delete setting,MVIVM take
amortized constant single-tuple update time; this is weaker than prior work [9], which showed
that worst-case constant single-tuple update time can be achieved for @-hierarchical queries.

Third, MVIVM support (worst-case, not amortized) constant delay enumeration of the tuples in
the query output (full enumeration) or in the change to the query output (delta enumeration) after
each update. In particular, MVIVM map an input stream of updates to an output stream of updates,
so they are closed under updates. In practice, the change to the output after an update is often
much smaller than the full output, making delta enumeration more e�cient than full enumeration.

Fourth, we pinpoint the complexity gap between the insert-only and the insert-delete settings. In
the insert-only setting, we show that one can readily use a worst-case optimal join algorithm like
GenericJoin [34] and LeapFrogTrieJoin [43] to execute a stream of inserts one insert at a time in

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:3

the same overall time as if the entire stream was executed as one bulk update (which corresponds
to static evaluation). This implies an upper bound on the amortized update time for the dynamic
evaluation of & in the insert-only setting. In contrast, in the insert-delete setting, a stream of both
inserts and deletes can be executed one update at a time in the same overall time as the static

evaluation of a query &̂ , which is obtained by extending every relational atom in & with extra

variables representing the “lifespans” of tuples. This query &̂ may have a higher complexity than& ,
thus leading to an upper bound on the amortized update time for & in the insert-delete setting that
may be higher than in the insert-only setting. Nevertheless, our reduction from the maintenance of

& in the insert-delete setting to the static evaluation problem for &̂ is optimal: Lower bounds on the
latter problem imply lower bounds on the former. This shows that maintenance in the insert-delete
setting can be more expensive than in the insert-only setting.

Motivating Examples

We exemplify our results for the following three join queries:

&3? (�, �,�, �) = '(�, �) ∧ ((�,�) ∧) (�, �)

&△ (�, �,�) = '(�, �) ∧ ((�,�) ∧) (�,�) (1)

&4 (�, �,�, �) = '(�,�, �) ∧ ((�,�, �) ∧) (�, �, �) ∧* (�, �,�)

We would like to perform single-tuple updates to each query, while ensuring constant-delay
enumeration of the tuples in the query output after each update. These queries are not @-hierar-
chical, hence they cannot admit worst-case constant time per single-tuple update [9]: The OMv
conjecture implies that there is no algorithm that takes O(|D|1/2−W) time for single-tuple updates,
for any W > 0, to any of these queries. In fact, for a database D, systems like DBToaster [28],
DynYannakakis [18], F-IVM [37], and CROWN [44] need at least worst-case O(|D|) time per
single-tuple update to each of these queries. For the triangle query &△ , IVM

n takes O(|D|1/2)
amortized time for single-tuple updates [22]. In the insert-only setting, CROWN maintains &3? in
amortized constant time per insert. However, it cannot handle non-acyclic queries like &△ and &4

(with update time better than recomputation from scratch). Appendix A explains how each prior
approach maintains &3? and &△ in the insert-delete setting, and compares their update times to
our approach, MVIVM.

We show that, for &3? ,MVIVM performs single-tuple updates: in amortized constant time in the

insert-only setting; and in amortized Õ(|D|1/2) time in the insert-delete setting ($̃ notation hides a
polylog(|D|) factor). Both times are optimal, the latter is conditioned on the OMv conjecture. The
amortized constant time per insert matches that of CROWN [44] and does not contradict the non-
constant lower bound for non-hierarchical queries without self-joins [9]: that lower bound proof
relies on a reduction from OMv that requires both inserts and deletes. Achieving this amortized
constant time, while also allowing constant-delay enumeration after each insert, is non-trivial. The
lazy maintenance approach, which only updates the input data, is not su�cient to achieve this result.
This is because, while it does indeed take constant insert time, it still requires the computation of
the query output before the enumeration of the �rst output tuple. This computation takes linear
time using a factorized approach [26] and needs to be repeated for every enumeration request.

MVIVM takes O(|D|1/2) and O(|D|1/3) amortized single-tuple insert time for the triangle query
&△ and, respectively, the Loomis-Whitney-4 query &4. Given a sequence of |D| inserts, the total
times of O(|D|3/2) and O(|D|4/3), respectively, match the worst-case optimal times for the static

evaluation of these two queries [34]. In the insert-delete setting, single-tuple updates take Õ(|D|1/2)
amortized time for both queries, and this is optimal based on the OMv conjecture. Figure 4 in
Appendix A shows the update times of MVIVM and prior work for further queries.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:4 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

2 Preliminaries

In this section, we review some preliminaries, most of which are standard in database theory.

We use N to denote the set of natural numbers including 0. For = ∈ N, we de�ne [=]
def
=

{1, 2, . . . , =}. In case = = 0, we have [=] = ∅.

Data Model. Following standard terminology, a relation is a �nite set of tuples and a database is a
�nite set of relations [2]. The size |' | of a relation ' is the number of its tuples. The size |D| of a
database D is given by the sum of the sizes of its relations.

Queries. We consider natural join queries or full conjunctive queries. We refer to them as queries
for short. A query has the form

& (^) = '1 (^1) ∧ · · · ∧ ': (^:), (2)

where each '8 is a relation symbol, each ^8 is a tuple of variables, and ^ =
⋃

8∈[:] ^8 . We refer to
^8 as the schema of '8 and treat schemas and sets of variables interchangeably, assuming a �xed
ordering of variables. We call each '8 (^8) an atom of & . We denote by at(&) = {'8 (^8) | 8 ∈ [:]}

the set of all atoms of& and by at(-) the set of atoms '8 (^8) with- ∈ ^8 . The set of all variables of
& is denoted by vars(&) =

⋃
8∈[:] ^8 . Since the set ^ is always equal to vars(&) for all queries we

consider in the paper, we drop ^ from the query notation and abbreviate & (^) with & in Eq. (2).

We say that & is without self-joins if every relation symbol appears in at most one atom.
The domain of a variable- is denoted byDom(-). A value tuple t over a schema^ = (-1, . . . , -=)

is an element from Dom(^)
def
= Dom(-1) × · · · × Dom(-=). We denote by t (-) the - -value of t .

A tuple t over schema ^ is in the result of & if there are tuples t8 ∈ '8 for 8 ∈ [:] such that for
all - ∈ vars(&), the set {t8 (-) | 8 ∈ [:] ∧ - ∈ ^8 } consists of the single value t (-). Given a query
& and a database D, we denote by & (D) the result of & over D.

A union of queries is of the form& =
∨

8∈[=] &8 where each&8 , called a component of& , is a query
over the same set of variables as & . The result of & is the union of the results of its components.

Query Classes. A query is (U-)acyclic if we can construct a tree, called join tree, such that the nodes
of the tree are the atoms of the query (coverage) and for each variable, it holds: if the variable appears
in two atoms, then it appears in all atoms on the path connecting the two atoms (connectivity) [10].
Hierarchical queries are a sub-class of acyclic queries. A query is called hierarchical if for any

two variables - and . , it holds at(-) ⊆ at(.), at(.) ⊆ at(-), or at(-) ∩ at(.) = ∅ [41].
Loomis-Whitney queries generalize the triangle query from a clique of degree 3 to higher de-

grees [30]. A Loomis-Whitney query of degree : ≥ 3 has : variables -1, . . . , -: and has, for each
subset _ ⊂ {-1, . . . , -: } of size : − 1, one distinct atom with schema _ .

A union of queries is acyclic (hierarchical, Loomis-Whitney) if each of its components is acyclic
(hierarchical, Loomis-Whitney).

Single-tuple Updates and Deltas. We denote an insert of a tuple t into a relation ' by +'(t) and
a delete of t from ' by −'(t). The insert +'(t) inserts t into ' if t is not contained in ', and the
delete −'(t) deletes t from ' if it is contained in '. Each insert or delete has a timestamp g , which
is a natural number that indicates the speci�c time at which the insert or delete occurs. An update

Xg' to ' at time g is the set of all inserts and deletes to ' at time g . An update Xg' is applied to ' by
�rst applying all the deletes in Xg' and then applying all the inserts. We use '

⊎
Xg' to denote the

result of applying an update Xg' to a relation '. We use ' (g) to refer to the speci�c version of a
relation ' at timestamp g . In particular, ' (g) is the result of applying Xg' to the previous version
' (g−1) , i.e. ' (g) = ' (g−1)

⊎
Xg'. An update XgD to a database D is the set of all inserts and deletes

to the relations inD at time g . Similarly, we useD (g) to refer to the speci�c version ofD at time g ,

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:5

i.e., D (g) = D (g−1)
⊎
XgD. If XgD consists of a single insert or delete, i.e., |XgD| = 1, it is called a

single-tuple update. In particular, if it consists of a single insert (or delete), we call it a single-tuple
insert (or single-tuple delete). Given a query & over a database D, we use Xg& (D) to denote the

change in & (D) at time g . Speci�cally, Xg& (D) is the di�erence between & (D
(g)) and & (D (g−1)):

Xg& (D)
def
= {+& (t) | t ∈ & (D (g)) and t ∉ & (D (g−1))}

∪{−& (t) | t ∈ & (D (g−1)) and t ∉ & (D (g))} (3)

When the timeg is clear from the context, we drop the annotation (g) andwrite', X',D, XD, & (D),
and X& (D). In the insert-only setting, since all deltas are positive, we ignore the signs and see a
single-tuple update as just a tuple, X' as just a relation, and so on.

Constant-Delay Enumeration. Given a query & and a database D, an enumeration procedure
for & (D) (or Xg& (D)) outputs the elements in & (D) (or Xg& (D)) one by one in some order and
without repetition. The enumeration delay of the procedure is the maximum of three times: the time
between the start of the enumeration process and the output of the �rst element, the time between
outputting any two consecutive elements, and the time between outputting the last element and
the end of enumeration [14]. The enumeration delay is constant if it does not depend on |D|.

Width Measures. Consider the following linear program for a query & and a database D:

min
∑

' (^) ∈ at(&)

log(|' |) · _' (^)

s.t.
∑

' (^) ∈ at(&) s.t. . ∈^

_' (^) ≥ 1 for all . ∈ vars(&) and

_' (^) ∈ [0, 1] for all '(^) ∈ at(&)

Every feasible solution (_' (^))' (^) ∈at(&) to the above program is called a fractional edge cover
of & with respect to D. The optimal objective value of the program is called the fractional edge
cover number d∗(&,D) of & with respect to D. The fractional edge cover number gives an upper
bound on the size of & (D): |& (D)| ≤ 2d

∗ (&,D) [7]. This bound is known as the AGM-bound and
denoted as AGM(&,�). We denote by d∗(&) the optimal objective value of the linear program that
results from the above program by replacing the objective function with

∑
' (^) ∈ at(&) _' (^) .

De�nition 2.1 (Tree Decomposition). A tree decomposition of a query & is a pair (T , j), where T

is a tree with vertices + (T) and j : + (T) → 2vars(&) maps each node C of the tree T to a subset
j (C) of variables of & such that the following properties hold:

(1) for every atom '(^) ∈ at(&), the schema ^ is a subset of j (C) for some C ∈ + (T), and
(2) for every variable - ∈ vars(&), the set {C | - ∈ j (C)} is a non-empty connected subtree of
T . The sets j (C) are called the bags of the tree decomposition.

We use TD(&) to denote the set of tree decompositions of a query & .

De�nition 2.2 (The restriction &_ of a query &). For a query & and a subset _ ⊆ vars(&), we
de�ne the restriction of & to _ , denoted by &_ , to be the query that results from & by restricting
the schema of each atom to those variables that appear in _ . Formally:

'_ (^ ∩ _)
def
= c^∩_'(^), for all '(^) ∈ at(&)

&_ (_)
def
=

∧
' (^) ∈at(&)

'_ (^ ∩ _) (4)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:6 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

De�nition 2.3 (Fractional Hypertree Width). Given a query & and a tree decomposition (T , j) of
& , the fractional hypertree width of (T , j) and of & are de�ned respectively as follows:

w(T , j)
def
= max

C ∈+ (T)
d∗(&j (C)), w(&)

def
= min
(T,j) ∈TD(&)

w(T , j) (5)

We call a tree decomposition (T , j) of& optimal if w(T , j) = w(&). The fractional hypertree width

of a union & =
⋃

8∈[=] &8 of join queries is w(&)
def
= max8∈[=] w(&8).

If a query is a union of join queries, its AGM-bound (or fractional hypertree width) is the
maximum AGM-bound (or fractional hypertree width) over its components.

Computational Model. We consider the RAM model of computation where schemas and data
values are stored in registers of logarithmic size and operations on them can be done in constant
time. We assume that each materialized relation with schema ^ is implemented by a data structure
of size O(|' |) that can: (1) look up, insert, and delete tuples in constant time, and (2) enumerate the
tuples in ' with constant delay. Given _ ⊆ - and t ∈ Dom(_), the data structure can: (1) check
t ∈ c_' in constant time; and (2) enumerate the tuples in f_=t' with constant delay.

3 Problem Se�ing

We consider natural join queries, or equivalently, full conjunctive queries and refer to them as queries.
We investigate the incremental view maintenance (IVM) of a query & under single-tuple updates to
an initially empty databaseD. A single-tuple update is an insert or a delete of a tuple into a relation
in D. We consider four variants of the IVM problem depending on the update and enumeration
mode. With regard to updates, we distinguish between the insert-only setting, where we only allow
single-tuple inserts, and the insert-delete setting, where we allow both single-tuple inserts and
single-tuple deletes. With regard to enumeration, we distinguish between the full enumeration
and the delta enumeration, where, after each update, the full query result and respectively the
change to the query result at the current time can be enumerated with constant delay. The four
IVM variants are parameterized by a query & and take as input a database D, whose relations are
initially empty, and a stream X1D, X2D, . . . , X#D of # single-tuple updates to D. Neither # nor

the updates are known in advance. The updates arrive one by one. Let D (0)
def
= ∅,D (1) , . . . ,D (#)

be the sequence of database versions, where for each g ∈ [#], the database version D (g) results
from applying the update XgD to the previous version D (g−1) .

The task of the �rst IVM variant is to support constant-delay enumeration of the full query result
& (D (g)) after each update:

Problem: IVM± [&]
Parameter: Query &
Given: An initially empty database D and a stream X1D, . . . , X#D of # single-tuple

updates to D where # is not known in advance.

Task: Support constant-delay enumeration of & (D (g)) after each update XgD

The task of the second IVM variant is to support constant-delay enumeration of the change to
the query result after each update, given by Eq. (3):

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:7

Problem: IVM±
X
[&]

Parameter: Query &
Given: An initially empty database D and a stream X1D, . . . , X#D of # single-tuple

updates to D where # is not known in advance.
Task: Support constant-delay enumeration of Xg& (D) after each update XgD

The other two variants, denoted as IVM+ [&] and IVM+
X
[&], are identical to IVM± [&] and

IVM±
X
[&], respectively, except that the updates XgD are restricted to be single-tuple inserts (no

deletes are allowed). In all four variants, we are interested in the update time, i.e., the time to process
a single-tuple update.

Example 3.1. Consider the triangle query &△ from Eq. (1). Suppose we have the update stream
of length 8 given in the second column of Table 1. The third and fourth column show the full result
and the delta result, respectively, after each update. We will use this example as a running example
throughout the paper.

g XgD & (D (g)) Xg& (D)

1 +'(01, 11) {} {}

2 +((11, 21) {} {}

3 +) (01, 21) {(01, 11, 21)} {+& (01, 11, 21)}

4 +((12, 21) {(01, 11, 21)} {}

5 −((11, 21) {} {−& (01, 11, 21)}

6 −((12, 21) {} {}

7 −) (01, 21) {} {}

8 −'(01, 11) {} {}

Table 1. An update sequence for the query &△ in Eq. (1). The last two columns show the full and delta result
a�er each update.

We obtain lower bounds on the update time for our IVM problems by reductions from the
following static query evaluation problem:

Problem: Eval[&]
Parameter: Query &
Given: Database D
Task: Compute & (D)

For this problem, we are interested in the time to compute & (D).

De�nition 3.2 (w(&) and l (&)). Given a query & , let w(&) denote the fractional hypertree width
of & (see Section 2). Let l (&) denote the smallest exponent ^ such that Eval[&] has an algorithm
with runtime O(|D|^+> (1) + |& (D)|) on any input databaseD. Given a union of queries& =

∨
8 &8 ,

we de�ne w(&) and l (&) to be the maximum of w(&8) and l (&8), respectively, over all 8 .
1

The function l (&) is not known in general. However, we know that l (&) ≤ w(&); see e.g. [4].
More strongly, l (&) is upper bounded by the submodular width of& [5, 6, 31]2. For acyclic queries,
we have l (&) = 1 [46]. For the triangle query, l (&△) ≥

4
3
modulo the 3SUM conjecture [39]. In

1The function l (&) is de�ned analogously to the constant l which is the best exponent for matrix multiplication.
2[5, 6] provide a query evaluation algorithm with runtime O(|D |subw(&) · polylog |D | + |& (D) |) = O(|D |subw(&)+> (1) +

|& (D) |) , thanks to the extra +> (1) in the exponent. subw(&) denotes the submodular width of& .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:8 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

this paper, we prove lower bounds on the IVM problems in terms of the function l (&). These lower
bounds are not conditioned on a �ne-grained complexity conjecture, like the OMv conjecture [17].
Instead, they apply no matter what the value of l (&) turns out to be. In that sense, they can be
thought of as unconditional. However, they are relatively straightforward to prove and are mostly
meant to justify the matching upper bounds.

Complexity Measures. For all problems introduced above, we consider the query to be �xed.

Moreover, we say that the amortized update time for the g-th single-tuple update is 5 (#, |D (g) |)

for some function 5 , if the total time to process all # updates in the stream is upper bounded by∑
g∈[#] 5 (#, |D (g) |). In the insert-only setting, the database size |D (g) | at time g is always equal

to g . Hence, for IVM+ [&] and IVM+
X
[&], we ignore the database size and only measure the update

time as a function of the length # of the update stream. In the insert-delete setting, the database
size at time g is upper bounded by g and could be much smaller than g . As a result, for IVM± [&]
and IVM±

X
[&], it is more natural to ignore # and only measure the update time as a function of

|D (g) |. For the four IVM problems, the constant enumeration delay is not allowed to be amortized,
regardless of whether the update time is amortized or not. For the problem Eval, we measure the
computation time as a function of the size of the input database D. We use the O-notation to state

worst-case bounds and Õ-notation to hide a polylogarithmic factor in # , |D (g) |, or |D|.

Multivariate Extensions. For the purpose of stating our results, we introduce the following central
concept, which gives our approach its name, MultiVariate IVM (MVIVM for short).

De�nition 3.3 (Multivariate extension &̂ of a query &). Consider a query & (^) = '1 (^1) ∧

. . . ∧ ': (^:) where ^ =
⋃

8∈[:] ^8 , and fresh variables /1, . . . , /: that do not occur in & . (In this
paper, we drop head variables ^ and write & instead of & (^) for brevity.) Let Σ: be the set of

permutations of the set [:]. For any permutation 2 = (f1, . . . , f:) ∈ Σ: , we denote by &̂2 the query
that results from & by extending the schema of each atom 'f8 (^f8) with the variables /1, . . . , /8 :

&̂2 = '̂f1 (/1,^f1) ∧ '̂f2 (/1, /2,^f2) ∧ · · · ∧ '̂f: (/1, . . . , /: ,^f:) (6)

The multivariate extension &̂ of & is the union of &̂2 over all permutations 2 ∈ Σ: :

&̂ =

∨
2 ∈Σ:

&̂2 (7)

We call each &̂2 a component of &̂ .

Example 3.4. The multivariate extension &̂△ of &△ from Eq. (1) consists of 6 components

&̂123, &̂132, &̂213, &̂231, &̂312 and &̂321. The �rst component, &̂123, orders the input relations as (', (,))
and applies Eq. (6) by adding {/1} to ', {/1, /2} to (, and {/1, /2, /3} to) , thus resulting in

'̂(/1, �, �), (̂ (/1, /2, �,�), and)̂ (/1, /2, /3, �,�) respectively. Below, we add the subscript 123 to
each relation to indicate the component for later convenience:

&̂123 = '̂123 (/1, �, �) ∧ (̂123 (/1, /2, �,�) ∧)̂123 (/1, /2, /3, �,�) (8)

4 Overview of Main Results

In this section, we overview our main results and discuss their implications.

4.1 Insert-Only Se�ing

In the insert-only setting, we show that o�-the-shelf worst-case optimal join algorithms, e.g.,
LeapFrogTrieJoin [43], can be used to achieve the best known amortized update time for the

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:9

dynamic query evaluation of arbitrary join queries, so including the cyclic queries, while supporting
constant delay for full/delta enumeration. Speci�cally, we give an upper bound on the single-tuple
update time in terms of the fractional hypertree width w(&) of & :

Theorem 4.1. For any query & , both IVM+ [&] and IVM+
X
[&] can be solved with O(#w(&)−1)

amortized update time and non-amortized constant enumeration delay, where # is the number of

single-tuple inserts.

The upper bound in Theorem 4.1 is met by our algorithm outlined in Sec. 5. It uses worst-case
optimal join algorithms and tree decompositions. Amortization is necessary as some inserts may be
costly, while many others are necessarily relatively cheaper, so the average insert time matches the
cost of computing a factorized representation of the query result divided by the number of inserts.

Since every acyclic query has a fractional hypertree width of one, Theorem 4.1 implies that every
acyclic query can be maintained with amortized constant time per insert:

Corollary 4.2 (Theorem 4.1). For any acyclic query & , IVM+ [&] and IVM+
X
[&] can be solved

with O(1) amortized update time and non-amortized constant enumeration delay.

Corollary 4.2 recovers the amortized constant update time for acyclic joins from prior work [44].
It also shows that the insert-only setting can be computationally cheaper than the insert-delete
setting investigated in prior work [9]: In the insert-delete setting, the non-hierarchical acyclic
queries cannot admit O(|D|1/2−W) update time (while keeping the enumeration delay constant) for
any database D and W > 0 [9], conditioned on the OMv conjecture.

We accompany the upper bound from Theorem 4.1 with a lower bound on the insertion time in
terms of the lower bound l (&) on the static evaluation of & (De�nition 3.2). Unlike prior lower
bounds [9, 21], this lower bound is not conditioned on a �ne-grained complexity conjecture, such
as the OMv conjecture [17]. However, its proof is straightforward by viewing static evaluation as a
stream of inserts. It is meant to show that Theorem 4.1 is optimal up to the gap between w(&) and
l (&). 3 It also applies to both amortized and non-amortized update time and enumeration delay. 4

Proposition 4.3. For any query & and any constant W > 0, neither IVM+ [&] nor IVM+
X
[&] can be

solved with Õ(#l (&)−1−W) (amortized) update time and (non-amortized) constant enumeration delay.

4.2 Insert-Delete Se�ing

In the insert-delete setting, our approach can maintain arbitrary join queries, and in particular
any cyclic join query, with update times that can be asymptotically lower than recomputation. In
particular, we give an upper bound on the update time for a query & in terms of the fractional

hypertree width of the multivariate extension &̂ of & (De�nition 3.3):

Theorem 4.4. For any query & , both IVM± [&] and IVM±
X
[&] can be solved with Õ(|D (g) |w(&̂)−1)

amortized update time and non-amortized constant enumeration delay, where &̂ is the multivariate

extension of & , and |D (g) | is the current database size at update time g .

Sec. 7.1 overviews our algorithm that meets the upper bound in Theorem 4.4. It involves intersec-
tion joins (Sec. 6). The following statements shed light on the relationship between a query & and

its multivariate extension &̂ (their proofs can be found in [8]):

• & is hierarchical if and only if its multivariate extension &̂ is acyclic, or equivalentlyw(&̂) = 1.

3 More broadly, our lower bounds are meant to introduce a new framework to assess the optimality of algorithms in database

theory, in terms of the function l (&) .
4Note that a lower bound on the amortized time also implies the same lower bound on the worst-case time. This is because

if an amortized algorithm does not exist, then a worst-case algorithm does not exist either.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:10 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

• If & is non-hierarchical, then w(&̂) ≥ 3
2
.

• If & is Loomis-Whitney of any degree, then w(&̂) = 3
2
.

• For any query & , we have w(&) ≤ w(&̂) ≤ w(&) + 1.

Immediate corollaries of these statements are that, in the insert-delete setting, our approach

needs: (1) amortized Õ(1) update time for hierarchical queries; and (2) amortized Õ(|D|1/2) update
time for the triangle query, which is the Loomis-Whitney query of degree 3. These update times
mirror those given in prior work on @-hierarchical queries [9] and the full triangle query [22], albeit
our setting is more restricted: it considers full conjunctive queries and initially empty databases
and the update times are amortized and have a polylog factor.

A close analysis of the lower bound proof for non-hierarchical queries in prior work [9] reveals
that for any non-hierarchical query & and any W > 0, there is no algorithm that solves IVM± [&] or

IVM±
X
[&] with amortized Õ(# 1/2−W) update time, unless the OMv-conjecture fails [8]. Following

Theorem 4.4 and the fact that w(&̂) = 3
2
for any Loomis-Whitney query & , we conclude that both

IVM± [&] and IVM±
X
[&] can be solved with Õ(|D|1/2) amortized update time, which is optimal,

unless the OMv conjecture fails [8].
First-order IVM, i.e., delta queries, and even higher-order IVM, i.e., delta queries with materialized

views, cannot achieve the update time of our approach. It was already discussed in prior work that for
the triangle join query, both IVM approaches need linear update time per single-tuple update [21, 22].
See Appendix A. The IVMn approach resorts to a heavy/light partitioning argument that is tailored
to the triangle query and does not generalize to other cyclic queries [21, 22]. Instead, our approach
solves this problem more systematically and for any query& by translating the temporal dimension
(the tuple lifespan as de�ned by its insert and possible delete) into spatial attributes (the multivariate

encoding of the tuple lifespan), taking a tree decomposition of the multivariate extension &̂ of & ,
and by materializing and maintaining the bags of this tree decomposition.

We complement the upper bound in Theorem 4.4 with a lower bound in terms of the lower bound

l (&̂2) for the static evaluation of any component &̂2 of &̂ . It is not conditioned of a complexity
conjecture. However, it only applies to the IVM±

X
[&] problem. In particular, it is meant to show

that our upper bound from Theorem 4.4 is tight for IVM±
X
[&] up to the gap between w(&̂) and

l (&̂2). It also applies to both amortized and non-amortized update time and enumeration delay.
Sec. 7.2 gives the high-level idea:

Theorem 4.5. Let & be a query and &̂2 any component of its multivariate extension. For any

constant W > 0, IVM±
X
[&] cannot be solved with (amortized) update time Õ(|D (g) |l (&̂2)−1−W) and

(non-amortized) constant enumeration delay.

5 IVM: Insert-Only Se�ing

In this section, we give an overview of our algorithm for IVM+ [&] that meets the upper bound
of Theorem 4.1. We leave the details and proofs to [8]. We start with the following lemma (Recall
notation from Sec. 2):

Lemma 5.1. Given a query & , an initially empty database D (0) , and a stream of # single-tuple

inserts, we can compute the new output tuples Xg& (�) after every insert XgD, where the total compu-

tation time over all inserts is O(# + AGM(&,D (#))).

The total computation time above is the same as the AGM bound [7] of& over the �nal database
D (#) . In particular, even in the static settingwhereD (#) is given upfront, the output size |& (D (#)) |
can be as large as AGM(&,D (#)) in the worst-case. Moreover, worst-case optimal join algorithms
cannot beat this runtime [33, 34, 43]. The above lemma is proved based on the query decomposition

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:11

lemma [33, 35], which says the following. Let & be a query and let _ ⊆ vars(&). Then, the AGM
bound of & can be decomposed into a sum of AGM bounds of “residual” queries: one query & Z ~

for each tuple ~ over the variables _ .

Lemma 5.2 (�ery Decomposition Lemma [33, 35]). Given a query & and a subset _ ⊆ vars(&),
let

(
_' (^)

)
' (^) ∈at(&) be a fractional edge cover of & . Then, the following inequality holds:∑

~∈Dom(_)

∏
' (^) ∈at(&)

|'(^) ⋉~ |_' (^)

︸ ︷︷ ︸
AGM-bound of& ⋉ ~

≤
∏

' (^) ∈at(&)

|' |_' (^)

︸ ︷︷ ︸
AGM-bound of&

(9)

In the above, ~ ∈ Dom(_) indicates that the tuple ~ has schema _ . Moreover, '(^) ⋉~ denotes
the semijoin of the atom '(^) with the tuple ~.

Example 5.3 (for Lemma 5.1). Consider the triangle query &△ from Eq. (1). Lemma 5.1 says that
given a stream of # single-tuple inserts into ', (, and) , we can compute the new output tuples
after every insert in a total time of O(# 3/2). To achieve this, we need to maintain two indices for
'(�, �): one index that sorts ' �rst by � and then by �, while the other sorts ' �rst by � and then
by �. For every insert to ', we update the two indices simultaneously. Similarly, we maintain two
indices for each of (and) .

Following notation from Sec. 2, let ' (0)
def
= ∅, ' (1) , . . . , ' (#) be the sequence of versions of ' after

each insert, and the same goes for (and) . Suppose that the g-th insert in the stream is inserting
a tuple (0, 1) into '(�, �). The new output tuples that are added due to this insert correspond to
the output of the following query: (Below, we drop the database instance D from the notation
Xg&△ (D) since D is clear from the context.)

Xg&△ (�, �,�)
def
= f�=1(

(g) (�,�) ∧ f�=0)
(g) (�,�)

The output size of this query is upper bounded by:

min(|f�=1(
(g) (�,�) |, |f�=0)

(g) (�,�) |) ≤

√
|f�=1((g) (�,�) | · |f�=0) (g) (�,�) | (10)

Moreover, the above query can be computed in time within O(1) factor from the quantity in Eq. (10).
To achieve this time, we need to use the index for ((�,�) that is indexed by � �rst, and we also
need the index for) (�,�) that is indexed by � �rst. Because ((g) ⊆ ((#) and) (g) ⊆) (#) , the
quantity in Eq. (10) is bounded by:√

|f�=1((#) (�,�) | · |f�=0) (#) (�,�) | (11)

The query decomposition lemma says that the sum of the quantity in Eq. (11) over all (0, 1) ∈ ' (#)

is bounded by
√
|' (#) | · |((#) | · |) (#) | ≤ # 3/2. Hence, all inserts into ' take time O(# 3/2).

Now suppose that the g-th insert in the stream is inserting a tuple (1, 2) into ((�,�). To handle
this insert, we compute the query:

Xg&△ (�, �,�)
def
= f�=1'

(g) (�, �) ∧ f�=2)
(g) (�,�)

To compute this query in the desired time, we need to use the index for) (�,�) that is indexed by
� �rst. This is why we need to maintain two indices for) (�,�). The same goes for ' and (.

Instead of the AGM-bound, the upper bound in Theorem 4.1 is given in terms of the fractional
hypertree width of & . To achieve this bound, we take an optimal tree decomposition of & and
maintain a materialized relation for every bag in the tree decomposition using Lemma 5.1. In order

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:12 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

to support constant-delay enumeration of the output, we “calibrate” the bags by semijoin reducing
adjacent bags with one another. The following example illustrates this idea.

Example 5.4 (for Theorem 4.1, IVM+). Suppose we want to solve IVM+ [&] for the following query
& consisting of two adjacent triangles: One triangle over {�, �,�} and the other over {�,�, �}.

& (�, �,�, �) = '(�, �) ∧ ((�,�) ∧) (�,�) ∧* (�, �) ∧+ (�, �) (12)

The above query& has a fractional hypertree width of 3
2
. In particular, one optimal tree decompo-

sition of & consists of two bags: One child bag �1 = {�, �,�} and another root bag �2 = {�,�, �}.
Theorem 4.1 says that given a stream of # single-tuple inserts, & can be updated in a total time of
O(# 3/2) where we can do constant-delay enumeration of the output after every insert. To achieve
this, we maintain the following query plan:

&1 (�, �,�) = '(�, �) ∧ ((�,�) ∧) (�,�)

%1 (�,�) = &1 (�, �,�)

& ′2 (�,�, �) = %1 (�,�) ∧ ((�,�) ∧* (�, �) ∧+ (�, �)

By Lemma 5.1, &1 above can be updated in a total time of O(# 3/2), as shown in Example 5.3.
Also, %1 can be updated in the same time because it is just a projection of &1. Regardless of the
size of %1, the query &

′
2 can be updated in a total time of O(# 3/2) because its AGM bound is upper

bounded by the input relations (,* and + . To do constant-delay enumeration of & (�, �,�, �), we
enumerate (1, 2, 3) from & ′2, and for every (1, 2), we enumerate the corresponding �-values from
&1. Note that at least one �-value must exist because & ′2 includes %1, which is the projection of &1.

In the above example, we only calibrate bottom-up from the leaf &1 to the root & ′2. However,
this is not su�cient for IVM+

X
[&]. Instead, we also need to calibrate top-down, as the following

example demonstrates.

Example 5.5 (for Theorem 4.1, IVM+
X
). Consider again the query (12) from Example 5.4. Suppose

now that we want to extend our solution from Example 5.4 to the IVM+
X
[&] problem. In particular,

suppose we have an insert of a tuple (0, 1) into ' above. In order to enumerate the new output
tuples corresponding to (0, 1), we have to start our enumeration from &1 as the root. For that
purpose, &1 also needs to be calibrated with & ′2. To that end, in addition to &1, %1 and &

′
2 that are

de�ned in Example 5.4, we also need to maintain the following relations:

% ′′1 (�,�) = & ′2 (�,�, �)

& ′′1 (�, �,�) = &1 (�, �,�) ∧ %
′′
1 (�,�)

The AGM bound of & ′′1 is still # 3/2, and so is the AGM bound of % ′′1 . Hence, we can maintain all

inserts into them in a total time of O(# 3/2). Moreover, note that by de�nition, & ′′1 must be the
projection of & (�, �,�, �) onto {�, �,�}.

Now, suppose we have an insert of a tuple t into either one of the relations (,* or + . Then, we
can enumerate the new output tuples that are added due to this insert by starting from & ′2, just
like we did in Example 5.4. However, if we have inserts into ' or) , then we have to start our
enumeration from & ′′1 . For each output tuple (0, 1, 2) of & ′′1 that joins with t , we enumerate the
corresponding �-values from & ′2. There must be at least one �-value because & ′′1 is the projection
of the output & onto {�, �,�}.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:13

6 Technical Tools: Intersection Joins

Before we explain our upper and lower bounds for IVM in the insert-delete setting in Sec. 7, we
review in this section some necessary background on intersection joins in the static setting.

De�nition 6.1 (Intersection queries [3]). An intersection query is a (full conjunctive) query that
contains interval variables, which are variables whose domains are discrete intervals over the
natural numbers. For instance, the discrete interval [3, 7] consists of the natural numbers from 3 to
7. For better distinction, we denote an interval variable by [-] and call the variables that are not
interval variables point variables. A value of an interval variable [-] is denoted by [G], which is an
interval. Two or more intervals join if they intersect. In particular, the semantics of an intersection
query & = '1 (^1) ∧ · · · ∧ ': (^:) is de�ned as follows. A tuple t over the schema vars(&) is in the
result of & if there are tuples t8 ∈ '8 for 8 ∈ [:] such that for all - ∈ vars(&), it holds:

• if - is a point variable, then the set of points {t8 (-) | 8 ∈ [:] ∧- ∈ ^8 } consists of a single value,
which is the point t (-);
• if [-] is an interval variable, then the intervals in the set {t8 ([-]) | 8 ∈ [:] ∧ [-] ∈ ^8 } have a
non-empty intersection, which is the interval t ([-]).

In this paper, we are only interested in a special class of intersection queries, de�ned below:

De�nition 6.2 (The time extension & of a query &). Let & = '1 (^1) ∧ · · · ∧ ': (^:) be a query

where vars(&) are all point variables, and let [/] be a new interval variable. The time extension &
of & is an intersection query that results from & by adding [/] to the schema of each atom:

& = '1 ([/],^1) ∧ · · · ∧ ': ([/],^:) (13)

A query & is called a time extension if it is the time extension of some query & .

We call& the “time extension” of& because in Sec. 7.1, we use the interval [/] in& to represent
the “lifespan” of tuples in & .

Example 6.3. Consider this intersection query, which is the time extension of &△ from Eq. (1):

&△ ([/], �, �,�) = '([/], �, �) ∧ (([/], �,�) ∧) ([/], �,�) (14)

In the above, [/] is an interval variable while �, �,� are point variables. Consider the database

instance D depicted in Figure 1. The output of &△ on this instance is depicted in Figure 1d.

[/] � �

[1, 8] 01 11

(a) '

[/] � �

[2, 5] 11 21
[4, 6] 12 21

(b) (

[/] � �

[3, 7] 01 21

(c))

[/] � � �

[3, 5] 01 11 21

(d) &△

Fig. 1. A database instance D for the query &△ in Eq. (14).

Let& be the time extension of a query& . Prior work reduces the evaluation of& to the evaluation

of &̂ , where &̂ is the multivariate extension of& (Eq. (7)), whose variables are all point variables [3].

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:14 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

[1, 8]

[1, 4] [5, 8]

[1, 2] [3, 4] [5, 6] [7, 8]

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8]

Y

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Fig. 2. A segment tree T8. Each node is identified by a bitstring.

Moreover, it is shown in [3] that this reduction is optimal (up to a Õ(1) factor). In particular,

the query & is exactly as hard as the hardest component &̂2 in &̂ . This is shown by a backward

reduction from (the static evaluation of) each component &̂2 to & . We summarize both reductions
below and defer the details to Appendix B and [3]. We rely on both reductions to prove upper and
lower bounds for IVM in the insert-delete setting (Sec. 4.2).

6.1 Reduction from & to &̂

Suppose we want to evaluate & on a given database instance D. We construct a segment tree, T# ,
over the interval variable [/], where the parameter # is roughly the maximum number of di�erent
/ -values. A segment tree T# is a balanced binary tree with # leaves. Each node corresponds to
an interval. The root corresponds to the interval [1, #], its left and right child correspond to the
intervals [1, # /2] and [# /2 + 1, #] respectively, and so on. Each node can be represented by a
bitstring of length at most log2 # . Figure 2 depicts the segment tree T8. Each interval [I] can be
broken down into at most O(log#) nodes in T# . We refer to these nodes as the canonical partition
of [I], and denote them by CP# ([I]). For example, the canonical partitions of [2, 8] and [2, 5] in
the segment tree T8 are:

CP8 ([2, 8]) = {001, 01, 1}, CP8 ([2, 5]) = {001, 01, 100} (15)

The canonical partition of the intersection of some intervals is roughly the intersection of their
canonical partitions [3]. Two (or more) nodes in the segment tree correspond to overlapping
intervals if and only if one node is an ancestor of the other, which can only happen if one of
the two corresponding bitstrings is a pre�x of the other [3]. For example, the nodes labeled by 1

and 100 in Figure 2 correspond to two overlapping intervals, namely [5, 8] and [5, 5], because the
string 1 is a pre�x of 100. Therefore, testing intersections can be reduced to testing whether some

bitstrings form a chain of pre�xes. Armed with this idea, we convert D into a database instance D̂

for &̂ , called the canonical partition of D and denoted by CP# (D). There is a mapping between

the outputs of & (D) and &̂ (D̂), as the following example shows.

Example 6.4. Suppose we want to reduce &△ from Eq. (14) to &̂△ from Example 3.4. In particular,

we are given the database instance D from Figure 1 and want to compute the corresponding

instance D̂ for &̂△ . We show how to construct '̂123, (̂123,)̂123 for &̂123 in Eq. (8). The remaining

&̂132, . . . , &̂321 are similar. The query &̂123 is meant to test whether ', (,) contain three intervals
[I'], [I(], [I)] whose canonical partitions contain bitstrings I', I(, I) where I' is a pre�x of I(

which is a pre�x of I) . This can only happen if there are bitstrings I2, I3 where I
(
= I' ◦ I2 and

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:15

I) = I(◦ I3, where ◦ denotes string concatenation. To that end, we de�ne:

'̂123
def
= {(I1, 0, 1) | ∃[I] : ([I], 0, 1) ∈ ' ∧ I1 ∈ CP# ([I])} (16)

(̂123
def
= {(I1, I2, 1, 2) | ∃[I] : ([I], 1, 2) ∈ (∧ (I1 ◦ I2) ∈ CP# ([I])}

)̂123
def
= {(I1, I2, I3, 0, 2) | ∃I : ([I], 0, 2) ∈) ∧ (I1 ◦ I2 ◦ I3) ∈ CP# ([I])}

Note that |)̂123 | = O(|) | · polylog(#)) and can be constructed in time O(|) | · polylog(#)), because

the height of the segment tree is O(log#). The same goes for '̂123 and (̂123. Let Y denote the

empty string. Applying the above to D from Figure 1, '̂123, (̂123,)̂123 respectively contain the
tuples: (Y, 01, 11), (Y, 01, 11, 21), (Y, 01, Y, 01, 21), which join together producing the output tuple

(Y, 01, Y, 01, 11, 21) of &̂123. This is a witness to the output tuple ([3, 5], 01, 11, 21) of &△ . The full

answer to &△ , given by Figure 1d, can be retrieved from the union of the answers to the six queries

&̂132, . . . , &̂321.

6.2 Reduction from &̂ to &

We now summarize the backward reduction from the static evaluation of each component &̂2 of &̂

back to & , based on [3]. We will utilize this reduction later to establish our lower bound in Sec. 7.2.

Example 6.5. Continuing with Example 6.3, let us consider the query &̂123 from (8). Let D̂′123 be

an arbitrary database instance for &̂123. (Unlike Example 6.3, here we cannot make any assumption

about how D̂′123 was constructed.) We show how to use an oracle for the intersection query &△
from (14) in order to compute &̂123 (D̂

′
123) in the same time. WLOG we can assume that each value

G that appears in D̂′123 is a bitstring of length exactly ℓ for some constant ℓ . (If a bitstring has

length less than ℓ , we can pad it with zeros.) We construct a segment tree T# ′ where #
′ def
= 23ℓ ,

i.e. a segment tree of depth 3ℓ . (We chose 3 in this example because it is the number of atoms in

&̂123.) Each node E in the segment tree corresponds to an interval that is contained in [# ′] and is
identi�ed by a bitstring of length at most 3ℓ . Given a bitstring 1 of length at most 3ℓ , let seg# ′ (1)
denote the corresponding interval in the segment tree T# ′ . We construct the following database

instance D
′
for &△ :

'
′
= {(seg# ′ (I1), 0, 1) | (I1, 0, 1) ∈ '̂

′
123}

(
′
= {(seg# ′ (I1 ◦ I2), 1, 2) | (I1, I2, 1, 2) ∈ (̂

′
123}

)
′
= {(seg# ′ (I1 ◦ I2 ◦ I3), 0, 2) | (I1, I2, I3, 0, 2) ∈)̂

′
123}

Following [3], we can show that there is a one-to-one mapping between the output tuples of

&△ (D
′
) and the output tuples of &̂123 (D̂

′
123). This follows from the observation that the three

intervals seg# ′ (I
'
1), seg# ′ (I

(
1 ◦ I

(
2), seg# ′ (I

)
1 ◦ I

)
2 ◦ I

)
3) overlap if and only if I'1 = I(1 = I)1 and

I(2 = I)2 . (Recall that the bitstrings I
'
1 , I

(
1 , . . . all have the same length ℓ .) Moreover note that '

′
, (
′
,)
′

have the same sizes as '̂′123, (̂
′
123, T̂

′
123 respectively and they can be constructed in linear time.

7 IVM: Insert-Delete Se�ing

In this section, we give a brief overview of how we obtain our upper and lower bounds for IVM in
the insert-delete setting from Theorem 4.4 and 4.5, respectively. Details are deferred to Appendix C.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:16 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

7.1 Upper bound for IVM± [&]

In order to prove Theorem 4.4, we start by describing an algorithm that meets a weaker version of
the upper bound in Theorem 4.4, where the current database size |D (g) | is replaced by the number
of single-tuple updates # : (Note that |D (g) | ≤ # and could be unboundedly smaller.)

Lemma 7.1. For any query & , both IVM± [&] and IVM±
X
[&] can be solved with Õ(#w(&̂)−1) amor-

tized update time and non-amortized constant enumeration delay, where &̂ is the multivariate extension

of & and # is the number of single-tuple updates.

In particular, we can show that we can use the algorithm from Lemma 7.1 as a black box in
order to meet the stronger upper bound in Theorem 4.4. The main reason why the algorithm from
Lemma 7.1 does not immediately meet the upper bound from Theorem 4.4 is that # can grow much
larger than the database size |D|, especially in the scenario where the update stream contains
many deletes. However, whenever that happens, we can “reset” the algorithm from Lemma 7.1 by
restarting from scratch and inserting all the tuples in the current database D as a stream of |D|
inserts. If this is done carefully, then we can ensure that the total number of updates since the last
reset is not signi�cantly larger than |D|.

We now focus on demonstrating our algorithm that proves Lemma 7.1 for IVM± [&].

Example 7.2 (for Lemma 7.1). Suppose we want to solve the problem IVM± [&△] for&△ in Eq. (1),
where we have a stream of # single-tuple inserts/deletes into ', (and) . For simplicity, assume that
is known in advance. (If # is not known in advance, we can initially assume # to be a constant
and keep doubling # every time we exceed it.) We introduce a new interval variable [/] and use
it to represent time. Speci�cally, [/] will represent the lifespan of every tuple in the database, in
the spirit of temporal databases [20]. By adding [/] to every atom, we obtain the time extension

&△ of &△ in Eq. (14). Suppose that the g-th update is an insert of a tuple (0, 1) into ', i.e. +'(0, 1).

Then, we apply the insert +'([g,∞], 0, 1) into the time extension, indicating that the tuple (0, 1)
lives in ' from time g on (since we don’t know yet its future deletion time). Now suppose that
the g ′-th update (for some g ′ > g) is a delete of the same tuple (0, 1) in '. Then, we replace the

tuple ([g,∞], 0, 1) in ' with ([g, g ′], 0, 1). We can extract the result of&△ at any time g by selecting

output tuples ([I], 0, 1, 2) of&△ where the interval [I] contains the current time g . Therefore, if we

can e�ciently maintain &△ , we can e�ciently maintain &△ . Table 2 shows the same stream of 8

updates into &△ as Table 1 but adds the corresponding updates to &△ . The �nal database D after
all updates have taken place is the same as the one shown in Figure 1.

g XgD XgD

1 +'(01, 11) +'([1,∞], 01, 11)

2 +((11, 21) +(([2,∞], 11, 21)

3 +) (01, 21) +) ([3,∞], 01, 21)

4 +((12, 21) +(([4,∞], 12, 21)

5 −((11, 21) −(([2,∞], 11, 21), +(([2, 5], 11, 21)

6 −((12, 21) −(([4,∞], 12, 21), +(([4, 6], 12, 21)

7 −) (01, 21) −) ([3,∞], 01, 21), +) ([3, 7], 01, 21)

8 −'(01, 11) −'([1,∞], 01, 11), +'([1, 8], 01, 11)

Table 2. Updates to &△ (1) (same as Table 1) along with the corresponding updates to &△ (14). At the end

(i.e. g = 8), the database D is the same as the one shown in Figure 1.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:17

To maintain &△ , we use the six components &̂123, . . . , &̂321 of the multivariate extension &̂△ of

&△ from Example 3.4. In particular, we construct and maintain the relations '̂123, (̂123 and)̂123 from

Eq. (16) and forth. We use them along with Theorem 4.1 to maintain &̂123 (and the same goes for

&̂132, . . .). For example, suppose that the number of updates # is 8, and consider the insert +((11, 21)

at time 2 in Table 2. This insert corresponds to inserting the following tuples into (̂123: (Recall
Eq. (15). Below, I1 and I2 are bitstrings and I1 ◦ I2 is their concatenation.)

+{(I1, I2, 11, 21) | (I1 ◦ I2) ∈ CP8 ([2, 8])}

The corresponding delete −((11, 21) at time 5 corresponds to deleting and inserting the following

two sets of tuples from/to (̂123:

− {(I1, I2, 11, 21) | (I1 ◦ I2) ∈ CP8 ([2, 8])} +{(I1, I2, 11, 21) | (I1 ◦ I2) ∈ CP8 ([2, 5])}

Out of the box, Theorem 4.1 is only limited to inserts. However, we can show that these pairs of
inserts/deletes have a special structure that allows us to maintain the guarantees of Theorem 4.1.
In particular, at time 5, when we truncate a tuple t from [2, 8] to [2, 5], even after truncation, t still
joins with the same set of tuples that it used to join with before the truncation. This is because the
only intervals that overlap with [2, 8] but not with [2, 5] are the ones that start after 5. But these
intervals are in the future, hence they don’t exist yet in the database. We use this idea to amortize
the cost of truncations over the inserts.
For IVM± [&△], our target is to do constant-delay enumeration of the full output &△ at time g .

To that end, we enumerate tuples ([I], 0, 1, 2) of &△ where the interval [I] contains the current

time g . And to enumerate those, we enumerate tuples (I1, I2, I3, 0, 1, 2) from &̂123, . . . , &̂321 where
I1 ◦ I2 ◦ I3 corresponds to an interval in CP# ([I]) that contains g . This is a selection condition over

(I1, I2, I3). By construction, the tree decomposition of any component, say &̂123, must contain a

bag, that contains the variables {I1, I2, I3}. This is because, by De�nition 3.3, &̂123 contains an

atom)̂123 that contains these variables. We designate, as the root of tree decomposition of &̂123

and start our constant-delay enumeration from, . The same goes for &̂132, . . . , &̂321. Moreover, the

enumeration outputs of &̂123, . . . , &̂321 are disjoint in this case.
For IVM±

X
[&△], our target is to enumerate the change to the output at time g . To that end, we

enumerate tuples ([I], 0, 1, 2) of &△ where the interval [I] has g as an endpoint. Appendix C.2
explains the technical challenges and how to address them.

7.2 Lower bound for IVM±
X
[&]

In order to prove the lower bound from Theorem 4.5, we prove a stronger lower bound where |D (g) |
is replaced by the number of single-tuple updates # . The following example demonstrates our
lower bound for IVM±

X
[&], which is based on a reduction from the static evaluation of a component

&̂2 of the multivariate extension of & to IVM±
X
[&].

Example 7.3 (for Theorem 4.5). Consider &△ from Eq. (1) and &̂123 from Eq. (8). Suppose that

there exists W > 0 such that IVM±
X
[&△] can be solved with amortized update time Õ(|D (g) |^)

where |D (g) | is the database size, ^
def
= l (&̂123) − 1 − W , and l is given by De�nition 3.2. (Note that

Õ(|D (g) |^) = Õ(#^) since |D (g) | ≤ # .) We show that this implies that Eval[&̂123] can be solved

in time Õ(|D̂123 |
l (&̂123)−W + |&̂123 (D̂123) |) on any database instance D̂123, thus contradicting the

de�nition of l (&̂123).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:18 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

Let us take an arbitrary database instance D̂123 = ('̂123, (̂123,)̂123) and evaluate &̂123 over D̂123

using the oracle that solves IVM±
X
[&△]. Example 6.5 shows how to reduce Eval[&̂123] over D̂123

to the static evaluation of &△ from Eq. (14) over a database instance D = (', (,)) that satis�es:

|D| = |D̂123 | and |&△ (D)| = |&̂123 (D̂123) |. Moreover, D can be constructed in linear time. Next,

we reduce the evaluation of &△ over D into IVM±
X
[&△].

We interpret the interval [/] of a tuple in &△ as the “lifespan” of a corresponding tuple in &△ ,
similar to Section 7.1. In particular, we initialize empty relations ', (,) to be used as input for
&△ , which will be maintained under a sequence of updates for the IVM±

X
[&△] problem. We also

sort the tuples ([U, V], 0, 1) of ' based on the end points U and V of their [/]-intervals. Each tuple
([U, V], 0, 1) appears twice in the order: once paired with its beginning U and another with its

end V . Similarly, we add the tuples ([U, V], 1, 2) of (and ([U, V], 0, 2) of) to the same sorted list,
where each tuple appears twice. Now, we go through the list in order. If the next tuple ([U, V], 0, 1)
is paired with its beginning U , then we insert the tuple (0, 1) into '. However, if the next tuple
([U, V], 0, 1) is paired with its end V , then we delete (0, 1) from '. The same goes for (and) . The

number of updates, # , is 2|D|, and the total time needed to process them is Õ(|D|^+1).

To compute the output of&△ , we do the following. After every insert or delete in&△ , we use the
oracle for IVM±

X
[&△] to enumerate the change in the output of&△ . Whenever the oracle reports an

insert of an output tuple (0, 1, 2) at time g and the delete of the same tuple at a later time g ′ > g ,

then we know that ([g, g ′], 0, 1, 2) is an output tuple of &△ . Therefore, the overall time needed to

compute the output of &△ (including the total update time from before) is Õ(|D|^+1 + |&△ (D)|) =

Õ(|D̂123 |
^+1 + |&̂123 (D̂123) |). This contradicts the de�nition of l (&̂123).

8 Conclusion

This paper puts forward two-way reductions between the dynamic and static query evaluation
problems that allow us to transfer a wide class of algorithms and lower bounds between the two
problems. For the dynamic problem, the paper characterizes the complexity gap between the
insert-only and the insert-delete settings. The proposed algorithms recover best known amortized
update times and produce new ones. The matching lower bounds justify why our upper bounds
are natural. The lower bound function l (&) that we de�ne can be used as a general tool to assess
the optimality of some algorithms in database theory.

The assumptions that the queries have all variables free and the input database be initially empty
can be lifted without di�culty. To support arbitrary conjunctive queries, our algorithms need
to consider free-connex tree decompositions, which ensure constant-delay enumeration of the
tuples in the query result. To support non-empty initial databases, we can use a preprocessing
phase to construct our data structure, where all initial tuples get the same starting timestamp. The
complexities stated in the paper need to be changed to account for the size of the initial database
as part of the size of the update sequence.
Although the proposed dynamic algorithms MVIVM are designed to maintain base relations

and the query output as sets, they can be extended to maintain bags. As in DBToaster [28] and
F-IVM [26],MVIVM can be extended to maintain the multiplicity of each tuple in a base relation
or view and enumerate each tuple in the query output together with its multiplicity.

Acknowledgments

This work was partially supported by NSF-BSF 2109922, NSF-IIS 2314527, NSF-SHF 2312195, and
UZH Global Strategy and Partnerships Funding Scheme, and was conducted while some of the
authors participated in the Simons Program on Logic and Algorithms in Databases and AI.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:19

References

[1] Martín Abadi, Frank McSherry, and Gordon D. Plotkin. 2015. Foundations of Di�erential Data�ow. In FoSSaCS. 71–83.

https://doi.org/10.1007/978-3-662-46678-0_5

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley. http://webdam.

inria.fr/Alice/

[3] Mahmoud Abo Khamis, George Chichirim, Antonia Kormpa, and Dan Olteanu. 2022. The Complexity of Boolean

Conjunctive Queries with Intersection Joins. In PODS. 53–65. https://doi.org/10.1145/3517804.3524156

[4] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions Asked Frequently. In PODS. 13–28.

https://doi.org/10.1145/2902251.2902280

[5] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-Type Inequalities, Submodular Width,

and Disjunctive Datalog Have to Do with One Another?. In PODS. 429–444. https://doi.org/10.1145/3034786.3056105

[6] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2024. PANDA: Query Evaluation in Submodular Width. arXiv

(2024). https://doi.org/10.48550/arXiv.2402.02001

[7] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query Plans for Relational Joins. SIAM J.

Comput. 42, 4 (2013), 1737–1767. https://doi.org/10.1109/FOCS.2008.43

[8] Anonymous Author(s). 20xx. Insert-Only versus Insert-Delete in Dynamic Query Evaluation. (20xx).

[9] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering Conjunctive Queries Under Updates. In

PODS. 303–318. https://doi.org/10.1145/3034786.3034789

[10] Johann Brault-Baron. 2016. Hypergraph Acyclicity Revisited. ACM Comput. Surv. 49, 3 (2016), 54:1–54:26. https:

//doi.org/10.1145/2983573

[11] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. 2023. DBSP: Automatic Incremental View

Maintenance for Rich Query Languages. Proc. VLDB Endow. 16, 7 (2023), 1601–1614. https://doi.org/10.14778/3587136.

3587137

[12] Rada Chirkova and Jun Yang. 2012. Materialized Views. Found. Trends Databases 4, 4 (2012), 295–405. https:

//doi.org/10.1561/1900000020

[13] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume. 2018. Reachability Is in

DynFO. J. ACM 65, 5 (2018), 33:1–33:24. https://doi.org/10.1145/3212685

[14] Arnaud Durand and Etienne Grandjean. 2007. First-order Queries on Structures of Bounded Degree are Computable

with Constant Delay. ACM Trans. Comput. Log. 8, 4 (2007), 21. https://doi.org/10.1145/1276920.1276923

[15] Nikos Giatrakos, Alexander Artikis, Antonios Deligiannakis, and Minos Garofalakis. 2017. Complex Event Recognition

in the Big Data Era. Proc. VLDB Endow. 10, 12 (2017), 1996–1999. https://doi.org/10.14778/3137765.3137829

[16] Alejandro Grez and Cristian Riveros. 2020. Towards Streaming Evaluation of Queries with Correlation in Complex

Event Processing. In ICDT. 14:1–14:17. https://doi.org/10.4230/LIPIcs.ICDT.2020.14

[17] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and

Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In STOC.

21–30. https://doi.org/10.1145/2746539.2746609

[18] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. 2017. The Dynamic Yannakakis Algorithm: Compact and

E�cient Query Processing Under Updates. In SIGMOD. 1259–1274. https://doi.org/10.1145/3035918.3064027

[19] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner. 2020. General Dynamic

Yannakakis: Conjunctive Queries with Theta Joins under Updates. VLDB J. 29, 2-3 (2020), 619–653. https://doi.org/10.

1007/S00778-019-00590-9

[20] Christian S. Jensen and Richard T. Snodgrass. 2018. Temporal Database. In Encyclopedia of Database Systems, Second

Edition. Springer. https://doi.org/10.1007/978-1-4614-8265-9_395

[21] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2019. Counting Triangles under Updates

in Worst-Case Optimal Time. In ICDT. 4:1–4:18. https://doi.org/10.4230/LIPICS.ICDT.2019.4

[22] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Maintaining Triangle Queries under

Updates. ACM Trans. Database Syst. 45, 3 (2020), 11:1–11:46. https://doi.org/10.1145/3396375

[23] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Trade-o�s in Static and Dynamic Evaluation of

Hierarchical Queries. In PODS. 375–392. https://doi.org/10.1145/3375395.3387646

[24] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2023. Conjunctive Queries with Free Access Patterns

Under Updates. In ICDT. 17:1–17:20. https://doi.org/10.4230/LIPICS.ICDT.2023.17

[25] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2023. Trade-o�s in Static and Dynamic Evaluation of

Hierarchical Queries. Log. Methods Comput. Sci. 19, 3 (2023). https://doi.org/10.46298/LMCS-19(3:11)2023

[26] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2024. F-IVM: Analytics over Relational Databases under

Updates. VLDB J. 33, 4 (2024), 903–929. https://doi.org/10.1007/S00778-023-00817-W

[27] Christoph Koch. 2010. Incremental Query Evaluation in a Ring of Databases. In PODS. 87–98. https://doi.org/10.1145/

1807085.1807100

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:20 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

[28] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei, and Amir Shaikhha. 2014.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views. VLDB J. 23, 2 (2014), 253–278.

https://doi.org/10.1007/S00778-013-0348-4

[29] Christoph Koch, Daniel Lupei, and Val Tannen. 2016. Incremental View Maintenance For Collection Programming. In

PODS. 75–90. https://doi.org/10.1145/2902251.2902286

[30] L. H. Loomis and H. Whitney. 1949. An Inequality Related to the Isoperimetric Inequality. Journal: Bull. Amer. Math.

Soc. 55, 55 (1949), 961–962. DOI: 10.1090/S0002-9904-1949-09320-5.

[31] Dániel Marx. 2013. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. J. ACM 60,

6, Article 42 (2013). https://doi.org/10.1145/2535926

[32] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance of Datalog Materialisations Revisited.

Artif. Intell. 269 (2019), 76–136. https://doi.org/10.1016/J.ARTINT.2018.12.004

[33] Hung Q. Ngo. 2018. Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems. In PODS. 111–124.

https://doi.org/10.1145/3196959.3196990

[34] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case Optimal Join Algorithms. J. ACM 65, 3

(2018), 16:1–16:40. https://doi.org/10.1145/2213556.2213565

[35] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew Strikes Back: New Developments in the Theory of Join

Algorithms. SIGMOD Rec. 42, 4 (feb 2014), 5–16. https://doi.org/10.1145/2590989.2590991

[36] Milos Nikolic, Mohammed Elseidy, and Christoph Koch. 2014. LINVIEW: Incremental View Maintenance for Complex

Analytical Queries. In SIGMOD. 253–264. https://doi.org/10.1145/2588555.2610519

[37] Milos Nikolic and Dan Olteanu. 2018. Incremental View Maintenance with Triple Lock Factorization Bene�ts. In

SIGMOD. 365–380. https://doi.org/10.1145/3183713.3183758

[38] Milos Nikolic, Haozhe Zhang, Ahmet Kara, and Dan Olteanu. 2020. F-IVM: Learning over Fast-Evolving Relational

Data. In SIGMOD. 2773–2776. https://doi.org/10.1145/3318464.3384702

[39] Mihai Patrascu. 2010. Towards Polynomial Lower Bounds for Dynamic Problems. In STOC. 603–610. https://doi.org/

10.1145/1806689.1806772

[40] Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. 2020. Sketches of Dynamic Complexity. SIGMOD Rec. 49, 2

(2020), 18–29. https://doi.org/10.1145/3442322.3442325

[41] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan & Claypool

Publishers. https://doi.org/10.2200/S00362ED1V01Y201105DTM016

[42] Yufei Tao and Ke Yi. 2022. Intersection Joins under Updates. J. Comput. Syst. Sci. 124 (2022), 41–64. https://doi.org/10.

1016/J.JCSS.2021.09.004

[43] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In ICDT. 96–106. https://doi.org/10.

5441/002/ICDT.2014.13

[44] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation without Joins. Proc. VLDB Endow. 16, 5

(2023), 1046–1058. https://doi.org/10.14778/3579075.3579080

[45] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under Updates. In SIGMOD. 1225–1239.

https://doi.org/10.1145/3318464.3380586

[46] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB. 82–94.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:21

A Comparison to Prior IVM Approaches

& ′2?

� � �

& ′′2?

� � �

&3?

� � � �

&△

�

� �

& ′△

�

� �

&∗

� � �

�

&3D

� �

�

&4D

� �

��

&□

� �

��

Fig. 3. Hypergraphs of the queries analyzed in this section. Atoms are represented by hyperedges.

In this section, we compare our MVIVM approach with existing IVM approaches. We later focus
on two speci�c queries, namely &3? and &△ , and explain in detail how they are maintained by all
considered approaches. We focus on the problem IVM±, where the task is to process single-tuple
inserts and deletes and enumerate the full query result upon each enumeration request. We consider
the following existing approaches:

• Naïve: This approach recomputes the query result from scratch after each update.
• Delta [12]: This is a �rst-order IVM approach that materializes the query result and computes
the delta or the change to the query result for each update. It updates the query result with
the delta result.
• F-IVM [26, 38]: This is a higher-order IVM approach that speeds up the delta computation
using a view tree whose structure is modelled on a variable order. Its update times are shown
to be at least as good as the prior higher-order IVM approach DBToaster [28].
• IVMn [21, 22]: This is an adaptive IVM methodology that uses delta computation and mate-
rialized views and also takes the degrees of data values into account. It is adaptive in the
sense that it treats updates referring to values with high degree di�erently from those with
low degree. The speci�c attributes whose values are partitioned with regard to their degrees
and the partitioning threshold that lead to the best update time can vary depending on the
query structure. So far, there is no algorithm that produces the optimal partitioning strategy
for arbitrary queries. Therefore, IVMn is not a concrete algorithm for arbitrary queries but
rather a methodology. It was shown in [21, 22] how to manually tailor this methodology to
the triangle query and several non-hierarchical queries to achieve the worst-case optimal
update time.
• CROWN (Change pROpagationWithout joiNs) [44]: This is a higher-order IVM approach
tailored to free-connex (U-)acyclic queries. Its maintenance approach is in line with F-IVM,
when applied to free-connex acyclic queries, yet it provides a more re�ned complexity analysis
that takes the structure of the update sequence into account. For certain update sequences,

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:22 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

such as insert-only or �rst-in-�rst-out, the amortized update time is constant. For the purpose
of comparing against the other IVM approaches, which do not consider such a �ne-grained
analysis, we consider the complexity results of CROWN for arbitrary update sequences.

Another higher-order IVM approach is DynYannakakis [18, 19], which can maintain acyclic
queries. It achieves the same asymptotic update times as F-IVM and CROWN for acyclic queries.

We consider the following non-hierarchical join queries (all variables are free). They are visualized
in Figure 3:

& ′2? = '(�, �,�) ∧ ((�, �) ∧) (�,�) (17)

&3? = '(�, �) ∧ ((�,�) ∧) (�, �) (18)

&△ = '(�, �) ∧ ((�,�) ∧) (�,�) (19)

& ′△ = '(�, �) ∧ ((�,�) ∧) (�,�) ∧* (�) (20)

&∗ = '(�, �,�, �) ∧ ((�, �) ∧) (�,�) ∧* (�, �) (21)

&3D = '(�, �,�) ∧ ((�) ∧) (�) ∧* (�) (22)

&4D = '(�, �,�, �) ∧ ((�) ∧) (�) ∧* (�) ∧+ (�) (23)

& ′′2? = '(�) ∧ ((�, �) ∧) (�,�) ∧* (�) (24)

&□ = '(�, �) ∧ ((�,�) ∧) (�, �) ∧* (�, �) (25)

Figure 4 summarizes the update times of all aforementioned IVM approaches, give in data
complexity. The update times of Naïve, Delta, and F-IVM are worst-case and those of CROWN,
IVMn , and MVIVM are amortized. The update times of MVIVM have an extra polylog(|D|) factor,

which is hidden by the Õ-notation. Since CROWN is designed for free-connex acyclic queries, we
skip its complexity for the acyclic ones, which are marked “NA”. It is not clear how to manually
tailor the IVMn approach to all queries, thus some entries are marked “Open”. In terms of query
complexity, MVIVM has an extra factor of :!, where : is the number of input relations, due to the
use of multivariate extensions (De�niton 3.3).
We observe that, besides the last two queries, MVIVM is on par or outperforms the existing

approaches. For the last two queries, it performs only worse than IVMn . However, in contrast to
IVMn , MVIVM is a systematic algorithm that works for all queries, whereas IVMn is a general
methodology where a heavy-light partitioning strategy needs to be manually tailored to a speci�c
query. Such a strategy de�nes (i) on which tuples of variables in each relation to partition into
heavy and light, and (ii) what is the heavy-light threshold for each relation partition. There are
in�nitely many possible partitioning thresholds and hence partitioning strategies. It is not possible
to try them all out in order to �nd the best one. Therefore, so far there does not exist an algorithm
that produces an optimal IVMn strategy for any query.5

B Missing Details in Section 6: Reduction from & to &̂

Example 6.4 introduces the high-level idea of the reduction from the intersection join query &

to the multivariate extension &̂ , based on [3]. Extrapolating from that example, we introduce the
following de�nition:

5At a technical level, the reason why MVIVM has a worse update time for a query like&□ than IVMn is because MVIVM is

limited to the fractional hypertree width, while for&□, it is known that the submodular width is strictly smaller than the

fractional hypertree width [5, 6, 31]. MVIVM does not immediately generalize to the submodular width because the query

decomposition lemma (Lemma 5.2) does not. Known algorithms that meet the submodular width [5, 6] are limited to the

static setting and do not seem to generalize to the dynamic setting. We leave this generalization as an open problem.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:23

Naïve Delta F-IVM CROWN IVMn MVIVM
(manual)

& ′2? O(|D|) O(|D|) O(|D|) O(|D|) Open Õ(|D|1/2)

&3? O(|D|) O(|D|) O(|D|) O(|D|) O(|D|1/2) Õ(|D|1/2)

&△ O(|D|3/2) O(|D|) O(|D|) NA O(|D|1/2) Õ(|D|1/2)

& ′△ O(|D|3/2) O(|D|) O(|D|) NA O(|D|2/3) Õ(|D|2/3)

&∗ O(|D|) O(|D|) O(|D|) O(|D|) Open Õ(|D|2/3)

&3D O(|D|) O(|D|) O(|D|) O(|D|) Open Õ(|D|2/3)

&4D O(|D|) O(|D|) O(|D|) O(|D|) Open Õ(|D|3/4)

& ′′2? O(|D|) O(|D|) O(|D|) O(|D|) O(|D|1/2) Õ(|D|)

&□ O(|D|2) O(|D|) O(|D|) NA O(|D|2/3) Õ(|D|)

worst-case amortized

Fig. 4. Update times of di�erent IVM approaches for the problem IVM±, given in data complexity. The update
times of the approaches Naïve, Delta, and F-IVM are worst-case, while those of CROWN, IVMn , and MVIVM

are amortized. Õ hides a polylog(|D|) factor. �eries are depicted in Figure 3 and are given by Eq. (17)-(25).
MVIVM is our approach, introduced in this paper. CROWN is not applicable to cyclic queries, thus some
entries are marked “NA”. IVMn is not a concrete algorithm but rather a general methodology. It is not clear
how to manually set it up for every query, thus some entries are marked “Open”. In query complexity, MVIVM
has a query-dependant factor of :!, where : is the number of input relations.

De�nition B.1 (Canonical partition of a relation CP
(8)
#
(')). Let t = ([I], G1, . . . , G<) be a tuple

where [I] is an interval and G1, . . . , G< are points. Given natural numbers # and 8 , the canonical
partition of t is de�ned as the following set of tuples

CP
(8)
#
([I], G1, . . . , G<)

def
= {(I1, . . . , I8 , G1, . . . , G<) | (I1 ◦ · · · ◦ I8) ∈ CP# ([I])} (26)

We lift the de�nition of a canonical partition CP
(8)
#

to relations and de�ne CP
(8)
#
(') as the union of

the canonical partitions of the tuples in the given relation '. We also lift the de�nition to deltas

and de�ne CP
(8)
#
(X') as the corresponding delta for CP

(8)
#
(').

De�nition B.2 (Canonical partition of a database instanceCP# (D)). Let& = '1 (^1)∧· · ·∧': (^:)

be a query and& = '1 ([/],^1) ∧ · · ·∧': ([/],^:) its time extension. Given a permutation 2 ∈ Σ: ,

let &̂2 be the corresponding component of its multivariate extension &̂ :

&̂2 = '̂f1 (/1,^f1) ∧ '̂f2 (/1, /2,^f2) ∧ · · · ∧ '̂f: (/1, . . . , /: ,^f:)

Given a database instance D for & , the canonical partition of D using 2 , denoted by CP2# (D), is a

database instance D̂2 for &̂2 that is de�ned as:

'̂f8
def
= CP

(8)
#
('f8), for 8 ∈ [:] (27)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:24 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

Moreover, de�ne CP# (D) to be a database instance for &̂ which is a combination of CP2# (D) for
every 2 ∈ Σ: :

CP# (D)
def
=

(
CP2# (D)

)
2 ∈Σ:

We lift the de�nition of CP2# to deltas and de�ne CP2# (XD) to be the corresponding delta for

CP2# (D). We de�ne CP# (XD) similarly.

(16) is a special case of (27) above. The following theorem basically says that evaluating& (D) is

equivalent to evaluating &̂ on the canonical partition of D.

Theorem B.3 (Implicit in [3]). Given a tuple (I1, . . . , I: , G1, . . . , G<), de�ne

�: (I1, . . . , I: , G1, . . . , G<)
def
= (I1 ◦ · · · ◦ I: , G1, . . . , G<) (28)

We lift the de�nition of�: to relations and de�ne �: (') to be the relation resulting from applying �

to every tuple in '. Then,

CP
(1)
#
(& (D)) = �: (&̂ (CP# (D))) (29)

C Missing Details from Section 7

C.1 Algorithm for Lemma 7.1: The IVM± [&] problem

Example 7.2 introduces the high-level idea of our algorithm for IVM± [&] that proves Lemma 7.1.
We present the general algorithm in Algorithm 1. The correctness proof and runtime analysis are
technically involved and are deferred to the full version [8].

C.2 Algorithm for Lemma 7.1: The IVM±
X
[&] problem

In the previous section, we showed our algorithm that proves Lemma 7.1 for the IVM± [&] problem
for a given query & . In this section, we describe how to extend this algorithm in order to prove
Lemma 7.1 for the IVM±

X
[&] problem. The proof can be found in [8].

Here are the main changes to Algorithm 1 in order to support IVM±
X
[&], i.e. support constant-

delay enumeration of Xg& (D) after every update XgD:

• Insertion XgD = {+' 9 (t)}: In addition to applying the insert {+' 9 ([g,∞], t)} into D, we

now also insert +' 9 ([g, g], t).

• DeletionXgD = {−' 9 (t)}: In addition to applying the update {−' 9 ([g
′,∞], t), +' 9 ([g

′, g], t)}

to D, we now also apply the insert +' 9 ([g, g], t).
• Enumeration Suppose we want to enumerate Xg& (D) after an update XgD = B' 9 (t) where
B ∈ {+,−}. Then, we enumerate the following:

Xg& (D) = B
©­­­«
cvars(&)

⋃
I1,...,I: ∈{0,1}

∗

I1◦···◦I:=CP([g,g])

f/1=I1,...,/:=I: &̂ (D̂)
ª®®®¬

(30)

We call the above modi�ed version of Algorithm 1 the delta version of Algorithm 1.

C.3 Proof of Theorem 4.4 using Lemma 7.1

The upper bound in Lemma 7.1 is written in terms of the length # of the update stream. In this
section, we show how to use Lemma 7.1 as a black box in order to prove Theorem 4.4, which gives
a stronger bound where # is replaced by the current database size |D (g) | at the g-th update.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

Insert-Only versus Insert-Delete in Dynamic�ery Evaluation 219:25

Algorithm 1 Algorithm of IVM±[Q]

Inputs

• & = '1 (^1) ∧ · · · ∧ ': (^:) ⊲ Input query to IVM±

• An initially empty database D ⊲ Database instance for &
• # : The length of the update stream

Initialization

• Construct the time extension & ⊲ De�nition 6.2

• Initialize D to be empty ⊲ Database instance for &

• Construct the multivariate extension &̂ ⊲ Eq. (7)

• Initialize D̂ to be empty ⊲ Database instance for &̂

• For each component &̂2 of &̂
– Initialize a tree decomposition using Theorem 4.1

Invariants

• D̂ = CP# (D) ⊲ De�nition B.2

Insertion XgD = {+' 9 (t)} ⊲ The g-th update inserts a tuple t into ' 9

• XgD ← {+' 9 ([g,∞], t)} ⊲ Insert ([g,∞], t) into ' 9

• D ← D
⊎
Xg� ⊲ Apply XgD to D

• Xg D̂ ← CP# (XgD) ⊲ De�nition B.2

• D̂ ← D̂
⊎
Xg D̂ ⊲ Use Theorem 4.1

Deletion XgD = {−' 9 (t)} ⊲ The g-th update deletes a tuple t from ' 9

• Find ([g ′,∞], t) ∈ ' 9

• XgD ← {−' 9 ([g
′,∞], t), +' 9 ([g

′, g], t)} ⊲ Replace ([g ′,∞], t) with ([g ′, g], t) in ' 9

• D ← D
⊎
Xg�

• Xg D̂ ← CP# (XgD)

• D̂ ← D̂
⊎
Xg D̂

Enumeration

• Enumerate (using Theorem 4.1)

cvars(&)

⋃
I1,...,I:+1∈{0,1}

∗

I1◦···◦I:+1=CP([g,g])

f/1=I1,...,/:=I: &̂ (D̂)

Theorem 4.4. For any query & , both IVM± [&] and IVM±
X
[&] can be solved with Õ(|D (g) |w(&̂)−1)

amortized update time, where &̂ is the multivariate extension of & , and |D (g) | is the current database

size at update time g .

Recall that having an amortized update time of Õ(|D (g) |w(&̂)−1) means that all # updates

combined take time Õ(
∑

g∈[#] |D
(g) |w(&̂)−1).

Proof. The proof uses Lemma 7.1 as a black box. In particular, we will use the same maintenance
algorithm from the proof of Lemma 7.1. However, every now and then, we will “reset” the algorithm

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

219:26 Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, & Dan Suciu

by taking the current database D (g) , creating a new empty database from scratch, and inserting
every tuple in D (g) into the new database as a single-tuple update. After that, we process the next
1
2
|D (g) | updates6 from the original update sequence, and then we apply another reset. The total

number of updates between the last two resets is thus 3
2
|D (g) |. By Lemma 7.1, these 3

2
|D (g) | updates

together take time Õ(|D (g) |w(&̂)). Moreover, note that between the two resets, the database size
cannot change by more than a factor of 2. This is because we only have 1

2
|D (g) | updates from the

original stream that are applied to D (g) . In the two extreme cases, all of these updates are inserts
or all of them are deletes.
Consider the original update stream of length # . Initially, |D (0) | = 0. While using the above

scheme to process the stream, suppose that we end up performing : resets in total at time stamps

g1
def
= 0 < g2 < · · · < g: ≤ # . WLOG assume that g: = # . From the above construction, for any

8 ∈ [: − 1], we have the following:

g8+1 − g8 =
1

2
|D (g8) | (31)

1

2
|D (g8) | ≤ |D (g) | ≤

3

2
|D (g8) |, ∀g ∈ [g8 , g8+1) (32)

Eq. (32) holds because between g8 and g8+1, we are making 1
2
|D (g8) | updates to D (g8) , which in the

two extreme cases are either all inserts or all deletes. As noted before, from the beginning of the
g8 -reset until the beginning of the g8+1-reset, we process

3
2
|D (g8) | updates, which together take time

Õ(|D (g8) |w(&̂)), thanks to Lemma 7.1. To bound the total runtime, we sum up over 8 ∈ [: − 1]: (We
don’t actually need to perform the last reset at time g: = # since there are no subsequent updates
anyhow.) ∑

8∈[:−1]

|D (g8) |w(&̂) =
∑

8∈[:−1]

∑
g∈[g8 ,g8+1)

1

g8+1 − g8
· |D (g8) |w(&̂) (33)

=2 ·
∑

8∈[:−1]

∑
g∈[g8 ,g8+1)

|D (g8) |w(&̂)−1 (34)

≤2w(&̂) ·
∑

8∈[:−1]

∑
g∈[g8 ,g8+1)

|D (g) |w(&̂)−1 (35)

=O(1) ·
∑

g∈[#]

|D (g) |w(&̂)−1 (36)

Equality (34) follows from Eq. (31), while inequality (35) follows from Eq. (32). In particular, the

total time needed to process all # updates in the stream is Õ(
∑

g∈[#] |D
(g) |w(&̂)−1). This implies

that the amortized time per update is Õ(|D (g) |w(&̂)−1), as desired. □

Received May 2024; revised August 2024; accepted September 2024

6For simplicity, we assume that |D (g) | is a positive even integer.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 219. Publication date: November 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Setting
	4 Overview of Main Results
	4.1 Insert-Only Setting
	4.2 Insert-Delete Setting

	5 IVM: Insert-Only Setting
	6 Technical Tools: Intersection Joins
	6.1 Reduction from Q to "0362Q
	6.2 Reduction from "0362Q to Q

	7 IVM: Insert-Delete Setting
	7.1 Upper bound for IVM[Q]
	7.2 Lower bound for IVM[Q]

	8 Conclusion
	Acknowledgments
	References
	A Comparison to Prior IVM Approaches
	B Missing Details in Section 6: Reduction from Q to "0362Q
	C Missing Details from Section 7
	C.1 Algorithm for Lemma 7.1: The IVM[Q] problem
	C.2 Algorithm for Lemma 7.1: The IVM[Q] problem
	C.3 Proof of Theorem 4.4 using Lemma 7.1

