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Target trial emulation (TTE) aims to estimate treatment effects by simulating randomized controlled
trials using real-world observational data. Applying TTE across distributed datasets shows great
promise in improving generalizability and power but is always infeasible due to privacy and data-
sharing constraints. Here we propose a Federated Learning-based TTE framework, FL-TTE, that
enables TTE across multiple sites without sharing patient-level data. FL-TTE incorporates federated
protocol design, federated inverse probability of treatment weighting, and a federated Cox
proportional hazards model to estimate time-to-event outcomes across heterogeneous data. We
validated FL-TTE by emulating Sepsis trials using elCU and MIMIC-IV data from 192 hospitals, and
Alzheimer’s trials using INSIGHT Network across five New York City health systems. FL-TTE produced
less biased estimates than traditional meta-analysis methods when compared to pooled results and is
theoretically supported. Our FL-TTE enables federated treatment effect estimation across distributed

and heterogeneous data in a privacy-preserved way.

Randomized Controlled Trials (RCTs) are the golden standard for esti-
mating the efficacy of interventions. However, RCTs are expensive and
time-consuming, and their stringent eligibility criteria exclude a large
number of patients who could receive the treatment in the real world, which
may lead to suboptimal estimation of the real-world effectiveness of the
treatment. In the past decade, with the rapid development of computer
hardware and software technologies, large amounts of patient health
information have been collected and collected outside RCT's. These data also
referred to as real-world data (RWD), including electronic health records
(EHR), pharmaceutical and insurance claims, and others, contain insights
into how medical devices and interventions work in usual care settings, and
are thus instrumental for understanding healthcare effectiveness, safety, and
patient effectiveness in real-world settings"”.

Target trial emulation (TTE) is an approach in observational research
that aims to mimic (or “emulate”) the design of an RCT using RWD". This
method helps to make causal inferences about treatment effects by carefully
designing the study to control biases common in observational settings.
Compared with actual RCTs, TTE is more economic, and efficient, and the
results derived from TTE are more representative of real-world patients.
Several recent studies have demonstrated the promise of TTE in different
disease contexts*. Although treatment assignment in RWD is not rando-
mized, TTE explicitly specifies experiment protocols to emulate

randomization and mitigate potential biases with causal inference methods
such as propensity score matching (PSM)™"’, inverse probability of treat-
ment weighting (IPTW)"'™"* and G-computation'*””. In order to achieve
sufficient balance of confounding variables between treatment and control
groups using these methods (e.g., measured by standard mean difference'®),
a descent sample size is required for both groups'”'*. Moreover, most of the
TTE works were only conducted with a single institutional RWD
warehouse'” ™, which may limit the generalization ability of the results due
to the lack of diversity of the patient populations included.

With the reasons above, it is desirable to have a large RWD warehouse
including diverse patient characteristics when performing TTE studies. This
typically requires leveraging the patient data from multiple institutions.
There have been efforts to build up large centralized repositories by
aggregating the patient data from different institutions’°, but they are
sporadic due to the sensitivity of patient health information, which makes
them challenging to share outside the local institutions. Federated Learning
(FL)”* is a promising paradigm that facilitates collaborative machine
learning with data distributed across multiple local clients. FL does not
require the data to be shared out of the local clients but only share model
parameter updates with others, so that the data privacy is preserved. With
this appealing characteristic, FL has raised considerable attention from a
broad set of applications™ ", including healthcare and medicine, where FL
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has been applied in problems like disease diagnosis™" and clinical risk
prediction’ . However, it is largely unknown how to leverage the TTE and
FL frameworks to estimate real-world treatment effects using the distributed
sites without sharing patient-level information.

In this paper, we propose a Federated Learning-based Target Trial
Emulation (FL-TTE) framework to estimate real-world treatment effects
using EHRs from distributed clinical institutions in a privacy-preserved way
(Fig. 1). The proposed FL-TTE effectively leverages siloed patient EHR data
without sharing them, boosts sample size, balances confounders better, and
achieves less-biased estimates compared to traditional meta-analysis
methods, towards potentially more generalizable estimates for a bigger
and more diverse population. Empirically, we systematically evaluated our
FL-TTE framework with two different clinical research network datasets
with applications for estimating repurposing treatment signals for two dif-
ferent diseases including Alzheimer’s disease (AD)” and sepsis™ using
longitudinal EHR data which were distributed across heterogeneous sites.
Specifically, we leveraged the INSIGHT clinical research network (CRN),
which includes 5,532,428 patients from the hospital systems of the greater
New York City area, to estimate a range of repurposing agents for Alzhei-
mer’s disease (AD). For the sepsis case, we used the elCU** and MIMIC-IV*
datasets, comprising 274,040 patients from 192 sites, to investigate how
corticosteroids might impact sepsis outcomes in the ICU settings. In both
cases, our FL-TTE achieved less-biased treatment effect estimates than two
typical meta-analysis methods*** when compared to the estimates from the
pooled data (considered the gold standard but often infeasible to obtain due
to privacy concerns of sharing patient data™), better global covariates bal-
ancing, dealing with sites’ heterogeneity well, and easily incorporated dif-
ferential privacy component for better local data protection. Theoretically,
we proved the less-biases of estimand from our FL-TTE by proving a better
error bound than the meta-analysis methods. Our FL-TTE provides a uni-
fied framework to conduct TTE across heterogeneous datasets without
exchanging patient data, and our empirical and theoretical investigations can
facilitate potentially more generalizable and privacy-preserved treatment
effect estimation from federated causal inference in observational studies.

Results

Cohort Characteristics and Heterogeneity

Our study cohorts include the INSIGHT clinical research network®, eICU
and MIMIC-IV. For the INSIGHT cohort, there was a total of 35,435 eligible
patients with at least one mild cognitive impairment (MCI) documented
diagnosis between August 2006 and December 2023, which comprises of
5803, 4764, 6670, 10926, and 7272 patients from each of five sites, respec-
tively. The treated group includes individuals exposed to the target drug,
while the control group contains the individuals treated by an alternative
drug. The patient inclusion cascade and population characteristics are
presented in Fig. la and Supplementary Table 4. For the eICU-MIMIC
cohort, there is a total of 200,859 patients from 191 sites from eICU time
from 2014 to 2015 and 73,181 patients from the single site in MIMIC from
2008 to 2019. The cohort includes 1233 treated patients and 13,410 controls
from eICU, 601 treated patients, and 6214 controls from MIMIC with the
inclusion cascade shown in in Fig. 1b.

We observed substantial heterogeneity in sample distributions across
different sites (Fig. 2). Specifically, Fig. 2a illustrates the geographic locations
of five sites from the INSIGHT in NYC. Patients in geographically different
communities have different demographics as demonstrated in Fig. 2c. For
example, Site 4 has the highest proportion of self-reported White patients,
and Site 2 has the largest proportion of self-reported Black or African
American patients. Further, the disease progression characteristics across
different patient cohorts are different. Figure 2b shows the Kaplan-Meier
survival curve for patients progressing from MCI to AD across the 5 sites,
where Site 1 exhibits the steepest decline in survival probability, while Site 4
demonstrates the slowest progression speed. Regarding the eICU-MIMIC
cohort, Fig. 2d illustrates the distribution of cohort sizes across 192 sites,
which shows that although some sites include over 1000 patients, there are
52 (27%) sites that have fewer than 10 patients.

FL-TTE Achieves Less Biased Estimates Than Local Analysis
Methods

We evaluated the effectiveness of FL-TTE in the INSIGHT and eICU-
MIMIC cohorts by emulating different target trials and comparing the
results with the estimates from local data of each site and the global pooled
data. We assume that the heterogeneity among multiple sites exists in
baseline covariates but not the treatment effect™, so that the pooled
analysis can be a gold standard serving as an ideal benchmark for assessing
the bias of the estimators” ™.

For the INSIGHT cohort, we emulated nine target trials investigating
the effects of drugs with potential benefits for patients who are at risk for AD®
(see Methods for details). FL-TTE consistently produced less-biased esti-
mates than the ones generated by local data analysis (see Fig. 3). Specifically,
With the results from pooled data analysis as references, FL-TTE typically
had smaller Z-test statistics™, indicating greater similarity, and higher p-
values, suggesting no significant differences, when compared with the
results from local data analysis. The local analysis gave highly heterogeneous
estimates across the five sites that did not align well with the pooled esti-
mates, showing the large I? statistics across the five sites in all trials on target
drugs (0.942 +0.008) using Cochran’s Q test” (which can assess hetero-
geneity and “high heterogeneity” associates with I* > 0.5). For local analysis,
in seven out of the nine target trials, we observed estimates with conflict
directions across the five sites. For example, in the case of pantoprazole, at
Sites 1, 3, and 5, the estimates suggested a decreased risk for AD onset, with
aHRs of 0.85 (95% CI: 0.83-0.88), 0.79 (95% CI: 0.75-0.83), and 0.92 (95%
CI: 0.89-0.95), respectively, while at Site 2 and Site 4, the estimates indicated
an increased risk for AD onset, with aHRs of 1.09 (95% CI: 1.01-1.16) and
1.17 (95% CI: 1.15-1.18), respectively.

For the eICU-MIMIC cohort, we emulated a target trial aimed at
evaluating the effects of corticosteroid treatment on sepsis. The aHR esti-
mates with 95% confidence intervals (CIs) produced by FL-TTE were closer
to the pooled results compared to the results from local analysis. Figure 4
shows the results from the five sites with the largest cohort sizes, which
demonstrated larger bias (compared to the results from pooled analysis)
quantified by Z-test™. For example, local analysis overestimated aHR on Site
3 with 1.32 (95% CIL: 1.24-1.41, p<0.001), 1.13 (95% CI: 1.06-1.20,
p <0.05), 1.24 (95% CI: 1.17-1.31, p < 0.001) in the three outcomes (28-day
mortality, ICU discharge, and cessation of mechanical ventilation), showing
significantly different estimates with the pooled results 1.10 (95% CI:
1.05-1.15), 1.03 (95% CI: 0.99-1.08), 1.03 (95% CI: 0.98-1.08) in these three
outcomes. The estimates among these five sites also had high heterogeneity
(I? statistics=0.892 + 0.007 in all the three trials using Cochran’s Q test™),
indicating the potential inconsistency of local analysis compared to pooled
results.

FL-TTE Achieves Less Biased Estimates Than Meta-Analysis
Methods

We tested the effectiveness of FL-TTE on both INSIGHT and eICU-MIMIC
cohorts with different target trials through the comparison with the results
from two representative meta-analysis methods®, including the fixed-effect
model and random-effect model, as well as the the estimates derived from
the pooled data.

For INSIGHT, we emulated nine target trials focusing on drugs that
could be potentially repurposed to AD® (see details in Methods). As shown
in Fig. 5, FL-TTE achieved aHR estimates with 95% confidence intervals
(CIs) overlapping more with the pooled estimates compared to the meta-
analysis methods, while at the same time with narrower confidence
intervals. For the two meta analysis approaches, the fixed effect model
tends to be more biased (i.e., with different estimation compared to the
pooled results) with less variance (narrow CI), while meta analysis with
random effect model tends to be less biased but much larger CI. We further
quantified the difference using Z-test”. As shown in Fig. 5, the Z-test
statistics between FL-TTE and pooled results are typically smaller (indi-
cating more similarity) with larger p-values compared to meta-analysis
results. Interestingly, for pantoprazole, the two meta-analysis approaches
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a. Selection Flowchart for Federated Learning-based Target Trial Emulation (FL-TTE)

INSIGHT Clinical Research Network

elCU and MIMIC-IV

Site 1, 889,550 patients, 2010 to 2023
Site 2, 992,800 patients, 2007 to 2023
Site 3, 1,354,013 patients, 2006 to 2023
Site 4, 1,117,759 patients, 2010 to 2023
Site 5, 1,178,306 patients, 2010 to 2023

elCU 200,859 patients, 2014-2015
MIMIC 73,181 patients, 2008-2019

}

5,803 MCI patients with 785 AD patients, 1,272 unique drugs, Site 1
4,764 MCI patients with 680 AD patients, 1,088 unique drugs, Site 2
6,670 MCI patients with 1,026 AD patients, 1,045 unique drugs, Site 3
10,926 MCI patients with 1,320 AD patients, 1,135 unique drugs, Site 4
7,272 MClI patients with 1,243 AD patients, 1,281 unique drugs, Site 5
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Step 2: Global Covariate Balancing

Fig. 1 | Federated Target Trial Emulation with Distributed Observational Data
for Treatment Effect Estimation. a Selection Flowchart for Federated Learning-
based Target Trial Emulation (FL-TTE). The study cohorts were from five sites
within INSIGHT CRN and 192 sites in eICU and MIMIC-IV database, with
applications of estimating different drug repurposing signals for Alzheimer’s disease
and sepsis, respectively. b Overview of the FL-TTE Framework. Step 1: Cohorts were
constructed from INSIGHT and eICU-MIMIC datasets, respectively. Step 2: Fed-
erated propensity score calculation adjusted for differences in patient covariates
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Step 3: Global Treatment Effect Estimation

between treated and control groups with inverse probability of treatment weighting
(IPTW) for achieving the global covariate balancing. Step 3: Federated Cox pro-
portional hazards model estimated the treatment effects of target drugs for achieving
less-biased global time-to-event outcome estimates. The optimizations are reg-
ularized by the proximal term which can ensure local updates align with the global
model, limit the impact of over-large local updates that can induce overfit, and finally
address the data heterogeneity among sites.
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Fig. 2 | Data Heterogeneity Across INSIGHT and eICU-MIMIC Cohorts.

a Geographic locations of the five INSIGHT sites in New York City. b Kaplan-Meier
survival curves44 illustrated the data heterogeneity in survival probabilities across
five INSIGHT sites. ¢ Different race distributions varied among five INSIGHT sites.

Site 4 has the highest proportion of self-reported White patients, and Site 2 has the
largest proportion of self-reported Black or African American patients.

d Logarithmic cohort size distribution across 192 sites in the eICU and MIMIC
dataset exhibited a long-tailed pattern.

gave estimates on different directions, where the fixed effects estimated an
aHR of 1.09 (95% CI: 1.05-1.13, p <0.001), while the random effects
estimated an aHR of 0.95 (95% CI: 0.82-1.10, p = 0.304). This implies the
potential instability of different meta analysis methods when facing with
site heterogeneity.

For eICU-MIMIC, we emulated the target trial of corticosteroid
treatment on sepsis (see details in Methods). As shown in Fig. 6, our FL-TTE
consistently outperformed meta-analysis methods in estimating less-biased
aHRs across three outcomes (28-day mortality, ICU discharge, and cessa-
tion of mechanical ventilation) compared to the pooled results. In particular,
under 28-day mortality outcome, FL-TTE achieved an aHR of 1.08 (95% CI:
1.02-1.14), closely approximating the pooled aHR of 1.10 (95% CI:
1.05-1.15) with a non-significant z-test (0.39, p = 0.693). Meta-analysis with
fixed effects overestimated the aHR 0f 1.16 (95% CI: 1.09-1.23), and random
effects underestimated the aHR of 1.01 (95% CI: 0.94-1.07, p =0.033),
compared to the results obtained from pooled analysis.

FL-TTE Achieves Better Global Covariate Balance

FL-TTE also achieved higher success balancing ratios in adjusting for con-
founders on INSIGHT and eICU-MIMIC datasets than both the local analysis
(see Figs. 7 and 8) and meta-analysis methods (see Figs. 9 and 10). For
INSIGHT CRN (see Fig. 9), the pooled-analysis achieved near-optimal cov-
ariate balancing ratios across all trials on target drugs (0.965 + 0.067), and FL-
TTE closely approximated this performance (0.926 +0.066). In contrast,
meta-analysis methods demonstrated lower balancing ratios, particularly with
fixed effects, where the ratios for drugs dropped to 0.767 + 0.055. The random-
effects meta-analysis showed slightly better performance (0.772 + 0.062) but
remained inferior to the federated method. As shown in Fig. 7, the local
analysis also did not achieve sufficient balance of confounding variables
(e.g., 0.721 £0.062 in Site 1, and 0.683 £ 0.208 in site 5) under the smaller
sample size of each site than pooled data. For eICU-MIMIC, FL-TTE achieved
balancing ratios 0.985+0.014 across all outcomes. The pooled analysis
consistently reached the optimal ratio of 1.000 + 0.000. However, neither
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Fig. 3 | The estimated aHR and 95% CI on INSIGHT, comparing pooled analysis,
our FL-TTE and local analysis. The third column in the right side is p-value and

significance level of the Z-test on whether the estimated aHR is significantly different
with 1.0 (reference value indicating the treatment does not alter the risk compared to
no treatment). The fourth and fifth columns denote the test statistic and p-value of

the Z-test on whether the estimated aHR is significantly different with the results of
pooled analysis. Our FL-TTE addressed the poorly generalized single-site’s estimates
induced by sites’ heterogeneity and achieved similar estimates with pooled-analysis.
*p < 0.05; **p < 0.01; ***p < 0.001; not significant (“ns”) with p > 0.05.

meta-analysis methods nor local analysis cannot balance the covariates well.
For example, the fixed-effects meta-analysis model achieved a balancing ratio
0f 0.667 + 0.000 under three outcomes, while the random-effect meta-analysis
reported ratios 0.722 + 0.000.

Theoretical Guarantee

In addition to empirical evaluation, we also proved theoretically that FL-
TTE can achieve less biased estimations than meta-analysis methods.
Theorem 1 in Box 2 establishes that under the assumptions of C-Lipschitz
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Estimates Compared with pooled-analysis
aHR 95% CI P-value Z-Test statistic P-value (vs. pooled)
28-Day Mortality .
pooled ' —— 1.16 (1.05, 1.15) l‘l7e-04“ 0.00 1.0007
federated ! g 1.08 (1.02, 1.14) 4.91e-03 0.39 0.693™
Site 1 i — 1.17 (1.11, 1.24) 2.06e-08""" 1.78 0.075"
Site 2 i —— 1.21 (1.15, 1.28) 1.06e-13""" 2.89 3.90e-03""
Site 3 i — 1.32 (1.24, 1.41) 1.59%-18""" 4.75 2.00e-06"""
Site 4 e 0.98 (0.92, 1.05) 0.588" 2.69 7.13e-03""
Site 5 : —— 1.15 (1.8, 1.22) 3.18e-06"" " 1.26 0.208"*
ICU Discharge '
pooled +—o— 1.63 (0.99, 1.08) 0.176"° 0.00 1.000™
federated ——— 1.04 (0.99, 1.09) 0.1107 0.26 0.797™
Site 1 . 0.98 (0.93, 1.03) 0.454" 1.44 0.149™
Site 2 i . g 1.10 (1.04, 1.17) 7.24e-04::: 1.83 0.068™
Site 3 : e 1.13 (1.06, 1.20) 1.32e-04 2.33 1.96e-02
Site 4 > 0.95 (0.88, 1.02) 0.177"° 1.85 0.064™
Site 5 —— 1.02 (0.95, 1.09) 0.560"° 0.27 0.789™
Cessation of Mechanical Ventilation !
pooled +—— 1.03 (0.98, 1.08) 0.214" 0.00 1.000™
federated =io=— 1.02 (0.97, 1.07) 0.478™ 0.38 0.700™
Site 1 —— 0.99 (0.92, 1.07) 0.791"° 0.91 0.362™
Site 2 S— i 0.89 (0.82, 0.97) 5.36e-03"" 3.02 2.51e-03""
Site 3 i —— 1.24 (1.17, 1.31) 2.23e-13""" 4.70 2.66e-06 "
Site 4 —— | 0.90 (0.85, 0.95) 5.68e-05"" 3.78 1.55e-04"""
Site 5 —1o— 1.02 (0.96, 1.08) 0.509”° 0.30 0.764™
04 0.7 10 1.3 16
adjusted Hazard Ratio

Fig. 4 | The estimated aHR and 95% CI on eICU-MIMIC, comparing pooled

analysis, our FL-TTE and local analysis on the top 5 of 192 sites with the largest
cohort sizes. The third column in the right side is p-value and significance level of
the Z-test on whether the estimated aHR is significantly different with 1.0 (reference

value indicating the treatment does not alter the risk compared to no treatment). The
fourth and fifth columns denote the test statistic and p-value of the Z-test on whether
the estimated aHR is significantly different with the results of pooled analysis.

*p < 0.05; **p < 0.01; ***p < 0.001; not significant (“ns”) with p = 0.05.

continuity, smoothness, and A-strong convexity of the outcome model, the
bias between the FL-TTE and pooled analysis || logaHR; — logaHR,

oolH

4C?
HOin N

and pooled analysis ||logaHR
4Cp,

min*Y k

2
4C_ o/ )f'c Pe_ ensuring that the FL-TTE achieves a tighter bias bound
min* Yk

HOminN
compared to meta-analysis (see proof in Supplementary Note 1 and 2).
Theorem 2 demonstrates the efficient convergence of our FL-TTE method,
achieving a convergence rate of O(}), where T is the total number of

is upper bounded by In contrast, the bias between meta-analysis

meta

— logaHR,,,|| is upper bounded by

. With proximal term coefficient u, it is guaranteed that

iterations, indicating rapid approximation to the global optimum, meaning
that the bias decreases significantly during the initial training rounds,
bringing it close to the optimum, and continues to diminish steadily as the
iterations progress. These theoretical results demonstrate the optimality and
efficiency of the FL-TTE framework in achieving less-biased treatment effect
estimations.

Enhanced Privacy with Differential Privacy Techniques

While FL offers intrinsic privacy protections by retaining data within each
site, model inversion and data reconstruction risks remain potential
concerns™. To further enhance privacy, we applied differential privacy
techniques to mitigate the possibility of intercepting sensitive information
from shared gradients during training. The techniques strengthen our FL-
TTE framework by safeguarding against data leakage risks. Our framework
still produced the less-biased aHR estimates than meta-analysis methods in
8 out of 9 trials on INSIGHT and all 9 trials on eICU-MIMIC (see Sup-
plementary Figs. 1 and 2).

Sensitivity Analyses

To test the robustness of our framework, we conducted the following sen-
sitivity analyses. First, we tested different regularizers when estimating the
propensity scores and outcomes, including FedAvg” which directly
aggregates locally trained models on multiple sites, FedAvgM™ which
introduces the momentum to address heterogeneity, and FedProx™ which
encourages the consistency between local and global models (see Methods).
We also compared it with Federated IPW-MLE introduced by Xiong et al.*.
As shown in Supplementary Figs. 3 and 4, the estimation results are not
sensitive to the different choices of federated learning algorithms. No matter

which FL algorithm is used, less-biased estimates can always be achieved
than meta-analysis methods compared to pooled results. And our frame-
work can also achieve less biased estimates than method of Xiong et al.”.
Second, as shown in Supplementary Fig. 5, we reported the results by
adopting the clone-censor-weight approach”. Specifically, all eligible
patients were cloned into both treatment strategies at a unified time zero set
to ICU admission. Patients were then censored at the time they deviated
from their assigned strategy (e.g., initiated or failed to initiate treatment). To
further account for potential bias introduced by non-random censoring, we
applied inverse probability of censoring weights (IPCW) based on baseline
covariates. This method ensures that both treatment and control groups
have the same starting time point, thereby eliminating additional immortal
time. We implemented this procedure and repeated the federated target trial
emulation under the new time zero definition. The results are largely same as
the primary results in Fig. 6.

Discussions

Although randomized controlled trials (RCTs) are still the golden standard
of evaluating the effectiveness and satefy of interventions, they are expensive
and time-consuming to conduct, and the recruited participants are usually
not representative of real world patients due to the stringent eligibility
criteria. Target trial emulation (TTE) is the process of simulating clinical
trials using observational data. Compared with RCTs, TTE is economic,
efficient and representative of real world patients. However, due to the non-
randomized nature of observational data, effective control of the impact of
potential confounding factors is critical, and a reasonable sample size for
both treated and comparative groups plays a key role here to ensure
unbiased estimation of treatment effects, which is usually a challenge in the
real world due to the sensitivity of patient health information.

In this study, we developed a federated learning framework for target
trial emulation (FL-TTE) to enable treatment effect estimation by leveraging
the EHR from different institutions without sharing them. Our framework
includes two main steps: federated propensity score calculation for covariate
balancing and federated Cox proportional hazards model for outcome
prediction. We proved theoretically the optimality of FL-TTE, which means
it can approximate closely to the estimate obtained from the analysis of the
data pooled together, as well as its efficiency, which means it can converge
with a small number of iteration steps. Our results supported and extended
recent findings™® that meta-analysis methods may suffer from bias under
data heterogeneity. Building upon these insights, we theoretically and
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Estimates Compared with pooled-analysis
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Fig. 5 | The estimated aHR and 95% CI on INSIGHT, compared with pooled
analysis, our FL-TTE and meta-analysis with fixed effects and random effects.
The third column on the right side is the p-value and significance level of the Z-test
on whether the estimated aHR is significantly different with 1.0 (reference value
indicating the treatment does not alter the risk compared to no treatment). The

fourth and fifth columns denote the test statistic and p-value of the Z-test on whether
the estimated aHR is significantly different from the results of pooled analysis. Our
FL-TTE achieved less-biased treatment effect estimates than two typical meta-
analysis methods when compared to the estimates from the pooled data. *p < 0.05;
**p < 0.01; ¥**p < 0.001; not significant (“ns”) with p > 0.05.

empirically demonstrate that our FL-TTE better recovers pooled ground-
truth estimates across distributed EHR datasets, with lower bias than meta-
analysis methods in time-to-event modeling. While prior federated causal
methods focused on binary or continuous outcomes, our approach

integrates trial emulation and survival analysis, offering practical value for
real-world treatment effect estimation under privacy constraints.

We evaluated the effectiveness of FL-TTE on two different diseases.
One is Alzheimer’s disease (AD), which is the most prelevant
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Estimates Compared with pooled-analysis
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metasng i —— 1.14 (1.09, 1.20) 6.32e-08""" 3.02 2.53e-03""
Time to Cessation of Mechanical Ventilation i

pooled —%—0— 1.03 (0.98, 1.08) 0.214"° 0.00 1.000™
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Fig. 6 | The estimated aHR and 95% CI on eICU and MIMIC, comparing pooled
analysis, our FL-TTE and meta-analysis with fixed effects and random effects.
The third column on the right side is the p-value and significance level of the Z-test
on whether the estimated aHR is significantly different with 1.0 (reference value
indicating the treatment does not alter the risk compared to no treatment). The

fourth and fifth columns denote the test statistic and p-value of the Z-test on whether
the estimated aHR is significantly different from the results of pooled analysis. Our
FL-TTE had less-biased estimates than the meta-analysis in three types of outcomes
(28-day mortality, Time to ICU discharge, and Time to cessation of mechanical

ventilation). *p < 0.05; **p < 0.01; ***p < 0.001; not significant (“ns”) with p = 0.05.
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before and after reweighting with our FL-TTE,
single-site analysis, and pool-analysis method. For
eICU-MIMIC, we present the single-site results by
selecting the top 5 of 192 sites with the largest
cohort sizes.
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neurodegenerative disease and takes tens of years to progress. The INSIGHT
database we used in this case is the EHRs from a general civilian population
in New York city area spanning 17 years. The other is sepsis, which is a
prevalent deadly condition in critical care. The eICU-MIMIC database we

used for this case includes the EHRs from the ICUs in 192 hospitals across
the US. Comparing the two case studies, the INSIGHT data include infor-
mation of general patient visits, which are typically sparse and irregular, and
it is more appropriate for studying chronic diseases such as AD. eICU-
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MIMIC mainly contains information of patients within ICU stays, which
are much denser with higher frequency, and they are necessary for study
acute conditions such as sepsis. Emulating target trials for these two distinct
disease conditions using the EHRs with very different characteristics can
effectively demonstrate the generalizability of FL-TTE.

On both case studies, we were able to demonstrate (1) FL-TTE can
obtain estimates that are much closer to the pooled estimates compared with
local estimates; (2) FL-TTE can better balance the covariates with the
boosted sample size, while it is challenging for local sites to achieve good
balancing performance, which makes their estimates not stable; (3) FL-TTE
also outperformed meta analysis with regards to the quality of the estimates
(closer to the pooled results with narrower confidence interval) and cov-
ariate balancing. These results validated the effectiveness of FL-TTE and its
potential of enabling privacy-preserving multi-institutional collaborations
on generating robust real world evidence for treatments.

The estimates derived from FL-TTE aligned well with the numbers
reported from existing research. For instance, atorvastatin, a prescribed
statin for managing high cholesterol and triglyceride levels, has been shown
to be a potential repurposable candidate for treating AD. The study by Zang
et al.’ reported an aHR of 0.74 (95% CI: 0.73-0.76) from the OneFlorida
network™ and 0.92 (95% CI: 0.90-0.94) from the MarketScan database®.
And the study by Zissimopoulos et al.”' reported an aHR 0.84 (95% CI: 0.78-
0.89) among white women from Medicare beneficiaries”. Similarly, using
INSIGHT data®, FL-TTE achieved estimates of aHR 0.86 (95% CI:
0.83-0.89). In addition, pantoprazole, a proton pump inhibitor (PPI)
commonly used to treat gastroesophageal reflux disease, esophageal
damage, and excessive stomach acid production caused by tumors and was
also identified as a repurposing candidate for AD***', was reported with an

association with reduced risk of AD onset with aHR 0.81 (95% CI:
0.80-0.83) from the OneFlorida®® and aHR 0.94 (95% CI: 0.92-0.96) from
MarketScan®, and FL-TTE estimated an aHR 0.91 (95% CI: 0.88-0.94). For
the case of sepsis, corticosteroids was shown to be associated with an
increased risk of 28-day mortality due to exacerbated immunosuppression
and a higher incidence of acute kidney injury®**, with an aHR of 1.10 (95%
CI: 1.04-1.16) as reported by Rajendran et al.”. In our analysis, FL-TTE also
estimated an aHR of 1.08 (95% CI: 1.02-1.14) for 28-day mortality.

We further enhanced the privacy protection of FL-TTE with the dif-
ferential privacy technique™®, where we perturbed the shared gradients
when updating the model parameters by adding Gaussian noise. With our
case study evaluations, FL-TTE demonstrated enhanced privacy preserva-
tion with retained model accuracy. Our investigation further improved the
practicality of FL-TTE in terms of privacy-preservation.

Our study is not without limitations. First, our analyses estimated
intention-to-treat (ITT) effects considering its simplicity, inclusiveness, and
better reflecting real-world effectiveness than per-protocol effect. To
develop federated learning framework for per-protocol effect estimation is a
promising future direction. Second, we used pooled analysis as a gold
standard for estimating treatment effect' ™. Although it is valid under
heterogeneity in baseline covariates, its validity may be limited”’”’* when
treatment effects differ substantially across sites. Future work could explore
alternative benchmarks beyond pooled analysis as the gold standard under
treatment effect heterogeneity. Third, while the Cox model provides a useful
summary of relative risk, hazard ratio estimates may be sensitive to viola-
tions of the proportional hazards assumption. Future work could consider
alternative modeling strategies such as time-varying coefficients or flexible
survival models to better capture time-dependent treatment effects. Fourth,

npj Digital Medicine | (2025)8:387


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01803-y

Article

in this study, electronic health records (EHRs) were used in our primary
analysis, which did not include all information relevant to the treatments
such as the health insurance. This could lead to residual confounding. In the
future, we will gather and incorporate more information to further enhance
the robustness of the conclusions derived from FL-TTE.

Methods

This study was approved by the Institutional Review Board of Weill Cornell
Medicine with protocol number 21-07023759. It was conducted in accor-
dance with the Declaration of Helsinki. All EHR used in this study were fully
deidentified, ethics approval and informed consent were not required.

Federated Learning-based Target Trial Emulation (FL-TTE)
Framework

FL-TTE framework design. In this study, we performed an intention-to-
treat (ITT) analysis to assess treatment effects for two different diseases
including Alzheimer’s disease (AD)” and sepsis™. For AD-repurposed
drug trials with INSIGHT data, we evaluated the effect of initiating trial
drugs for patients who were confirmed with mild cognitive impairment
(MCI) on delaying AD onset over a five-year follow-up period. Two
treatment strategies were compared: Strategy 0, alternative drug (a
similar drug within the same therapeutic class) initiation at baseline, and
Strategy 1, trial drug initiation at baseline (see Supplementary Table 1 for
details). It follows an active comparator new user design’, in which
patients newly initiating the trial drug are compared with those newly
initiating an alternative drug under the same drug class captured by the
Anatomical Therapeutic Chemical (ATC) level 2™, For sepsis with eICU-
MIMIC data, we assessed the effects of corticosteroid treatment on
outcomes such as 28-day mortality, ICU discharge timing, and the
duration of mechanical ventilation among those patients who were
admitted to intensive care units (ICU). Two treatment strategies were
compared: Strategy 0, no corticosteroid initiation within 10 h before to
24 h after ICU admission, and Strategy 1, hydrocortisone initiation at a
dose of at least 160 mg per day during the same window. We present the
summary of the FL-TTE protocol and a comparison of the target trials on
INSIGHT (Supplementary Table 1) and eICU-MIMIC (Supplementary
Table 2).

To achieve balance across treatment (exposed) and control (non-
exposed) groups, we introduced a federated propensity score calculation
model designed to adjust baseline covariates. This global logistic regression
(LR) model was trained with a federated learning paradigm. Specifically,
treatment assignment served as the dependent variable, while baseline
covariates acted as independent variables. The propensity scores from the
global LR model were used to apply the inverse probability of treatment
weighting (IPTW) for each individual. For survival analysis, we proposed a
federated Cox proportional hazards model (CoxPH"®) to calculate global
adjusted hazard ratios (aHR) across sites, with 95% confidence
intervals (CIs).

Federated Propensity Score Calculation Model

This model is to adjust for differences in patient covariates between treated
and control groups, which is achieved through the propensity score (PS)
representing the probability that a patient receives a treatment given the
baseline covariates. Specifically, for each patient n, the propensity score
e(z,) is defined as:

exp(n’z,)

where T, is a binary indicator of whether the patient received the treatment
(T, = 1)ornot (T, = 0).z, represents the vector of baseline covariates for
patient n (e.g., age, gender, medical history, etc.).  is the vector of PS
calculation model parameters that are estimated through logistic regression
(LR). The Eq. (1) models the likelihood of treatment assignment based on
patient covariates.

Next, Inverse Probability of Treatment Weighting (IPTW) is applied to
balance the covariates between the treated and control groups. The weights
w,, for each patient n are computed as follows:

LoifT® =1
_) @ @
" L e —
ey T =0.

These weights help reweight the data so that the treated and control
groups are balanced, which is crucial for the next-step treatment effect
estimation.

In our FL-TTE framework, each site k computes the partial log-
likelihood for the LR model:

Ny
logLyd(m) = > _(T{loge()) + (1= TiP) log(1 — ¢(21")), ()
n=1

where N, is the number of patients at site k, %) represents the covariates for
patient n at site k.

After each site optimized its local model, the central server aggregates
the updates to update the global PS calculation model in an interative
process. Finally, the federated partial log-likelihood for all sites is:

K
log Lpg(m) = ZPk <
=

1

Ni
D (1P loge(2P) + (1 — TV) log (1 — e(z¥)) + L,eg(n)>

(4)
N,

Here K is the total number of sites. p, = Ff represents the proportion of the
total data 1. located at site k, where L,,, () represents the regularization term
for helping FL address data heterogeneity problem. Our framework is com-
patible with several types of regularizers or different federated algorithms for
aggregating local models. For example, (1) the regularizer can be instantiated
as L,,,(7) = 0, i.e. using FedAvg” algorithm and no explicit regularizer for
data  heterogeneity issue. (2) It can alse be instantiated as
Ly (m) =5 |7 — 2% ||°, ie. using FedAvgM™ algorithm that maintains
smooth local model updates between two consecutive iterations ¢ and ¢ — 1.
(3) Besides, it can be instantiated as Loy (m) = % [lm — a®)| |2, ie. using
FedProx™ algorithm that ensures the consistency between local model 7¥ and
global model 7. Here 1 /2 is the coefficient of the regularizer. It means that each
local objective Eq. (3) includes a proximal regularization term. The updated
local parameters are then aggregated by the central server to form the global PS
calculation model parameters for the next round of each local site (Box 1).

Federate Cox Proportional Hazards Model

Once the covariates are successfully balanced, we estimate the treatment
effects using a CoxPH model. The hazard function for patient #, given their
covariates z,,, is:

h(t|zn) = hy(t) % exp(ﬁTzn), (5)

where h(t|z,) is the hazard rate at time ¢ for a patient with covariates z,,.
hy(t) is the baseline hazard function (the hazard when all covariates are
zero). B is the vector of model parameters that describes the effect of the
covariates on the hazard.

Generally, at each site k, the partial likelihood for the Cox model is
computed locally as:

exp < B Tzf-k) )
L(ﬁ) - H T_(0)’ ©)
i=1 Z (k) exp(ﬁ zZ; )
! jeR j
where E is the number of distinct event times (e.g., the times at which patients
develop the outcome), ng) is the risk set at time ¢, i.e., the set of patients still at
risk for the event at time ¢;. zgk) represents the covariates for patient i at site k.
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Box 1 | The algorithm of our Federated
Leaming-based Target Trial Emulation (FL-
TTE) framework

Box 2 | Theoretical analysis of our Federated
Leaming-based Target Trial Emulation (FL-
TTE) framework

Input: Given K sites where each site holds a local dataset S, the whole
datasetis S = UK_,S,. The number of epochs for federated learning
isT.

Parameters: 0 = (7, ) denotes the parameter, where 7 is the
parameter of the propensity score calculation model and g is the
parameter of the CoxPH model.

Output: The estimated treatment effect adjusted hazard
ratio (aHR).

1. fort=1,...,

2 Server sends Y = (29, %) to all local sites.

3. for each site S, do

4 Calculate the objective of the federated propensity score

model with Eq. (4).

Tdo

5. Obtain the local updated parameter 7.
6. Calculate the objective of the federated CoxPH model with
Eq. (9).
Obtain the local updated parameter it +".
8. Send back the updated e‘k”” to server.
9. end for
K
10. Server aggregates 7 as 7t = - Nz ®.
k=1
1) _ 3 N pl®
11. Server aggregates g as p¢ = > NB-
k=1
12. Obtain the global updated parameter 6+,
13.end for

14.0Obtain the optimized parameters 87 = (™, ™).
15.Estimate treatment effect using the optimized CoxPH model with

ﬁ(T) .

In our FL-TTE framework, we employ IPTW-adjusted Cox regression,
where the partial likelihood is adjusted with the IPTW weights for each site k:

(k)

P (ﬁr (k)) Via

(k)
E ’D, ‘

®(g) — 7
L(ﬁ) HH (k) T(k) @)
=1 g=1 Zjeme exp
Where D; is the set of patients with tied events at time f;. w; , is the IPTW

weight for patient i_, calculated based on the PS.
Furthermore, the federated partial likelihood aggregates these updates
across all sites:

|D‘” T (k) Wy
i exp(/S z; >
exp (ﬁT (k>

Finally, the partial log-likelihood of our federated CoxPH model is
shown in Eq. (9):

(k)

eXP<ﬁT <k>> } Aq+Lyeg(ﬁ) 7

St exp (87"

log L(B

: [ot]
=3l 1 {

(€)

Theorem 1: Assuming the C-Lipschitz continuity®® and smoothness of
the outcome model and its loss function is A-strong convex® with the
parameters, the bias between our FL. model and pool analysis

[llog aHRg_ — log aHR44 | is upper bounded with 40 N While the

bias between meta-analysis and pool analysis

4C Pk .By
choosing a proper proximal term coefficient y, we can always have

[llogaHReta — lOg aHRpoo,ll is upper bounded with

4¢? 4c? Py
HominN AominN’

Matrix in the optimizations of the CoxPH model.

Theorem 2: Our FL method has good convergence with a
convergence rate of 0(%) to an approximation of the global optimum,
where T is the total number of iterations.

where o,,,;, is the minimum eigenvalue of the Hessian

wherep, = % represents the proportion of the total data N located at site k.
We add the regularization term for B (which can also adopt different
instantiations) to address data heterogeneity during the optimization pro-
cess of federated CoxPH model. Similar with Eq. (4), each local objective Eq.
(8) includes a proximal regularization term. And the updated local para-
meters of CoxPH model optimized with Eq. (9) are then aggregated by the
central server to form the global CoxPH model parameters for the next
round of each local site.

The overall training pipeline of our FL method is summarized in Box 1.

Adding Differential Privacy to FL-TTE. FL allows the participating sites
to collaborate on model optimization without directly sharing sensitive
patient data. However, despite this advantage, there are still inherent risks
associated with the potential ‘inversion” of the model’’, which means it
could potentially reconstruct original training data from the model’s
gradients”. To address the concerns, we further incorporated differential
privacy techniques aimed at reducing the possibility of data recon-
structions during communication between the central server and parti-
cipating sites. Specifically, we explored (e, 6)-differential privacy
techniques®®® that prevent the interception of sensitive data transmitted
during the training process, strengthening the overall FL-TTE frame-
work, where the privacy budget ¢ = 1.0 and the failure probability
8 = 1/N, where N is the number of patients in a trial.

Theoretical Guarantee

We present a theoretical analysis (Box 2) showing that our FL-TTE fra-
mework yields a tighter bias bound than meta-analysis, compared with the
pooled results (Theorem 1). It highlights the strong generalization cap-
abilities of our FL-TTE framework. Additionally, our method demonstrates
a good convergence rate, significantly reducing communication costs dur-
ing training, which enhances its practicality for real-world applications
(Theorem 2). This efficiency makes it particularly well-suited for deploy-
ment in distributed healthcare systems, where bandwidth and latency
constraints are often limiting factors.

The proofs are shown in Supplementary Materials (Supplementary
Note 1 and 2).

Several existing studies have addressed federated treatment effect
estimation across data from multiple sites***"”*. Most of these works assume
a homogeneous setting” "', where the covariate distributions are identical
across sites. More recently, research has begun to explore federated treat-
ment effect estimation under heterogeneous covariates”>*****”. For example,
Xiong et al.”® proposed federated estimation of average treatment effects
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(ATEs) across multiple sites by aggregating summary statistics based on
propensity scores and outcome models. Their approach emphasizes
asymptotic guarantees for estimators under heterogeneous data. Khellaf
et al.” studied federated causal inference under randomized controlled trial
(RCT) settings, comparing meta-analysis, one-shot, and gradient-based
federated estimators of the ATE from the theoretical aspect. However, these
works have primarily focused on binary or continuous outcomes and can
not be directly applied to time-to-event settings. In contrast, our work
investigates federated treatment effect estimation for survival outcomes, a
relatively underexplored area, and provides theoretical guarantees demon-
strating that our estimator yields less biased results compared to both local-
analysis and meta-analysis approaches. Besides, we propose a comprehen-
sive federated target trial emulation framework to estimate real-world
treatment effects using EHRs. This includes specification of eligibility cri-
teria, treatment strategies, time zero, follow-up windows, and outcome
definitions, which is also underexplored in the literature.

Data

INSIGHTZz®. In this study, we selected patients diagnosed with mild
cognitive impairment (MCI) between 2006 and 2023 from the INSIGHT
network. Eligible patients were required to meet several criteria: they had to
be at least 50 years of age at the time of MCI diagnosis, have no history of
Alzheimer’s disease (AD) or related dementias in the five years preceding
the index date, and have a baseline observation period of at least one year
prior to treatment initiation, with no upper limit imposed on this baseline
period. The index date was defined as the date of initiation for the study
drug, with all inclusion criteria being confirmed by this point. We con-
structed nine target trials (aspirin, amlodipine, atorvastatin, lidocaine,
acetaminophen, famotidine pantoprazole, fluticasone, albuterol).

Treatment initiation was determined as the date of the first prescription
of the drug of interest, with at least two consecutive prescriptions within a
30-day window required to confirm valid initiation. Based on baseline
eligibility and treatment strategies, patients were assigned to either treat-
ment or comparison groups. We assumed baseline comparability between
both groups by adjusting for key covariates, including age, gender,
comorbidities, prior medication use, and the time elapsed between MCI
diagnosis and treatment initiation. Baseline comorbidities were drawn from
the Chronic Conditions Data Warehouse® and other expert-determined
risk factors for AD*%, with a total of 64 covariates considered (Supple-
mentary Table 8). These covariates were defined using ICD-9/10 codes, and
medication history was constructed from the 200 most frequently pre-
scribed drugs. In total, 267 covariates were adjusted for, including con-
tinuous variables such as age and time from MCI diagnosis to treatment
initiation, as well as binary variables for gender, comorbidities, and
medication use.

Patients were followed from baseline until the earliest of the following
events: first AD diagnosis, loss to follow-up, five years after baseline, or the
database’s end date. The primary outcome of interest was a newly recorded
AD diagnosis during the follow-up period, classified as a positive event. If no
AD diagnosis was recorded and the last documented prescription or diag-
nosis date occurred after the follow-up period ended, the event was classified
as negative. Conversely, cases where no AD diagnosis was recorded, but the
last prescription or diagnosis date fell before the end of follow-up, were
classified as censoring events. The timing of these events was calculated as
follows: for positive events, the time was measured from baseline (the
initiation date of the drug) to the first AD diagnosis. For negative events, the
time corresponded to the total follow-up duration. For censoring events,
time was calculated as the interval between baseline and the last recorded
prescription or diagnosis date, whichever occurred later. We identified
clinical phenotypes relevant to the study based on a set of expert-selected
diagnostic codes (Supplementary Table 7). These phenotypes helped refine
event classifications and enabled precise tracking of patient outcomes across
different trial emulations. This careful differentiation of event types allowed
for comprehensive time-to-event analysis across the cohort, ensuring con-
sistency in handling positive, negative, and censoring events.

elCU-MIMIC***. We identified suspected infection by the concurrent
administration of antibiotics and collection of a body fluid culture. We
used a simplified definition of sepsis, classifying any patient with a
Sequential Organ Failure Assessment (SOFA) score of 2 or more as
having an infectious critical illness, deviating from the Sepsis-3 criterion®
of a 2-point increase in SOFA score from baseline. Enrollment for this
cohort was defined as the first 24 h after ICU admission, with patients
required to be at least 18 years old and diagnosed with sepsis according to
our infectious critical illness definition. Patients with a history of infec-
tion or corticosteroid use prior to ICU admission were excluded. See
Supplementary Table 5 and 6 for more details on patient characteristics.

We adjusted for a broad array of baseline covariates in the analysis,
including vital signs, laboratory measurements, and demographic char-
acteristics, all routinely monitored in ICU settings. These covariates inclu-
ded heart rate, mean arterial pressure, respiratory rate, oxygen saturation,
systolic arterial blood pressure, body temperature, and key biochemical,
hematological, and physiological markers. Demographic data, such as age,
sex, and body mass index (BMI), were also considered, with BMI categor-
ized according to WHO guidelines. We applied the Elixhauser Comorbidity
Index" to account for patients’ past medical histories. Data preprocessing
involved removing outliers beyond the 99th percentile and imputing
missing values using median imputation. The missingness of covariates is
shown in Supplementary Table 3. When multiple measurements were
available during the 24-h enrollment window, the worst values were selected
to reflect the most severe clinical condition of the patient.

The study’s primary outcome was 28-day mortality, with secondary
outcomes including time to ICU discharge and time to cessation of
mechanical ventilation. Mechanical ventilation cessation was defined as a
24-h period without ventilatory support. Competing risk analyses were
performed for the secondary outcomes, with death treated as a competing
risk®. Patients were followed from ICU admission until the first of death,
discharge, or loss to follow-up.

Data availability

The INSIGHT data can be requested through https://insightcrn.org/. The de-
identified data utilized in this study for the development cohort (eICU and
MIMIC-IV) can be accessed upon the approval of a formal proposal and the
execution of a Data Access Agreement via Physio Net (https://physionet.org/).

Code availability

The primary repository is hosted on https:/github.com/lihy96/
FederatedTrialEmulations. The experiments were conducted using
Python 3.10, with survival analysis performed via the lifelines package
(version 0.29). All implementation details, including preprocessing scripts,
model training, and hyperparameter configurations, are documented within
the repository.
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