


2. BRIEF REVIEW OF CE

Modern database engines use a density-based ap-
proach for cardinality estimation. They compute
periodically some simple statistics (or summaries)
of the base relations, then use simplifying assump-
tions to estimate the cardinality. Specifically, the
engine stores in its catalog, for each relation R, its
cardinality |R|, and the number of distinct values1

|Dom(R.X)|, where X is a single attribute or a set
of attributes. This quantity is computed periodi-
cally, and approximatively, by sampling from R (e.g.
Postgres) or by using Hyper-Log-Log (e.g. DuckDB).

The ratio |R|
|Dom(R.X)| represents the average degree,

or the density of the attribute(s) X.
Consider the uniform probability space whose out-

comes are the tuples of the Cartesian product of
all relations in (1), R1 × R2 × . . . This defines a
probability Pr(X, Y, . . .) over all attributes returned
by the query. A density-based CE estimates the
probability that a random tuple from the Cartesian
product satisfies the condition in the where clause.
The cardinality estimate is the multiplication of this
probability with the size of the Cartesian product.
For example, consider the following SQL query Q:

SELECT ∗ FROM Store WHERE City = ’Seattle’

By the uniformity assumption and the containment
of values assumption the probability that a random
tuple satifies the predicate is 1

|Dom(Store.City)| . The

cardinality estimate is Est(Q) = |Store|
|Dom(Store.City)| .

1-Dimensional Histograms relax the uniformity
assumption, by storing separate statistics for each
bucket of a histogram. The default number of buck-
ets is small (200 for SQLServer [1], 100 for Postgres),
and is strictly limited (typically to 1000−10000 [37]).

Joins are estimated using similar assumptions. For
example, consider the query J given by:

SELECT * FROM R, S WHERE R.X = S.Y (2)

One estimate could be |R| · |S|
|Dom(S.Y )| , because each

tuple in R matches an estimated |S|
|Dom(S.Y )| tuples in

S. Or, symmetrically, |R|
|Dom(R.X)| · |S|. Density-based

CE returns their minimum2, usually written as:

Est(J) =
|R| · |S|

max(|Dom(R.X)|, |Dom(S.Y )|)
(3)

Finally, the estimate for a conjunction of pred-
icates is computed by assuming independence be-
tween the predicates. For example, the estimate of

1Denoted V (R,X) in a popular textbook [14].
2Justified by the containment-of-values assumption.

the following query Q

SELECT * FROM Store

WHERE City = ’Seattle’ AND Zip = ’98195’

is Est(Q) = |Store|
|Dom(Store.City)|·|Dom(Store.Zip)| , which

is an underestimate, since that entire zip code is
in Seattle. 2-Dimensional Histograms can capture
correlations between attributes, but few systems
support them.3

A landmark paper [29] evaluated the cardinality
estimators deployed in modern database systems and
their impact on the query optimizer. It found that
their CE almost always underestimates (because of
the independence assumption) with typical errors of
up to 104 for queries with many joins. Later studies
have confirmed these findings across a wide variety
of workloads and database systems [18,27,28,34,37].
Given the importance of the problem and the

limitations of density-based methods, many recent
proposals have been published exploring alternatives
to traditional density-based CE. Two alternatives
have attracted particular interest: sampling-based
CE and learned CE.
Sampling-based CE methods compute an unbi-

ased estimate without requiring any assumptions.
Offline sampling pre-computes a uniform sample
Rsample ⊆ R of each relation, then estimates the
size of the query output over the base relations from
the size of the query output over the sample using
the Horvitz-Thompson’s formula.4 This method can
be very accurate for queries over a single relation
and easily supports arbitrary user-defined predicates
beyond equality and range predicates. However, it
becomes ineffective for highly selective predicates,
because of sampling collapse: when no sampled tu-
ple matches the query, then the system must return
0 or 1. In particular, this is a problem for joins, since
their selectivity is relative to the cartesian product
of the input relations and therefore almost always
extremely low.5 Online sampling addresses this is-
sue by sampling only tuples that join with already

3There are several reasons why 2-d histograms are rarely
used. (1) There are too many candidates: n(n − 1)/2
possible histograms for a relation with n attributes. The
number of buckets along each dimension is limited to√
1000 −

√
10000. (2) It is unclear how to combine

multiple 2-d histograms [32], e.g. in order to estimate a
predicate on 3 attributes Pr(X, Y, Z) from 2-d histograms
on XY,XZ, Y Z.
4The size estimate is the multiplication of the size of the
query output over the sample with the ratio |R|/|Rsample|
for each relation in the query. More robust estimates,
such as bottom-k [7], are not commonly used for CE [6].
5The estimate is still unbiased, over the random choices
of the samples, but the standard deviation is high.
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sampled tuples. Based on this principle, Wander
Join [30, 31] achieves remarkable accuracy [34]; how-
ever, it requires access to an index on every join
column, and has a high latency.
Learned CE aims to remove the assumptions of

traditional CE by training an ML model that cap-
tures the complex correlations empirically [27, 37].
Data-driven estimators compute a generative ML
model for the probability Pr(X,Y, . . .) over all at-
tributes returned by the query. This is trained on the
database [38,39]. The model needs to represent all
attributes, of all relations. Intuitively, these models
aim for a lossy compression of the full outer join of
the database relations then estimate the selectivity
of the predicates in the query relative to it. This
is an extremely ambitious approach, and it tends
to require large models that either struggle with,
or completely disallow queries that do not follow
the schema’s natural join structure, like self-joins.
Query-driven estimators compute a discriminative
model for Est(Q). The model is trained using a
workload of queries and their true cardinalities. In
general, ML-based estimates can be quite accurate
on the training data, but they suffer from distribu-
tion drift, can be memory intensive (1MB to 1GB
models are reported in the literature), support only
limited types of queries and predicates, and require
full retraining when the data changes, e.g. when a
new relation is added [18].

3. A WISH LIST

Stepping back from existing estimators, we ask a
more general question: What properties do we wish
a cardinality estimator to have? We propose here
six such properties, which we argue any good CE

should have:

Accuracy/Speed/Memory: It should have good ac-
curacy, small estimation time, small memory
footprint.

Locality: It should use statistics that are computed
separately on each input relation.

Composition: It should be able to compute an es-
timate for a query from the estimates for its
subqueries; this is useful in bottom-up query
optimizers.

Combination: It should be able to combine multiple
sources of statistics on the database. Given
two estimates Est1 and Est2 computed using
different methods, or different statistics, one
should be able to combine them to obtain a
better estimate Est.

Incremental Updates: It should be possible to up-
date the statistics incrementally when the input
data is updated.

Guarantees: It should offer some theoretical guaran-
tees. This will allow the application to reason
about decisions based on CE.

All CE’s aim for good speed/accuracy/memory,
with various degrees of success. Density-based and
sampling-based CE’s are local, while learned CE

are definitely not local: they are monolithic, in that
they require access to all relations at training time.
Density-based CE is compositional6, but it cannot
do combination. For example, to estimate the size
of σX=a∧Y=b∧Z=c(R) we could use |Dom(R.X)| and
|Dom(R.Y Z)|, or we could use |Dom(R.XY )| and
|Dom(R.Z)|, but we cannot combine these two es-
timates to get a better estimate [32]. For another
example, given the cardinalities of both joins R 1 S
and S 1 T , there is no canonical way to combine
them to estimate the cardinality of R 1 S 1 T [5].
ML-based estimators can be neither composed nor
combined, and need to be re-trained from scratch
after an update. Finally, of all methods discussed
here, only sampling-based methods offer theoretical
guarantees: the others offer no guarantees.
Next, we will discuss the alternative, pessimistic

approach to cardinality estimation. We will return
to our wish-list in Sec. 11.

4. PESSIMISTIC CE

A Pessimistic Cardinality Estimator, PCE, com-
putes a guaranteed upper bound on the cardinality,
instead of an estimate. For a very simple example,
an upper bound of the join (2) is |R| · |S|. If we
know the largest number b of occurrences of any
value in S.Y , also called the maximum degree of Y
in S, then a better bound is |R| · b; for example, if Y
is a key in S, then b = 1 and the bound becomes |R|.
Symmetrically, if we know the maximum degree of
Y in R, call it a, then a · |S| is also an upper bound.
We can combine these bounds by taking their min:

|J | ≤ min(|R| · b, a · |S|) (4)

This should be compared with the traditional esti-
mator (3), which replaces the maximum degrees a
and b with the average degrees.
Two advances make pessimistic cardinality esti-

mators practical today. The first is the observation
that degree sequences can be used to compute an
upper bound on the query output size [10]. The
second is a long line of theoretical results on using

6Under the preservation of values assumption.
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R =

X Y Z
1 a . . .
1 b . . .
1 b . . .
2 a . . .
2 b . . .
3 b . . .
3 c . . .
4 d . . .

degR(Y Z|X) = (3, 2, 2, 1)
degR(Y |X) = (2, 2, 2, 1)
degR(Z|XY ) = (2, 1, 1, 1, 1, 1, 1)
degR(XY Z|∅) = (8) = (|R|)

Figure 1: Example of Degree Sequences

information inequalities to compute upper bounds
on the query’s output [13,15–17,23,25,26,36]. We
review both topics in the rest of the paper.

5. DEGREE SEQUENCES

The existing PCE’s use statistics derived from
degree sequences of the input relations.

Let R be a relation, and U, V ⊆ Attrs(R) two
sets of attributes. We assume throughout the paper
that relations are sets. The degree sequence

degR(V |U)
def
=(d1, d2, . . . , dn) (5)

is defined as follows. If u1, . . . , un are the distinct

values of ΠU (R), then di
def
= |σU=ui(ΠUV (R))| is the

degree of the value ui. We assume that the values
ui are sorted in decreasing order of their degrees, i.e.
d1 ≥ d2 ≥ · · · ≥ dn. We say that the value ui has
rank i. Notice that degR(V |U) = degR(UV |U).

Figure 1 illustrates some simple examples of degree
sequences, while Figure 2 shows the degree sequence
of the IMDB dataset from the JOB benchmark [29].
If the functional dependency U → V holds, then
degR(V |U) = (1, 1, . . . , 1). When |U | ≤ 1 then
we call the degree sequence degR(V |U) simple, and
when UV = Attrs(R) are all the attributes of R,
then we call degR(V |U) full and also denote it by
degR(∗|U). The degree sequence degR(Y Z|X) in
Fig. 1 is both simple and full, and we can write it
as degR(∗|X).

The ℓp-norm of the degree sequence (5) is:

||degR(V |U)||p
def
= (dp1 + dp2 + · · ·+ dpn)

1/p

Degree sequences and their ℓp-norms generalize
common statistics used by density-based estimators:
the relation cardinality is ||degR(∗|U)||1 = |R|, the
number of distinct values |Dom(R.U)| is the length n
of the sequence (5) (and also equal to ||degR(U |∅)||1);
and the maximum degree of R.U is ||degR(∗|U)||∞ =
d1. But degree sequences contain information that
can significantly improve the accuracy of PCE. For
example the inequality |J | ≤ a · |S| in (4) assumes
pessimistically that all degrees in degR(X|Y ) are
equal to the maximum degree a. By using the degree

||degCastInfo(MovieId|ActorID)||1 = 36 · 106

||degCastInfo(MovieId|ActorID)||∞ = 104

Figure 2: The degree sequence of CastInfo from
the JOB benchmark [29]. Its cardinality is 36 · 106,
and it has 4 · 106 distinct actor IDs, with degrees
ranging from 104 to 1. The maximum degree is
that of Bob Barker, who hosted the CBS show The

Price Is Right from 1972 to 2007 and also Truth

or Consequences from 1956 to 1975.

sequence and more sophisticated inequalities we can
account for the true distribution of the data, as we
will see later.

In the rest of the paper we describe several meth-
ods that compute an upper bound on the size of the
query output from the ℓp-norms of degree sequences.
We restrict our discussion to conjunctive queries
instead of the SQL query (1) and use the notation:

Q(X1, . . . , Xn) =R1(U1) ∧ . . . ∧Rm(Um) (6)

where {X1, . . . ,Xn} = U1 ∪ · · · ∪ Um. The query
variables are X1, . . . , Xn. We omit filter predicates
for now, and discuss them in Sec. 10.

6. THE AGM BOUND

Historically, the first cardinality upper bound was
introduced by Atserias, Grohe, and Marx [3], and
builds on earlier work by Friedugut and Kahn [13]
and Grohe and Marx [16]. The bound is known
today as the AGM bound. It uses only the cardi-
nalities of the input relations, |R1|, . . . , |Rm|, and
is defined as follows. A fractional edge cover of the
query Q in (6) is a tuple of non-negative weights,
w = (w1, w2, . . . , wm), such that every variable Xj is
“covered”, meaning

∑

i:Xj∈Ui
wi ≥ 1, for 1 ≤ j ≤ n.

Then, the following inequality holds:

|Q| ≤|R1|
w1 · |R2|

w2 · · · |Rm|wm (7)

The AGM bound of Q is defined as the minimum
of (7), taken over all fractional edge covers w.
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The classical illustration of the AGM bound is
for the 3-cycle query:

C3(X,Y, Z) =R(X,Y ) ∧ S(Y, Z) ∧ T (Z,X) (8)

One fractional edge cover is (1, 1, 0), which proves
|C3| ≤ |R| · |S|. Other fractional edge covers are
(1, 0, 1), (0, 1, 1), and ( 12 ,

1
2 ,

1
2 ), and each leads to a

similar upper bound on |C3|. The AGM bound is
their minimum:7

|C3| ≤min
(

|R| · |S|, |R| · |T |, |S| · |T |, (|R| · |S| · |T |)1/2
)

The AGM bound enjoys two elegant properties:
it is computable in PTIME in the size of the query
Q (by solving a linear program), and the bound is
guaranteed to be tight. The latter means that, for
any set of cardinalities |R1|, |R2|, . . . there exists a
worst case database instance, with the same cardi-
nalities, where the size of the query output is equal
to the AGM bound, up to a rounding error equal
to a query-dependent multiplicative constant.8

Despite these attractive theoretical properties, the
AGM bound has not been adopted in practice, be-
cause it uses very limited statistics on the input data,
namely just the relation cardinalities. In particular,
for acyclic queries the AGM bound is achieved by
an integral (not fractional) edge cover, and expres-
sion (7) is a product of the cardinalities of some
relations. For example, for the 2-way join query:

J2(X,Y, Z) =R(X,Y ) ∧ S(Y, Z) (9)

The AGM bound is |R| · |S|. In contrast, a density-
based estimator uses both cardinalities and average
degrees, as seen for example in (3), and for this rea-
son it returns a better estimate for J2 than the AGM

bound, even if it cannot provide any guarantees.

7. THE CHAIN BOUND

The chain bound [25], CB for short, uses as statis-
tics both cardinalities |Ri|, and maximum degrees
||degRi

(V |U)||∞. It strictly generalizes the AGM

bound, but a popular simplification adopted by
several implementations is weaker than the AGM

bound. To describe CB, it is convenient to view
each cardinality |Rj | as a maximum degree, namely
|Rj | = ||degRj

(∗|∅)||∞. Thus, all statistics are max

degrees: ||degRji
(Vi|Ui)||∞, for i = 1, k.

Fix an ordering π of the query variables. We
say that the pair (V |U) covers the variable X w.r.t.

7These four fractional edge covers are called the vertices
of the edge cover polytope. In (7) it suffices to restrict the
min to the vertices of the edge cover polytope, because
any other fractional edge cover is ≥ than some convex
combination of the vertices.
8The constant is 1

2n
, where n is the number of variables.

π, and write X ∈π (V |U), if X ∈ V and all vari-
ables in U strictly precede X in the order π. For
a simple example, if U = ∅, then (V |∅) covers all
variables in V ; for another example, if the order π
is X,Y,Z then (XZ|Y ) covers only Z. If a set of
non-negative weights w1, . . . , wk is a fractional cover
of (V1|U1), . . . , (Vk|Uk), meaning that it covers ev-
ery variable X (i.e.,

∑

i:(X∈πVi|Ui)
wi ≥ 1), then the

following holds (we give the proof in the Appendix):

|Q| ≤
∏

i=1,k

||degRji
(Vi|Ui)||

wi
∞ (10)

CB is the minimum of the quantity above over all
fractional covers w and variable orderings π, and is
always an upper bound on |Q|. If π is fixed, then
CB can be computed in PTIME by using an LP
solver, but minimizing over all π requires exponential
time.9 When all statistics are cardinalities then CB

is independent on the choice of π and coincides with
the AGM bound. When the statistics also include
max-degrees, then CB is lower (better) than the
AGM bound.

Several implementations have adopted a simplified
version of CB which does not require the use of
an LP solver, called BoundSketch in [4, 19] or
MOLP in [5]: we will use the term BoundSketch.
It corresponds to restricting the fractional cover
w in (10) to be an integral cover.10 We describe
BoundSketch, following the presentation in [5].
Consider the following nondeterministic algorithm.

• Set W := ∅, CB := 1.

• Repeatedly choose non-deterministically one

statistics, di
def
= ||degRji

(Vi|Ui)||∞, such that

Ui ⊆ W . Set W := W ∪ Vi and CB := CB · di.

• Stop when W contains all query variables, and
return CB.

BoundSketch is the minimum value returned
by all executions of the non-deterministic algorithm.
This is equivalent to computing the shortest path
in the graph called CEGM in [5]: its nodes are all
subsets W ⊆ {X1, . . . , Xn}, and for every statistics
di = ||degRji

(Vi|Ui)||∞ there is an edge with weight

di from W to W ∪Vi, for all W ⊇ Ui. Then BoundS-

ketch is the shortest11 path from ∅ to {X1, . . . , Xn}.
BoundSketch still requires exponential time.12

9Computing CB is NP-hard [20].
10BoundSketch also hash partitions the data in order
to improve the estimate [4]. We will use BoundSketch
to refer to integral CB, without data partitioning.

11Weights along a path are multiplied.
12When the statistics are restricted to cardinalities (no
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BoundSketch is similar to a density-based es-
timator, where the average degrees are replaced by
maximum degrees: this was noted in [5]. We illus-
trate this on an example with a 3-way join query:

J3(X,Y, Z, U) =R(X,Y ) ∧ S(Y, Z) ∧ T (Z,U) (11)

BoundSketch is the minimum of the following
quantities:13

|J3| ≤|R| · ||degS(Z|Y )||∞ · ||degT (U |Z)||∞ (12)

|J3| ≤||degR(X|Y )||∞ · |S| · ||degT (U |Z)||∞

|J3| ≤||degR(X|Y )||∞ · ||degS(Y |Z)||∞ · |T |

|J3| ≤|R| · |T |

Let us compare this with the density-based estimator
described in Sec. 2, which, for J3, is:

Est(J3) =
|R| · |S| · |T |

max(|R.Y |, |S.Y |) ·max(|S.Z|, |T.Z|)

For illustration, assume that |R.Y | ≤ |S.Y | and
|S.Z| ≤ |T.Z|. Then the estimate can be written as:

Est(J3) =|R| ·
|S|

|S.Y |
·

|T |

|T.Z|

This is the same expression as (12), where the maxi-
mum degrees are replaced with the average degrees.

The main advantage of CB and its simplified vari-
ant BoundSketch is their simplicity and resem-
blance to the density-based estimator. A disadvan-
tage is that their computation requires exponential
time, because we need to iterate over all variable
orderings π. Another limitation is that, unlike the
AGM bound, CB is not tight: the polymatroid
bound described below can be strictly lower than
CB. However, in the special case when the set of
statistics is acyclic, CB is both tight and computable
in PTIME. In this case, there exist variable orderings
such that, for every statistics ||degRji

(Vi|Ui)||∞, all

variables in Ui come before those in Vi, which implies
Vi ⊆π (Vi|Ui) for i = 1, k. Such an ordering π can
be computed in linear time using topological sort.
We then use an LP solver to compute the optimal
fractional cover for π.

8. THE POLYMATROID BOUND

The Polymatroid Bound [26], PolyB, can use
any ℓp-norms of degree sequences to compute an

max-degrees), then BoundSketch or, equivalently,
MOLP [5], is larger (worse) than the AGM bound, as
it considers only integral covers. The original definition
of MOLP [22] (called MO in [22]) claims the opposite,
a claim repeated in [5]. However, that claim only holds
under the assumption that one first regularizes the data,
then computes a separate bound for each degree configu-
ration, using both cardinalities and max-degree statistics.

13We omit non-optimal expressions, like |R| · |S| · |T |.

upper bound on the size of the query output. The
input statistics for PolyB are norms ||degR(V |U)||p,
for a relation R, sets of attributes U, V of R, and
numbers14 p > 0. The system uses all available
statistics to compute an upper bound on the query’s
output. PolyB strictly generalizes both CB and
the AGM bound. Its theoretical foundation lies
in information inequalities, which we will review
shortly, after presenting some examples of PolyB.

Examples To warm up, consider again the two-way
join J2(X, Y, Z) = R(X, Y )∧S(Y, Z). The following
upper bounds on the size of the query output hold:

|J2| ≤|R| · |S| (13)

|J2| ≤|R| · ||degS(Z|Y )||∞ (14)

|J2| ≤||degR(X|Y )||∞ · |S| (15)

|J2| ≤||degR(X|Y )||2 · ||degS(Z|Y )||2 (16)

The PolyB is the minimum of these four quanti-
ties15. The first three inequalities are trivial (and
were discussed in Sec. 4), while (16) follows from
Cauchy-Schwartz.
Consider now the 3-way join J3(X,Y,Z, U) =

R(X,Y ) ∧ S(Y,Z) ∧ T (Z,U). PolyB includes all
CB inequalities (see Eq. (12)) and new inequalities
using ℓp-norms, for example the following inequality
holds for all p ≥ 2:

|J3| ≤
(

|R|p−2 · ||degR(X|Y )||22

· ||degS(Z|Y )||p−1
p−1 · ||degT (U |Z)||pp

)1/p
(17)

For example, assume that the system has computed
the ℓ1, ℓ2, ℓ3 norms of all degree sequences, then it
can compute the expression above for both p = 2
and p = 3, and take their minimum.

Considering the 3-cycle query in (8), the following
inequalities hold:

|C3| ≤ (|R| · |S| · |T |)1/2 (18)

|C3| ≤
(

||degR(Y |X)||22 · ||degS(Z|Y )||22 · ||degT (X|Z)||22
)1/3

(19)

|C3| ≤
(

||degR(Y |X)||33 · ||degS(Y |Z)||33 · |T |5
)1/6

(20)

The first is the AGM bound; the others are new,
and quite surprising. This list is not exhaustive: one
can derive many more inequalities, using various
ℓp-norms. PolyB is the minimum of all of them
(restricted to the available ℓp-norms), and can be
computed using a linear program, as explained later.

14p can be fractional.
15If all statistics consists of ℓp-norms with p an integer,
or p = ∞, then the best bound on J2 is the minimum of
inequalities (14)-(16).
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Inequalities (17)-(20) do not appear to have sim-
ple, elementary proofs. Instead, they are proven
using Shannon inequalities.
Shannon Inequalities We review briefly Shannon

Inequalities, which are special cases of entropic in-
equalities, or information inequalities, and show how
to use them to prove the inequalities above.
Let X be a finite random variable, with N out-

comes x1, . . . , xN , and probability function Pr. Its
entropy is defined as:16

h(X)
def
= −

∑

i

Pr(xi) log Pr(xi)

It holds that 0 ≤ h(X) ≤ logN , and h(X) = logN
iff Pr is uniform, i.e., Pr(x1) = · · · = Pr(xN ) = 1/N .

Let X1, . . . , Xn be n finite, jointly distributed ran-
dom variables. For every subset U of variables, h(U)
denotes the entropy of the joint random variables
in U . For example, we have h(X1X3), h(X2X4X5),
etc. This defines an entropic vector, h, with 2n

dimensions, one for each subset of variables. The
following inequalities hold and are called Shannon
basic inequalities (the second is called monotonicity
and the third is called submodularity):

h(∅) = 0

h(U ∪ V ) ≥ h(U)

h(U) + h(V ) ≥ h(U ∪ V ) + h(U ∩ V )

A vector h ∈ R
2n

+ that satisfies Shannon basic
inequalities is called a polymatroid. Every entropic
vector is a polymatroid, but the converse does not
hold in general [42].
We now have the tools needed to prove inequal-

ities (17)-(20). We illustrate only (18), and defer
the others to the Appendix. Consider three input
relations R, S, T , and let C3 denote the output to the
query, i.e. C3(x, y, z) iff R(x, y), S(y, z), and T (z, x).
Define the uniform probability space on C3: there
are |C3| outcomes (x, y, z), each with the same prob-
ability 1/|C3|. Let h ∈ R

8
+ be its entropic vector.

Note that h(XY Z) = log |C3|, because the proba-
bility distribution is uniform, and h(XY ) ≤ log |R|,
because the support of the variables XY is a subset
of the relation R. Then the following inequalities
hold, and imply (18):

log |R|+ log |S|+ log |T | ≥

≥h(XY ) + h(Y Z) + h(ZX)

≥h(XY Z) + h(Y ) + h(ZX)

≥2h(XY Z) = 2 log |C3|

16Usually log is in base 2, but any base can be used
without affecting any results.

We have applied Shannon submodularity inequality
twice, and shown it by underlying the used terms.

Entropic Constraints To prove upper bounds that
involve degree sequences, like (17), (19), (20), we
need to relate their ℓp-norms to the entropic vector.

Let X1, . . . , Xn be jointly distributed random vari-
ables, whose support is the finite relation R(X1, . . . ,
Xn). Let two sets of variables U, V . Let h be the
entropic vector of the variables. The conditional en-

tropy of U, V is defined as h(V |U)
def
= h(UV )− h(U).

The following was proven in [24], for any p > 0:

1

p
h(U) + h(V |U) ≤ log ||degR(V |U)||p (21)

When p = 1, the inequality becomes h(UV ) ≤
log |ΠUV (R)|, and when p = ∞, it becomes h(Y |X) ≤
log ||degR(V |U)||∞. For a simple example, using (21)
we can prove (16):

log||degR(X|Y )||2 + log ||degS(Z|Y )||2 ≥

≥

(

1

2
h(Y ) + h(X|Y )

)

+

(

1

2
h(Y ) + h(Z|Y )

)

=h(Y ) + h(X|Y ) + h(Z|Y )

≥h(Y ) + h(X|Y ) + h(Z|XY ) = h(XY Z) = log |J2|

Inequalities (17)-(20) are proven similarly: we in-
clude them in Appendix B.
Computing PolyB So far, we introduced PolyB

as the minimum bound that can be obtained from
Shannon inequalities and entropic constraints (21).
To compute it, we use an equivalent, dual definition,
as the maximum value of a linear program (LP).
Suppose Q has n variables X1, . . . ,Xn. The LP

has 2n real-valued variables, h(U), representing the
unknown polymatroid vector h ∈ R

2n

+ . The objec-
tive is to maximize h(X1X2 · · ·Xn), given two sets
of linear constraints:

• Statistics constraints: there is one inequality
of type (21) for each available input statistics.

• Shannon basic inequalities: the list of all sub-
modularity and monotonicity inequalities.

PolyB is the optimal value of this linear program.
Intuitively, we maximize log |Q| = h(X1 · · ·Xn),
while constraining h to be a polymatroid that satis-
fies all statistics (21).
We illustrate with an example, by showing the

linear program for the query C3 in (8):
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maximize h(XY Z) subject to

h(XY ) ≤ log |R| cardinality
h(XZ) ≤ log |S| constraints

. . .
1
2
h(X) + h(Y |X) ≤ log ||degR(Y |X)||2 Other ℓp

1
3
h(X) + h(Y |X) ≤ log ||degR(Y |X)||3 constraints

. . .

h(X) + h(Y ) ≥ h(XY ) all Shannon
h(XY ) + h(XZ) ≥ h(X) + h(XY Z) inequalities

. . .

PolyB has several attractive properties. It strictly
generalizes both CB and the AGM bound, which
use only statistics given by ℓ1 and ℓ∞. In addition,
PolyB can also be used to estimate output sizes for
queries with group-by (and select distinct) clauses;
for this, we just need to adjust the objective of the
linear program to refer to the entropic term for the
group-by attributes. Access to more statistics is
guaranteed to never make the bound worse; e.g., we
can improve the bound if we decide to add the statis-
tics ℓ3, ℓ4, ℓ5 in addition to ℓ1, ℓ2, ℓ∞. The inference
time is exponential in n, the number of query vari-
ables, but several special cases are known when it
can be computed in PTIME [21,33,41] (see Sec. 10).
Finally, when all statistics are restricted to simple de-
gree sequences, then PolyB is provably tight, up to
a query-dependent multiplicative rounding error,17

similar to the AGM bound. Beyond simple degree
sequences, the PolyB is not tight in general, due
to the existence of non-Shannon inequalities [36,42],
but the only known non-tight examples are artificial
and unlikely to occur in practice.

9. THE DEGREE SEQUENCE BOUND

The Degree Sequence Bound [10, 11], DSB for
short, was the first system that proposed to use
degree sequences for PCE. DSB provides tighter
bounds than both AGM and CB bounds, and an
empirical evaluation [11] found it to be often tighter
than density-based estimators, while always return-
ing a guaranteed upper bound. Instead of using
ℓp-norms, DSB uses compressed representation of
the degree sequences. We illustrate here DSB assum-
ing access to the full degree sequence, and discuss
compression in Sec. 10.

Consider the 2-way join J2(X,Y, Z) = R(X,Y ) ∧
S(Y,Z), and assume that the degree sequences of
R.Y and S.Y are:

degR(∗|Y ) =(a1, a2, . . .) degS(∗|Y ) =(b1, b2, . . .)

17The factor is 1/22
n
−1.

Recall that the degree sequences are sorted, e.g.
a1 ≥ a2 ≥ · · · , and that the rank of a value y in
R.Y is the index i for which the degree of y is ai. If
every value y has the same rank in R.Y and in S.Y ,
then the size of the join is precisely |J2| =

∑

i aibi.
In general, the following inequality holds:

|J2| ≤
∑

i

aibi (22)

This bound is a strict improvement over the chain
bound (4), because

∑

i aibi ≤ a1
∑

i bi = a1|S|, and
similarly

∑

i aibi ≤ |R|b1.
DSB enjoys several nice properties. It can be com-

puted in linear time in the size of the compressed de-
gree sequences; it is compositional, meaning that the
estimate of a query plan can be computed bottom-
up; given appropriate histograms (see Sec. 10) DSB

is more accurate than density-based estimators [11];
finally, DSB is provably a tight upper bound of the
query’s output. DSB also has a few limitations. It
is limited to Berge-acylic queries (see [12]), and its
estimate is not given in terms of an inequality, like
PolyB, but instead it is computed by an algorithm.

10. PRAGMATIC CONSIDERATIONS

We discuss here some practical aspects that need
to be considered by PCE, or have been considered
in previous implementations of PCE [4, 11, 19,41].
Statistics selection While a density-based esti-

mator only stores the number of distinct values
|Dom(R.X)| of an attribute, PolyB can use multi-
ple ℓp-norms of various degree sequences degR(V |U).
A reasonable choice is to store, say, four numbers
ℓ2, ℓ3, ℓ4, ℓ∞. We assume that |R| is stored separately
and do not include ℓ1. This means that the memory
footprint increased by 4 times that of a density-based
estimator. But, in general, it is not clear whether
we want to stop at ℓ4. An implementation needs to
choose which ℓp norms to precompute. Empirically,
we have observed improvements of accuracy up to
ℓ30 for JOB queries on the IMDB dataset, although
with diminishing returns [41]. On the other hand,
DSB compresses the degree sequence, and requires
tuning the hyperparameters of the compression.
Computing the statistics All input statistics are

computed offline. For example, the degree sequence
degR(∗|X) can be computed using a group-by query:

SELECT X, COUNT(*) FROM R GROUP BY X (23)

DSB sorts the query output, while PolyB computes
all desired ℓp-norms in one pass over this output.
Conditional statistics In order to improve the es-

timates of queries with predicates, a pessimistic
estimator can adopt traditional techniques like Most
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Common Values (MCV) and histograms. Assume
that the system decides to store the following global
statistics for column X: ||degR(∗|X)||p for p =
2, 3, 4,∞, for a total of 4 numbers (recall that ℓ1 is
the cardinality which we store anyway). To support
equality predicates A = a on some attribute A, the
system computes additional conditional statistics:

• For each value a ∈ ΠA(R), compute the degree
sequence degσA=a(R)(∗|X), which we denote by
degR(∗|X,A = a):

CREATE TABLE DS AS SELECT A,X, (24)

COUNT(*) as C FROM R GROUP BY A,X;

Then, compute the ℓp-norms of these degree
sequences (shown only for ℓ2 below):

SELECT A, (SQRT(SUM(C ∗ C))) AS L2 (25)

FROM DS GROUP BY A;

• For each Most Common Value (MCV) a, store
its ℓp-norms in the catalog. Call these condi-
tional MCV statistics. If we used 100 MCVs
(which is the default in Postgre), then these
statistics consist of 400 numbers.

• Compute the conditional common statistics,
maxa ||degR(∗|X,A = a)||p, and add these 4
numbers to the catalog.

• At estimation time, consider three cases. If the
query does not have a predicate on A, then use
the global statistics; if the predicate is A = a,
where a is an MCV, then use the corresponding
conditional MCV statistics; otherwise use the
conditional common statistics.

Histograms Histograms can further improve the
accuracy. Continuing the example above, we par-
tition the values of the attribute A into buckets,
and for each bucket store conditional common statis-
tics: maxa∈Bucket ||degR(∗|X,A = a)||p. There are
4 numbers per bucket. To support range predi-
cates we need to store in each bucket the value
||degR(∗|X,A ∈ Bucket)||p.
Boolean Expressions The most powerful advan-

tage of pessimistic estimators is that the Boolean con-
nectives ∧,∨ simply becomes min and +. For exam-
ple, if the query contains predicate R.A = a∧R.B =
b, then we use as statistics min(||degR(∗|X,A =
a)||p, ||degR(∗|X,B = b)||p); similarly, for R.A =
a ∨R.B = b, we use18 +. This principle extends to
IN predicates (which are equivalent to

∨

), and to

18We need to require p ≥ 1, because Minkowski’s inequal-
ity ||a+ b||p ≤ ||a||p + ||b||p only holds for p ≥ 1.

LIKE predicates, which can be upper-bounded by a
set of 3-grams, see [11].

Lossy Compression The complete degree sequence
can be as large as the data, and therefore it is not
usable as a statistic for cardinality estimation. Since
DSB needs access to the entire degree sequence, it
uses three observations to drastically reduce the size
of the statistics. First, run-length compression is
very effective on degree sequences: it compresses
a sequence a = (a1 ≥ a2 ≥ · · · ) by replacing any
constant subsequence ai = ai+1 = ai+2 = · · · with
the common value plus length. Second, DSB uses
a lossy compression, replacing the original sequence
a with a′ such that a ≤ a′ (element-wise) and the
compression of a′ is much smaller: since the DSB

is monotone in the input degree sequences, it still
returns an upper bound when a is replaced with a′.
However, since ||a||1 < ||a′||1 , the new sequence rep-
resents a relation with a larger cardinality. Instead,
DSB upper bounds the CDF of the degree sequence,

Ai
def
=

∑

j≤i ai, instead of the PDF. That is, it uses
a degree sequence a′′ such that A ≤ A′′ where
A′′

i =
∑

j≤i a
′′
i . It is no longer obvious why DSB is

still an upper bound when it uses a′′: we give the
main intuition in Appendix C. Fig. 3 illustrates this
method. The original sequence, a = (4, 2, 2, 1, 1, 1),
can be compressed to a′ = (4, 4, 4, 2, 2, 2), but the
ℓ1 norm increased from 11 to 18. Instead, DSB

upper bounds the CDF to A ≤ A′′, see the second
graph. The degree sequence that produces A′′ is
a′′ = (4, 3.5, 3.5, 0, 0, 0): notice that a ̸≤ a′′, yet by
using a′′ DSB still returns an upper bound.
Runtime of the Pessimistic Estimator The run-

time of DSB is linear in the size of the compressed
representation of all degree sequences. The runtime
of PolyB is exponential in n (the number of query
variables, Eq. (6)), because the LP uses 2n numerical
variables. This is undesirable, but there are a few
ways to mitigate this. First, when all statistics are
for simple degree sequences (meaning of the form
degR(V |X), where X is a single variable, or X = ∅),
then PolyB can be computed in PTIME, by using
a totally different LP, with n2 numerical variables
instead of 2n [21, 41]; furthermore, we only need
O(n) numerical variables in case of Berge acyclic
queries [41]. Restricting the pessimistic estimator to
simple degree sequences is quite reasonable, because
many current systems already restrict their statistics
to a single attribute, e.g. they store |Dom(R.X)|, but
rarely |Dom(R.XY )|. When multi-attribute statis-
tics are needed, then there are a few ways to optimize
the LP that computes PolyB. First, ensure that it
includes only the elemental Shannon inequalities [40,
Chap.14.1]: there are n(n− 1)2n−3 +n elemental in-
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an insert/update/delete query), we would like to
update the statistics incrementally. For context,
we point out that, to the best of our knowledge,
no relational database system updates its statistics
incrementally, because it would slow down OLTP
workloads, especially because updating a statistics
requires acquiring a lock, which can quickly lead
to high contention. A similar reason would pre-
vent them to do incremental updates for pessimistic
cardinality estimators. However, the question re-
mains whether the data structures used by PCE’s
are able to support incremental updates. This ap-
pears to require materializing the degree sequence
computed by Query (23), which is unlikely to be
practical. Future work is needed to explore whether
ℓp-sketches [2, 8] can be adapted for the purpose of
incremental updates of the input statistics.
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APPENDIX

A. PROOF OF THE CHAIN BOUND

We use the notations introduced in Sec. 7. Let w
be a fractional cover, and let Xn be the last variable
in the order π. We prove by induction on n:

E
def
=

∑

j=1,k

wjh(Vj |Uj) ≥h(X1 · · ·Xn) (26)

For j ∈ J1
def
= {j | Xn ∈ Vj}, set V

′
j

def
= Vj − {Xn};

then h(Vj |Uj) = h(V ′
j |Uj)+h(Xn|UjV

′
j ). For j ̸∈ J1,

let V ′
j

def
= Vj . Then w is a fractional cover of (V ′

j |Uj),
and by induction we have E ≥ h(X1 · · ·Xn−1) +
∑

j∈J1
wjh(Xn|X1 · · ·Xn−1) ≥ h(X1 · · ·Xn) because

∑

j∈J1
wj ≥ 1. The chain bound (10) follows from (26)

using the standard argument from Sec. 8.

B. SOME INEQUALITY PROOFS

We prove (17)-(20). Inequality (17) follows from:

(p − 2) log |R| + 2 log ||degR(X|Y )||2
+(p − 1) log ||degS(Z|Y )||p−1

+p log ||degT (U |Z)||p

≥ (p − 2)h(XY ) + 2
(

1

2
h(Y ) + h(X|Y )

)

+(p − 1)
(

1

p−1
h(Y ) + h(Z|Y )

)

+p
(

1

ph(Z) + h(U |Z)
)

= (p − 1)h(XY ) + h(X|Y )
+h(Y Z) + (p − 2)h(Z|Y )
+h(UZ) + (p − 1)h(U |Z)

= (p − 2) [h(XY ) + h(Z|Y ) + h(U |Z)]
+ [h(XY ) + h(UZ)]

+ [h(Y Z) + h(X|Y ) + h(U |Z)]

≥ p · h(XY ZU) = p log |J3|

We have proven inequality (18) in Sec. 8. Inequal-
ities (19) and (20) follows from:

(h(X) + 2h(Y |X)) + (h(Y ) + 2h(Z|Y )) + (h(Z) + 2h(X|Z))

= (h(XY ) + h(Y |X)) + (h(Y Z) + h(Z|Y )) + (h(XZ) + h(X|Z))

≥3h(XY Z)

(h(X) + 3h(Y |X)) + (h(Z) + 3h(Y |Z)) + 5h(XZ)
= (h(XY ) + 2h(Y |X)) + (h(Y Z) + 2h(Y |Z)) + 5h(XZ)
= 2 (h(XZ) + h(Y |X)) + 2 (h(XZ) + h(Y |Z))

+ (h(XY ) + h(Y Z) + h(XZ))
≥ 2h(XY Z) + 2h(XY Z) + 2h(XY Z) = 6h(XY Z)

C. CDF COMPRESSION

We prove here that the upper bound in Eq. (22)
continues to hold if we replace the sequences a, b
with two sequences a′, b′ whose CDFs are larger.

It will be convenient to use some notations. Given
any sequence x = (x1, x2, . . .), we denote by ∆x and
Σx the following sequences:

(∆x)i
def
=xi − xi−1 (Σx)i

def
=

∑

j=1,i

xj

where x0
def
= 0. If x is a probability distribution,

meaning that
∑

i xi = 1, then the sequence x is
the Probability Density Function (PDF), and Σx
is the Cumulative Density Function (CDF). With
some abuse, we use the terms PDF and CDF even
when x is not a probability distribution. Obviously,
Σ∆x = ∆Σx = x.

The following summation-by-parts holds, for any
two sequences x,y.

∑

i=1,n

(∆x)iyi =xnyn −
∑

i=1,n−1

xi(∆y)i+1

Using this formula, we prove:

Lemma C.1. Let a, b be two, non-negative se-
quences, and assume that b is non-decreasing (mean-

ing, b1 ≥ b2 ≥ · · · ). Let A
def
= Σa, and let A′ be

such that A ≤ A′. Then, the following holds, where

a′ def
= ∆A′:

∑

i=1,n

aibi ≤
∑

i=1,n

a′ibi

The proof follows from:
∑

i=1,n

aibi =
∑

i=1,n

(∆A)ibi = Anbn −
∑

i=1,n−1

Ai(∆b)i+1

≤A′
nbn −

∑

i=1,n−1

A′
i(∆b)i+1

which holds because bn ≥ 0 and (∆b)i ≤ 0. By
applying the lemma a second time, we infer that the
output of a join query (22) can be upper bounded
by

∑

i a
′
ib

′
i, where a′, b′ are the PDFs of A′ ≥ A

and B′ ≥ B.
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