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Abstract

In the last decade, various works have used statistics on relations to improve both the theory and

practice of conjunctive query execution. Starting with the AGM bound which took advantage of

relation sizes, later works incorporated statistics like functional dependencies and degree constraints.

Each new statistic prompted work along two lines; bounding the size of conjunctive query outputs

and worst-case optimal join algorithms. In this work, we continue in this vein by introducing a new

statistic called a partition constraint. This statistic captures latent structure within relations by

partitioning them into sub-relations which each have much tighter degree constraints. We show that

this approach can both refine existing cardinality bounds and improve existing worst-case optimal

join algorithms.
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1 Introduction

Efficient query execution is the cornerstone of modern database systems, where the speed

at which information is retrieved often determines the effectiveness and user satisfaction

of applications. In theoretical work, this problem is often restricted to the enumeration of

conjunctive queries (CQs). One of the primary goals of database theory has been to classify

the hardness of different queries and provide algorithms that enumerate them in optimal

time. Most of these classical guarantees were described relative to the size, N , of the largest

table in the database. In practical work, there has been a parallel effort to hone query

optimizers which automatically generate an algorithm for query evaluation based on the

particular properties of the data, finely tailoring the execution to the dataset at hand.

Recently, these lines of work have begun to meaningfully converge in the form of worst-case

optimal join (WCOJ) algorithms. As a new paradigm in database theory, these methods

provide data-dependent guarantees on query execution that take into account statistics s(D)

about the dataset being queried D. Concretely, WCOJ algorithms aim to only require time

proportionate to (a bound on) the maximum join size over all databases D′ with the same

statistics as D, i.e., an optimal runtime on the worst-case instance. Crucially, the statistics

that are used directly impact the kinds of guarantees that can be provided; more granular

statistics allow for tighter worst-case analyses.
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17:2 Partition Constraints for Conjunctive Queries

In a sequence of papers, increasingly more detailed statistics were incorporated into

theoretical analyses. The foundational work in this direction by Grohe et al. used the size of

each table in the database, often called cardinality constraints (CC)s, to produce bounds on

the output size [2, 15]. This eventually led to a multitude of exciting WCOJ algorithms for

CCs, e.g., Generic Join [22], Leapfrog Triejoin [24], and NPRR [21]. Instead of processing one

join at a time, these algorithms processed one attribute at a time, asymptotically improving

on traditional join plans. They have even seen significant uptake in the systems community

with a variety of efficient implementations [1, 12, 25].

In later work, researchers incorporated functional dependencies (FDs) into cardinality

bounds and then generalized CCs and FDs to degree constraints (DCs) [14, 18]. This work

culminated in the development of the PANDA algorithm which leveraged information theory

and proof-theoretic techniques to provide worst-case optimality relative to the polymatroid

bound, modulo an additional poly-logarithmic factor [19].

A DC for a relation R on the attributes Y and a subset X ⊆ Y asserts that for each

fixed instantiation x of X there are only a limited number of completions to the whole set of

attributes Y. Thus, X functions like a weak version of a key. However, DCs are a brittle

statistic; a single high frequency value per attribute can dramatically loosen a relation’s

DCs even if all other values only occur once. In the graph setting, where this corresponds

to bounded (in- or out-)degree graphs, this has long been viewed as an overly restrictive

condition because graphs often have highly skewed degree distributions. To overcome this,

the graph theory community identified degeneracy as a natural graph invariant that allows for

graphs of unbounded degree while permitting fast algorithms. For example, pattern counting

on low degeneracy graphs has recently received considerable attention [3, 4, 5, 6, 7, 13].

In this work, we propose partition constraints (PCs), a declarative version of graph

degeneracy for higher-arity data. PCs naturally extend DCs in the sense that every DC

can be expressed as PC, but not the other way around. Informally, for a PC to hold over a

relation R, we require it to be possible to split R such that each partition satisfies at least

one DC. Again, for a binary edge relation R = E of a directed graph G = (V, E), this means

that we can partition the edges into two sets E1, E2, such that the subgraph G1 := (V, E1)

has bounded out-degree while G2 := (V, E2) has bounded in-degree.

We aim to provide a thorough analysis of the effect of PCs on conjunctive query answering.

To that end, we show that PCs can provide asymptotic improvements to query bounds and

evaluation, and we demonstrate how they can gracefully incorporate work on cardinality

bounds and WCOJ algorithms for DCs. Further, we provide both exact and approximate

algorithms for computing PCs and inspect to what extent PCs are present in well-known

benchmark datasets.

Summary of results.

We introduce PCs as a generalization of DCs and provide two algorithms to determine

PCs in polynomial time as well as to partition the data to witness these constraints. One

is exact and runs in quadratic time, while the second runs in linear time and provides a

constant factor approximation.

We develop new bounds on the output size of a join query. These bounds use DC-based

bounds as a black box and naturally extend them to incorporate PCs. We show that

these bounds are asymptotically tighter than bounds that rely on DCs alone. Further,

we show that if the DC-based bounds are tight, then the PC-based bounds built on top

of them will be tight as well.
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Using WCOJ algorithms for DCs as a black box, we provide improved join algorithms that

are worst-case-optimal relative to the tighter PC-based bound. Notably, if an algorithm

were proposed that is worst-case optimal relative to a tight DC-based bound, then this

would immediately result in a WCOJ algorithm relative to a tight PC-based bound.

Structure of the paper. In Section 2, we provide some basic definitions and background. We

formally introduce and discuss PCs in Section 3 and compute them on common benchmark

data. In Section 4, we illustrate the benefits of the PC framework by thoroughly analyzing a

concrete example. The developed techniques are then extended in Section 5 and applied to

arbitrary CQs. We conclude and give some outlook to future work in Section 6. Full proofs

of some results are deferred to the technical report [8], and we instead focus on providing

intuition in the main body.

2 Preliminaries

Conjunctive queries. We assume the reader is familiar with relational algebra, in particular

with joins, projections, and selection, which will respectively be denoted by 1, π, and σ.

In the context of the present paper, a (conjunctive) query (CQ), denoted using relational

algebra, is an expression of the form

Q(Z)← R1(Z1) 1 · · · 1 Rk(Zk).

In this expression, each Ri(Zi) is a relation over the set of variables Zi, and Q(Z) is the

output of the query where Z =
⋃

i Zi. Thus, we only consider full conjunctive query. When

clear from the context, we omit the reference to the set of variables and simply write Ri and

Q. We also use Q to refer to the whole CQ. A database instance I for Q is comprised of a

concrete instance for each Ri, i.e., a set of tuples (also denoted by Ri) where each tuple zi

contains a value for each variable in Zi. The set of values appearing in I is referred to as

dom, the domain of I. Furthermore, let dom(Z) be the values assigned to Z ∈ Z by some

relation Ri and, for Y ⊆ Z, dom(Y) := ×Y ∈Ydom(Y ). For a particular database instance I,

we denote the answers to a CQ, i.e., the join of the Ri, as a relation QI(Z). Lastly, a join

algorithm A is any algorithm that receives a query Q and a database instance I as input

and outputs the relation QI(Z).

Degree constraints and bounds. In recent years, there has been a series of novel approaches

to bound the size of QI(Z) based on the structure of the query Q and a set of statistics

about the database instance I. For full conjunctive queries, this recent round of work began

with the AGM bound [2]. This bound takes the size of each input relation as the statistics

and connects the size of the result to a weighted edge covering of the hypergraph induced

by Q. Later bounds extended this approach by considering more complex statistics about

the input relations. Functional dependencies were investigated first in [14]. These were then

generalized to degree constraints (DCs) in [18] and degree sequences (DSs) in [9, 10, 17]. Our

work in this paper continues in this vein by generalizing degree constraints further to account

for the benefits of partitioning relations. So, we begin by defining degree constraints below.

▶ Definition 1. Fix a particular relation R(Z). Given two sets of variables X, Y where

X ⊆ Y ⊆ Z, a degree constraint of the form DCR(X, Y, d) implies the following,

max
x∈dom(X)

|πYσX=xR| ≤ d.

ICDT 2025



17:4 Partition Constraints for Conjunctive Queries

A database instance I satisfying a (set of) degree constraints DC is denoted by I ⊨ DC.

For convenience, we denote the minimal d such that DCR(X, Y, d) holds by DCR(X, Y). If

Y = Z and X = ∅ the constraint simply bounds the cardinality of R and we write CCR(d).

If clear from the context, we may omit R.

In addition to generalizing DCs, our work is able to refine any of the previous bounding

methods for DCs by incorporating them into our framework. Therefore, we introduce a

general notation for DC-based bounds.

▶ Definition 2. Given a conjunctive query Q and a set of degree constraints DC, a cardinality

bound CB(Q, DC) is any function where the following is true,

|QI(Z)| ≤ CB(Q, DC) ∀ I ⊨ DC.

Throughout this work, we will make specific reference to the combinatorics bound which

we describe below. While it is impractical, this bound is computable and tight which makes

it useful for theoretical analyses.

▶ Definition 3. Given a conjunctive query Q and a set of degree constraints DC, we define

the combinatorics bound (for degree constraints) as

CBComb(Q, DC) = sup
I⊨DC

|QI(Z)|.

In this work, we make two minimal assumptions about bounds and statistics. First, we

assume that cardinality bounds are finite by assuming that every variable in the query is

covered by at least one cardinality constraint. Second, we assume that there is a bound on

the growth of the bounds as our statistics increase. Formally, for a fixed query Q, we assume

that every cardinality bound CB has a function fQ such that for any α ∈ R
+ and degree

constraints DC we have CB(Q, α ·DC) ≤ fQ(α) · CB(Q, DC). Usually, cardinality bounds

are expressed in terms of power products of the degree constraints [2, 14, 17]. In that case,

fQ = O(αc) for some constant c.

Lastly, we will also incorporate existing work on worst-case optimal join (WCOJ) al-

gorithms. Each WCOJ algorithm is optimal relative to a particular cardinality bound, and

we describe that relationship formally as follows:

▶ Definition 4. Denote the runtime of a join algorithm A on a conjunctive query Q and

database instance I as T (A, Q, I). A is worst-case optimal (WCO) relative to a cardinality

bound CBA if the following is true for all queries Q,

T (A, Q, I) = O(|I|+ CBA(Q, DC)), ∀ DC, I ⊨ DC.

Note that the hidden constant may only depend on the query Q and, importantly, neither on

the set of degree constraints DC nor on the database instance I. When A is optimal relative

to CBComb, we simply call it worst-case optimal (relative to degree constraints).

Note that some algorithms fulfill a slightly looser definition of worst-case optimal by allowing

additional poly-logarithmic factors [19]. These algorithms can still be incorporated into

this framework, but we choose the stricter definition to emphasize that we do not induce

additional factors of this sort.
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Much of the recent work on WCOJ algorithms can be categorized as variable-at-a-time

(VAAT) algorithms. Intuitively, a VAAT computes the answers to a join query by answering

the query for an increasingly large number of variables. This idea is at the heart of Generic

Join [22], Leapfrog Triejoin [24], and NPRR [21]. We define this category formally as follows.

For an arbitrary query Q(Z)← R1 1 · · · 1 Rk, let Qi denote the sub-query

Qi(Z1, . . . Zi)← πZ1,...,Zi
R1 1 · · · 1 πZ1,...,Zi

Rk,

for an ordering Z1, . . . , Zr = Z.

▶ Definition 5. A join algorithm A that solves conjunctive queries Q(Z)← R1(Z1) 1 · · · 1
Rk(Zk) is a VAAT algorithm if there is some ordering Z1, . . . , Zr = Z such that A takes

time Ω(maxi |QI
i |) for databases I. The choice of the ordering is allowed to depend on I.

3 Partition Constraints

Partition constraints (PCs) extend the concept of DCs by allowing for the partitioning of

relations. For clarity, we start with the binary setting, revisiting the example from the

introduction. To that end, let E(X, Y ) be the edge relation of a directed graph G = (V, E).

For a degree constraint to hold on E, either the in- or the out-degree of E must be bounded.

However, this is a strong requirement and often may not be satisfied, e.g. on a highly skewed

social network graph. In these cases, it makes sense to look for further latent structure in the

data. We suggest partitioning E such that each part satisfies a (different) degree constraint.

We are interested in the following quantity where the minimum is taken over all bi-partitions

of E, i.e. E = EX ∪ EY (implicitly EX ∩ EY = ∅),

min
EX ∪EY =E

max{DCEX (X, XY ), DCEY (Y, XY )}. (1)

This corresponds to a splitting of the graph into two graphs. In one of them, GX = (V, EX), we

attempt to minimize the maximum out-degree of the graph while in the other, GY = (V, EY ),

we attempt to minimize the maximum in-degree. It is important to note that both of these

quantities can be arbitrarily lower than the maximum in-degree and out-degree of the original

graph. This is where the benefit of considering partitions comes from.

An example of such a partitioning is depicted in Figure 1. There, the dashed blue edges

represent EX while the solid red edges represent EY . The maximum out- and in-degree of

the full graph is 5 while GX = (V, EX) has a maximum out-degree of 1 and GY = (V, EY )

has a maximum in-degree of 1. In general, a class of graphs can have an unbounded out- and

in-degree but always admit a bi-partitioning with an out- and in-degree of 1, respectively.

This approach is originally motivated by the graph property degeneracy. Intuitively, this

property tries to allocate each edge of an undirected graph to one of its incident vertices

such that no vertex is “responsible” for too many edges. Each partition E = EX ∪EY can

be seen as a possible allocation where the edges in EX are allocated to the X part of the

tuples while the edges in EY are allocated to the Y part of the tuples. Thus, in general,

if the undirected version of a graph class G has bounded degeneracy, the Quantity 1 must

also be bounded for G. In fact, the converse is true as well if the domain of the X and Y

attributes are disjoint.

Formally, we define a PC on a relation R as below. Note, we say a collection of subrelations

(R1, . . . , Rk) partition R when they are pairwise disjoint and
⋃

j Rj = R.

ICDT 2025
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Figure 1 Graph Example.

Access

PersonID RoomID

Ava Beacon Hall

Ben Beacon Hall

Cole Delta Hall

Dan Delta Hall

Emma Gala Hall

Finn Jade Hall

Porter Beacon Hall

Porter Delta Hall

Porter Gala Hall

Porter Jade Hall

AccessPersonID

PersonID RoomID

Ava Beacon Hall

Ben Beacon Hall

Cole Delta Hall

Dan Delta Hall

Emma Gala Hall

Finn Jade Hall

AccessRoomID

PersonID RoomID

Porter Beacon Hall

Porter Delta Hall

Porter Gala Hall

Porter Jade Hall

Figure 2 Access Example.

▶ Definition 6. Fix a particular relation R(Z), a subset Y ⊆ Z, and let X = {X1, ..., X|X |} ⊆
2Y be a set of sets of variables. Then, a partition constraint of the form PCR(X , Y, d) implies,

min
(RX)X∈X partition R

max{DCRX(X, Y) | X ∈ X} ≤ d.

Again, a database instance I satisfying a (set of) partition constraints PC is denoted by

I ⊨ PC. We denote the minimal d such that PCR(X , Y, d) holds by PCR(X , Y) and we

omit R if clear from the context.

This definition says that one can split the relation R into disjoint subsets Rj ⊆ R,
⋃

j Rj =

R and associate each Rj with a degree constraint over a set of variables X
j ∈ X such that

the maximum of these constraints is then bounded by d. From an algorithmic point of view,

each part Rj should be handled differently to make use of its unique, tighter DC. The core of

this work is in describing how these partitions can be computed and how to make use of the

new constraints on each part. Broadly, we show how these new constraints produce tighter

bounds on the join size and how algorithms can meet these bounds. Note PCs are a strict

generalization of DCs since we can define an arbitrary degree constraint DC(X, Y, d) as

PC({X}, Y, d). For simplicity, when we discuss a collection of PCs, we assume that there is at

most one PCs per (X , Y) pair, i.e., there are never two PCR(X , Y, d), PCR(X , Y, d′), d ≠ d′,

as it suffices to keep the stronger constraint.

Next, we present an example of how relations with small PCs might arise in applications.

▶ Example 7. Consider a relation Access(PersonID, RoomID) that records who has access

to which room at a university. This could be used to control the key card access of all

faculty members, students, security, and cleaning personnel. Most people (faculty members

and students) only need access to a limited number of rooms (lecture halls and offices).

On the other hand, porters and other caretaker personnel need access to many different

rooms, possibly all of them. However, each room only needs a small number of people

taking care of it. Thus, it makes sense to partition Access into AccessPersonID ∪ AccessRoomID

with the former tracking the access restrictions of the faculty members and students, and

the latter tracking the access restrictions of the caretaker personnel. With this partition,

both DCAccessPersonID(PersonID, RoomID) and DCAccessRoomID(RoomID, PersonID) should be small.

Thus, PCAccess({PersonID, RoomID}, PersonID RoomID) should be small as well.
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Dataset Max DC Min DC PC |X |

aids 11 11 3 2

yeast 154 119 9 2

dblp 321 113 34 2

wordnet 526 284 3 2

Stats/badges 899 456 8 2

Stats/comments 134887 45 15 3

Stats/post_links 10186 13 2 4

Stats/post_history 91976 32 3 4

Stats/votes 326320 427 33 4

IMDB/keywords 72496 540 71 2

IMDB/companies 1334883 94 13 4

IMDB/info 13398741 2937 123 4

IMDB/cast 25459763 1741 52 6

Figure 3 Example PCs.

A

W

B

U

C

V

Figure 4 The Query Q9.

Figure 2 depicts a small example instance of the situation. There, the students each only

need access to a single lecture hall to attend their courses, and all the rooms are taken care

of by a single porter. Thus, following the suggested splitting, the respective DC for both

subrelations AccessPersonID and AccessRoomID is 1 and, therefore, also the PC for the whole

relation Access is 1.

To see how these statistics manifest in real world data, we calculated the PC of relations

from some standard benchmarks which are displayed in Figure 3 [23, 16, 20]. We computed

the PC using Algorithm 3 from Section 5. To model the interesting case of many-to-many

joins, we first removed any attributes which are primary keys from each relation. Specifically,

we computed the partition constraint PC({X | X ∈ Y}, Y) where Y is the set of non-key

attributes. We compare this with the minimum and maximum degree of these attributes

before partitioning. Naively, by partitioning the data randomly, one would expect a PC

roughly equal to the maximum DC divided by |X |. Alternatively, by placing all tuples in the

partition corresponding to the minimum DC, one can achieve a PC equal to the minimum

DC. However, the computed PC is often much lower than both of these quantities. This

implies that the partitioning is uncovering useful structure in the data rather than simply

distributing high-degree values over multiple partitions.

3.1 Further Partitioning

At this point, one might wonder if further partitioning the data can meaningfully reduce a

PC. That is, whether for a given relation R(Z) and a particular set of degree constraints

{DCR(X, Y) | X ∈ X}, is it possible to decrease the maximum DC significantly by partition-

ing R into more than |X | parts? We show that this is not the case; neither pre-partitioning

nor post-partitioning the data into k parts can reduce the PC by more than a factor of k.

We prove the former first.

▶ Proposition 8. Given a relation R(Z), a subset Y ⊆ Z, variable sets X ⊆ 2Y, and

subrelations (R1, . . . , Rk) that partition R. Then,

max
i=1,...,k

PCRi(X , Y) ≥ PCR(X , Y)/k.

ICDT 2025



17:8 Partition Constraints for Conjunctive Queries

Proof. For the sake of contradiction, we assume that there exists a partitioning (R1, . . . , Rk)

of R such that,

max
i=1,...,k

PCRi(X , Y) < PCR(X , Y)/k.

Then, we can partition each Ri to witness PCRi(X , Y). Let
⋃

X∈X Ri,X = Ri be such

that DCRi,X(X, Y) ≤ PCRi(X , Y) holds for each part Ri,X. For each fixed X ∈ X , we

can combine the sub-relations R1,X, . . . , Rk,X into a single relation RX. These relations,

(RX)X∈X , form a partition of R. The DC for each RX is at most the sum of the DCs of

R1,X, . . . , Rk,X. Further, this sum must be less than our initial PC by our assumption,

DCRX(X, Y) ≤ k · PCRi(X , Y) < PCR(X , Y).

This directly implies that

max
X∈X

DCRX(X, Y) < PCR(X , Y).

Because the PC is defined as the minimum value of this maximum DC over all possible

partitions of R into |X | parts, this is a contradiction. ◀

Next, we show that post-partitioning cannot super-linearly reduce the degree either.

▶ Proposition 9. Let (R1, . . . , Rk) partition a relation R(Z), and let X ⊆ Y ⊆ Z be two

subsets of variables. Then,

max
i=1,...,k

DCRi(X, Y) ≥ DCR(X, Y)/k.

Proof. Let x be the value of X within R that occurs in tuples with d = DCR(X, Y) unique

values y of Y. For each of these values y, a tuple containing y must be associated with one

partition Ri. By the pigeonhole principle and the fact that there are DCR(X, Y) of these

tuples, it follows that some partition must contain at least DCR(X, Y)/k of these tuples.

Therefore, for some i ∈ {1, . . . , k}, we have DCPi
(X, Y) ≥ DCR(X, Y)/k. ◀

Theorems 8 and 9 together show that for a given relation R(Y) and a particular set

of degree constraints {DCR(X, Z) | X ∈ X} deemed relevant, we only have to consider

partitionings of R into at most |X | pieces. Thus, if the query size is viewed as a constant,

then the number of useful partitions is also a constant.

4 The Hexagon Query

In this section, we show the benefits of the PC framework by demonstrating how it can lead

to asymptotic improvements for both cardinality bounds and conjunctive query evaluation.

Concretely, there is an example query and class of database instances where bounds based

on PC are asymptotically tighter than those based on DC. Further, all VAAT algorithms

(See Definition 5) are asymptotically slower than a PC-aware algorithm on this query and

instance class. Formally, our aim is to show the following:

▶ Theorem 10. There exists a query Q and a set of partition constraints PC with the degree

constraint subset DC ⊂ PC such that the following are true:

1. Bounds based on degree constraints are asymptotically sub-optimal, i.e.

sup
I⊨PC

|QI(Z)| = o(CBComb(Q, DC)) = o( sup
I⊨DC

|QI(Z)|).
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2. There is an algorithm that enumerates QI for instances I ⊨ PC in time

O(supI⊨PC |QI(Z)|).
3. No VAAT algorithms can enumerate QI for instances I ⊨ PC in time

O(supI⊨PC |QI(Z)|).

To prove these claims, we consider the hexagon query (also depicted in Figure 4)

Q9(A, B, C, U, V, W )← R1(A, W, B) 1 R2(B, U, C) 1 R3(C, V, A) 1 R4(U, V, W )

and impose the following set of PCs on the relations:

DCR1
(AW, AWB, 1), DCR1

(WB, AWB, 1), CCR1
(n), CCR2

(n)

DCR2
(BU, BUC, 1), DCR2

(UC, BUC, 1), CCR3
(n), CCR4

(n),

DCR3
(CV, CV A, 1), DCR3

(V A, CV A, 1), PCR4
({U, V, W}, UV W, 1).

We denote the whole set as PC and the subset of DCs as DC. We now prove the theorem’s

first claim. That is, the combinatorics bound on Q9 is super linear when only considering

DC, while there are only a linear number of answers to Q9 over any database satisfying

PC. We begin by providing a lower bound on the combinatorics bound of Q9.

▶ Lemma 11. The combinatorics bound of Q9 based on DC is in Ω(n
4
3 ).

Proof Sketch. It suffices to provide a collection of databases I such that I ⊨ DC and

|QI
9| = Ω(n

4
3 ) for I ∈ I. To accomplish this, we introduce a new relation RX,Y,Z(X, Y, Z)

with |dom(X)| = |dom(Z)| = n
2
3 and |dom(Y )| = n

1
3 . Intuitively, think of RX,Y,Z as a

bipartite graph from the domain of X to the domain of Z where Y identifies the edge for a

given x ∈ dom(X) or z ∈ dom(Z). Thus, every x ∈ dom(X) is connected to n
1
3 neighbors in

dom(Z) and, due to symmetry, also the other way around.

Therefore, the constraints DC(XY, XY Z, 1), DC(Y Z, XY Z, 1), and CC(n) are satisfied

over RX,Y,Z . Thus, we can use a relation of this type for R1, R2, R3. Concretely, we use this

relation in the following way: R1 = RA,W,B , R2 = RB,U,C , R3 = RC,V,A. Thus, for each (n
2
3

many) a ∈ dom(A) there are n
1
3 many matching b ∈ dom(B) and possibly up to n

1
3 many

matching c ∈ dom(C). Thus, in total, there may be up to n
4
3 answers to R1 1 R2 1 R3.

To accomplish this also for Q9, we only have to make sure that the variables U, V, W also

join in R4. For that, we simply set R4 = dom(U)× dom(V )× dom(W ). This relation then

satisfies its cardinality constraint. (Note that it does not satisfy its PC.) ◀

We now provide an algorithm (Algorithm 1) that enumerates Q9 in linear time for

databases with the PC on R4. This proves that the output size is linear, simultaneously

completing our proof of claim 1 and claim 2. Algorithm 1 first decomposes R4 into three parts

with one DC on each part. For this, we apply a linear time greedy partitioning algorithm

(for more details see Algorithm 2) and show that it results in partitions whose constraints are

within a factor of 3 from the optimal PC. Then, for each part, a variable order is selected

to take advantage of all DCs. As an example, for the part RW
4 (U, V, W ), there are at most

3 matching (u, v) ∈ dom(U, V ) pair for each value of w ∈ dom(W ). Thus, starting with a

tuple (a, w, b) of R1, we can use this fact to determine these values for u, v and then combine

this with DCR2(BU, BUC, 1) to determine the unique value for c. By this reasoning, all of

the inner for-loops iterate over a single element or 3 pairs of elements. Thus, the nested

loops are linear in their total runtime. We defer the formal proof to the technical report [8].

▶ Lemma 12. Algorithm 1 enumerates QI
9

in time O(n) for databases I ⊨ PC.
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Algorithm 1 Linear Hexagon Algorithm.

1: RU
4 , RV

4 , RW
4 ← decompose(R4, {U, V, W}, UV W )

2: ▷ DCRU
4

(U, UV W, 3), DCRV
4

(V, UV W, 3), DCRW
4

(W, UV W, 3)

3: for (a, w, b) ∈ R1 do

4: for (u, v) ∈ πU,V σW =wRW
4 do

5: for c ∈ (πCσB=b∧U=uR2 ∩ πCσA=a∧V =vR3) do

6: output (a, b, c, u, v, w)

7: for (b, u, c) ∈ R2 do

8: for (v, w) ∈ πV,W σU=uRU
4 do

9: for a ∈ (πAσB=b∧W =wR1 ∩ πAσC=c∧V =vR3) do

10: output (a, b, c, u, v, w)

11: for (c, v, a) ∈ R3 do

12: for (u, w) ∈ πU,W σV =vRV
4 do

13: for b ∈ (πBσA=a∧W =wR1 ∩ πBσC=c∧U=uR2) do

14: output (a, b, c, u, v, w)

Lemma 11 and Lemma 12 together prove the first two claims of Theorem 10. This shows

that PCs have an asymptotic effect on query bounds and that we can take advantage of PCs

to design new WCOJ algorithms to meet these bounds. Nevertheless, one might wonder

whether the variable elimination idea of established WCOJ algorithms can already meet

the improved bound and, in fact, achieve optimal runtimes. Proving the third claim in

Theorem 10, we show that they cannot and, thus, the new techniques have to be employed.

Specifically, we show that VAAT algorithms (Definition 5) require time Ω(n1.5) to compute

Q9 on database instances satisfying the PCs.

▶ Lemma 13. VAAT algorithms require time Ω(n1.5) to enumerate QI
9

for databases I ⊨ PC.

Proof Sketch. It suffices to provide a collection of databases I such that I ⊨ PC and

maxi |QI
9i
| = Ω(n1.5) for databases I ∈ I and arbitrary ordering of the variables. To

that end, we introduce two relations, a relation CX,Y,Z(X, Y, Z) and a set of disjoint paths

PX,Y,Z(X, Y, Z). For PX,Y,Z(X, Y, Z), the domains of X, Y, Z are of size Θ(n) and PX,Y,Z

simply matches X to Y and Z such that each d ∈ dom(X) ∪ dom(Y ) ∪ dom(Z) appears in

exactly one tuple of PX,Y,Z . On the other hand, think of CX,Y,Z as a complete bipartite

graph from the domain of X to the domain of Y and Z uniquely identifies the edges. Thus,

|dom(X)| = |dom(Y )| = Θ(
√

n) while |dom(Z)| = Θ(n). Notice that for both relations,

DC(XY, XY Z, 1), DC(Z, XY Z, 1) hold. I.e., any pair of variables determine the last variable

and there is a variable that determines the whole tuple on its own.

Consequently, the disjoint union of relations C and P multiple times (with permutated

versions of C), e.g.,

R(X, Y, Z) = CX,Y,Z(X, Y, Z) ∪ CY,Z,X(Y, Z, X) ∪ PX,Y,Z(X, Y, Z),

satisfies PCR({X, Y, Z}, XY Z, 1) and DC(S1S2, XY Z, 1) for any S1S2 ⊆ XY Z.

Thus, we can set R1, R2, R3, R4 to be the disjoint union of P and all permutations of

the relation C. Now, let X1, . . . , X6 be an arbitrary variable order for Q9. Then, a VAAT

algorithm based on this variable order at least needs to compute the sets:

1i πX1
Ri, 1i πX1X2

Ri, 1i πX1···X3
Ri, 1i πX1···X4

Ri, 1i πX1···X5
Ri, 1i πX1···X6

Ri.

Let us consider the set 1i πX1···X4
Ri. There are two cases:
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Case 1: X5 and X6 appear conjointly in a relation. Due to the symmetry of the query and

the database, we can assume w.l.o.g, X5X6 = UV and 1i πX1···X4
Ri =1i πABCW Ri.

Furthermore, πABW CA,B,W ⊆ πABW R1, πBCCB,C,U ⊆ πBCR2, πACCA,C,V ⊆
πACR3, πW PU,V,W ⊆ πW R4. Thus, intuitively, for at least Ω(

√
n) elements a ∈ dom(A)

there are Ω(
√

n) elements b ∈ dom(B) and Ω(
√

n) elements c ∈ dom(C) that all

join, and for each pair a, b there is an element w ∈ dom(W ) that fits. In total,

| 1i πABCW Ri| = Ω(n1.5).

Case 2: X5 and X6 do not appear conjointly in a relation. Due to the symmetry of the

query and the database, we can assume w.l.o.g, X5X6 = AU and 1i πX1···X4
Ri =1i

πBCV W Ri. Furthermore, πBW CB,W,A ⊆ πBW R1, πBCCB,C,U ⊆ πBCR2, πCV CC,V,A ⊆
πCV R3, πV W CV,W,U ⊆ πV W R4. Thus, intuitively, for at least Ω(

√
n) elements b ∈ dom(B)

there are Ω(
√

n) elements w ∈ dom(W ), Ω(
√

n) elements v ∈ dom(V ) and, Ω(
√

n)

elements c ∈ dom(C) that all join. In total, | 1i πBCV W Ri| = Ω(n2). ◀

5 Partition Constraints for General Conjunctive Queries

In the following, we extend the ideas of Section 4 to an arbitrary full conjunctive queries

Q(Z) ← R1(Z1) 1 . . . 1 Rk(Zk) and an arbitrary set of partition constraints PC =

{PCP1
(X1, Y1, d1), . . . , PCPl

(Xl, Yl, dl)}. Recall, Algorithm 1 proceeds by decomposing

R4 in accordance with the PC and then, executes a VAAT style WCOJ algorithm over

the decomposed instances. We proceed in the same way and start by concentrating on

decomposing relations. After partitioning the relations, we show how to lift DC-based

techniques for bounding and enumerating conjunctive queries to PCs.

5.1 Computing Constraints and Partitions

To take advantage of PCs, we need to be able to decompose an arbitrary relation R(Z)

according to a given partition constraint PC(X , Y, d). For this task, we propose two poly-

time algorithms; a linear approximate algorithm and a quadratic exact algorithm. Crucially,

these algorithms do not need d to be computed beforehand, so these algorithms can also be

used to compute PC constraints themselves, i.e. to compute the value of PC(X , Y). We

start with the faster approximation algorithm before describing the exact algorithm.

Concretely, Algorithm 2 partitions a relation R(Z) by distributing the tuples from the

relation to partitions in a greedy fashion. At each point, it selects the set of variables X ∈ X
and particular value x ∈ πXR which occurs in the fewest tuples in the relation R. It then

adds those tuples to the partition RX and deletes them from the relation R. Intuitively, high

degree pair (X, x) will be distributed to partitions late in this process. At this point, most

of the matching tuples will already have been placed in different partitions. Formally, we

claim the following runtime and approximation guarantee for Algorithm 2.

▶ Theorem 14. For a relation R(Z) and subsets Y ⊆ Z,X ⊆ 2Y, Algorithm 2 computes a

partitioning
⋃

X∈X RX = R in time O(|R|) (data complexity) such that

DCRX(X, Y, |X |d)

holds for every X ∈ X where d = PC(X , Y).

Proof Sketch. We start by providing intuition for the linear runtime. Each iteration of

the while loop (line 4) places a set of tuples in a partition (line 6) and removes them from

the original relation (line 7). Both of these operations can be done in constant time per
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Algorithm 2 Approximate Decomposition Algorithm.

1: decompose(R,X , Y)

2: for X ∈ X do

3: RX ← ∅
4: while R is not empty do

5: X, x← argminX∈X ,x∈πXR |πYσX=xR|
6: RX ← RX ∪ σX=xR

7: R← R \ σX=xR

8: return (RX)X∈X , maxX∈X DCRX(X, Y)

tuple, so we simply need to show that we can identify the lowest degree attribute/value

pair in constant time each iteration. This is done by creating a priority queue structure for

each X ∈ X where priority is equal to degree, and we begin by adding each tuple in R to

each priority queue. Because the maximum degree is less than |R|, we can construct these

queues in linear time using bucket sort. We will then decrement these queues by 1 each

time a tuple is removed from R. While arbitrarily changing an element’s priority typically

requires O(log(|R|)) in a priority queue, we are merely decrementing by 1 which is a local

operation that can be done in constant time. So, construction and maintenance of these

structures is linear w.r.t. data size. We can then use these queues to look up the lowest

degree attribute/value pair in constant time.

Next, we prove the approximation guarantee by contradiction. If the algorithm produces

a partition RX with DCRX(X, Y) > |X |d, then there must be some value x ∈ πXRX

where |πYσX=xRX| > |X |d. At the moment before this value was inserted into RX and

deleted from R, all attribute/value pairs must have had degree at least |X |d in the current

state of R which we denote RA. Through some algebraic manipulation, we show that

this implies |RA| >
∑

X∈X |πXRA|d. On the other hand, we know that RA respects the

original partition constraint because RA ⊆ R, and we show that this implies the converse

|RA| ≤
∑

X∈X |πXRA|d. This is a contradiction, so our algorithm must not produce a poor

approximation in the first place. ◀

Next, we describe an exact algorithm that requires quadratic time. Intuitively, Algorithm 3

also computes a decomposition of R in a greedy fashion by iteratively allocating (groups of)

tuples y0 of πY R to partitions RX, preferring allocations to partitions where the maximum

over the relevant degree constraints, i.e., maxX DCRX(X, Y), does not increase. However,

decisions greedily made at the start may be sub-optimal and may not lead to a decomposition

that minimizes maxX DCRX(X, Y). To overcome this, instead of simply allocating y0 to

a partition, the algorithm also checks whether it is possible to achieve a better overall

decomposition by reallocating some other tuples in a cascading manner. To that end, we

look for elements y1 ∈ πY RX1 , . . . , ym ∈ πY RXm and a further Xm+1 such that for all

yi, i = 1, . . . , m, the tuples matching yi can be moved from RXi to RXi+1 and the tuples

matching y0 can be added to RX1 , all without increasing maxX DCRX(X, Y). To achieve

this, yi is selected such that it matches yi−1 on the variables Xi. Thus, for each RXi , the

value of DCRXi (X, Y) is the same before and after the update. There only has to be space

for ym in the final relation RXm+1 .

The sequence (y1, . . . , ym, X1, . . . , Xm+1) constitutes an augmenting path which was

first introduced by [11] and used for matroids. Adapted to the present setting, we define an

augmenting path as below. By slight abuse of notation, we write σX=yR even though y fixes

more variables than specified in X. Naturally, this is meant to select those tuples of R that

agree with y on the variables X.
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Algorithm 3 Exact Decomposition Algorithm.

1: decompose(R,X , Y)

2: d← 0

3: for X ∈ X do

4: RX ← ∅
5: for y0 ∈ πYR do

6: if there exists a shortest augmenting path (y1, . . . , ym, X1, . . . , Xm+1) then

7: for i = m, . . . , 1 do

8: RXi+1 ← RXi+1 ∪ σY=yi
RXi

9: RXi ← RXi \ σY=yi
RXi

10: RX1 ← RX1 ∪ σY=y0
R

11: else

12: d← d + 1

13: RX ← RX ∪ σY=y0
R ▷ X ∈ X can be selected arbitrarily here.

14: R← R \ σY=y0
R

15: return (RX)X∈X , d

▶ Definition 15. Let (RX)X∈X be pairwise disjoint subsets of some relation R(Z) with

Y ⊆ Z,X ⊆ 2Y, and let y0 ∈ πYR \ πY

⋃
X∈X RX be a new tuple. An augmenting path

(y1, . . . , ym, X1, . . . , Xm+1) satisfies the following properties:

1. For all i ∈ {1, . . . , m + 1} : Xi ∈ X .

2. For all i ∈ {1, . . . , m} : yi ∈ πYRXi .

3. For all i ∈ {1, . . . , m} : yi agrees with yi−1 on Xi.

4. |πYσXm+1=ym
RXm+1 | < maxX DCRX(X, Y).

We omit the references to (RX)X∈X , Y, and y0 when they are clear from the context.

The next theorem shows that Algorithm 3 correctly computes an optimal decomposition.

▶ Theorem 16. For a relation R(Z) and subsets Y ⊆ Z,X ⊆ 2Y, Algorithm 3 computes a

partitioning
⋃

X∈X RX = R in O(|R|2) time (data complexity) such that

DCRX(X, Y, d)

holds for every X ∈ X where d = PC(X , Y).

Proof Sketch. The intuition for the algorithm’s quadratic runtime boils down to ensuring

that the search for an augmenting path is linear in |R|. To show that this is the case, we

model the search for an augmenting path as a breadth-first search over a bipartite graph

whose nodes correspond to full tuples y ∈ πYR and the partial tuples x ∈ πXR for all X ∈ X .

An edge exists between a tuple y and a partial tuple x if they agree on their shared attributes.

This search starts from the new tuple y0 and completes when it finds a tuple ym that can

be placed in one of the relations RX without increasing its DC. The number of edges and

vertices in this graph is linear in the input data, so the breadth-first search is linear as well.

We now provide intuition for the algorithm’s correctness. Suppose that we are partway

through the algorithm and are now at the iteration where we add y0 to a partition. Further,

let RA be the set of tuples which have been added so far, including y0. Because there

exists an optimal partitioning of RA, we should be able to place y0 in the partition where

it exists in the optimal partitioning. If we cannot, then a tuple in that partition with the

same X-value must not be in its optimal partition. We identify one of these tuples and
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move it to its optimal partition. We continue this process inductively of shifting one tuple

at a time to its optimal partition until one of these shifts no longer violates the PC. The

sequence of shifts that we have performed constitutes an augmenting path by definition, and

its existence implies that we would not violate the PC in this iteration by incrementing

d past it. This construction process must end in a finite number of moves because each

step increases the number of tuples placed in their optimal partitioning. If all tuples are in

their optimal partition, the final shift must not have violated the PC due to the optimal

partition’s definition. ◀

5.2 Lifting DC-Based Bounds and Algorithms to PCs

We now apply the developed decomposition algorithms to the general case and show how to

use WCOJ algorithms as a black box to carry over guarantees for DCs to the general case of

PCs. First, we extend the definition of an arbitrary cardinality bound CB defined over sets

of DCs to sets of PCs.

▶ Definition 17. Let CB be a cardinality bound. Then, we extend CB to PCs by setting

CB(Q, PC) :=
∑

X1∈X1,··· ,Xl∈Xl

CB(Q, {DCP1(X1, Y1, d1), . . . , DCPl
(Xl, Yl, dl)}),

where PC = {PCPi
(Xi, Yi, di) | i} is an arbitrary set of partition constraints.

Note that the bound in Definition 17 is well-defined: If PC is simply a set of DCs, the

extended version of the cardinality bound CB coincides with its original definition. If PC is

an arbitrary set of PCs, then it remains a valid bound on the size of the join.

▶ Proposition 18. Let CB(Q, PC) be an extended cardinality bound. Then,

|QI | ≤ CB(Q, PC) ∀I ⊨ PC.

Proof. Let I be a database satisfying PC = {PCPi
(Xi, Yi, di) | i = 1, . . . , l} and Q ←

R1(Z1) 1 · · · 1 Rk(Zk). Thus, for each Pi there is a partitioning Pi =
⋃|Xi|

j=1 P j
i with

DC
P

j

i

(Xj
i , Yi, di) and Xi = {Xj

i |j = 1, . . . , |Xi|}. Now, let us now fix some j1 ∈ {1, . . . ,

|X1|}, . . . , jl ∈ {1, . . . , |Xl|}. Furthermore, for each i ∈ {1, . . . , l} let s(i) ∈ {1, . . . , k} be

the relation Rs(i) = Pi. Set Rj1...jl
s =

⋂
i:s=s(i) P ji

i for all s ∈ {1, . . . , k}. Then consider

Qj1...jl = Rj1...jl

1 1 · · · 1 Rj1...jl

k . We claim two things:

1. Qj1...jl partitions QI , i.e., QI =
⋃|X1|

j1=1 · · ·
⋃|Xl|

jl=1 Qj1...jl , and

2. |Qj1...jl | ≤ CB(Q, {DCP1(Xj1

1 , Y1, d1), . . . , DCPl
(Xjl

l , Yl, dl)}).
For the first bullet point, let t ∈ QI . Clearly, for each i ∈ {1, . . . , l} there exists exactly one

ji such that t agrees with an element in P ji

i (Zs(i)) on the variables Zs(i). Thus, t ∈ Qj1...jl .

For the second bullet point, consider the relations P ji

i . These are supersets of the relations

Rj1...jl

s(i) and, therefore, we can assert DC
R

j1...jl
s(i)

(Xji

i , Yi, di). Viewed as a query, Qj1...jl has the

same form as Q. Hence, |Qj1...jl | ≤ CB(Q, {DCP1
(Xj1

1 , Y1, d1), . . . , DCPl
(Xjl

l , Yl, dl)}). ◀

Crucially, this upper bound is not loose; it preserves the tightness of any underlying

DC-based bound. Specifically, the extended version of the combinatorics bound CBComb is

asymptotically close to the actual worst-case size of the join, with the constant depending on

the query. For example, the extended version of combinatorics bound is O(n) for the query

Q9 (see Section 4) when using all PCs while the combinatorics bound based on the DCs

alone was Ω(n
4
3 ).
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▶ Proposition 19. Let CBComb(Q, PC) be the extended version of the combinatorics bound

CBComb. Then,

CBComb(Q, PC) = O( max
I⊨PC

|QI |).

Proof. Let X
1 ∈ X1, . . . , X

l ∈ Xl be such that CBComb(Q, DC) is maximized where DC :=

{DCP1(X1, Y1, d1), . . . , DCPl
(Xl, Yl, dl)}. Thus, there exists a database I such that I ⊨ DC

and |QI | = CBComb(Q, DC). Furthermore, I must then also trivially satisfy PC by definition.

For each PC on Pi the witnessing partitioning is simply Pi = Pi ∪ ∅ ∪ · · · ∪ ∅. Therefore,

CBComb(Q, PC) ≤ |X1| . . . |Xl||QI | = O( max
D⊨PC

|QI |).

For the last equality, note that |X1| . . . |Xl| is a query-dependent constant as we assume all

PCs to be on different variables Xi. ◀

Next, we show how algorithms that are worst-case optimal relative to a cardinality bound

can likewise be adapted and become worst-case optimal relative to the extended bound.

In this way, progress on WCOJ algorithms based on DCs immediately leads to improved

algorithms that take advantage of PCs.

▶ Theorem 20. Given a cardinality bound CBA. If there exists a join enumeration algorithm

A which is worst-case optimal relative to CBA, then there exists an algorithm A∗ which is

worst-case optimal relative to the extended version of the cardinality bound. I.e., for fixed

query Q, A∗ runs in time O(|I|+ CBA(Q, PC)) for arbitrary PC and database I ⊨ PC.

Proof. Suppose we have a query Q ← R1(Z1) 1 . . . Rk(Zk), a set of partition constraints

PC = {PCP1
(X1, Y1, d1), . . . , PCPl

(Xl, Yl, dl)}, and a database I ⊨ PC. We can follow

the same idea already used in the proof of Proposition 18. Concretely, we partition each

Pi into (P j
i )j=1,...,|Xi|. For this, we use Algorithm 2 and Theorem 14. Thus, we get

DC
P

j

i

(Xj
i , Yi, |Xi|di). Let α := maxi |Xi|.

We can now continue following the idea of proof of Proposition 18 up to the two claims

where we only need the first. Now, instead of bounding the size of Qj1,...,jl , we now want to

compute each subquery usingA. Thus, note that DC
R

j1...jl
s(i)

(Xji

i , Yi, αdi). This implies thatA
runs in time O(|I|+CBA(Q, {DCPi

(Xji

i , Yi, αdi) | i})). The constant α can be hidden in the

O-notation while summing up the time required for each Qj1,...,jl results in an overall runtime

of O(|I|+ ∑
X1∈X1···Xl∈Xl

CBA(Q, {DCPi
(Xji

i , Yi, di) | i}) = O(|I|+ CBA(Q, PC)). ◀

For example, PANDA is a WCOJ algorithm relative to the polymatroid bound, and we can

use this approach to translate it to an optimal algorithm for the extended polymatroid bound.

While it is an open problem to produce a WCOJ algorithm relative to CBComb(Q, DC), any

such algorithm now immediately results in a WCOJ algorithm relative to CBComb(Q, PC).

Combined with Proposition 19 this implies that such an algorithm then only takes time

relative to the worst-case join size of instances that satisfy the same set of PCs.

▶ Corollary 21. If there exists a WCOJ algorithm relative to CBComb(Q, DC), then there

exists an WCOJ algorithm relative to CBComb(Q, PC).

ICDT 2025



17:16 Partition Constraints for Conjunctive Queries

6 Conclusions and Future Work

In this work, we introduced PCs as a generalization of DCs, uncovering a latent structure

within relations and that is present in standard benchmarks. PCs enable a more refined

approach to query processing, offering asymptotic improvements to both cardinality bounds

and join algorithms. We presented algorithms to compute PCs and identify the corresponding

partitioning that witness these constraints. To harness this structure, we then developed

techniques to lift both cardinality bounds and WCOJ algorithms from the DC framework to

the PC framework. Crucially, our use of DC-based bounds and algorithms as black boxes

allows future advances in the DC setting to be seamlessly integrated into the PC framework.

On the practical side, future research should explore when and where it is beneficial to

leverage the additional structure provided by PCs. In particular, finding ways to minimize

the constant factor overhead by only considering a useful subset of PCs or sharing work

across evaluations on different partitions could yield significant practical improvements in

query performance. On the other hand, further theoretical work should try to incorporate

additional statistics into this partitioning framework, e.g., lp-norms of degree sequences.

Ultimately, the goal of this line of work is to capture the inherent complexity of join instances

through both the structure of the query and the data.
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