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The types of human activities occupants are engaged in within indoor spaces significantly contribute to the spread of
airborne diseases through emitting aerosol particles. Today, ubiquitous computing technologies can inform users of common
atmosphere pollutants for indoor air quality. However, they remain uninformed of the rate of aerosol generated directly from
human respiratory activities, a fundamental parameter impacting the risk of airborne transmission. In this paper, we present
AeroSense, a novel privacy-preserving approach using audio sensing to accurately predict the rate of aerosol generated from
detecting the kinds of human respiratory activities and determining the loudness of these activities. Our system adopts a
privacy-first as a key design choice; thus, it only extracts audio features that cannot be reconstructed into human audible
signals using two omnidirectional microphone arrays. We employ a combination of binary classifiers using the Random Forest
algorithm to detect simultaneous occurrences of activities with an average recall of 85%. It determines the level of all detected
activities by estimating the distance between the microphone and the activity source. This level estimation technique yields
an average of 7.74% error. Additionally, we developed a lightweight mask detection classifier to detect mask-wearing, which
yields a recall score of 75%. These intermediary outputs are critical predictors needed for AeroSense to estimate the amounts
of aerosol generated from an active human source. Our model to predict aerosol is a Random Forest regression model, which
yields 2.34 MSE and 0.73 r? value. We demonstrate the accuracy of AeroSense by validating our results in a cleanroom setup
and using advanced microbiological technology. We present results on the efficacy of AeroSense in natural settings through
controlled and in-the-wild experiments. The ability to estimate aerosol emissions from detected human activities is part of a
more extensive indoor air system integration, which can capture the rate of aerosol dissipation and inform users of airborne
transmission risks in real time.
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— Machine learning; - Hardware — Sensor applications and deployments.
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1 INTRODUCTION

Since humans spend over 90% of their time indoors, indoor air quality significantly impacts their health and
wellness. Many studies have shown that poor indoor air quality triggered by common indoor air pollutants,
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including dust, mold, fine particulate matter of less than 2.5 microns (PM2.5), or volatile organic compounds
(VOC), worsens allergy symptoms and asthma. More recently, there has been a heightened concern about poor
indoor air quality through airborne transmission diseases, where viral loads from Flu (influenza) and COVID-19
spread from human-expelled aerosol droplets that remain in the indoor air [1-5]. These concerns have highlighted
the need for sensing aerosol emissions and transmission risk in indoor environments.

Aerosol emissions in the air can be directly sensed by using advanced particle sensing technologies such
as Condensation Particle Counters [6]. However, such particle counters are highly specialized, very expensive
instruments that are not designed for deployment and everyday use at scale in indoor settings. An alternative to
the direct sensing methods is indirect sensing of aerosol emissions, beginning with discerning everyday human
activities that are known to contribute to aerosol generation. For example, human activities such as coughing,
sneezing, and, very simply, speaking close to others can produce high numbers of aerosol droplets and contribute
to the spread of airborne diseases [7]. While sensing of such human activities can be done using modalities such
as audio [8-10], translating these activities to aerosol emissions remains unstudied. Recently, Chhaglani et al.
[11] proposed the concept of using audio sensing to estimate aerosol emissions, but this work focused on the
feasibility of the idea and articulating research challenges that needed to be overcome for a practical system,
while leaving the design and evaluation of the system to future work.

In this paper, we present AeroSense, which uses a single sensing modality, namely audio, to offer a novel
low-cost and privacy-preserving sensing approach to estimate the rate of aerosols generated in an indoor space
from detecting human activity. Since audio sensing has the inherent disadvantage of capturing human speech, our
system employs a privacy-first design methodology to ethically deploy such systems for large-scale monitoring
without violating users’ privacy, especially in community spaces. That is, rather than using raw audio signals,
the system uses a small set of audio features that never permit reconstructing the original audio.

At its heart, AeroSense detects several aerosol-generating human activities such as coughing, sneezing, and
talking. However, the problem of translating an activity type into aerosol generated from that activity comes
with non-trivial challenges. Specifically, the number and size of aerosols expelled are influenced by the loudness
of voice, which has been reported in prior studies as a significant factor [10], in addition to the number of human
sources expelling aerosol in the same room. Another critical factor significantly reducing aerosol transmission
between humans is mask wearing [12]. While there has been recent work on how mask-wearing impacts the
acoustic characteristics of a person’s voice [13] and detection of mask-wearing using the full audio spectrum
[14], such approaches do not perform aerosol estimation and nor do they preserve the privacy of human speech.
In designing, implementing, and evaluating AeroSense, our paper makes the following contributions:

First, we present a low-cost sensing mechanism that adopts a privacy-first design to estimate aerosol emissions.
Our solution is deployed as a single audio modality that strategically captures a small set of non-reconstructible
audio features to determine the factors that make up the rate of aerosol expelled from humans. Second, we
develop machine learning and statistical models to detect activity types, discern mask wearing and distinguish
between electronic voices (e.g., zoom meeting participants) from physically present speakers. Further, we present
estimation techniques for activity loudness and aerosol sources, which together serve as critical parameters
for predicting aerosol emissions in an indoor space. We implement a full prototype of our AeroSense using a
Raspberry Pi 3B+ and two omnidirectional microphone arrays to predict all of the above factors and localize
the activity by measuring direction-of-arrival, thus allowing us to calculate the distance and direction of the
human source. Our prototype uses a privacy-preserving feature extraction pipeline at the device layer, in which
features serve as input to higher-level prediction and statistical models. Fourth, we demonstrate the robustness of
AeroSense by providing a detailed evaluation of AeroSense in a cleanroom, controlled real-world, and in-the-wild
settings. Our results from testing a Random Forest regression model yield 2.34 MSE and 0.73 r? value. The
cleanroom allows us to precisely predict aerosol droplets without accounting for other particles expelled in the
environment. Our model accurately predicts the activity types in controlled settings at 85% recall on average.
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Additionally, our activity level estimation technique had 7.74% error on average. Our mask detection model had
75% recall. Our electronic voice detection technique can effectively detect voice liveness with up to 80% accuracy.
Our in-the-wild experiments demonstrate how AeroSense performs under indoor conditions with lower and
higher risk of airborne transmission. We provide the source code of AeroSense as well as our audio and aerosol
datasets to the research community.

2 BACKGROUND

This section provides background on aerosol sensing.

2.1 Indoor Air Quality

The topic of indoor air quality has, by and large, emphasized the presence and removal of indoor particulates
(e.g., PM2.5) and volatile organic compounds (VOCs); recently there has been renewed interest in reducing
airborne transmissions and virus spread between and among occupants [1]. Airborne transmitted diseases are
more likely to occur in poorly ventilated and crowded settings. The droplets expelled due to talking, coughing, or
sneezing can persist in the air from seconds to hours, depending on particle size, room volume, and air currents.
Tiny droplets will evaporate into the indoor air and can last for more extended periods [15]. Nonetheless, the
half-life of aerosol droplets’ has been found to drastically decrease to 6 minutes with increased ventilation [16].
The exposure between persons to these droplets creates potential transmission routes. Since the coronavirus
pandemic, mask-wearing and social distancing are equally stressed to dampen the expulsion and transmission of
aerosol droplets [2—-4]. Surgical masks and KN95 respirators have reportedly reduced outward aerosol particle
emissions rates by 90% and 74% on average when speaking and coughing, compared to unmasking [12]. Our
efforts in improving indoor air quality focus on measuring aerosol emissions, specifically from human expulsion
in everyday respiratory-typed activities.

2.2 Ventilation Sensing

A building’s ventilation system is designed to remove stale air from indoor spaces and replace with fresh air
trhough circulation, thereby eliminating indoor pollutants (e.g., dust, allergens, and VOC particles) as well as
airborne viral loads. Sensors integrated in building management systems can monitor airflow using air flow
meters, pressure sensors, and vane anemometers through ducts and vents. However, these systems are typically
hard-wired and require commissioning to install and need to be calibrated by facility managers. A recent work
by Chhaglani et al. found airflow sensing was possible using only the existing sensors in smartphones to provide
accessibility for everyday users [17]. Today, HVAC systems are coupled with real-time occupancy and CO;
monitoring to ensure optimum air circulation based on safe CO, thresholds [18, 19]. While CO, generated from
human occupancy is highly relevant as a critical factor in modulating indoor ventilation, these measures cannot
infer aerosol amounts expelled into the air from occupants’ activities. In such cases, the estimation of aerosol
emissions offers more precision because the types and levels of activities are more related to aerosol generation
than CO, generation rates [20]. Further, medical experts have found conflicting results in the correlation between
elevated CO, levels and SARS-CoV-2 transmission risk [21] versus airborne propagation of typical respiratory
problems [22].

2.3 Aerosol Emissions from Human-Respiratory Activities

By definition, aerosol particles are “very finely subdivided liquid, or solid particles dispersed in and surrounded by
a gas” [23]. These particles come from varied sources, including naturally occurring from humans. For example,
on the macro level, commuting is an emission source of aerosol particles associated with urban smog [24]. At
the micro-scale, these particles are attributed to a person’s virus-containing body secretions (e.g., respiratory
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droplets) and can be transmitted through everyday activities [25]. Respiratory aerosol droplets released from
humans while speaking, singing, exercising, coughing, and sneezing can be of various sizes. The largest droplets
settle quickly due to gravity, while the smallest droplets can remain suspended in the air for minutes to hours
and inhaled by a healthy person [26].

Table 1 lists the rate of aerosol particles generated from common human respiratory-typed activities [25]. A
study specific to the recent coronavirus pandemic found that the leading cause for most super-spreader events
is talking loudly [27]. By simply talking, Asadi et al. reported that, on average, the aerosol particles expelled
from a person are larger and carry higher amounts of pathogens than breathing. Since particle emission rate in a
speech is linearly correlated with amplitude (i.e., loudness), the impact of voice volume is an essential indicator of
aerosol generation [10]. Inherently, a room full of talking adults will produce more aerosol [28, 29] than a room
half-filled. One way to reduce aerosol generation into the air is mask-wearing [12]. Conversely, factors that help
dilute aerosol concentrations in indoor air are the ventilation rate, air filtration standards, and room dimension
[30, 31].

Table 1. Human activity and average aerosol emission reported in prior studies.

Activity Avg. Emission | Activity Avg. Emission
Breathing [10, 32] <2 P/s Quiet Talking (~ 70 dB) [10] 6P/s
Normal Talking (~ 85 dB) [10] 14 P/s Loud Talking (~ 98 dB) [10] 53 P/s
Sneezing [33] 40000/Sneeze | Coughing [33] 3000/Cough

2.4 Aerosol Sensing and Audio

Since direct sensing of aerosols using particle counters is prohibitively expensive and such instruments are
not designed for continuous ambient monitoring, indirect sensing aerosol emissions by monitoring human
activities that produce emissions is a promising approach. Previous research has used audio sensing to detect
human respiratory activities such as talking, breathing, and coughing [8]. However, such methods are typically
based on capturing raw audio, containing human speech and leaks privacy. Further, the translation of these
sensed activities to the amount of aerosols they generate remains an unaddressed gap. Finally, audio-based
indirect aerosol sensing will not capture all aerosol emissions and will only capture those generated by humans
through speaking, coughing, just to name a few. Given our goal of using aerosol emissions to monitor the risk of
transmission of airborne diseases, this approach is well suited for our needs.

3 AUDIO SENSING FOR AEROSOL: MOTIVATION

Next, we motivate the AeroSense design and describe the key challenges.

3.1 Design Rationale

A key hypothesis of our work is that the level of aerosol generated by humans depends on their activities,
which are correlated with the type and level of audio generated. To validate our hypothesis, we conducted a
controlled experiment in a clean room, Using a condensation particle counter (CPC) [6]. Our setup, in Section 6,
instructs a user to perform different respiratory activities to measure the audio produced by these activities using
microphones and the rate of aerosol generated using CPC.

3.1.1 Relation between Activity Type, Aerosol and Audio. Figure 1 (top-left) shows the amount of aerosol
the CPC measures during breathing, talking, coughing, and sneezing generated by a single user in a controlled
setting. These activities generate increasing amounts of aerosol, which aligns with our intuition. Breathing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 49. Publication date: June 2024.



AeroSense: Sensing Aerosol Emissions from Indoor Human Activities « 49:5

& ; Conc Mean ,
2 Coushing 2 Quiet talking cone Min Loud talking |
Conc Max | Conc Max
20~ conc Std Dev Sneezing 18 Conc Std Dev
o Talking ) [ g > Normal talking . .
Q 15. fl Il s 2 fe—————»? 2
[ Breathing | = | = | =
H [ 30 8 g g \ g
8 10- | Nl o @ @ @ @
2 N LN 2 ( i
I1IVA\ 05! | N
05- f / /,x A | 1
v A A /| A
" O & N ool = ) N AN
2:17pm 2:20pm 2:24pm 2:28pm 2:31pm 2:37pm 2:41pm 2:44pm 2:48pm 2:52pm 2:55pm
_ Time of Day = Time of Day
@ 14t
15
§-1g- =-15-
a7 2-16-
=T 27
T 1o, 318!
320 | 319t
8 ! 8-20-
2:47pm 2:20pm 2:24pm 2:28pm 2:31pm 2:37pm 2:41pm 2:44pm 2:48pm 2:52pm 2:55pm
Time of Day Time of Day

Fig. 1. (Left) Top shows aerosol varies with different activity types. Bottom shows audio signals varies with different activities.
(Right) Top shows aerosol varies with different activity levels. Bottom shows audio signals varies with different activity levels.

generates less than 0.5 average aerosol particles per cubic centimeter (p/cc), while talking results in 2-13 p/cc.
Coughing and sneezing can generate more than 20 p/cc on average. Figure 1 (bottom-left) shows the amplitude
of the audio signal (in decibels) generated by these activities. Specifically, the audio pattern varies by activity,
and the audio signals correlate with the aerosol emissions rate, with more concentrated aerosol-generating
activities at higher audio levels. The findings from our controlled experiments are also supported by prior work
[28, 29, 34-37], which show variations in aerosol generation during similar activities of talking, coughing, and
sneezing. For this experiment, the flow rate of CPS is set to 1.5 L/min, which is 25¢m>/s. We use this flow rate to
find the number of particles per second, P/s = (p/cc) * (cc/s), meaning the particle concentration of 5 p/cc is
5*25 P/s = 125 P/s. Using this calculation, we compute that breathing generates up to 12 P/s, speaking generates
50-325 P/s, and coughing and sneezing can generate more than 500 P/s. This observation is consistent with Table
1, where the experiments were performed with a flow rate of 1 L/min.

3.1.2 Relation between Activity Level, Aerosol and Audio. Figure 1 (top-right) shows the aerosol genera-
tion measured by the CPC when the user is talking at different loudness, ranging from soft to normal talking
and shouting. As shown, the louder the speech, the greater the amount of aerosol generated. Soft speech gener-
ates less than 10 p/cc, while loud speech generates twice as much aerosol. Figure 1 (bottom-right) shows the
corresponding audio in terms of its amplitude. As shown, the decibels of captured audio increases with speech
loudness. This experiment confirms that even for a single aerosol-generating activity such as talking, the rate
of aerosol generated is correlated with activity loudness and, thus, the audio level. Our results align with the
findings of Asadi et al., who reported that the particle emission rate of speech is linearly correlated with the
amplitude of the vocalization [10].

Key Takeaway Together, these preliminary findings confirm that audio signals from human respiratory activities
and their respective loudness are correlated with the rate of aerosol expelled. These insights suggest that audio
sensing is viable for determining aerosol generation in indoor spaces.

3.2 Key System Challenges
We describe several challenges to address for a practical aerosol estimation solution using audio sensing.

3.2.1 Privacy-preserving Audio Sensing. Figure 2 shows the audio frequency spectrogram of different respi-
ratory activities: coughing, sneezing, speaking, and speaking with mask. It can be seen that the spectrogram
shows distinct features for each of these activities. A key design goal for AeroSense is to sense the parameters
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needed to estimate aerosol expelled by humans in a privacy-preserving manner, meaning raw audio cannot be
directly used in our system, and we must instead use non-reconstructible features of the audio to perform all
sensing and detection tasks. We argue that such features can be derived from the sensed audio either in hardware
or at the operating system level (e.g., in the audio drivers) so that applications such as AeroSense never deal with
raw audio data and only work with the extracted features. We note that some audio speech recognition systems
use audio features such as Fast Fourier Transform (FFT) or Mel-frequency Cepstral Coefficients (MFCC) [8], but
even these techniques can be used to reconstruct the original audio. Hence, AeroSense must work with a more
limited set of audio features for privacy reasons.

3.2.2 Isolating Speech Features from Speech. Prior work has reported the effects of voicing and articulation
on aerosol generation [9]. However, detecting speech content characteristics is challenging without full audio.
As a workaround, AeroSense seeks to determine the activity loudness, which can measured by the amplitude of
sound (decibel, dB). This feature, however, is insufficient by itself because it discounts the actual decibel level
originating from the (human) source and only reports the received level. As shown in Figure 3, the signal peaks
become increasingly dissimilar with distance. Overcoming this challenge necessitates our system to determine
the distance between the source and the audio sensor. Our solution employs two omni-directional microphones
to calculate the direction of arrival estimate and triangulate the source.

Speech with mask  Speech without mask Coughing Sneezing -

Both microphones are close to each other

[ 20 inches apart [ |

Mask attenuates high frequency

Amplitude

Nl (1,
L |

i T 0 Bl | Rl

. |l V
i VY Iyn

Frequency (Hz)

Bustofsond” e tamp.

Fig. 2. Audio signal and its spectrogram for different Fig. 3. Received decibel level decreases with distance
activities. between human source and audio sensor.

3.2.3 Mask Detection with Audio. Mask-wearing has become standard practice for preventing the spread
of airborne viruses (e.g., influenza). There has been some advancement in mask detection using images [38]
and audio [14]. Notably, the prior audio-based method requires a full spectrogram and cannot be applied to our
system. Overcoming this challenge necessitates our system to design a lightweight mask detection model using a
limited set of non-reconstructible features as its solution.

3.2.4 Electronic Voice Detection. Since office environments will frequently include electronic voices (e.g.,
speakers on Zoom conference calls, during playback of recorded lectures), incorrectly classifying these voices
as physically present speakers will result in overestimating aerosol emissions. Consequently, our system must
differentiate between actual and electronic speakers whenever it detects human speech in the environment.

3.25 Simultaneous Activity Occurrences. One or more persons performing different activities can occupy
an indoor space. To effectively detect multiple activities in an indoor environment, our system must employ
concurrent ML models to detect and distinguish between everyday human activities they are performing. Our
system must also determine the number of human sources present, which is done using audio’s direction of
arrival (DOA). Since humans can move around a confined space when performing activities, we must also avoid
double counting users when using the direction of arrival methods, which we achieve using a sliding window.

4 AEROSENSE SYSTEM DESIGN

In this section, we present an overview of our system and the design details of individual components.
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4.1 System Overview
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Fig. 4. The AeroSense system predicts the rate of aerosol generated from human activities, AR, using non-reconstructible
audio features. With supplementary parameters and complementary sensors to capture the rate of aerosol dissipation, the
system supports providing indoor risk assessment, ARA,

Figure 4 shows the design of our proposed approach, AeroSense. Our approach to estimating aerosol emissions
is based on the use of a single sensing modality — audio. At the most basic level, AeroSense must determine
two key parameters: activity_type and activity_loudness. Additionally, we consider detecting mask_presence,
active_sources, and electronic_voice as the additional parameters for accurate aerosol estimation.

As illustrated in Figure 4, AeroSense utilizes two omnidirectional microphone arrays. Since audio data is
highly invasive by nature and often raises privacy concerns, our system adopts a privacy-by-design approach,
requiring the system to utilize different signal processing techniques within the device driver to extract numerous
features and discard the full-spectrum raw audio. Using only non-reconstructible features, the system employs
a combination of machine learning (ML) models to systematically determine binary outcomes of the above
parameters to estimate aerosol emissions. The accumulation of estimated aerosol, combined with secondary
parameters of the rate of aerosol dissipation (using complementary indoor air quality sensors), can support the
system in assessing airborne transmission risk, AR4, over a more extended period.

Given a privacy-by-design approach, we extract the non-reconstructible features directly in hardware or at the
operating system level (e.g., in the audio drivers) to prevent AeroSense from processing or storing raw audio data.
Some audio speech recognition systems use audio features such as Fast Fourier Transform (FFT) or Mel-frequency
Cepstral Coeflicients (MFCC) [8]. However, these techniques can be used to reconstruct the original audio which
means that AeroSense must work with a more limited set of audio features to ensure privacy.

4.2 Privacy-Preserving Features

Table 2 provides the full list of extracted privacy-preserving features. Audio signals from two microphones are
acquired at a sampling rate of 16 kHz with each sample represented as 16-bit integer values. The sampled audio
stream is then segmented into non-overlapping frames of 500 ms. Our work does not use raw audio data and
only makes use of non-reconstructible features extracted at the device layer.

The base frequency of a speech signal (F), is defined as the frequency at which the vocal folds vibrate when
voiced speech sounds are made, ranges between 80 to 255 Hz [39] (note: the voiced speech of a typical adult
male will have a fundamental frequency from 85 to 155 Hz, and that of a typical adult female from 165 to 255
Hz). Pyqatio is the ratio of energy at base frequency plus energy at first harmonic to the total energy of the entire
segment[40]. We used L/H,4+io as a key feature for mask-wearing, as it would significantly decrease mean spectral

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 49. Publication date: June 2024.



49:8 « Chhaglani et al.

levels at high-frequency regions as shown in Figure 2 and the harmonics-to-noise ratio, HNR, which increases
in the presence of a mask [41]. The burst of sound from coughing generates significant energy well into the
15 kHz range, as shown in Figure 2. As per prior work [42], cough is modeled utilizing features such as the
mean decibel energy, (P,y), mean decibel energy above 8 kHz (P-s), and below 8 kHz (Pg) from using a fast
Fourier transform (FFT) algorithm. To characterize vowel segments, we followed prior work [9] in using formant
features (Formant;_s), which have proven to contain evidence of periodicities of vowels and, thus, distinguish
one vowel sound from another [43]. Filter banks are an array of triangular filters that split the spectrum into
different components. If the FFT size is 512, number of filter banks is 12, we get the center frequencies [308.92 ,
617.85...3707.09], given a 16000 Hz sampling frequency.

Table 2. List of features for activity type classification.

Feature

Description

Feature

Description

Fy: Base Frequency

Average number of
oscillations per second

HNR: Harmonic to
noise ratio

Ratio between voice and noise-like
components of a speech sound

L/Hyqtio: Low to High
ratio

Ratio of power below 1 kHz
to power above 1 kHz

P,atio: Power ratio

Ratio of energy sum of the base and the
first harmonic to the entire segment

P.g/P_s: Power above
or below 8 kHz

Mean decibel energy of the FFT
coefficients above or below 8 kHz

Pgyg: Mean Power

Mean decibel energy of the entire FFT

RMS: Root mean
square energy

Time domain-To observe loudness
of signal

ZCR: Zero-crossing
rate

Time domain-To observe high frequency
contents

S — BW: Spectral
Bandwidth

Frequency domain-perceived timbre
of the sound, estimate vowel sound

S — CENT: Spectral
Centroid

Frequency domain-estimate brightness
of sound

S — ROLL: Spectral
Roll-off

Frequency domain-estimate
skewness of energy

STE: Short time
energy

Distinguishes vibration signals from non
-vibration signals

Formant1 - 5:
Formant frequency

Frequency peaks in the
spectrum which have a high
degree of energy

FB1 - FB12:
Filter Banks

Frequency domain-Bandpass filters that
separates the input signal into multiple
components

4.3 Aerosol Regressor

Figure 5 provides a simplified representation of all ML-prediction models for aerosol estimation. It relies on
five inputs from previous components: activity_type, activity_loudness, mask_presence, electronic_voice and
active_sources. We build a regression model to estimate the rate of aerosol (aerosol_val) generated from two
inputs, activity_type, and activity_loudness, using the Random forest regression model with a maximum depth
of 5. Based on the activity_type (e.g., talk), the model is trained on the decibel level of speech audio data as a
feature, following the findings in prior studies that the activity amplitude linearly increases aerosol generation
[10]. This model is trained and tested using data recorded from the cleanroom study as described in Section
6.1.1 for two reasons. First, the cleanroom allows atmospheric particles to be controlled using HEPA or ULPA
filters [44]. Second, given the controlled environment, measuring exhaled aerosol particles can be achieved using
highly specialized lab equipment such as a Condensation Particle Counter (CPC). On the other hand, predicting
aerosol emissions from detected human activities in a practical, real-world setting is naturally challenged by
other atmospheric particles (unrelated to a person’s respiratory activities) that act as confounding variables.
Thus, our efforts mandated experiments in the cleanroom setting to develop an audio-based aerosol prediction
mechanism in two parts.

4.3.1 Activity Type. Determining the occurrences of different human respiratory activities can be viewed as a
binary classification problem with many activity recognition models operating simultaneously. Doing so also
allows us to develop an extensible platform that can employ other trained models to support additional activity
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Fig. 5. Aerosol prediction pipeline.

types, which are not implemented but remain relevant in this work (e.g., singing and laughing). All classification
models are built on the Random Forest algorithm as it can effectively handle imbalanced datasets. Models are
trained extensively on publicly available datasets and tested on data collected from our user studies (we provide
these details in Section 6). While public datasets consist of raw audio signals, all models are built on the small
set of non-reconstructible features listed in Table 2, simultaneously allowing performance comparison between
privacy-preserving and non-privacy models (i.e., trained using full raw audio spectrum).

Each activity model outputs an activity_type outcome of 1 or 0 (e.g., [1-talking, 0-not talking], [1-coughing,
0-not coughing], [1-sneezing, 0-not sneezing]), together with its prediction probability. In reality, it is plausible
for a person to sneeze while someone else is talking. This component of activity classification will accordingly
generate a list of activities detected to occur at the same time at 500 ms intervals (i.e., [talk, sneeze, cough, talk]).
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4.3.2 Activity Loudness. After determining activity_type, our system estimates activity_loudness by calcu-
lating the distance between the received signal strength and the source signal strength. Figure 6 (a) shows the
actual dB level at the source and the estimated dB level by the system. Our system must correct this difference
to acquire accurate estimates of activity loudness. Given that speech amplitude linearly increases with aerosol
generation [10], we can determine the loudness of the performed activity in two steps: Localizing the activity

source and then calculating the signal strength of the activity source.

Step 1: Localizing Activity Source. Specifically, we use dBFS to measure sound intensity. For instance, dBFS
for a 16-bit audio file is calculated as: dBFS = 20 * log;o(abs(rms)/32768) because 16-bit signed has values
between —32768 and +32767. This value, however, is not representative of the actual loudness generated at the
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activity source because the received signal strength typically reduces with distance (between the speaker device
placement and the human source). By employing two microphone arrays (see Figure 7), we can receive two
direction of arrival (DOA) estimates, a and b, to calculate the distance estimation of the source. We place the
microphone arrays at a fixed distance d = 30cm apart and use a, b, and d to calculate the distance between the
source of activity and microphone array 1, x. We find the distance of activity from mic_array_1, x, by iteratively
solving the trigonometry equations for different angles of a and b.

Step 2: Signal Strength of Activity Source. Next, we use the estimated distance to calculate the actual decibel
level at the source, activity_loudness. Where signal strength at a far distance is given by: L2 = L1 — |20 = logw:—; [,
where L1 is the sound level at a distance, r1, from the source and L2 is the sound level at the farther distance,
r2, from the source (r2 > r1) [45]. In this case, we know the signal strength at the farther distance r2, and we
need to find the signal strength at the closer distance r1. Thus, we use the formula: L1 = L2 + |20 = logm:—; |. For
simplicity, we assume r1 = 30cm; that is, we find the signal strength at 30 cm away from the source (which would
otherwise be infinity if 71 = 0).

4.4 Aerosol Aggregator

The aerosol aggregator is based on cumulative gains of aerosol_val at per second frequency over a sliding window
of per minute interval. It is also impacted by two factors, (the number of) active_source, and mask_presence. Our
sliding window parameter, win_size = 3, builds on prior reporting that found aerosol droplets from speech remain
active in the air between 8 to 14 minutes in a stagnant environment [46]. Note that win_size is an adjustable
model parameter that can be changed based on environmental settings. For example, should an indoor space
have a high ventilation rate, win_size can be altered to a lower value, denoting shorter intervals of accumulated
aerosol droplets in the air.

4.4.1 Active Sources. As per Figure 7, the point at which an activity source is detected, defined by the DoA and
estimated distance from mic_array_1, not only allows us to localize audio sources as part of activity loudness, it
is valuable for estimating the number of “active” human sources engaged in simultaneously detected activities.

Using the estimated distance from mic_array_1, we retain a tolerance range of =+e, as it is conceivable for the
source to move around the detected space over time. At present, we streamlined our system pipeline to record a
time-out window of T,,,; = 3min, where an aerosol source will drop off from the list should no new activity from
their location be detected. When an activity is detected at a different and unmarked point, we assume this source
is new and add it to the occupant list. An occupant can move from one place to another beyond the tolerance
range of +¢; thus, the system will record it as multiple occupants. This technique suffers from some inaccuracies,
namely, undercounting sources that are very close together.

4.4.2 Electronic Voice Detection . Once speech activity is detected, we need to ensure that it does not come
from electronic speakers (e.g., Zoom call speakers), as only human speech will contribute towards aerosol emission.
To do so, we build on the techniques proposed by Blue et al. [47] to differentiate between the speech generated
by humans and electronic speakers. This technique is based on the intuition that significant low frequency
signals (sub-bass over-excitation) that are outside of the range of human voices but inherent to the design of
modern speakers. This happens because audio created by an electronic speaker will have more energy in the
sub-bass region due to the resonance of the enclosure. Our solution uses the energy balance metric defined as
the ratio of energy in the sub-bass region (20-80 Hz) to the energy in the total evaluated region (20-250 Hz) as a
differentiator between the two sources (sub-bass over-excitation). We calculate the energy balance metric by
taking FFT (nfft=2048) of the 500 ms audio segment and extracting the energy in the desired frequency ranges.
Figure 8 shows the energy balance metric values for an all-in-one PC speaker and a human speaker, both saying
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the same phrase. This data is taken from the voice liveness detection dataset ASVspoof 2017 [48]. It can be
observed that the energy balance metric values are significantly different for human and electronic speakers.
Hence, we use a threshold-based binary classifier for electronic voice identification.! We use this threshold value
to calculate the p-values for both the distributions and suppress electronic voices when estimating aerosols.
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Fig. 8. Energy balance metric values for electronic and Fig.9. Finding decision threshold to distinguish between
human speaker genuine and spoof voice

4.4.3 Mask Presence. Indeed, surgical masks and KN95 respirators have reportedly reduced outward aerosol
particle emission rates by 90% and 74% on average during speaking and coughing, respectively, compared to
wearing no mask [12]. To this end, mask_presence is an essential parameter for our application to reduce aerosol
estimation. Unlike prior work [14], we build a model for mask presence using only privacy-preserving features
and a Random Forest classifier. Our model is trained extensively using our data and Mask Augsburg Speech
Corpus (MASC) dataset [14] from ComParE Challenge 2020 that includes audio data recorded from 32 speakers
wearing a Sentinex Lite surgical mask. We use the same training, development, and test corpus definitions as
the challenge. While the training dataset consists of full spectrum audio, our model is built on the small set
of non-reconstructible features listed in Table 2, simultaneously allowing performance comparison between
privacy-preserving and non-privacy models.

For each detected activity in the list of activity output, the system runs the mask detection model, with its
respective outcome of 1 or 0 (e.g., [1-mask, 0-no mask]). Accordingly, the result from this component will be used
to correct the rate of aerosol estimation. Note, however, that our detection mechanism does not determine the
kinds of masks being used by a user.

4.5 Transmission Risk Assessment

Aerosol droplets from humans typically dissipate within 30 minutes [49] and can remain suspended in the air
for some time. For the suspended aerosol resulting from speaking, removal by gravity started only after 20
minutes [46, 50]. CDC guidelines defined close temporal proximity to be within 15 minutes [26]. Following
these findings, we empirically capped the transmission risk window threshold, trans.,;, = 15mins. Further, we
apply an upper bound on the product of the aerosol rate and an occupant’s time in an enclosed space [31], a
heuristic adapted from Bazant et al. in limiting indoor airborne transmission. We characterize these rates of
aerosol generated during human activities as low, medium, and high depending on the activities detected, their
loudness, the presence of mask, and the number of active sources altogether.

At this point, it is essential to highlight that the AeroSense is intended to work with standalone air quality
sensors because estimating the risk of airborne transmission in the real world requires considering both the

!We decide the threshold of this energy-balanced metric using statistical analysis on the data recorded from humans and multiple electronic
speakers using the ReSpeaker mic array. To do so, we extract energy balance metrics for electronic and human speakers and compute the
mean and standard deviation of both groups. Next, assuming a normal distribution, we calculate the z-score at which electronic and human
distributions intersect to find the threshold as shown in Figure 9.
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rate of aerosol generation and the rate of aerosol dissipation factors, as motivated in Section 2.3. The latter,
which includes ventilation rate and air filtration standards, is a set of characteristics measurable by existing air
quality sensors (e.g., Netatmo for CO; [51] and FlowSense for ventilation rate [17]), however, the former is a
set of key parameters our system aims to provide. With the ability of our system to determine activity_type,
activity_loudness, mask_presence, active_source, and now, the rate of aerosol generated, aerosol_rate, these
results can be logged to fulfill a complete risk assessment tool.

5 AEROSENSE IMPLEMENTATION

We implemented a prototype of AeroSense as shown in Figure 10, which we discuss below. The source code and
datasets of AeroSense are publicly available at the github repository https://github.com/umassos/AeroSense.

Scllice Frx:aspberry Pi 3B+

- - /4
Direction detected Direction detected MicroSD to store detected activity and
from ReSpeaker 1 ~ from ReSpeaker 2 | predicted values of aerosol eission

o
PEER RN

AN L LR XXX

Two omnidirectional ReSpeaker
microphone array, 30cm apart

Top-view of AeroSense Prototype

Fig. 10. AeroSense prototype using two omnidirectional speakers and Raspberry Pi 3B+.

5.1 Hardware Implementation

We used two ReSpeaker Microphone Array v2.0, placed 30 cm apart [52]. Each Microphone Array consists of
four long-range microphones, recording samples at a 16 kHz sampling rate, and has a built-in capability of
direction-of-arrival (DoA) estimation algorithms. We connected the two microphone arrays using a Raspberry Pi
3B+ and ran all feature extraction and model prediction components locally.

5.2 Software Implementation

AeroSense extracts privacy-preserving features every 500 milliseconds and the direction of arrival estimates from
both microphone arrays at 100 ms.

Feature Extraction and Selection: We used Python to write the device driver layer script that extracts time
and frequency domain audio features from the raw audio signal, specifically librosa[53], numpy, signal, and scipy
[54]. For extracting DoA from microphone arrays, we use the built-in ReSpeaker driver code for the microphone
array [55]. While training these ML models, we remove highly correlated features greater than 0.85. After this,
we use impurity-based feature importance to select features based on high Gini importance.

Activity Classification: Next, we used the privacy features and passed them to speech, cough, and sneeze
classifiers (trained using sklearn [56] models) individually to predict activity. If the activity model predicts
1, we add the corresponding activity to the list of detected activities, activity_type. If no activity is detected,
activity_type remains empty, and we do nothing. If activity is detected, then for all the activities in activity_type,
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we perform four main steps: a) activity localization and loudness estimation, b) update active sources list, c)
predict aerosols, and d) detect mask.

a) Activity localization and loudness estimation: If the activity is detected at timestamp ¢, we find the distance
of the activity using the DoA values at timestamp ¢ by using trigonometric calculations. We use this distance to
calculate activity_loudness if it is not a silent period. In the presence of a silent period, we do not perform dB
level extrapolation. We use silence_threshold as -55 dB.

b) Update active sources list: We updated the number of active aerosol sources active_sources list every time
an activity is detected, which is the list of aerosol emitters, their locations, and the last timestamp when they
were active. We use the angle threshold and distance thresholds € and timeout threshold T,,; for this. If the
activity location lies within the thresholds of any existing occupant, we update the location of the current
occupant. However, if the location of an activity does not lie within the thresholds of any existing occupant in the
active_sources list, we add a new occupant with its location and timestamp. Additionally, we check for timeout; if
any occupant in the active_sources list has not performed an activity since Ty, time, remove the occupant from
the list. We set these parameters as Tp,,; = 3min and angle threshold e = 20, with a distance threshold of 80 cm.

¢) Predict aerosols: Next, we predict aerosols using activity_type, activity_loudness, active_sources, and
mask_presence. If the activity_type is cough/sneeze, we use the aerosol/cough and aerosol/sneeze numbers to
get aerosol_val. If the activity is speech, we call the regression model that takes activity_loudness as input and
predicts the aerosol emissions due to speech aerosol_val at second-level. This regression model is trained using a
Random Forest model.

d) Detect Voice Liveness: We use the energy balance metric to classify between electronic and human speaker
electronic_voice. The electronic voice detection model uses a threshold-based classifier, with a decision threshold
of 0.4. If a human voice is detected, electronic_uvoice is set to 0, else 1. If it is 1, we skip the following step of
aerosol estimation and assign aerosol_val to 0 for that segment.

e) Detect Mask: We also use the privacy features as input to the mask classifier model to detect mask_presence.
The mask classifier is trained using a gradient-boosting classifier model. If a mask is detected, mask_presence is
set to 1. If a mask is present, we multiply the aerosol emissions, aerosol_uval, by 0.4 as we observed the aerosol
reduction by 60% due to mask in our experiments (Section 7.1.6).

Lastly, we aggregate aerosols by adding the aerosols of the current window and the previous win_size window.
We use win_size = 3min in this paper.

5.3 Deployment Considerations

AeroSense can be deployed in two configurations, standalone or in conjunction with an existing Building Man-
agement System (BMS). In the former case, AeroSense devices deployed in various building rooms communicate
with a central server to estimate transmission risk in each instrumented room and notify users as needed. In
the latter case, each AeroSense device communicates with the BMS, which also integrates it with the building’s
ventilation system. This can enable additional measures, such as dynamically increasing ventilation in spaces with
higher transmission risk. As designed, AeroSense is cost-effective, with the bill of materials amounting to $280
per instrumented room. In contrast, traditional particle counters come at a significantly higher cost, exceeding
$16,000.00 per device, and pose logistical challenges in deployment due to their size and weight. AeroSense is a
more practical solution, offering scalability and ease of maintenance. AeroSense § maintenance overheads are
similar to conventional IoT sensing systems. As a powered system, there are no battery replacement overheads,
but there is a calibration phase to estimate the silent period threshold and other parameters. Recalibration may
be necessary if the physical configuration of the room changes significantly, but this is typically infrequent.
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6 EXPERIMENTAL METHODOLOGY AND DATASET DESCRIPTIONS

This section describes our data collection methodology, additional public datasets used in our evaluation as well
as our real-world and in-the-wild deployments.

Data Ethics. We received approval from our university’s Institutional Review Board (IRB) to deploy AeroSense
device prototype and conduct user studies under realistic settings. Participant data for all real-world experiments
was collected with user consent. We only gathered privacy-preserving audio features, with no raw audio, to
safeguard privacy.

6.1

6.1.1 Cleanroom User Study. The first user study took place in a cleanroom setting with a HEPA-filtered
laminar flow on the ceiling to minimize background particle concentration, allowing us to collect actual values of
aerosol emissions using advanced microbiological technology while performing speech activities. The ability to
predict aerosol generated and verify against accurate aerosol measurements are typically performed in cleanroom
settings for two reasons. First, the cleanroom allows atmospheric particles to be controlled using HEPA or ULPA
filters [44]. Second, given the controlled environment, measuring exhaled aerosol particles can be achieved using
highly specialized lab equipment such as a Condensation Particle Counter (CPC). On the other hand, predicting
aerosol emissions from detected human activities in a practical, real-world setting is naturally challenged by
other atmospheric particles (unrelated to a person’s respiratory activities) that act as confounding variables.
Thus, our efforts mandated experiments in the cleanroom setting to develop an audio-based aerosol prediction
mechanism in two parts.

Data Collection Methodology

Table 3. Experimental setup for component-specific data collection and evaluation.

Cleanroom Activity Detection Activity Loudness | Mask Detection | Electronic Voice
10 h
Duration 10 hrs collected 20 hrs opensource 2 hrs collected IS opensource 5 hrs collected
and 5 hrs collected
Location Cleanroom N.A., Google 300 ft* lab MASC, 300 ft* lab 300 ft* lab
No. of 1F NA. M, 1F 3M, 2F 3M, 2F
users
Ground Participants wearin Different files Different files for
CPC 3775 Annotation files P . & for mask and electronic and
truth ReSpeaker Mic
no-mask human
80% train 20% test, 80% train 20% test, 80% train 20% test,
Data Usage 5-fold CV 5-fold CV 100% test 5-fold CV 100% test
.wav files, aerosol csv files audio feature audio feature
D ’ . files, .T id fil .
ataset csv files wav files, TextGrid files (containing dB level) csv files csv files
Speaking at different
R . Speech, Cough, . . .
Activities loudn.ess, coughl‘ng, Sneeze, Ref. Table 4 Reading Reading Reading
sneezing, breathing

Asillustrated in Figure 11A, a consented participant would use a facepiece respirator while reading scripted texts
in different decibel ranges in the room. This respirator is directly connected to a CPC Figure 11B, which outputs
aerosol particle concentration measured in p/cc. We gathered ground truth aerosol count using a Condensation
Particle Counter 3775, a general-purpose particle counter device that detects airborne particles down to 4nm. We
set the flow rate of the particle counter to 1.5 L/min, and it records data every 1 second. This setup, however,
does not allow us to deploy AeroSense because it requires our participant to put on a facepiece respirator Figure
11C, which will inherently affect the real-time extraction of feature samples. As a workaround, we recorded raw
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Fig. 11. Cleanroom experiment to develop AeroSense.

audio signals from a microphone fixed inside the facepiece Figure 11D. This effort amounted to =~ 10 hours of
speech data with and without masks, respectively, with their aerosol particle emissions, over seven days.

One participant carried out scripted activities of reading texts in different loudness, with and without wearing
a mask, amounting to over 10 hours of audio features and aerosol values. To record most of the aerosols emitting
from a participant’s mouth due to the activity, we connected a duct to an N95 mask (with a sealed filter) and the
other end of the duct to the sensor. This way, we could record only the particles emitted from the user’s nose and
mouth. We placed a microphone inside the mask to record the audio data and the aerosols (See Figure 11D).

6.1.2 Activity Detection. We utilized the Google AudioSet, an open-source dataset offering an extensive
collection of annotated 10-second sound clips from YouTube [57]. From this collection, we selected clips containing
cough, sneeze, speech, silence, sniffle, sneeze, gasp, breathe, throat-clearning, hiccup, vomit, burp, wheeze, snore,
and variation of indoor background noises, amounting to approximately 20 hours of sounds as shown in Table 4.
While clips related to cough and sneeze make up 17.16% of this dataset (= 3.4 hours of data), the assessment of all
categories was reported to be high quality. We used this dataset to train a combination of privacy-preserving
activity classification models. For each model, the activity class is labelled as 1, and the 0 class includes all the
other activities. For instance, the cough classifier has cough samples labeled as 1 and all the other activities
(e.g., speech, sneezing, silence, sniffling) labeled as negative class. For the cough classifier, we include cough-like
sounds in the negative class to test the robustness of the model against false positives.

Table 4. Duration of various activities in the Google AudioSet. Table 5. Duration of mask and no-mask data
Others include gasping, breathing, snoring, hiccuping.

Label ‘ Duration (hrs)
Label ‘ Percentage (%) No Mask (MASC data) 4.96 hrs
Speech 3995 No Mask (our data) 2.5 hrs
Background Noises 37.00 Surgical Mask (MASC data) 5.36 hrs
Cough 15.09 N95 mask (our data) 2.5 hrs
Silence 2.69
Sneeze 2.07
Sniffle 1.44
Others 1.76
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6.1.3 Mask Detection. In training our model, we used our own recorded dataset consisting of only non-
reconstructible audio features collected from 5 consented participants(3 males and 2 females, aged 23 to 28 years)
wearing an N95 mask. This dataset amounted to ~ 5 hours of sounds of people talking, coughing, and sneezing,
with and without a mask (see Table 5). In addition to this, we use the Mask Augsburg Speech Corpus (MASC)
dataset from ComParE Challenge 2020 that includes audio data recorded from 32 German native speakers (16
females, 16 males, age from 20 to 41 years, mean age 25.6 years, standard deviation 4.5 years), wearing a Sentinex
Lite surgical. We use the same training, development, and test corpus definitions as the challenge. The audio
was sampled at a rate of 48 kHz with 24-bit, downsampled, and converted to 16 kHz and mono/16 bit; the total
duration is 10 h 9 min 14 sec. The participants performed different tasks without masks. While wearing the
mask: They answered some questions, read words known for their usage in medical operation rooms, drew a
picture and talked about it, and described pictures, e.g., sports activities, families, kids, food, or locations. We
used Train/Dev/Test sets defined in the challenge for the MASC dataset, with 12 speakers in Train and 10 in Dev
and Test each.

6.1.4 Activity Loudness Estimation. At different times, two participants (1M/1F) were directed to read a
scripted Wikipedia text at various loudness and distance, ranging from 50cm to 3m, away from the prototype.
The participants were wearing another ReSpeaker mic to record the ground truth values of loudness in decibels.

6.1.5 Electronic Vs Human Voice. For electronic and human voice differentiation, we recorded data from 5
consented participants and 5 electronic speakers: a MacBook Pro, Alexa, TCL TV, OnePlus Nord N10 smartphone,
and iPhone 15. We recorded data for 30 minutes from each electronic speaker and participant (a total of 5 hours).
We asked participants to read different Wikipedia texts and play podcasts from different speakers.

6.2 AeroSense Deployment

To evaluate the efficacy of AeroSense, we deployed our prototype in different types of rooms in our academic
building. We used it to conduct user studies in real-world and long-term in-the-wild settings.

6.2.1 Real-world Studies. We performed a number of user studies using our prototype in four different types
of indoor spaces, where we collected over 25 hours of privacy-preserving audio data (see Table 6).

Office room (lower-risk): 2-3 occupants engaged in a weekly meeting lasting for 5 hours in an office.
Large conference room (higher-risk): 5-20 occupants engaged in a weekly meeting for 15 hours in a seminar
room. One instance is depicted in Figure 13, where occupants were engaged in a group meeting. In this
scenario, we also record zoom calls data as some questions were raised via Zoom.

o Small Conference Room: 5-8 occupants engaged in a discussion for 3 hours.

o Classroom: 35 students engaged in a discussion session in a classroom scenario for 2 hours.

The lower risk and higher risk scenarios noted above are designed to show the significance of aerosol estimation
in a realistic setting as follows:

o Lower Risk Activity: Two participants (1M,1F), seated approximately 2.5 m apart, conversed for 30 minutes
at approximately -25 dB average loudness in office room (see Figure 12)

o Higher Risk Activity: Five participants (3M/2F), seated approximately 60-240cm apart, conversed for 1 hour
at approximately -20 dB average loudness (see Figures 12 and 13).

Data Description: In all cases, our prototype records two main files: a) location file containing the angle of
arrivals at the two microphone arrays, distance with timestamps, and b) audio features file containing privacy-
preserving features with timestamps. A human observer collects the ground truth by taking logs of activities and
active sources at per-minute granularity.
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Table 6. Experimental setup for system-wide data collection and evaluation.

49:17

Office room | Large conference room | Small conference | Classroom | Long-term deployment
Duration 5 hrs 15 hrs 3 hrs 2 hrs 160 hrs
No. of users 2-3 5-20 5-8 35 0-8
Activities Wegk ly Lab meetings Meetings Dlscussmn People w9rk1ng,
meetings session chatting

Ground truth: We rely on a human observer to collect ground truth information at a per-minute level. The
observer records active sources and activity information with time. The location file is used to verify active
sources, and the privacy-preserving audio features file is used to detect the activity and its loudness. We use the
distance estimation to correct the activity loudness.

@ Lower risk Activity Higher risk Activity

Distance approx.
60-240 cm from each
other

l Y
CR
! \
1 N \
@]
Aerosense Aerosense
prototype prototype

Fig. 12. Participants in scripted scenarios of our
real-world experiments.

Fig. 13. Real-world study of a 5-person (unmasked) meeting in large
conference room, simulating a higher-risk scenario.

6.2.2 Long-term In-the-wild Deployment. Our in-the-wild deployment was done in a medium-sized lab
setting over the course of multiple weeks. During this time, we manually collected ground truth from 9 a.m. to
5 p.m. over 3 weeks, which resulted more than 160 hours of deployment data. Like before, the data consists of
location files, feature files, and ground truth logs.

7 SYSTEM EVALUATION

In this section, we evaluate the accuracy of our AeroSense in estimating aerosol generated from human activities.
Further, we assess the components responsible for producing critical inputs to our aerosol prediction mechanism.

7.1 Results

Evaluation Metric: Our classification models prioritize recall to accurately determine an activity type occurring,
whereas high precision implies that an activity of interest did not occur. F1-score is the weighted average of
precision and recall. Our aerosol emissions predictions are evaluated based on mean-squared error (MSE) for the
regression model, where a lower MSE closer to 0 is best.

7.1.1 Efficacy of Audio-based Aerosol Prediction. The crux of our work lies in AeroSense’s ability to predict
aerosol generation from detecting different human activities using audio features. As a recap, upon detecting a
specific human activity, in this case, activity_type = talking, AeroSense employs a regression model for speech
to estimate the amounts of aerosol generated from this event. The model is built using a single feature, dB level,
representing activity_loudness.
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Fig. 15. Aerosol Prediction Efficacy

Figure 14 summarizes the model performance using different regression techniques to predict aerosol amounts,
aerosol_val, upon detecting an activity. In validating the models, we split the Cleanroom dataset into 80% for
training and 20% for testing our aerosol prediction model. Where values closer to zero are better, our experiments
found the Random Forest algorithm performing best. Although the mean squared error of 2.34 is not the lowest,
the overall regression is statistically significant (R? = 0.73, p = < .001) compared to employing Linear Regression.

Next, we used our regression model built on Random Forest to aggregate the rate of aerosol generated at
different speech loudness of low, regular, and loud (note: the decibel levels categorizing loudness in Cleanroom is
different from real-world studies due to the unique setup of a microphone closer to mouth (see Figure 11). We
plotted the aerosol_rate, measured in p/cc, at 1-second intervals, as per Figure 15a (top). Further in Figure 15a
(bottom), we charted aerosol accumulation, with no loss of aerosol particles assumed within a 3-minute window.
As expected, the rate of aerosol will increase over time if aerosol dissipation is not taken into account. The loss
of particles will depend on the number of surfaces, temperature, humidity, ventilation, and filtration. For the
scope of this work, we only focus on estimating aerosol emissions. An insightful observation is that aerosol rates
increase with activity loudness.

Key Takeaway: The main contribution of our work lies in exploring an audio-based prediction mechanism to
estimate the rate of aerosol from human-generated activities. Using a Random Forest regression model, the model
takes activity_loudness (i.e., dB level) as a feature upon determining an activity_type. It then aggregates the
amount of aerosol over a 3-minute window, where no particle loss is assumed during this time. However, this
threshold is adjustable based on the ventilation rate in the dedicated space. Our model can only be validated in a
Cleanroom using a CPC to control for aerosol particles that may not be attributed to human-generated activities.
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7.1.2  Privacy-Preserving Activity Classification Models. Indeed, the accuracy of our aerosol prediction
mechanism above is impacted by the subcomponents responsible for two critical inputs: activity_type and
activity_loudness. Here, we systematically present the results of our activity classification models. Using 100% of
the OpenSource dataset for training and testing on our real-world dataset, we compare performances between
models using an unfiltered audio spectrogram and privacy-preserving features.

[Talking] [Coughing] [Sneezing]
W Privacy-preserving features Bl Full Audio Spectrum W Privacy-preserving features M Full Audio Spectrum W Privacy-preserving features M Full Audio Spectrum

Recall Precision Accuracy F1 Recall Precision Accuracy F1 Recall Precision Accuracy F1

Fig. 16. Model performance of activity classification models using privacy-preserving features and full audio spectrogram.

Figure 16 charts the recall, precision, accuracy, and F1-score of three human respiratory activities of interest:
talking, coughing, and sneezing. Similarly, using a Random Forest algorithm but now solving for a binary
classification problem, the models trained using only privacy-preserving features achieve better performance
on all metrics than training a model with a full audio spectrogram. Where recall is prioritized, our models
achieved 93% for speech, 92% for cough, and 76% for sneeze, respectively. Both model types, however, did not
yield significant differences. We compare our accuracy with the state-of-the-art cough classification model
CoughBuddy [58] and achieve a comparable accuracy of 86.56%, recall of 92.07%, precision of 89.28%, and F1
score of 90.65%. We use audio features proposed in this work on our dataset, and trained a RF classifier on it.
However, this work does not focus on extracting privacy-preserving audio features and uses features like MFCC,
which contain sensitive information.
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Figure 17 ranks ten useful features by gini importance. The results on these features align with findings from
prior work, and accordingly, our discussion in Section 4.2, where we conjecture them to be useful for detecting
users talking, coughing, and sneezing. For example, P,,, (mean power), RMS (root mean square energy), P-g
(power above 8 kHz), FB; (Filter bank with center frequency 308.92 Hz), and STE (short time energy) are equally
important for detecting cough and sneeze. Cough and sneeze are very similar in nature, where air bursts suddenly
through the lungs with force, producing loud but brief sounds. Notably, ZCR (zero-crossing rate) distinguishes
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sneezing from coughs. On the other hand, a unique feature for detecting a person talking is the F; (base frequency),
which is a fundamental acoustic cue for talkers [40].

Constraining our detection algorithms to only a small set of audio features helps preserve privacy and signifi-
cantly reduces the model latency in predicting an activity. As shown in Figure 18, determining whether a person
talks, coughs, or sneezes can be accomplished in under half the time required using the entire audio spectrogram.

Key Takeaway: It should be noted that activity classification of detecting a person talking, coughing, or sneezing
is not new. Prior work has shown several methods of preserving privacy in these situations, including selective
sampling for non-speech periods and suppressing the full audio spectrogram. Our work explores combining
these key non-reconstructible audio features to accurately match the performance of activity classification with a
privacy-invasive method. Our experiments yield insignificant differences in accuracy between both model types
and lower latency. AeroSense requires and favors such models, as the system adopts a privacy-first as its key
design and runs on the edge.

7.1.3 Activity Loudness Estimation. We have made the case that the dB level representing an activity’s
loudness will impact aerosol estimation. Indeed, our aerosol regression model (see Figure 14) requires a single
dB level as its model input. Recall the problem motivated in Figure 6 illustrates significant differences between
the dB level at the source compared to the dB level at the two microphone arrays of the system, which reduces
with increasing distance. Thus, our system requires the capability of correcting activity loudness. We evaluate
the accuracy of our system in determining the actual activity loudness at the source by finding the prominent
peaks in the dB level signals and then calculating the average of the peaks. We find peaks in the signal to avoid
silent periods in evaluating loudness estimation. We compute this average for the source signal, received signal
at microphone array 1, and estimated signal (source signal estimated by the system).

Table 7 summarizes our results from conducting the activity loudness study, where participants were directed
to talk at varying distances (between 50cm - 3m) and loudness (low: <-24dB, regular: -24dB to -18dB, loud: >-18dB).
Overall, the system produces an average error of 7.74% in predicting source activity level. We observed increased
errors in received signals as the distance between participants and the microphone source increased. Nonetheless,
by applying the loudness estimation technique, these errors were reduced from ~ 23% to 7% for 2m, ~15% to 8%
for 1m, and ~9% to 7% for 50cm, on average. This result is anticipated as the received audio signal will be similar
to the source when they are in close proximity.

Table 7. Activity loudness corrected from dB level extrapolation and silent-periods for one participant.

distance/dB | Source | Received | Received error | Estimated | Estimated error
Low | -30.93dB | -34.32dB 11.0 % -29.88 dB 3.4 %
50em Reg -27.76 dB | -29.92 dB 7.8 % -25.58 dB 7.9 %
Loud | -28.56 dB | -31.06 dB 8.8 % -25.49 dB 10.7 %
Low | -3341dB | -37.1dB 11% -30.94 dB 7.4 %
im Reg -26.85dB | -31.01 dB 155 % -24.56 dB 8.5%
Loud | -24.92dB | -29.76 dB 194 % -22.74 dB 8.7 %
Low -314dB | -38.92dB 24 % -29.81 dB 51%
om Reg -28.56 dB | -36.46 dB 27.7 % -26.02 dB 8.9 %
Loud | -26.49 dB | -31.31 dB 18.2 % -28.91 dB 91%

Key Takeaway: It is important that we achieve a highly accurate capability to estimate activity loudness. The
consequence of its inaccuracies will affect the model performance of AeroSense in predicting aerosol amounts as
the model is built on a single RMS feature, representing the loudness of detected activity.
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7.1.4 Active Source. Correcting for activity loudness from the received signal simultaneously allows our
system to localize the active (human) source engaged in a detected activity, as motivated in Section 4.4.1. It is
conceivable that an active source moves around a designated space within a tolerance range, +e. It is equally
possible that an active source switches to inactivity over T,,;. Estimation parameters are set at T,,,; = 3min and
angle threshold € = 20, with a distance threshold of 80 cm. Since our system only uses activity detection and
localization to approximate active sources, it is essential to note that active_source does not equal occupancy
size (i.e., there can be occupants in the room who did not engage in human respiratory-type activities).

While our aerosol regressor model predicts aerosol amounts on a second granularity, our ground truth
observational logs for active sources were recorded in 1-minute intervals. Consequently, in evaluating the number
of sources, we consider the maximum number of active sources for the entire 1-minute duration. Figures 19
and 20 (top) chart the number of active sources our system can accurately detect in one-minute samples for
two experiments as part of our real-world study: lower and normal-risk activity. Figures 19 and 20 (bottom)
correspondingly plot the predicted aerosol amounts based on activity loudness, as instructed to participants.
Since participants engaged in an open conversation, our setup did not control who should speak and when.

Nonetheless, our estimation technique generally predicted the number of active sources every minute accurately.
For example, as per Figure 20, the errors were attributed to participants sitting close to each other, leading to
the underprediction of active sources. An additional observation is that if sources are moving while talking, the
system will overpredict the active sources as it will keep sensing activities at new locations continuously before
the timeout.
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Fig. 19. (Top) Results for predicting active sources in lower- Fig. 20. (Top) Results for predicting active sources in
risk real-world study. (Bottom) Predicted aerosol amounts o mal-risk real-world study. (Bottom) Predicted aerosol
based on activity loudness. amounts based on activity loudness.

Key Takeaway: Correcting activity loudness allows us to determine the distance between various sound sources,
which sequentially helps us localize a source and determine the number of active sources engaged in detected
activities. This approximation makes a reasonable assumption that active sources are not in close proximity and
are not highly mobile to represent most everyday indoor activities. Since the approximation of active sources is
based on an audio feature, this technique is inherently incapable of accounting for silent occupants.

7.1.5 Voice Liveness Detection. As discussed in Section 6, we collected data with different smart speakers
and human speakers to evaluate voice liveness detection.

We use True Positive Rate (TPR) at the optimal threshold as the metric to understand the performance of
the classifier. TPR is the probability that a human voice score is less than or equal to the threshold. It can be
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Table 8. Performance of voice liveness detection with different electronic speakers

Electronic Speaker Optimal Decision Threshold | TPR (%)
Smartphone 1 0.4350 79.89
Smartphone 2 0.4601 80.54
vV 0.3943 74.10
Laptop 0.2769 52.09
Alexa 0.2553 50.06

observed from Table 8 that for TV and smartphones, we can achieve a threshold that can distinguish between
electronic and human voices with 80% accuracy. However, for Laptops and Alexa (smart speaker), we cannot find
a threshold that can distinguish between them because the energy balance metrics range for laptops and Alexa
overlaps significantly with human speakers. To this end, we hypothesize that the energy balance metric-based
technique is insufficient for advanced speakers and needs additional audio features to make it generalizable
across all speakers.

7.1.6  Privacy-Preserving Mask Detection. The fourth and final critical input for our aerosol prediction mech-
anism is detecting mask presence among active sources. We collected data our data as well as used OpenSource
MASC dataset. Accordingly, we conducted a leave-one-user-out cross-validation among 5 participants (see Section
6) and reported the average performance on our data. For the MASC dataset, we used Train/Dev/Test sets defined
in the challenge, with 12 speakers in Train and 10 in Dev and Test each. We achieve an Unweighted Average
Recall (UAR) score of 71.12% on the test set of MASC dataset (when trained and tested on MASC data) This is
comparable to the state-of-the-art UAR of 71.8%, which is achieved by fusing the results of different feature-based
learning like ComParE acoustic feature set and Bag-of-Audio-Words [59].

By using only non-reconstructible features, our results yield ~ 75% recall and precision Random Forest algorithm

(when trained and tested on our dataset). We hypothesize that the reason for the higher accuracy of our dataset
is that it is recorded using a KN95 mask, which is thicker than the surgical mask used in MASC data.
When we combine MASC and our data and use it for training and testing, we achieve 71% recall and 72% precision
as shown in Figure 21. Further, the results on feature importance, as per Figure 22, support prior reporting of
LH,4ti0, P>s, and HNR to highly correlate with users wearing masks [41]. Our findings on feature importance
shed some insights into incorporating mask detection into the system pipeline. Specifically, since the aerosol
regression model depends on the loudness of activity (RMS as a feature), and conversely, for mask detection RMS
is not the strongest predictor, we conjecture that despite a successful detection of mask among active sources, it
will less likely impact the prediction of aerosol amounts.

The above finding helps inform a critical design decision of utilizing mask_presence to influence aerosol aggre-
gation rather than directly altering aerosol prediction (see Figure 5). To better understand how mask_presence
will impact aerosol amounts, we assess the reduction rate of aerosol particle counts measured directly using the
CPC in Cleanroom. More specifically, Figure 23 charts the aerosol amounts in p/cc from a user talking without
a mask (Segment A) and with a surgical mask (Segment B). With mask presence, we can expect the aerosol
particles emitted from human activities to reduce by 60%. This result aligns with prior reports on the effects of
mask-wearing to reduce aerosol emissions by 60%-90% [12]. Accordingly, in our implementation moving forward,
we multiply the aerosol values by 0.4 if the presence of a mask is detected.
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Key Takeaway: Our work contributes to the investigation of detecting mask-wearing by using only privacy-
preserving audio features. While a privacy-preserving mask detection model aligns with AeroSense’s key design
choice, we found that the insignificance of the RMS audio feature (activity_loudness) does not directly affect the
prediction of aerosol_val using the regression model. A reasonable workaround is to implement the reduction of
aerosol amounts as a switch case where 60% of aerosol_uval is reduced when mask_presence = 1.

7.1.7 AeroSense’s Performance in Different Environments. As mentioned in Section 6, we extensively
evaluate our system in different environments by deploying it for hundreds of hours. The deployed AeroSense
prototype records privacy-preserving audio features and location files. For these deployments, we rely on a
human observer to collect logs of activities and several active sources at a minute level. We compute minute-level
accuracy for activity detection and active sources. To estimate activity detection accuracy at the minute level, we
first find the accuracy of each one-minute segment and then take an average. For each minute segment, we have
multiple predictions as our sliding window size is 500ms. To find activity detection accuracy at the one-minute
segment, we find the maximum repeating label in that segment and see if that matches the actual label (logged
by the observer). We calculate active sources at minute-level by using a similar technique (Section 7.1.4). For
estimating average error in active sources, we compute the ratio of the sum of the absolute value of error in each
minute segment to total segments.

Table 9 shows the average accuracy of activity detection and error in detecting active sources. It can be seen
that the proposed system detects activity with a very high accuracy of >95%, whereas long-term deployment
has the lowest accuracy of 95.8%. This is because more corner cases were observed in this deployment, like
similar-sounding environment noises. In this scenario, the activity is almost always speech, and cough was
observed only 7 times. The system correctly classified all these coughs. We observe a false positive rate (FPR) of
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0.036-0.18% by the cough classifier in different environments. Sneeze was neither detected nor observed in these
deployments. Our system shows a low average error in sensing active sources. The maximum error was observed
in a laboratory environment. We hypothesize that this is caused by closely positioned desks in the laboratory.

Table 9. Performance of AeroSense in Different environments

Environment Avg. Activity Detection Accuracy (%) | Avg. Active Sources Error (+)
Small Office Room 98.3 0.110
Large Conference Room 97.9 0.278
Small Conference Room 100 0.228
Classroom 97.7 0.189
Laboratory (Long term deployment) 95.8 0.45

7.1.8 AeroSense’s Performance in Long term deployment. We conducted our experiments by deploying
AeroSense in a Lab without controlling where participants are localized in the room and how loudly they speak.
Figures 24 and 25 chart the predicted aerosol amounts minutes under two situations comparable to lower-risk
and higher-risk activity that lasted for 30 minutes. Where a lower-risk activity consisted of two people talking
in a meeting room and a higher-risk activity consisted of 8 people actively participating in a group meeting,
we observed similar findings to our RealWorld experiment of the predicted aerosol_val corresponding with the
captured activity loudness in these scenarios.
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Fig. 24. Predicted aerosol amounts for lower-risk activity. Fig. 25. Predicted aerosol amounts for higher-risk activity.

Figure 26 shows the rate of aerosol aggregated over a 3-minute window comparing these activities. We
can observe more aerosol_rate in a higher-risk setting compared to a lower-risk one. Considering that our
aerosol prediction mechanism operates on the same unit of measurement of a CPC at 1.5 L/min, a value of
1000p/cc is comparable to 1.5 x 10°P/min. This result demonstrates continuous speaking, especially at high
volumes, can pose a considerable risk of indoor airborne transmission to occupants, as a significant fraction of
speech particles can remain dispersed in the air for minutes [27], drawing concerns on speech-related events to
more likely be “superspreader” [27]. Figure 26 shows the aerosols aggregated over a 3-minute window, set to
depict a room with adequate ventilation rate. Given a room with a low ventilation rate, we can tweak the param-
eter win_size to longer duration (e.g., win_size = 15) to simulate aerosol particles lingering in the air much longer.

Key Takeaway: Our aerosol prediction mechanism is a two-step process of predicting aerosol amounts from
the detected activity and loudness and aggregating aerosol amounts based on an adjustable parameter that can
reasonably represent the dissipation rate in an indoor room. At this point, it is important to emphasize that the
ability to predict airborne transmission risks requires knowing both the rate of aerosol generated from human
activities and the rate of aerosol dissipation. Our work is intended to work in tandem with indoor air quality
systems that can better provide dissipation rates. We discuss the implications of our findings in Section 8.
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8 DISCUSSION

We proposed a low-cost mobile-sensing system to estimate aerosol generated from detecting human respiratory
activities commonly occurring indoors. Here, we discuss the implications of our findings.

8.1 Impact of Analyzing Speech Content

Inspired by prior work, which found the loudness of activity to increase linearly in aerosol emission [9], our
aerosol regression model currently uses dB level (activity_loudness) as a feature. However, much research in
understanding aerosol sources and chemical compositions has found that vowel content in speech can further
affect aerosol emission [9]. Today, advanced speech recognition models can analyze different vowel contents,
including proposing novel obfuscation algorithms to detect vowel slices while preserving privacy [60]. By training
the aerosol regressor model using all our privacy-preserving features, our preliminary findings shed light on key
features that allow us to extend this implementation to more precisely estimate the rate of aerosol generated
from human speech using features representative of vowel content.
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Fig. 27. Using all privacy-preserving features to pre- Fig. 28. Features representing speech content as significant

dict aerosol amounts. predictors of aerosol prediction.

Figure 27 compares the mean squared error using different ML algorithms, with results generally showing a
trend of lesser errors with more privacy-preserving features. Further, in Figure 28, a handful of the strongest
features are correlated with vowel content. Specifically, a speech will consist of voiced and unvoiced sounds.
We conjecture that L/H, 40, ZCR, P>g are significant predictors as they represent high-frequency components
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in speech. We also conjecture that formants and filter banks are significant predictors as voiced/vowel sounds
are more periodic than unvoiced sounds [61]. Validating these hypotheses will require extensive cleanroom
experiments where participants speak with varying clarity through the duct connected to the Condensation
Particle Counter.

8.2 Limitations

While our prototype demonstrates the feasibility of using acoustic sensing to recognize common respiratory
activities and estimate their corresponding aerosol generation, there are several limitations to the current system.
First, we need to extend the system to support various activities. Currently, our prototype implements three
human activity recognition capabilities, chosen as the most common respiratory-typed activities, to demonstrate
system evaluation with different levels of aerosol generation. In practice, the system must and can support
activities such as laughing, singing, and eating and model their aerosol generation. The broader goal of this work
is to model and understand the causality between aerosol and acoustic features. This will enable us to predict
aerosol for any human activity using audio signals. As we rely on ambient acoustic sensing, detecting very soft
sounds, such as heavy breathing, could be challenging. We can integrate wearable-based sensing with our system
to sense such soft sounds. Additionally, we must distinguish between similar activities like singing and speaking
in a privacy-preserving manner, which becomes challenging. Thus, we plan to delve deeper into the speech
content to accurately predict aerosol emissions while ensuring privacy.

Second, AeroSense is designed to work in an office or academic environment, and its performance might be
affected when deployed in high levels of ambient noise interference scenarios. This will significantly affect the
performance of activity detection models, mask detection, voice liveness detection, and even the localization
algorithms. High mobility might also affect active source estimation accuracy, leading to overestimating people
performing respiratory activities.

Third, aerosol dissipation is a complex relation to the model as it depends on a wide range of factors like
temperature, humidity, ventilation, and surfaces in the room. In this work, we use a window size of 3 minutes
to aggregate the prior aerosols, and after that, we do not account for previous aerosols. We need information
about many different parameters to accurately model aerosol dissipation, making it extremely challenging. For
the scope of this work, we do not delve into the chemistry behind the aerosol dissipation, and only focus on the
aerosol generation from human activities. In the future, we can integrate advanced aerosol dissipation models
into the proposed system.

9 RELATED WORK

Our paper builds upon a significant body of prior work in human activity recognition and audio sensing. Human
activity recognition has a rich body of work with different types of sensors such as using IMU [62], gyroscopes
[63], microphones [8, 64], and their combinations [13, 65] to detect activities. These sensors can be leveraged from
smartphones [64], wearables [13], and ambient environment [8, 65]. Using specifically audio-based techniques,
researchers have successfully developed applications that distinguish everyday human activities down to their
breathing patterns. When mask-wearing became mandatory during the COVID-19 pandemic, Adhikary et al.
employed a microphone to monitor breathing in the user’s mask [66]. Mohamed et al. developed a CNN-based
model to detect mask-wearing using a full audio spectrogram [14]. ApneaApp, developed by Nandakumar et al,
uses the same audio signals to detect breathing phases for sleep apnea detection [67]. Laput et al. uses audio data
for real-time detection of a wide range of activities, including speaking, coughing, laughing, and snoring [64].
Recently, BreathEasy [11] proposed the notion of using audio to detect activities and estimate aerosol emissions.
However, unlike us, the work did not prototype a system or evaluate its efficacy using user studies.
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Audio sensing, which also has a rich history, suffers from privacy concerns when approaches use full audio
spectrograms, which would include analyzing human speech. The challenge of reducing privacy invasion has
seen possible speech obfuscation workarounds, such as selective sampling for non-speech periods to detect cough
and sneeze or suppressing the full audio spectrogram to pick up on breathing sounds. Larson et al. presented
a system that allows cough sounds to be reconstructed from the feature sets that prevent speech from being
reconstructed intelligibly [42]. [68] uses short period of samples to detect sounds related to respiratory symptoms
(cough, sneeze, sniffle, throat-clearing) while protecting a user’s privacy by not recording raw acoustic data. These
techniques proved applicable in airflow sensing where the authors only used the low-frequency spectrum in audio
spectrogram [17] to disregard much of human speech lying in the mid and high-frequency bands (500Hz-2kHz).
However, these approaches did not focus specifically on audio-based aerosol sensing.

10 CONCLUSIONS AND FUTURE WORK

This paper presented AeroSense, a novel privacy-preserving audio-sensing approach that accurately predicts the
rate of aerosol generated from detecting the kinds of human respiratory activities and determining the loudness
of these activities. Unlike many existing efforts in improving indoor air quality by sensing common indoor air
pollutants, our work focused explicitly on sensing aerosol generated from human respiratory activities, which
commonly occur in indoor settings and contribute to airborne virus spread. With privacy-first as our key design
choice, our work employed a privacy-preserving pipeline of extracting non-reconstructible features to detect
common respiratory activities and determine activity loudness from active human sources. Our experimental
user studies showed the efficacy of audio sensing for aerosol estimation in real-world settings.

AeroSense is the first step in estimating the risk of airborne transmission using ambient audio sensing. There are
several directions for future work. First, AeroSense can be extended to detect a broader set of aerosol-generating
human activities. For example, studies have shown that singing generates more aerosols than talking. Extending
AeroSense § activity detection to address additional activities like singing is an avenue of future work. Further,
AeroSense § transmission risk depends not only on aerosol generation but also on the ventilation in an indoor
space. Since more ventilated spaces can reduce airborne transmission risk, combining AeroSense with audio-based
ventilation monitoring systems such as FlowSense [17] is another avenue for future work. Alternatively, AeroSense
can be integrated into BMS that provide ventilation monitoring and control. In this case, BMS can dynamically
enhance ventilation in spaces deemed higher risk by AeroSense. The design of such integrated techniques is left
to future work.
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