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Abstract:  Given a Zariski-dense, discrete group, I', of isometries acting on (n+ 1)-
dimensional hyperbolic space, we use spectral methods to obtain a sharp asymptotic formula
for the growth rate of certain I'-orbits. In particular, this allows us to obtain a best-known
effective error rate for the Apollonian and (more generally) Kleinian sphere packing counting
problems, that is, counting the number of spheres in such with radius bounded by a growing
parameter. Our method extends the method of Kontorovich [Kon09], which was itself an
extension of the orbit counting method of Lax-Phillips [LP82], in two ways. First, we
remove a compactness condition on the discrete subgroups considered via a technical cut-
off and smoothing operation. Second, we develop a coordinate system which naturally
corresponds to the inversive geometry underlying the sphere counting problem, and give
structure theorems on the arising Casimir operator and Haar measure in these coordinates.

Key words and phrases: Orbital counting, Spectral theory, Automorphic representations

1 Introduction

The purpose of this paper is to give improved error estimates on the counting problem for Kleinian sphere
packings (and discrete counting methods more broadly). A packing P of S” (thought of as the boundary
of hyperbolic (n+ 1)-space, H""!) is an infinite collection of round, disjoint balls whose union is dense in
S". Following [KK23], such is called Kleinian if its residual set (left over when the interiors of the balls
are removed) agrees with the limit set of some discrete, geometrically finite subgroup, I', of isometries of
H"+!. A familiar example is the classical Apollonian circle packing in n = 2, see e.g [Kon13] for more
background and see Figure 1 for an example.
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ALEX KONTOROVICH AND CHRISTOPHER LUTSKO

Figure 1: A classical Apollonian circle packing in the sphere S*. Note that the union of balls in the
packing is dense in S?. (Image by Ivdn Rasskin.)

Let P be a given Kleinian sphere packing. For a sphere S € P, let b(S) denote its bend, that is, its
(signed) inverse-radius; this is determined after a choice of coordinates on S”, and in particular a choice
of a point at o (see §4). The Counting Problem is to estimate the number

Np(T):=#{SeP:b(S)<T}

of spheres in P with bend bounded by a parameter T — oo. If the packing P is bounded, that is, the chosen
point at infinity is contained in the interior of some ball, then Ny (T') is finite for all 7'; otherwise one can
count spheres restricted to a bounded region (such as a period, if the packing is periodic). Let § = dim(7P)
be the Hausdorff dimension of the residual set of .

For the classical Apollonian packing, it is known that 6 ~ 1.3 (in general one has n — 1 < é < n).
In this setting, Boyd [Boy73] showed that Ny(T) = 79+0(1) which was improved in Kontorovich-Oh
[KO11] to an asymptotic formula, Np(T) ~ cpT?, where ¢y is a constant depending on the packing P.
An effective power savings error rate was shown in [Vin12] and [LO13] independently. These tools and
results have been generalized by many authors (see, e.g., [Kim15, MO15, Pan17, EO21]). In this paper,
we introduce a new method, modifying the approach in [Kon(09], to produce a best known error exponent
in the Counting Problem (including the classical Apollonian case).

The error exponent involves the spectrum of the hyperbolic Laplacian A acting on L2(T'\H"*!) where
I' is the symmetry group of the packing. From work of Lax-Phillips [LP82], Patterson [Pat76], and
Sullivan [Sul84], we have that the Laplace spectrum consists of a discrete isolated bottom eigenvalue
Ao = 0(n— 9), then possibly a finite number of further discrete eigenvalues in the “exceptional” range,

Ao <A << N <n/4, (1
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and purely continuous spectrum above n? /4. (It was suggested by Sarnak [Sar07] that, in the case of the
classical Apollonian packing, k = 0, that is, there are no other discrete eigenvalues below 1 except the
bottom.') Write A; = 5;(n—s;) withn/2 <s; < 8.

These eigenvalues also correspond to the parameters of spherical complementary series representations
occurring in the decomposition into irreducibles of L?>(I"\G), where G = SO(n+1,1), see §2.2. We
assume throughout that no nonspherical complementary series representations arise in this decomposition.
This holds automatically for circle packings, that is, when n = 2. Minor modifications are needed to
handle the general case, leading to potentially worse error terms, see Remark 7.

Theorem 2. Given a Kleinian packing P as above, there exists a constant cp > 0 such that:
Np(T) =cpT? (14+0(T™M)) 3)

as T — oo, where

=3, 4)

If there is no discrete spectrum other than the base eigenvalue, then we have that
Np(T) = cpT? (1 +o (T_"(log T)2/<"+3>>) :

where n = %(5—11/2).

For the classical Apollonian packing (n = 2), our error exponent is 1) = 2(8 — s1), and if there are no
discrete eigenvalues above the base then n = %(5 —1)~0.12..., whereas the best previously known

exponent [LO13, Theorem 1.1] was:
2
=—(0— 5
n 63 ( $1 )7 ( )
and if sy = n/2, this exponentis ) = Z (8 — 1) ~ 0.0097. Hence (4) is a significant improvement over

).

Remark 6. Counting with a smooth cutoff and extracting all of the lower order terms corresponding to
eigenvalues other than the base, we obtain the best possible error exponent N = 6 —n/2 (see Theorem
61), which improves over the smooth error exponent in the Apollonian case N = %(5 —1)in [LOI3,
Theorem 8.2].

Remark 7. If we remove the assumption that there are no nonspherical complementary series representa-
tions occurring in L*(T\G), then our method gives the weaker error term in (3) with 1 = % (6—(n—1)),
that is, replacing s| in (4) with n — 1, see Remark 79. With more effort, this error term could be improved,

see [EO21].

The proof of Theorem 2 introduces two new technical ideas: first, of independent interest, we
overcome difficulties in the “abstract spectral theory” method of [Kon(09] arising from a non-compactness
condition (see the discussion below), and second, we introduce a new decomposition tailored to sphere
counting problems and derive structure theorems for the arising Casimir operator and Haar measure.

'Added in print: Sarnak’s question has now been answered in the affirmative [KKL23].
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1.1 Ideas in the Proof

Previous Approach: To explain the main ideas, we first recall the method introduced in [Kon09],
which itself is modeled on [LP82]. Consider the following related but simpler to exposit problem. Let
I' < SL,(R) be a discrete, Zariski dense, geometrically finite subgroup, with critical exponent or > 1/2,
acting on the upper half plane H?, and assume that oo is not a point of approximation for I'. This last
condition implies that either oo is a cusp of I" with stabilizer I'. (in which case the limit set is periodic),
or oo is not in the limit set of I" (and hence the limit set is bounded). Either way, consider the problem of
counting

Nr(T):=#{(95) eT\I': *+d* < T}.

(The Lax-Phillips work counts a® 4+ b? +c? +d? < T, and new ideas are needed to handle the potential
stabilizer when counting ¢ 4 d°.) The assumption that o is not a point of approximation assures that the
set of such ¢? + d? is discrete, and hence this count is finite for any 7. The main idea, as sketched below,
is to use a particular function of the Laplacian to grow balls of size T from balls of bounded size.

In this subsection, write G = SLy(R), N = {(} §)}, (so that '.. = 'NN) and K = SO(2), and let

xr:G—=R:(40) = T2 pop ®)

be the indicator function of the region in question in G. Note that Y7 is left-N-invariant and right-K-
invariant, and let

Fr:T\G/K—R:g— Y xr(v3),
Yl \T

so that Nr(T) = Fr(e). As observed in [Kon09], Fr is in L*(I'\G/K) = L*(I'\H) if and only if o is a
cusp of I'. To access the value of Fr at the origin, we let ¥ be a smooth bump function about the origin in
G, and automorphize it to ¥(g) := Y,er W(¥g). Then, we can write a smooth approximation of Nr(T') as

Nr(T) := (Fr,¥)r

where the inner-product is with respect to L?(I"\H). Now suppose we take the inner-product of Fy with
an eigenfunction of the Laplacian ¢, with eigenvalue A = s(1 —s). Then, solving a second order ODE,
we would have that

(Fr,¢)r = aT* +BT', )

for some o and B depending on ¢. The key idea of [Kon09] is then to rewrite (9) in a way that involves
the eigenvalue only, and not the coefficients o, B of the eigenfunction. This is achieved by setting T = 1
and T = b (for some b < 10, see §3.1) in (9) and solving for a, f3, to give an expression of the form:

(Fr,¢) = Kr(s)(F1,9) + L (s)(Fp, 9),

for some functions K7, Ly. This then allows one to prove the “main identity”, which states that, in the
sense of L2, we have:
Fr =Kr(A)Fi + L7 (A)F,.
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This is exactly what we mean by “growing” the ball of radius 7" from the Laplacian and bounded norm
balls. It is this identity that can be proved rigorously even in the absence of explicit Whittaker expansions
and spectral decompositions.

New Ideas: Much of this approach fails if I" does not have a cusp at oo, and the main purpose of
[KO12] was to bypass this “PDE” approach and replace it with homogeneous dynamics, at the cost of
worse error terms. The main new ideas of this paper allow us to recover the PDE approach (and then
extend it to the Kleinian setting).

The first issue is that Fr is not in L?. The observation which eliminates this issue (made already in
[KO12]) is to add a second cut off in the N-direction without losing any of the orbit, since the limit set is
anyway bounded; this adds compactness in the x-variable, restricted to some sufficiently large interval
[—X,X]. Now we again unfold the inner product (Fr, ¥)r leading to the following integral:

//%T 2)xx (2 ()dx

We proceed with harmonic analysis on [—X,X]| x (0,e). However this truncation requires a delicate
smoothing procedure to avoid introducing boundary terms in the analysis of the Laplacian. Once this is
accomplished, the proof follows in a similar fashion. See §3.1 for the details.

In addition to overcoming the restriction in [Kon09], this SL,(IR) result is of independent interest,
and improves on [KO12, Theorem 1.8] which used methods from homogeneous dynamics to count
Pythagorean triples.

In the Kleinian Setting: There are several further modifications and innovations needed to extend
the above-described SL;(IR) approach to the setting of orbits in circle/sphere packings. In the previous
setting, the stabilizer of yr in (8) was left-N and right-K invariant, and so it was natural to use Iwasawa
coordinates SL,(R) = NAK. In the setting of sphere packings, one counts spheres in the orbit SyI" with
bend less than T'; here S is a fixed (n — 1)-sphere in R? = R"U {oo} = 9H"! and ' < G = SO(n+1,1)
is a symmetry group of the packing, acting on the right by Md&bius transformations. The analogous
function y7 is given by:

xr G = Rig= Lipsog)<rys

where again b(S) is the bend of a sphere S. This function is left-H invariant, where H = Stabg(Sy) =
SO(n, 1); it is also right invariant under the group L of rigid affine motions, since neither translating nor
rotating a sphere changes its bend. The latter decomposes further as L = UM, where U is a one-parameter
unipotent group (which controls the co-bend, defined to be the bend of the inversion of a sphere through
the unit sphere), and M = SO(n) rotates the sphere about the origin. It turns out that H M = SO(n— 1),
and thus we set My := M/(H N M) = S"~!. The subgroup of G which directly controls the bend is also a
one-parameter unipotent group we call U, leading to the map:

HxUxUxM; — G,

which is an isomorphism in a neighborhood of the identity; see §4.2 for details. An important feature of
this decomposition is the fact that the Haar measure of G in these coordinates decomposes as a product
of H-Haar measure on the H component, times the M;-Haar measure on the M; component, and times
something depending only on U and U; see §4.4. Moreover, in the proof, we only need the Casimir
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operator restricted to left-H- and right-M;-invariant functions, for which we derive a nice, concise explicit
expression in any dimension; see §4.5.

LetI'; :=T"N H denote the stabilizer of Sy in I'. It follows from the Structure Theorem for Kleinian
packings [KK23, Theorem 22] that I'; is a lattice in H (that is, it acts with finite covolume); this fact
will be used crucially in our analysis. The finiteness of the volume of I';\H is analogous in the SL,(R)
setting to the finiteness of the volume of K, though the latter is trivial since K is compact. Note that we
acted on the left in SL,(R) and it is more convenient to act on the right for sphere packings.

In the SL,(R) setting, the N direction was unbounded and required a cut-off. Analogously here, the
U-direction is unbounded; this can be controlled via a similar truncation procedure by invoking the fact
that the limit set is bounded in the U direction, see Lemma 64.

Remark 10. Note that if the stabilizer of P contains a full rank unipotent subgroup then the methods of
[Kon09] may be applied directly. For the existence of such, see [KN19].

1.2 Organization

In section 2 we collect some preliminaries. In section 3, we warm up to the counting theorem and
illustrate the main ideas by proving a result analogous to Theorem 2 in the SL;(R) setting. In section 4,
we switch to the general SO(n+ 1, 1) setting, and derive the Haar measure, and Casimir operator in the
above-described coordinate system. Finally, in section 5 we prove Theorem 2.

2 Preliminaries

2.1 Lie algebras and the Casimir Operator

We collect here some standard facts about the group G = SO°(n+1, 1) (where o denotes the connected
component of the identity), and its Lie algebra g = Lie(G) of dimension d := dim(g) = (n+1)(n+2)/2.

In general, Casimir operators generate the center of the universal enveloping algebra U(g). In our
rank-one setting, we can compute the Casimir operator C as follows. Let Xi,...,X; be a basis for the Lie
algebra g, and let X', ..., X be a dual basis with respect to the Killing form:

B(X,Y) = Tr(Ad(X) o Ad(Y)),

that is, B(X;,X ]’f) = 1y;—jy. Then the Casimir operator can be expressed as

C=

d

i=1

Since the elements of the Lie algebra act like first order differential operators, the Casimir operator acts
as a second order differential operator on smooth functions on G; see §4.5 for a detailed calculation in
our setting.

Let K =2 SO(n+ 1) < G be a maximal compact subgroup. When restricted to K-invariant smooth
functions on G, the Casimir operator C agrees (up to constant) with the hyperbolic Laplacian A under an
identification G/K = H"*!,
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2.2 Decomposition of L?(I'"\G) into irreducibles

Let I' be a discrete, geometrically finite, Zariski dense subgroup of G. Given Iwasawa coordinates
G = NAK, let M = SO(n) be the centralizer of A in K. The group G acts by the right-regular representation
on the Hilbert space 3 := L?(I'\ G) of square-integrable I"-automorphic functions. Recalling the standing
assumption that H does not weakly contain any nonspherical complementary series representations, the
space JH{ decomposes into components as follows:

H=HoDH D ®H @ Frempered (11)

Here each J{; is the G-span of the eigenfunction corresponding to the eigenvalue A; = s;(n—s;) in (1),
each of which is an irreducible spherical complementary series representation with parameter s; > n/2,
and F'emPered denotes tempered spectrum. Moreover, the subspace ng( of K-fixed vectors in JH; is
1-dimensional, and spanned by the corresponding eigenfunction in L2(I'\H"*!) = L.2(I"\ G)X. In general,
nonspherical complementary series representations can only occur if n > 3 and parameter s < n — 1
[KnaOl].

2.3 Abstract Spectral Theorem

We recall the abstract spectral theorem (see for example [Rud73, Ch. 13]) for unbounded self-
adjoint operators. Let L be a self-adjoint, positive semidefinite operator on the Hilbert space J{. In our
applications J{ will be either L?(I"\G) or a subspace thereof and L will be the Casimir operator.

Theorem 12 (Abstract Spectral Theorem). There exists a spectral measure v on R and a unitary spectral
operator ~ : H — L*([0,0),dV) such that:

[label = )]Abstract Parseval’s Identity: for ¢1,¢, € H

(01,02)3¢ = (D1, 02) 2((0,00) av) (13)

The spectral operator is diagonal with respect to L: for ¢ € H and A > 0,

Lo(A) =Ap(A); (14)

Moreover, if A is in the point specturm of L with associated eigenspace J; , then for any y, y» € H
one has

Vi(A)¥a(A) = (Projs, w1, Projs, va), (15)

where Proj refers to the projection to the subspace J(; . In the special case that J{, is one-dimensional
and spanned by the normalized eigenfunction ¢, , we have that

ViA)Wa(A) = (w1,01)(01, v2). (16)

JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):15-52, 2024 21


https://jamathr.org

ALEX KONTOROVICH AND CHRISTOPHER LUTSKO

3 The SL,(R) Case

In this section, let G := SL,(R) and I" < G be a Zariski dense, finitely generated, discrete subgroup with
Or > 1/2. The goal of this section is to prove Theorem 18 below, that is, to improve on [KO12, Theorem
1.11] by extending the proof of [Kon09, Theorem 1.3 (1)] to the setting where I is trivial. This will
serve as a model for the method that we will generalize to higher dimensions in the rest of the paper.

Again, from work of Lax-Phillips [LP82] and Patterson [Pat76] we have that the Laplace spectrum
below 1/4 consists of a finite number of discrete eigenvalues

M=6r(1-0r) <A < - <A <1/4 (17)
Write Aj :Sj(l —Sj) with sj € (%,1).

Theorem 18. Ler G := SLy(R) and I < G a Zariski dense, finitely generated, discrete subgroup with
or > 1/2. Assume that « is either a cusp for I with stabilizer I's, or oo is not in the limit set of T'. Then
there exist constants co > 0, cy,...,cx, and 1 > 0 such that as T — oo

Nr(T):=#{(9}) €T\ *+d* < T}

(19)
= C0T5F —|—c1Ts1 +--. _|_CkT5k + O(Tn 10g1/2 T),

with n = %(SF + %) (Of course some of the lower order “main terms”, if any, may be dominated by the
error term.)

Remark 20. The case where oo is a cusp is the content of [Kon09, Theorem 1.3 (1.5)], so we assume
below that o is not in the limit set of T.

Remark 21. Note that in this case, since we are counting points in H> (which is K invariant) we can
extract all lower order terms corresponding to eigenvalues other than the base.

Remark 22. The corresponding error term in [KO12, §4.1] is significantly worse (and not even explicitly
specified) as compared to Theorem 18, due in part to much worse dependence on Sobolev norms of the
corresponding test vectors.

To begin the proof, we proceed as described in the Introduction. For g = (f Z) € G, let

(23)

1 ifE+d*><T,
xr(g) =

0 otherwise.
Under the identification G/K ~ H (where K = SO(2)), g — z = gi, Xr corresponds to the condition
S(z) > 1/T.

Now average yr over the group I':

Fr(g):=Y xr(ve). (24)
vell
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such that the count in (19) can be written as Nr(T) = Fr(e).

To access the value of Fr at the identity, we follow the standard procedure of smoothing the count.
To this end, we fix once and for all a smooth, even, nonnegative, compactly supported bump function
v € C5(R) with unit total mass, [ y1dx = 1. Given € > 0, we set e (x) := 1y (2). Write Iwasawa
coordinates as n, := (} ¥) € N, a, := Diag(,/y,1/,/y) €A, and k € K = SO(2), and by abuse of notation,
write ¥ : G — R, as follows:

Y (neayk) == e (x) ye(logy). (25)

Clearly v is right-K-invariant and depends on € (although we omit this from the notation). It is easy to
compute that [; y(n.ayk) dxf%'dk =1+0(¢).

We automorphise y by setting:

W(g) =We(g) =) v(ve),
yel

and consider the smoothed count:

Np(T) = NE(T) := (Fr, ).
After unfolding Fr, we see that

Ne(T):= Y wr (),

yvell

where wr = wr ¢ : H — [0, 1] is given by

wr(e) = [ xr(shy(hdh. 26)

The following theorem, from which Theorem 18 follows by optimizing error terms, gives an asymp-
totic expansion for the smoothed count in the SL, (R)-setting.

Theorem 27. Assume that € > 0 is small enough. Then there exist constants c{—i.)e fori=0,1,... k such
that

~ 1

Nr(T) = 0T 40T 4 el 40 (8T1/2 log T) (28)

with Cl(“(?iz > 0, and the implied constant depending only on T. Moreover cl(-i) =cD(1+0(¢)) for all

€
i=0,1,....k

It remains to prove Theorem 27.
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3.1 Inserting the Laplacian

The smooth count above is an L? inner product of the indicator function Fy with a smooth bump function
Y. The key idea now is to forget about W and analyze the structure of the inner product of Fy with any
smooth L? function using the hyperbolic Laplacian A = —y*(Jy, + dyy).

Following [Kon09, §3] let

stl—siTl—sbs Tl_szs
= blfs —bs ) LT(S) = blfs —bs )

where 1 < b < 3 is a constant depending on 7 which ensures that K7 and Ly have no poles (see [Kon09,
(3.7)] for an exact computation). With that, if ¢ were an eigenfunction of the Laplacian then we would
have (Fr,¢) = AyT*+ ByT'~*. In this case, we could conclude that

(Fr, @) = Kr(s)(Fy,9) + Lz (s)(F5, 9).

Thus we would like to show that

Kr(s): (29)

Fr =Ky (A)F] + Ly (A)Fb, (30)

where K7 (A) (and Ly (A)) is defined via (29) in the same way that one defines matrix exponentiation (via

Taylor expansion). However, there is a problem created by the fact that Fr is not in L*>(I"\H). To get

around this, we will first restrict the support of Fr in the x-direction before applying various smoothing

arguments to conclude that a version of (30) holds for the modified Fr. Since o is not in the limit

set, it is in the free boundary, and hence there exists a fixed an X = X (I') > 0 such that the full region

((—e0, —X]U[X,00)) x [0,00) C H is contained in a single fundamental domain, see Figure 2.
Restricting the Real Direction: Define the following counting function

Frx(z) ==Y xr(v2)x (v2)

yell
where
Belet i) = {1 ifxe [-X.X],
0 ifx¢[-X,X].
Let Jx := [—X,X] denote the support of }x. Note that by our choice of X, we still have that Np(T') =

Fr(i) = Frx(i).
Now, consider the difference operator

GT,X = FT,X — KT (A)FI,X — LT(A)Fb,X~

Our goal is to show, that for any ¥ € L?(I'\H) we have (Gr.x,¥)r = 0. This implies the following
identity

Proposition 31. For any values of T and X large enough depending on the group I, we have
Frx =Kr(A)Fix +Lr(A)F x. (32)

where Kt and Lt are the differential operators defined above and b fixed.
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2 —2X —

A

Figure 2: A fundamental domain of I" which extends to infinity in the real direction, and the cut-off due
to xx which is large enough such that [—X, X] contains the entire limit set.

Proving this proposition will be somewhat involved, so we break it down into several steps. First, we
unfold the inner product

dxdy
o

(Grx,¥) = /H(XT(Z)QNCX(Z) — K7 (A)x1(2) Xx (z) — L (A) 26 (2) Xx (2)) ¥ (2)

Smoothing y7: Now we smooth the function y7 so that we can move the Laplacian over to yx via
self-adjointness. Let o > 0, and define the following smooth cut-off function

1 ify>1,

+iy) =
Ko+ D) {0 ity < (1—o0),

and smooth, in between the two bounds. Now let 7. (x+iy) := X1,6(x+iTy).
Let G%X be defined similarly to Gr x, with y7 replaced by xr . That is, let

G ®= [ [

x€Jx

(x1.6(2)¥(2) — %1.6(2) (K7 (A)¥)(2) — X%b.6(2) (LT (A)¥)(2)) dx‘yig.

Note that by construction, for any fixed ¢,

« d
/ / ‘XI,G(Z) _Xz‘zdx% <x 0.
0 x€Jyx y

Thus, using Cauchy-Schwarz, we have that for any ¥ € L*(I"\H)

lim ng(\P) = <GT7X7T>F-
o—0 ’
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Note also that, by the support of the . 5, we may also write, when convenient,

i) = [ [ )
1/2T Jxex
dy

(x1.0(2)¥(2) = 21,6(2) (K7 (8)¥)(2) = 2p.6(2) (L1 (A)¥) (2)) dx x 7

Now our goal, is to establish the following lemma, note that we have already fixed 7', X large enough,
o > 0 small enough.

Lemma 33. For any function ¥ € L*(T'\H) we have that G x(¥)=0.

To prove this lemma, fix ¢, then we will show that for any € > 0 small enough )G%X (‘P)‘ <E.

Periodizing and Smoothing W: Now we periodize and smooth ¥ in order to do spectral theory on

Jx % (0,%0) which we call the space Fy. Note that Fx = E..\H for the elementary group Zo, := (}, 247%)
, but this coordinate description is more useful when we generahze to higher dimensions. Let L*(Fx)
denote the L? space with measure djdy and periodic with respect to E... Let ‘P( ) denote a function which

agrees with ¥ on
[_X’X_ n) X (1/2T)°°) - Hu

where 11 > 0 is to be chosen later. Fromx=X —ntox=X—-1n/2, ‘P( ) smoothly interpolates between
the values of ¥(z) and ¥(z —2X), and from x = X — 1/2 up to x = X, W is exactly equal to ¥(z — 2X),
ensuring that all derivatives of W at the boundary values x = X and x = —X agree. We also impose that ¥
decays rapidly to zero below y = 1 /4T, so that ¥ € L*(Fy).

Note that the cost of moving from ¥ to ¥ is small. Indeed,

diff (¥ / / “P z)— ‘ dx@
1/2T JX—n

d
< / / W (z—2X)P + ylp(z)yzdx%.
1/2T JX—n y

Since ¥ € L*>(I'\H)), as  — 0, this integral goes to zero, and hence by choosing 1 small enough, we can
make the difference less than &.

Now note that

/m (x1.6(2)2x (2) — K1 (A) Xx (2) X1,6(2) — L7 (A) 2x (Z)Xbp(Z))‘P(Z)dxd%
1/2T JIx y
= /1 ot (x7.0(2)Xx(2) — K1 (8) 21,6 (2) Xx (2) — L1 (A) 26,6 (2) Xx (2)) (P (2) — l’Iv‘(Z))dxcg

[ Gro@Fcle) — Kr(®)2,6 (07 (2) ~ Lr (8)20,( B () S
1/27 Joyx y
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and by Cauchy Schwarz and the above argument

/ ) / (XT,G(Z)QNCX(Z)_KT(A)XI,G(Z)QNCX(Z)_LT(A)Xb,G(Z)iX(Z))(lP(Z)_@(Z))dxig
1/2T JIx ’
e !/1/2 [ (1re@e@ P+ kr (@ o )
Rl
+ |L7 (A) 2,6 (2) Xx (2)) !2> dx;]

Since diff(¥) is bounded by &, it remains to show that the integral in the brackets is finite. Taking, say,
the middle term (the others being similar), we note that, since the region [1/27,0) x Jx is contained in a
finite number (depending on T') of translates of a fixed fundamental domain, &, for I,

) 7 dy - dxdy
Kr (A 20y < /K A 2824y
Jo | Ko @Pa S < ¥ [ 1K@ o P2

yer

where only finitely many values of v give nonzero contributions to the sum. For each contributing 7,

we can extend the function /y(z) = hy,r.x,6(2) := X1,6(¥2) Xx (z) supported on F to a I'-automorphic

function Hy(z) on H, which agrees with /,(z) on F. Applying the Abstract Spectral Theorem (13), (14)

in L2(T\H), we get

pdxdy
¥2

/F\H |Kr (A)Hy(2)] : ‘KT()’)[/{;(A)’ dv(d)

JAE[0,00
< T Hy| g <rxo 1,

where V is the abstract spectral measure, and we used the bounds K7 (1) < T* < T!.
With that, the difference

G55(¥) ~ GFx(¥)| <rxoe (34)

for any value of € > 0. Thus it remains to show that G%X(q’) = 0. Since W(x + iy) is periodic on x € Jy,
we can use self-adjointness to write
- dy

T )= [ [ (o)~ Kr(8)110(0) - Lr(8)0.0 () ¥)ax’y G5)

Working on Fy: To prove (35) let Now, to prove that G‘T’! X (‘i‘) =0, let
87x(2) = x1,0(2) = Kr(A)X1,6(2) — L1 (8) 26,6 (2)-

Thus, we have

g,X (¥) = <gcry.,x»‘P>’fX'

Lemma 33 will then follow from the following lemma, which shows that, for an arbitrary y € L?>(Fy) the
inner product (g7 y, ¥) is not correlated with any almost eigenfunction:
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Lemma 36. Fix T, X, and © as above, then for any ¥ € L*(Fx) and any A > 0, we have

(87x: W)gx <arox [(A=2)¥| 5. 37)

Proof of Lemma 36. Fix y € L*(Fx) and consider

= d
<XT,0'7‘V>CFX :/O XT,G()’)/j W(Z)dxy—;,

and define f(y) := [;, W(z)dx and h(y) := [; (A—A)y(z)dx. Then we note that, by periodicity in the
x-direction,

)= [ (A= 2)y()ds
= =329 f () = Af(7)-

Thus, [Kon09, Lemma B.1] (which is a simple application of the method of variation of parameters)
implies

FO) =y + By +yuy) +y' " v(y), (38)

where

y
u(y) = (1 —25)71/ w™ S h(w)dw,
(1-0)/T

Y
and v(y):=(1— 2s)_1/ w2 h(w)dw,
(1-0)/T

if A = s(1 —s) # 1/4. Note that the choice of integration boundary for u and v corresponds to the bottom
of the support of x7s; this will be convenient later on. Moreover when A = 1/4

) = oy 2+ By logy +y"*u(y) +v(y)y'*logy, (39)

where

u(y) = /(y w32 log(w)h(w)dw,

))
and v(y) = —/ w32 h(w)dw.
(1-o0)/T

Therefore (assuming A # 1/4 for simplicity) integrating the y variable gives
* s 1—s dy
Are:W)z. = | xro(y)(@y’ +By )y7 +I1+11
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where I := [ xr.6()y* " 2u(y)dy and II := [5° xr.6(y)y~' ~*v(y)dy. Now we can use Cauchy-Schwarz
(as in [Kon09, (B.5)]) to establish that [,/ < ||(A— A)y||5,. In fact, this is the crucial reason why we
needed to work on Fy which is compact in the x direction, and thus yr ¢ is (square) integrable. Thus, we
may conclude

(X1.0:W)3, = AsT" +BoT' ™ + O(| (A= A)wl|s,)

where A = B 5" 21.6(y)y " 7*dy and Bo := a [y x1.6(y)y* 2dy.
Given our choice of K7 and Ly from (29) we have that

Kr(s) L (s) < {;/2 log T iz i (11//22;13;. “0)

Then, by the analysis in [Kon(09, Proposition 3.5] we have
(87.x: V)gy <raxo [(A=2A)ysy (41)
for any choice of y € L?(Jy). O

From there we can choose y to be as in [Kon09, Proof of Theorem 3.2] to establish that g$  is almost
everywhere 0. Note that for this argument to work one only needs the bound (41), a Hilbert épace (here
Lz(fr"x)), an unbounded self-adjoint operator (i.e A), and the abstract spectral theorem.

From there we conclude that

<8%X1{p>§x =0
From there, we conclude that G7 x (W) = 0. Then thanks to (34) we conclude
Gix(®)= [ | 2@ tro(@) —~Kr(8)21.6(2) ~ Lra(8) 00 () ¥()dr s
X
<Lo1X E
for any value of € > 0. Taking € to 0 establishes Lemma 33. Since we have that for any ¥ € L?(T"\H)
lim G (W) = (Grx,¥)r
c—0 7’
we conclude that (Gr x, ¥)r = 0. Which is exactly Proposition 31. O

3.2 Proof of Theorem 27

For the proof of Theorem 27, we return to the smoothed count

ﬁr(T) = <FT,X"P>F'
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Now apply the abstract Parseval’s identity (13)
<FT,X7T>F = <F77X7lP>Spec(F)

— Frx(A0)¥(A0) + /S pecm\wﬁ}(x)wu)dv(x), 42)

where for ease of exposition, we assume that A is the only eigenvalue below 1/4; in general, the other
eigenvalues are dealt with similarly.

Addressing the first term in (42), we can use the abstract spectral theorem, and the fact that Fr x and
W are K-fixed, to say

Frx(%)®(Ao) = (Fr.x, 90} (¥, do),

where ¢y is the base eigenfunction. Note that, for the first factor we can apply the main identity Proposition
31, and the definition to conclude

Frx (%) (%) = T?c(¢o, ¥)r + O(T"/?)

for some constant ¢ independent of 7. As for the second factor, by the mean value theorem (see [Kon09,
(4.17)] for details) we have

(90, Pe)r = do(i) + O(e).

It remains to bound the contribution to (42) from the remainder of the spectrum (assuming here that
there are no isolated eigenvalues apart from the base). Using Proposition 31 we have that

Err:— / Frx(M)P()dv
Spee(I)\ (10}

B Spec(I\ {40} (KTTA)\FLX(M +LT(/AE7,X(7L)> P(A)dv.

By the abstract spectral theorem and (40) we have KT(/A-)\Fl x(A) < T'/2log Tfl;(k) Thus, by Cauchy-
Schwarz, positivity, and Parseval’s identity

/ Kr(A)F x(M)¥(A)dv < T'/1ogT Fix(A)¥(A)dv
Spec(T)\ {40} Spec(I)\ {40}

12 — PN Gy
< T “logT Fl,X(A) dv lP()L) dv
Spec(I)\{Ao} Spec(I)\{Ao}

< T 1og T||Fy x||r P |Ir

1/2

Since W is an €-approximation to the identity, and since the term involving Ly can be treated similarly,
we thus conclude

Xl/Z
Err < ?TlﬂlogT,
note that X does not go to oo, it is kept fixed. This completes the proof of Theorem 27.
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4 Kleinian Sphere Packings

Turning now to the sphere packing setting, let P be a fixed bounded Kleinian sphere packing. Given a
sphere S € P let b(S) denote the bend of S. Then our aim is to establish the asymptotic, (5) for

Nop(T):=#{SeP:b(S)<T}.

4.1 Preliminaries on Inverse Coordinate Systems and the Symmetry Group

We now give a model of hyperbolic space, and develop an inversive coordinate system for the spheres on
the ideal boundary of such; see, e.g., [KK23, §3.1] for background. To begin, we fix a real quadratic form
O of signature (n+ 1,1). For concreteness, we can change variables over R to the “standard” example of
0 = —XxoXn11 —|—x% + - +xﬁ which has half-Hessian

0 0 -
o=10 1, O
0

1
2

=

(43)

(=)

Then the quadratic space (V = R"*"!! Q) with product vxw = v-Q-w' contains the cone Vg := {v:
Q(v) = 0}, the one-sheeted hyperboloid V| = {v: Q(v) = 1}, and the two-sheeted hyperboloid V_; :=
{v:Q(v) = —1}; fix either component of the latter for our model of H"*!. The group Og(R) acts on V_j,
and its subgroup G = OOQ(R), that is, the connected component of the identity, fixes the components.

There is a 1-1 correspondence between vectors v € V| and (oriented) spheres in OH"*!, obtained as
follows. Given such a v, the orthogonal space v := {w € V : vxw = 0} intersects the fixed component
of V_; at a hyperplane = H", and the ideal boundary of the latter is the desired sphere.

This geometric correspondence is made algebraic after a choice of (inversive) coordinates on V|
as follows. Let V*:= {v*:V — R, linear} be the dual space to V, and Q" the dual form, so that
V¥« w* = vxw. Fix a non-zero null covector b* € V*, that is, 9* (b*) = 0. Also fix a null covector b*, with
b* xb* = —2. For the case of the standard form in (43), one can make the choice b* = (0,...,0,—2) and
b* = (—2,0,...,0). Then one picks an orthonormal system, bx},...,bx], for the orthogonal complement
to the span of b* and b*. Then the sphere corresponding to the vector v € V| has bend (that is, inversive
radius)

b (v), (44)
and center b%(v)(bx’f(v), ...,bx}(v)). When b*(v) = 0, the sphere is a plane (which has no “center”), so
the expression (bx](v),...,bx;(v)) is a unit normal to the plane. The “co-bend” of a sphere is defined as
the bend of the image of the sphere on inversion through the unit sphere at the origin. The co-bend of the
sphere corresponding to v is given by b*(v). Therefore the tuple (b*(v),bxt(v), ..., bxi(v),b*(v)) gives
a complete inversive coordinate system on V;. It is sometimes convenient to isolate the ‘bend-center’,
comprising the coordinates not including the first and last; so we define:

bz*(v) := (bxj(v),...,bx;(v)). (45)

A Kleinian sphere packing decomposes into finitely many I"-orbits (by the Structure Theorem [KK23,
Theorem 22]), which in the above coordinate system corresponds simply to orbits vg - I', with vy € V7,
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Figure 3: The quadratic space V, and (the upper parts of) its components Vy, V; and V_;.

and the bends of such are measured by b*(v), for v € vy - I'. We count the whole packing by counting one
orbit at a time.

4.2 Decomposition of G

Fix vg as above. Let x7(g) = 1{b*(vog) < T} denote the indicator function of the vector vog having
bend at most 7', where g € G. This function is left-invariant under H := Stabg(vo) = {g € G : vog = o},
and also right-invariant under L := Stab, = {g € G : b*(vg) = b*(v), forallv € V}.

It will be useful to decompose G = O (R) (for Q given by (43)) and its Lie algebra g := Lie(G) as
follows. First we decompose g as:

g= h@ﬁ@u@ml.

Here h = Lie(H ), and with

1 0
M:=10 O(n) 0],
0 0 1

we have that M NH = O(n—1). Then set m := Lie(M) and m; := m© Lie(M N H). (Note that h Nm) is
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Figure 4: A vector v € Vi, its orthogonal space v and the intersection this orthogonal space with V_;
which corresponds to an ideal sphere.

trivial when G =2 O(3,1).) Set M| :=expm; < G. The one-parameter Lie algebras u and ii are given by:

0 0pr w O
_ 0 0 0 04-1].
“=1lo o o 2w |WER[
0O 0 0 O
and
0 0 0 0
_ 0,1 O 0 0]
= y 0 o ol eER},
0 0,1 /2 0
which exponentiate to the groups
1 0,1 w w?
0 i1 0 0,
U:=ulw):= 0 "01 ] ;wl weR
0 0 0 1
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and
1 0 0 0
7. ) = _ On—l In—] 0 0
/4 0 y/2 1
respectively.

This gives the corresponding decomposition:
HxUxUXM, — G: (h,i,u,my) — hitum;.

Geometrically this decomposition is in fact very natural. H is the stabilizer of vy, corresponding to
the sphere whose orbit we are considering. The action of U changes the bend of the sphere, while UM,
changes the co-bend by moving the center via a polar coordinate description of the plane (U as the radial
coordinate and M = O(n)/O(n — 1) giving a rotation).

Letd :=dim(g) = (n+1)(n+2)/2. Let p :=dim(h) =n(n+1)/2, and let £ := dim(m;) =n— 1.
Henced = p+/(+2.

4.3 An Explicit Basis.

Before proceeding, it will help our calculations to fix a basis for f and m;. To ease notation, we will
describe a basis in a special case when n =4, so d = 15, p = 10 and ¢ = 3; the general case will be clear
by analogy. Take:

000000 000000 000000
000 100 000000 010000
Xi:=100-1000|X2=10-10000 X3 = {070 0000 | ¢ € HNm
000000 000000 000000
000000 000000 000000
000000 000000 000000
000000 100000 000000
Xe:=1100000 |, Xs:=]000000 |:Xe:=|000000 |, p Lower Triangular in b
000000 000000 000000
000100 0o0loo00 010000
000100 001000 010000
000000 000005 000000
X7 =1000002 1'X8: =1 000000 |X9:=10600000 |> ¢ Upper Triangular in b
000000 000000 000000
000000 000000 000000
10000 0
00000 0
Xi0:=100000 0 | —Diagonalinb
00000 0
00000 —1
000000
000000 000000
Xii:=]000000]| €L Xn:={000000] €,
100000 000002
000010 000000
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000000 000000 000000
000 0 00 000010 000000
X13:= 10000 10 |:X14:= {000 000 |X15= 1000000 € m
000-100 00-1000 0-10000
000000 000000 000000
To move back to group elements we denote
hj(xj) :=exp(x;X;) € H for j < p,
u(y) :=exp(yXp1) € U,
u(w) :=exp(wXpi2) € U,
mj(@;) = exp(@iXjipia) € My for 1 <j</.
It will also be convenient to record the following components of H:
Hy:= [] exp(x;X;), Hy = I1 exp(x;X;), (46)
Xjehnm X; “Upper Triangular”
H_ := I exp(x;X;), and Hy:= [  exp(x;X;).
X; “Lower Triangular” X; “Diagonal”

4.4 Calculating the Haar Measure

Given that decomposition of the Lie algebra, we now derive an explicit form of the Haar measure in our
chosen coordinate system. Let

Z:=(X1,..., Xp, ), W, P1,..., Q)
denote a set of coordinates and let
J:RY = Gz hy(x))hy(x). ol (xp)u(y)u(w)my (@) ... me(@p)

map our coordinate space to G. Then, in these new coordinates we have the following decomposition of
the Haar measure

Theorem 47. [Haar Measure Structure Theorem] Let p(z) denote the density of the Haar measure in z
coordinates. Then

p(Z) = pH(xlv‘ : 'xP)%U(yyw)le ((Pl, ceey (Pf)a (48)

where py and Py, are (respectively) the densities for the Haar measure on H and M. Moreover we have
that pgy (y,w) = |1 +wy|" .

Proof. Given a linear differential operator 7; acting on functions of G, we can represent it as
TZ - nlaxl +- 1t npgx], + np—i-lay + np—I—Zaw + np+3a(p1 +-- ndg(pg'
Consider an element in the Lie algebra g

Z=bi1X1+byXo+---+biX,.
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Then Z corresponds to a linear differential operator via the exponential map:

d

() = 5 F(8e™)] o

Hence we have two representations of the linear differential operator corresponding to Z (one in terms
of the b variables and one in terms of the 1 variables), our goal is to recover the 1 variables from the b
variables.

To first order, we can write the differential 7; acting on a function depending on g = Ay - - - hynnmy - - -my
as

(I +mXy) - hyp(I+1,Xp)u(I+Mp1Xps1)
u(l+Npr2Xpi2)mi (I +Mpi3) - me(l +Ma)
=hy---hpnnmy ---my {I—i— M Ad((hy - - - hyuum, - --mg)_l)Xl
+n2 Ad((h3 - - hyuum, - my) DX+ e Ad(m[l)Xd,l + T[dXd} )

Giving us the differential operator

D(3) : MOy, + - +Mp0x, +Npr10y +Np 20y +Np139p, + -+ Nayp,
= 1 Ad((hy - - hptumy - -mg) ™)X+

M Ad((hs -+ hpaumy - -mg) ™)Xo 4+ Npyrpd Ad(mg_l)Xd—l + NaXy-
Thus, if we want to apply the differential operator X; to a function f(g), then we simply solve for n; on
the right hand side of this map. Then the left hand side tells us the action on the coordinates. Let us
denote the vector of such 1;’s by (1;1,1;2,-..,Mja). Thus

Xi=nj Ad((hz o-hpnnmy - ‘mg)il)Xl + T]jzAd((h3 o-hpuumy - 'mg)il)Xg

+--- +nj(d—l)Ad(mg_])Xd—l +NjaXa,

forevery j=1,....d.

Now to calculate the Haar measure, we proceed by the following methodology: define the right
multiplication operator Ry (z) := J~!(d(z) - A) and its Jacobian:

[Rix(z)]j,, = wz‘lfz).
Then our goal is to find p(z) such that:
[ f@@p@adz= [ r@(Ra@)p(@)dz. 49)

Changing variables y = R4-1(z), on the left hand side gives:

[ o@p@dz= [ F@R3)p(RaM) |detR) (y)]| dy
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which is equal to the right hand side of (49). Hence we want to find p such that:

~p(y)
p(Ra(y)) = m

for all choices of y and A € G. In particular, we may choose y = 0, and A = J(z), which gives

1

= (50)
‘detRfa(z) (0)‘

p(z)

Note that since the Haar measure is only unique up to a constant, we set p(0) = 1 without loss of
generality. Using our decomposition of the Lie algebra we can write:

t_0] j

Now we can linearize the exponential and then find the corresponding coordinate description of the
differential operator as we did above. The above argument implies

/ J 4
[RH(Z)(O)]ij = [@g(z)ez'ltlx'

p(z) " = det| IR}, (0)] = det|mys.

Now to simplify matters, we express each adjoint as a linear combination of elements in the basis:

d
Ad((hy - hpiiumy --mg) ") X; = Y X

d
Ad((hs - hpiiumy - -mg) ™)X = Y X

d
X = Z MaiXi.
=1

1

Thus, to calculate the Haar measure, by linearity of the adjoint operator, we need to find a d X d matrix n
such that

nuX =X
where X := (X1, X>,...X4)". Hence, since the determinant is multiplicative, we have that p(z) = det[u].
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Now suppose we wanted to calculate the Haar measure of H, then we can write

For completeness write vj; = &; ; for j > p. Then the above argument implies that one can write the Haar
measure on H as py(z) = det[v].

Now the key observation is to write
Ad((aumy ---me) )X = Y ciiX;

Ad((@umy ---my)"1)X, = ZcpiXi

d
Ad((umy ---mg) " NXpi1 = Y ciprniXi

By linearity of the adjoint operator we have that 4 = v¢, and hence det(u) = det(v)det(c). Or rather,
p(z) = pu(x1,....xp) fF(W,»,@1,...,¢) for some function f.

Moreover, since the Haar measure is unimodular, and since M| is a group, we can apply the same
argument to M, on the right, and show that p satisfies the product structure from (48).

Finally, thanks to this product structure, we can take my,...,m; equal to the identity when calculating
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Pgy- Thus, let

d
Ad((au) X, =Y d;iXi, for j=1,...,p
i=1
d
A((w)™)Xper = Ldipen X (51)
=1
d
Xj: djiXia forj:p+2,...,d.

i=1

Hence it remains to find det(d).

No matter the dimension, our basis elements are each one of seven types (in mN b, lower triangular in
b, upper triangular in b, diagonal, in U, in u, or in m;). Depending on the type of X;, we can calculate d;;
explicitly independent of dimension via an inductive argument. From which it follows that the d matrix
has the following form:

lo-nw-22 0 0 0 0

d= 0 Zhor 24wy 0 dw4wy)ho (52)
0 0 0 B 0
0 0 0 0 Infl

where B is the 3 x 3 matrix given by

Hence, one can determine explicitly thanks to a block matrix decomposition that det(d) = |1+ wy|"71
This completes the proof. O

4.5 Calculating the Casimir Operator

As in §2, given our basis, X1,X5 ..., Xy, for the Lie algebra in §4.3, there is a corresponding dual basis
X, X5,...X; with respect to the Killing form. Then the Casimir operator can be written as the following
second order differential operator:

p+2-+L

Y XX (33)

Using the above argument, in z coordinates, we can express X; = Z’;-’: 1 Mijd;. Likewise, we can express

Z] 1771]
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Now define pt* analogously to how we defined u, that is
d
Ad((hy -+ hptiumy ---mg) )X = Y i X7
i=1

d
Ad((h3 -+ hptiumy ---mg) "X = ¥ 13, X7
i=1

d
_ * Yk
Xq=) upX:.
i1

We then have that n* - *X* = X*, and hence n* = (u*)~!. Thus, if we define 9 := (Jy,,...,,)7, then
as a differential operator

C=(u"'9)-((u)'9).

The Casimir operator in all d variables is, of course, rather unwieldy. However, fortunately we shall only
need the Casimir operator to act on left H-invariant, and right M;-invariant functions. Hence, if we write
u* =v*c*, with v* and ¢* defined analogously to as above, then when acting on such functions, we have

C=(c"'9)-((c")"9).

Using this decomposition, we can explicitly calculate the Casimir operator in z coordinates, when acting
on left H-invariant and right M;-invariant function.

Theorem 54. [Structure Theorem for the Casimir Operator] Let f : H\G/M; — C. Then in the z-
coordinate system, f is only a function of (y,w), that is, the U and U variables, and the Casimir operator
acting on f has the following form:

(n—1)[w|dy

1
1w =~ (0 + 0 1ydy + 22, +

)fuw» (55)

Proof. By definition of ¢* we have

d
Y; = Ad((aum; ---my)~")X; = Zc;iXi* fori=1,....,p
i=1

and

d
Ypi1 = Ad((umy - -mg) ") Xpp1 = Zc’(kpﬂ)iXi*
i=1

d
Yd = Xd = chiXi*'
i=1
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Thus, (¢*)~'Y = X*. Since our function depends only on w and y, we are only interested in the (p -+ 1)
and (p+2)"" columns of (¢*)~!'. We can explicitly calculate ¥; depending on which type of basis vector
is X;, then we can explicitly solve for (¢*) l;] Using an inductive argument we then have that (c*)~!9 has
the following explicit form: Let

v := (sin(@y),cos(@;) sin(@y),cos(@;)cos(¢,) sin(3), (56)
..,co8(p)---cos(@p_1) Sin(‘Pz))T

then we have (in fact, we only need the fourth and fifth row of the below)

Op—1)n/2
—VMaW
Lo (w20, — 2(1 + wy)dy)
(ydy —way,) . (57)
cos(@y)...cos(¢y)d,
% cos(@y)...cos(@p)(—w?d,, +2(1 + wy)dy)
0n—2

Let (Aq,...,Aq) := (c*)~"- 9, then our aim is to evaluate

d d
6’ = Z Z(c’l).,ﬂ,-Aj.
j=1li=l1

However, since we are considering the Casimir acting on right M invariant functions, we may set the last
¢ coordinates equal to 0, that is

d
Cf(y,w) = (;

however [(c™1);i] 0=0= (d=1);; where d is the matrix of coefficients defined in (51).

Since the d matrix is explicitly described in (52), and the vector (Ay,...,Ay) is given explicitly in
(57), then (55) can be found through direct computation. ]

d
;chﬂ¢ﬁﬁwuﬁ>ﬂ%m,

i=1

S Counting

We turn now to the proof of Theorem 2. For simplicity, we assume the packing is bounded; similar
methods apply for counting in regions. We also assume that the packing is the orbit of a single sphere S
under the action of a symmetry group I'; in general, the counting problem reduces to a finite sum of such
[KK23, Theorem 22]. Let the sphere S; be represented in the inversive coordinate system described in §4
by the vector v; € V. We begin in the same way as we did in the SL,(IR) case, writing the count as

No(T):=#{Se€P|b(S) < T}
=#{vev,-T'|b*(v)<T}
= Z xr(7),

yel"l\l“
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where b* is the “bend” covector (as in (44)), I'; := Stab,, (I'), and for g € G

1 ifb*(vi-g) <T,
xr(g) == (1-8) (58)
0 else.

We observe that 7 is a function on H\G/UM)|, where H is the stabalizer of v; (so that 'y = TN H).
Now we automorphize yr, that is define

Fr(g):= Y, xr(re).
yel'l\I'

Hence Fr is left I-invariant and Ny (T') = Fr(e). Again, rather than trying to evaluate the discontinuous
function Fr at the origin, consider its inner product with a smooth approximation of the identity. However,
we want to restrict as few directions of our smooth approximation as possible, to optimize the resulting
error terms. To this end, fix an € > 0, and let

v =y € LX(T)\G/M)) (59)

be given as follows. Let F be a fundamental domain described in z-coordinates, of I';\G/M;. Then on F
we let y be of the form
v(z) = yi(x1) - Wp(xp) Wu (v) wg (w)

, with all components nonnegative and unit total mass,

/ ydg =1,
I'\G/M,
and satisfying the following conditions.

For the n+ 1 variables in the components H,, Hy (in the notation of (46)) and U, we restrict the
coefficients to €-balls around 0. The other variables are restricted only to compact regions of bounded
size around 0. We can choose such a y have L? mass bounded by:

Wl 20\ 6 ayy < € D2,

Now, let ¥ denote the fundamental domain for I'; containing the origin, and define the function
Wr = Wr e : F]\G—) [0, 1] by

wr(g) = [ tr(gh)ve(h)an. (60)

Our main counting theorem (Theorem 2) will follow from the following smooth effective count.

Theorem 61. Let the Laplace eigenvalues of T\H""! be as in (1). Then there exist constants c’fﬁ for
i=0,1,...,k, with c%e > 0, such that

Nre(T):= Y wr(y) =l T% +cf T (62)
yel\I

1
+-F ClﬁgTsk + (0] <8(n+1)/2Tn/2 10g(T)>

where the implied constant depends only on T. Moreover ¢, = ¢(1+ O(€)), and for i > 1 (if any exist),
we have that ci. , < e~ ("+1)/2,
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Remark 63. Note that this smoothed counting theorem is optimal in that the error goes all the way to the
tempered spectrum.

5.1 Proof of Theorem 2

An explicit calculation shows that the inversive coordinates of a sphere which has been transformed by g
are

(3, = (1 +wy)vig, (1+wy) cos(@r) - --cos(@r), w(2+wy))

where vy is the vector defined in (56). Thus the ‘bend radius’ (i.e the distance of the center of the sphere
to the origin multiplied by the bend) is (14 wy). Since this distance is necessarily bounded from above
(since the packing is bounded) and since y is bounded from below (because it controls the bend, and the
packing has a largest sphere), we know that w is bounded from above. In particular we have

Lemma 64. Let y € I'1|\I then the w coordinate of ¥,

wy‘ is bounded.

Now, assuming Theorem 61 we present the proof of Theorem 2.

Proof of Theorem 2. Consider

win)= [ xr(ve)vels)ds.

We write ¥ = J(x1,y,...,Xky, Yy, Wy, @1y, - .-, Pry) and note that yr is left H-invariant and right UM,
invariant. Hence

xr(v8) = xr (@(yy)u(wy)mi (@) h(x)n(y)).

now we can write & as a product of one dimensional components of H from (46) (here, it is convenient to
change the order of the decomposition). That is, write

h(x) = hy (X1 )ha(Xa )h— (X= ) hae (Xp1).-

Since y restricts the x_ and x4 coordinates to balls of radius €, we can apply adjoints to move those
factors to the left of #(yy) and the other factors will be perturbed by an € error. Then we can use left
H-invariance of 7. We can do the same for the #(y) factor which gets absorbed in the #(y) factor. Thus,
for g in the support of Y,

xr(vg) = xr (@(yy + O(€))u(wy + O(€))mi (@, + O(€) )y (x4 + O(€) ) hm (xu + O(€))
= xr(u(yy+0(g))),

where the second line follows from right-M invariance, and right-H_ invariance.
Thus,

1 ify, < L
xr(vg) = T T e
0 lfy»y > T—ce
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for some absolute constant c.
Hence, since Nr¢(T) = Y, \CWT (7), then our count satisfies:

Nre(T(1—c€)) < Np(T) < Nre(T(1 +ce)) (65)

Now, assuming there are no other eigenvalues, we apply Theorem 61 to find:

Nre(T(1+€)) =c"(14+0(e))T° + O T"?10g(T)).

et 1)/2
Then choosing & = T3 ("/2-8) 1og(T)2/("+3) optimizes this inequality. Thus

Nre(T(1£¢)) = OT? + O(T w528+ 190(T) 753
The general case follows similarly. O

5.2 Inserting the Casimir Operator

Once again the smooth count is the inner product of Fr with an L? function. Consider the inner product
of Fr with a general ¥ € L?>(I'\G/M,). That is, given a function W on I';\G/M; we automorphize it

¥()= ), v(re)

YGF]\F
Let
TS — Th=Sps Th="s _ TS
KT(S) = b= — b ’ Lt (S) = m’
while for s = n/2 + it we have
in(tlogT /logh) 7\"*sin(tlogT)
Kr(s) o= T2 S0 Lr(s):= (=) 222022/ 66
r(s) sin(zlogb) r(s) b sin(tlogb) (66)
Again, by choosing an appropriate choice of b one can ensure that
T* if s € (n/2,n],
Kr(s),Ly(s) < 67
r(s)Lr(s) {T"/zlogT ifs=n/2+it. ©7

In the SL,(R) case, we decomposed the real direction, since I'\H was not compact in the real
direction. Analogously in the current setting, we have the group decomposition (I'y\H)UUM,. Since
(I'y\H) has finite H-Haar measure, and M, is compact, and we have imposed a cut-off in the U-direction,
we are again faced with a one dimensional non-compact direction, the U-direction. To that end, since o
lies outside the limit set, from Lemma 64 it follows that there exists an X large enough, such that

Nj) = FT7X (6)
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where

Frx(g) =Y, xr(ve)xx (1), and
A\

- 1 if |bz*(vi-g)|/b(c1-g) <X
sty {1 Tl /b
0 otherwise.

where bz* denotes the bend center, as in (45) and b denotes the bend. Thus, note that xy is also left I'y
invariant, and right M| invariant (since it depends only on the distance to the origin of the center, not the
polar coordinate angles).

Moreover, a calculation shows that, in the z-coordinates, Yy can be written as:

(68)

- I if —X—-1/y<w<X—1/y,
1x(8) == .
0 otherwise.

The Difference Operator: Again, we will prove an identity in terms of K7 and Lz for Fr x. To that
end, consider the difference operator

GT7X = FT,X — KT(G)FI,X —LT(G)Fb’X.
By self-adjointness of €, for any ¥ € L>(I'\G/M,) we have

Grx(¥):= (er, ¥)re
= P81 ()~ Fiix (&) (K7 (C)) (&) ~ Fix (&) (Lr(€)%) )} .

which we can unfold to

Grx(¥) = (69)
T (8) Cer (8 () — 1 8) K7 (€)¥) ) — 10 (8) L (€)%) &) .

It is more convenient to work using z-coordinates describing the group G. Now fix a fundamental
domain for I';\G /M, this fundamental domain can be written in coordinates as F := P, X [0,00) x R x
[—7, )"~ !, where Py, is a (finite H-volume) fundamental domain for the action of I'; on H. Given a
function f : G — C we abuse notation and write f(z) = f(g), thus if we let p denote density of the Haar
measure, we can write (69) as:

Grx(¥) =
/rf xx (v, w) (er () ¥(2) — 30 () (K7 (€) ) (2) — 2 (v) (L1 (C)¥)(2)) p (2)dz.

Note that by definition )7 (z) is a function of y and yx(z) is a function of w (and y), for clarity we ignore
the dependence on the other variables.
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Let Fx :={z€ JF : weIx} where Jx := [w_x(y),wx(y)]; here we have introduced the notation

wr(y):=r—1/y,

motivated by (68). Now write

Grx(¥) = /Sr ; (xr ()¥(2) — 101 () (K7 (C)¥) (2) — 2 (v) (L1 (C)¥)(2)) p(2)dz.

By showing that G x (W) = 0 for any choice of ¥ we will prove the following.
Proposition 70. For I' and Fr x as above we have that

Frx =Kr(C)Fi x +Lr(C)Fy x (71)
where Ky and Lt are the differential operators defined in (66).

Once again our goal is to work on the fundamental domain of a group (rather than working with
discontinuous cut-offs). Thus we will perform the same smoothing as we did in the SL,(RR) case.
Smoothing y7: Let 6 > 0 and let

1 ify<l,
X1.0(2) = . Y
0 ify>(1+0),

and let x; o interpolate smoothly for all values in between. Now let 7 5(z) := X1.6(7y).
Let

%X(IP) =
/{f ) (xr.0()¥(2) = 21,6 () (KT (C)¥)(2) — Xp,6 () (LT (C)¥)(2)) p(2)dz.

Now by construction

/er X0 (y) —x0)[p(z)dz <ix O

Thus by Cauchy-Schwarz we have that limg—,0 G7 x (¥') = Gr,x(¥). Now our goal is to show that for
any fixed € > 0 we have G7 x (¥) < &.
Periodizing and Smoothing V': Let

Jx = w—x(y) +1,wx(y) —1n].
Let¥: G /M — R denote a function which agrees with ¥ on
{Zegj : WEJXJ]}

for some i) > 0 to be chosen later. When w ¢ Jy ,, » we impose the condition Y(w_x(y) =P(wx(y))
for any value of the other variables, and interpolate smoothly in between.
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Using the same Cauchy-Schwarz argument as we employed in the SL»(R) case, we can choose 7
such that the L?(Fy) cost of moving from ¥ to ¥ is less than &. Thus, Proposition 70 follows if we can
prove that

GT7X70-(‘P) =0. (72)
Working on Fx: Let

87.x(2) := Xx(2) (Ar.0(2) = K1 (€)21,6(2) = L1 (C) Xb.5(2))-

Furthermore, let L?(Fy) denote the space of square integrable functions on Fy, which are I'j-invariant in
the H variables, and invariant under translation by 2X in the w variable. Note that ¥ € L?(Fy). Then
(72) follows from the following lemma.

Lemma 73. For any y € L*(Fx) which is independent of the ¢ € [—m, )"~ variables, and any A > 0,
we have

(87.x: W)ay irox (€= )yl (74)
where C denotes the Casimir operator on L*(Fx) (i.e the Casimir operator in z-coordinates).

Proof. To prove (74), let y be an arbitrary function in L?(Fy), which is ¢ invariant. Now consider

2T wx (y
/ XreV@p@)dz= | xro(y / / w(z)p (2)dxdpdwdy.
0 m)n-tJ P

Since, as shown in Theorem 47, the density of the Haar measure decomposes into a product of densities
depending on x, one depending on ¢ and one depending on w and z, we can use this fact to show

[ ewxympuax=e [ wx.ywpu(x)dx.
P P,

1

This follows from the fact that y is I'j-invariant in the x variable, and Pr, is a fundamental domain for I';
acting on H.
Recall that the Haar measure, in z coordinates is given by |1+wy|" ' pgpy,. Let ¥(y,w) :=

fprl v (x,y,w)pn(x)dx and let

h(y,w _2//”,” )(€ =) y(z)dxdo.

Then, using the Structure Theorem for the Casimir operator (Theorem 54), we have that

wx (¥)
10)i= [ hlwy)dw
w_x (y) (75)

- (" 252 (n=Dwdy "\ &
- /X(ymwy\ <yay+(n+1)yay+2ayw+ — +/1>w(y,w)dw
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Now make the change of variables w — w' = w+1/y and y' = y. This leads to the relations

do=dy, and Q=3 >,
y
and results in
1) == [l (4 0 090, Sy = oA ) Boan
-X y wy

Now, we can use integration by parts to eliminate two of the terms

X
10) == [ (R0 + (- 130y +2) B w)dw
We now let £(y) := [* [w|" " ¥(y,w)dw; then f(y) satisfies the differential equation
(20w + (n+1)y0y +4) £(y) = h(y) (76)

with h(y) = — fvt,vfx(g)h(w,y)dw.
The homogeneous solution to this differential equation is then

Clys—l’l + Czy—s’

where we write A = s(n —s). From here we can use the usual variation of parameters argument to
conclude

T X
[ [ wdvdy =i 617 Op (€~ 1)),
O

Now, with Lemma 73 we use the same argument as in [Kon09, Proof of Theorem 3.2] to conclude
that g%x is almost everywhere 0. Thus, working our way back up, with the same argument as in the
SL,(R) setting, we conclude the proof of Proposition 70.

5.3 Proof of Theorem 61

As for the SL,(R) case, we now return to the smooth count with U-cutoff:
Nr(T) = (Frx,¥)r.
Now apply the abstract Parseval’s identity (13)
(Fra, ¥)r = (Fr, P)spectr)

= Frx(20)¥(Ao) + /S iy PRIV (), a7
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As with the SL;(RR) case, we can apply spectral methods to extract the T and e-dependence. Applying
the abstract spectral theorem gives

Frx(%)®(Ao) = (Projsc, (Fr.x), Projsc, ().
Then by linearity and our main identity Proposition 70 we conclude
Frx (%)% (A0) = Kr(Ao) (Projs, (Fi x), Projac, (We))

+ Lz (A0) (Projg¢, (Fy.x ), Projgg, (Ye))
=7° <Ha Projﬂ-(o (lPE» + O(Tn/z)v

where H := c1 Projg, (Fix) + ¢ Projg, (Fp.x) for some constants ¢y, cp.

The problem remains to determine the & dependence of the projection operator Projg (e). In
general, this projection can be realized in a number of ways, either as a Burger-Roblin-type measure of
Y, (see [MO15, p. 861]), or using representation-theoretic decompositions as in [BKS10, Vinl12]. We
will give a soft argument that avoids either.

We know from (65) that
1+4ce € l—ce)’

for any value of € and any value of T. However we also know a priori (e.g., using [Kim15]) that

NT(liTw) _C?<1£c8)6(1+0(1)>’

as T — oo. Dividing by T? then gives

@ijf—wwgwmm%wméw< 1)2wm.

Now send T — oo and Taylor expand

(Zce)? in €, giving:
(H,Projs;, (We)) = C + O(e).
Hence

Frx(A) %z (Ao) = TPc(1+ 0(e)) + O(T™?) (78)

for some constant ¢ independent of €. (Note that this positivity argument does not apply to the other
eigenvalues. Hence with sharp cutoffs, as in Theorem 2, we do not extract lower order terms.)
Turning now to the remainder, after extracting the main term corresponding to Ao we are left with

Err = / Frx(M)®()dv
Spec(T)\ {20}

| i (Kr(M)Fx () + Lr (W) Fx (1)) ¥(A)dv.
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Assume for simplicity that there are no other discrete eigenvalues above the base. Now apply the abstract
spectral theorem and the bounds from (67) to conclude that

— A~

/ Kr(M)Fx(A)P(A)dv < T"*log T Fix(A)P(L)dv.
Spec(I)\ {0} ' Spec(D)\{Ao}

Now apply Cauchy-Schwarz and Parseval to get

- 1/2 R 1/2
< T"?logT ( / FLX(?L)Zdv) ( / ‘P(),)Zdv>
Spec(I)\ {40} Spec(I)\ {40}

- 12 R 12
< T"PlogT ( / FLX(?L)2dv> ( / ‘P(l)zdv>
Spec(I') Spec(T)

— 1"10g T ||Fix e [¥]lr-

Finally, note that since W is normalized to have unit L'-mass, we have that ||| < &~ "+1)/2 In the
case of other eigenvalues, we replace the bound T2 log T above with T°'. This completes the proof of
Theorem 61. O

Remark 79. If we remove our assumption that L>(T'\G) does not weakly contain any nonspherical
complementary series representations, then, after removing contributions from Laplace eigenvalues in
(77), the remainder would not necessarily be tempered. So instead of getting an error of order T"/*10g T,
we would only be able to bound what remains by O(T"~"), corresponding to the spectral parameter
of any potential nonspherical complimentary series. It is likely possible to improve on this bound, see
Remark 7.
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