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Abstract
In this paper, we study the set of lengths of closed geodesics (or equivalently, the set
of traces of the fundamental group) of a hyperbolic manifold. By “subarithmetic,” we
mean a manifold whose set of traces takes values in a ring of algebraic integers. For
such, we formulate the “Asymptotic Length-Saturation Conjecture”, which states that,
under certain natural conditions, there is an asymptotic local–global principle for the
trace set. We prove the first instance of the conjecture for punctured, Zariski dense
covers of the modular surface.

1 Introduction

By the length spectrum of a hyperbolic manifold M , we mean the set of lengths of
closed geodesics on M , with multiplicity. As is well-known, closed geodesics on M
correspond to hyperbolic conjugacy classes of its fundamental group

� = π1(M) < Isom(Hn) ∼= PO(n, 1),

and lengths of the former are a simple function of traces of the latter, namely, trace
= 2 cosh(length/2). It is also classical to study the length set, that is, the set of lengths
of closed geodesics, now counted withoutmultiplicity; again, this is intimately related
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to the set T (�) of traces (without multiplicity) of hyperbolic conjugacy classes of �.
In this paper, we initiate a detailed study of the latter for (sub)arithmetic manifolds,
from the viewpoint of local–global theory. In particular, we produce a density one
set of “admissible” traces for subgroups of the modular group containing parabolic
elements, see Theorem 1.11.

To motivate our main results, we begin with a few illustrative examples.

Example 1 Consider the Hecke (2, 3,∞) triangle reflection group, or rather, its ori-
entation preserving cover, the modular group � = SL2(Z). The trace set T (�) of
the latter is elementarily seen to be all of Z, as for any desired integer t , one simply
expresses t as t = a + d and factors bc = ad − 1 to make a matrix

(
a b
c d

) ∈ � having
trace t . This is because � is an arithmetic (or better yet, congruence) group, and hence
any solution to ad − bc = 1 over Z gives an element. We can compare these facts
with the well-known count (see, e.g., [14, §15.8]) for the number of points in � in an
archimedean ball BN of radius N : as with any lattice in SL2(R), we crudely have

#� ∩ BN ∼ cN 2, (1.1)

for some constant c > 0; this means that the average number of times that a particular
integer t � N arises as a trace of a matrix in BN is of order N 2/N = N . But this
does not take into account the fact that trace is a conjugacy class invariant. For t > 2,
let H(t) denote the number of conjugacy classes of elements in � with trace t . As is
well-known (see, e.g., [11]), H(t) is equal to h(t2 − 4), where h(D) is the classical
class number, that is, the number of equivalence classes of binary quadratic forms of
discriminant D (not necessarily primitive). By the Prime Geodesic Theorem we have
(compare to (1.1)):

∑

t<N

H(t) ∼ N 2

log(N 2)
, (1.2)

and so a “typical” value of H(t) (for t � N ) is more like N/ log N , rather than N .
(Note that the fundamental unit εD for discriminant D = t2 − 4 is about as small
as possible, εD = (t + √

D)/2, and hence this class number is as large as possible,
of size about

√
D). The discrepancy in counting matrices versus counting conjugacy

classes makes sense, as the archimedean size of elements under conjugation grow
exponentially (the stabilizer group of a conjugacy class is a discrete subgroup of some
SO(1, 1)), so (log N )-many matrices of size N are grouped together. This is a minor
issue here, but will play a major role in the next example.

Example 2 Now consider the Hecke (2, 5,∞) triangle group, or rather its cover, the
group � generated by

� =
〈(

0 1
−1 0

)
,

(
1 φ

0 1

)〉
,

where φ = (1+√
5)/2 is the goldenmean. (Recall that SL2(Z) has similar generators,

except with φ replaced by 1.) The group � is nonarithmetic, but it is subarithmetic:
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Definition 1.3 Amanifold, or its fundamental group, is called subarithmetic if its set
of traces takes values in a ring of algebraic integers.

In this case at hand, the ring isO = Z[φ]. Note that � is a subgroup of the arithmetic
group �̃ := SL2(Z[φ]). The latter does not act discretely on H, but is a lattice in
SL2(R) × SL2(R), where it acts by the Galois conjugate in the second factor. (The
fact that � is a lattice in the first factor, while the second factor is non-compact, is one
way to see its nonarithmeticity.) In fact, � is a thin group (see, e.g. [16]), as the set of
Z-points of its Zariski closure is exactly �̃, and it has infinite index in the latter. The
set of traces of �̃ is again elementary to determine; it is the full order O = Z[φ], for
the same reason as in Example 1. But now we may ask, which t ∈ O are also traces
of �?

The asymptotic count (1.1) of matrices in a ball BN (in R
4 ∼= M2×2(R)) is still of

order N 2, since � is a lattice in SL2(R). But now O ∼= Z ⊕ φZ is a quadratic ring. In
general, if O is an order in the ring of integers of a number field with k embeddings
into R and � embeddings into C, let ON denote the points of O in a fixed Euclidean
norm-N ball in R

k+2� under the image of all the embeddings

O ⊂ R × · · · × R × C × · · · × C. (1.4)

Returning to O = Z[φ], the number of elements in ON is also roughly N 2, the same
as the number of points of � in BN .

Therefore the average number of matrices in BN having a given trace t ∈ O is a
positive constant.

But what happens when we group by conjugacy classes? (In Example 1, this caused
the average count to drop by a factor of log N , but here we don’t have this factor to
spare!) Let H�(t) denote the number of conjugacy classes of � having trace t ∈ O. As
� is a lattice in SL2(R), we still have the Prime Geodesic Theorem (see (1.2)), that

∑

N(t)<N2

H�(t) ∼ N 2

log(N 2)
, (1.5)

where N : O → Z is the algebraic norm. Therefore there can’t be more than
O(N 2/ log N ) elements t ∈ O which actually arise as traces in � ∩ BN , and thus
the density of those that do arise is zero! While we can’t say much about the class
number H�(t), in every conjugacy class that does arise, there should be about log N
matrices of size N , as before. So when counting matrices, even though the “average”
multiplicity is bounded, what’s really going on is that 100% of the time, the multiplic-
ity is exactly zero, and very rarely there are somewhat large (of size at least log N )
multiplicities. See also recent work of McMullen [21] in this direction. We remark
that the number of elements of �̃ in a ball BN is roughly N 4, and H�̃(t) is roughly of
order t2.
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Example 3 For our last example, consider the Hecke (2, 7,∞) triangle group, or rather
its cover, the group � generated by

� =
〈(

0 1
−1 0

)
,

(
1 η

0 1

)〉
,

where η = 2 cos(π/7). The ringO = Z[η] is cubic, and so the number of matrices of
size N in � is of order N 2, while the number of possible values of the trace of size up
to N is N 3, and hence it is clear that very few numbers in O can occur as traces.

Returning to the general setting, in light of these examples, to be able to say anything
about traces of �, we need some conditions. First we assume that � < PO(n, 1)
is discrete, finitely generated, and subarithmetic, so that tr(�) consists of algebraic
integers. By the trace ring,O, we mean the ring generated by the traces of �. LetON

be as above (1.4).
Obstruction 1: Let α > 0 be the “growth exponent” of �, in the sense that

#� ∩ BN = Nα+o(1).

(When � < PO(n − 1, 1) is geometrically finite and δ is the Hausdorff dimension of
its limit set, then α = δ [18, 25, 26].) As in Example 3 (and Example 2), to be able to
study the length set, we require that α exceeds the rank ofO. One can think of this as
an “archimedean local obstruction.”

Obstruction 2: There are also potentially other local obstructions. Already in the
case of a classical congruence group �(q) := ker(SL2(Z) → SL2(q)), only the
numbers that are 2(mod q) can arise as traces in �(q).

Definition 1.6 We say that t ∈ O is admissible if, for every ideal I ⊂ O, t ∈
T (�)mod I.
(We remark that Strong Approximation for Zariski dense groups [27] implies that it
suffices to check a finite list of ideals to determine admissibility; determining this finite
list in practice is often not difficult.)

Obstruction 3: There is one final archimedean local obstruction. Given any mani-
fold, we can take a cover that destroys the systole; that is, what was the shortest closed
geodesic need not remain closed under a cover, making the shortest length (that is,
smallest trace) of such a moving target. So we should allow for some “small” values
of O to not arise as traces.

We may now formulate our main conjecture.

Definition 1.7 With notation as above, we say that� length-saturates if: every admis-
sible t ∈ O with sufficiently large norm arises in the trace set of �.

Definition 1.8 We say that � asymptotically length-saturates if

#T (�) ∩ BN

#{t ∈ ON t is admissible}
→ 1, (1.9)

as N → ∞.
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Thus themodular group length-saturates, as in Example 1 (see alsowork ofMarklof
[19] studying distinct length sets of arithmetic 3-folds), while the Hecke (2, 5,∞)

group does not even asymptotically length-saturate (it fails Obstruction 1).

Conjecture 1.10 (Asymptotic Length-Saturation). Let � < PO(n, 1) be discrete,
finitely generated, and subarithmetic, with growth exponent α exceeding the rank
of the trace ring O. Then � asymptotically length-saturates.

The stronger statement that with the same assumptions, � length-saturates is false.
Indeed, already for certain cocompact arithmetic 2-folds corresponding to the norm-
one elements of a quaternionic division algebra, the trace equation can cut out a ternary
indefinite inhomogeneous quadric, which can exhibit infinitely many Brauer-Manin-
type obstructions.

In this paper, we make the first progress towards Conjecture 1.10, by proving
asymptotic length-saturation for punctured, geometrically finite, Zariski-dense covers
of the modular surface. Equivalently, the fundamental group of such a cover contains
parabolic elements, is finitely-generated, and is non-elementary.

Theorem 1.11 Let � be a finitely generated, non-elementary subgroup of SL2(Z)

containing a parabolic element; then � is asymptotically length-saturating. In fact, it
is effectively so, in that the right hand side of (1.9) is 1+ O(N−ε) for some ε > 0, as
N → ∞.

Here is an explicit family of finitely-generated groups with δ(�) → 1/2 and with
no local obstructions, to which the theorem applies. For m large, consider the group
�0 < SL2(Z) generated by

(
0 −1
1 0

)
,
(
1 m
0 1

)(
0 −1
1 0

)(
1 −m
0 1

)
, and

(
1 −m
0 1

)(
0 −1
1 0

)(
1 m
0 1

)
.

Afundamental domain for the action of�0 is shown in Fig. 1. By strong approximation,
there is some q0 = q0(m) such that the reduction of �0 mod any prime p � q0 is onto.
Let P = P(m) be a very large prime coprime to q0 and let � be the group generated
by �0 and the translation

(
1 P
0 1

)
. Then since P is a unit mod q0, the reduction of � mod

q is easily seen to be all of SL2(q) (by which we mean SL2(Z/qZ)), for all q. Thus
all numbers are admissible; that is, there are no local obstructions. For P and m large,
the Hausdorff dimension of the limit set of � can be made any number exceeding 1/2.

Remark 1.12 This family also gives examples of groups � for which it should be
difficult to produce many traces! Indeed, these � have no small traces at all: the
systole of the groups �0 grows with m, and taking P large enough does not create
a shorter closed geodesic. In particular, this is an example of a family of �’s having
arbitrarily many local–global failures.

Remark 1.13 The question of length-saturation is closely related to the Local-Global
Conjecture forApollonian packings, Zaremba’sConjecture, andMcMullen’sClassical
Arithmetic Chaos Conjecture (see, e.g. [15, 17, 20] for discussions of these). Each of
these problems amounts to understanding the image of a linear form (which in the
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Fig. 1 The fundamental domain of �0, and a typical orbit

setting of this paper is the trace) of a Zariski dense subgroup (or sub-semigroup). In
each of the previous cases, the expected multiplicity in a ball of size N was some fixed
positive power of N .

Note that in our setting here, there is no restriction on the growth exponent α of
�; indeed, the Hausdorff dimension δ of the limit set of �, which can be as small as
δ > 1/2 (due to the puncture, see [1]). Counting with multiplicity, we have that:

#{γ ∈ � ∩ BN tr(γ ) < N } = N 2δ+o(1). (N → ∞)

So the multiplicity of a typical trace t � N in the trace set t ∈ T (�)may be extremely
small,

#{γ ∈ � ∩ BN tr(γ ) = t} ?= N 2δ−1+o(1), (1.14)

where 2δ−1 can be any quantity just above 0, and yet our methods produce a density-
one set of traces in this setting.

Also note that the methods introduced in [3] and applied to both the Zaremba [4]
and Apollonian [5, 12, 28] settings required the linear form to have a bilinear structure.
That is, the linear form was of type:

γ �→ 〈v, γw〉 (1.15)

for some fixed vectors v,w. The trace is not of this form, and so the best one can
currently say towards McMullen’s conjecture is a strong level of distribution, see [7].
It is not even currently known that a positive proportion of numbers arises in the set
of traces of a Zaremba-type semigroup (see [17, §3]). For related work in a somewhat
different direction, see also the recent PhD thesis of Brooke Ogrodnik [23, 24].

Remark 1.16 Returning to the setting of this paper, here are some further remarks:

(1) It is sometimes possible to completely determine the trace set of �, even if the
latter is thin. For example, take the “Lubotzky 1-2-3” group, � = 〈(

1 3
0 1

)
,
(
1 0
3 1

)〉
. It
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is easy to see that every trace is ≡ 2(mod 9), and indeed the element
(
1 0
3 1

)(
1 3
0 1

)n

has trace 2 + 9n, so all admissible traces are represented by this one arithmetic
progression.

(2) Sincewehave assumed that� does contain a parabolic element, it is immediate that
its trace setT (�) comprises a positive proportion of integers, since, as above,T (�)

contains entire arithmetic progressions. Without assuming that �\H is punctured,
current technology cannot not even produce a positive proportion of traces!

(3) On the other hand, an argument based on Furstenberg’s topology on the integers
shows that, if there is even a single local–global failure (that is, an admissible
t not in T (�)), then finitely many such arithmetic progressions cannot possibly
cover even a density-1 subset of T (�). A sketch is the following: declare arith-
metic progressions to be open, and generate a topology from this basis; then give
the admissible numbers in T (�) the subspace topology. If a finite number of
arithmetic progressions cover a density-1 set of admissible numbers, then their
complement, assumed to be non-empty, must be open; hence it contains an arith-
metic progression, so the cover is not density-1.

1.1 Methods

We use the (orbital) circle method to access the trace set T (�). In fact, our methods
apply not just to the trace function tr : SL2(Z) → Z but to any linear form, L , say,
on SL2 (and hence we do not group traces by conjugacy class). It turns out (see (2.1))
that the trace function is the “generic” linear form. The main theorem, from which
Theorem 1.11 follows immediately, is the following.

Theorem 1.17 Let � be a geometrically finite, punctured, Zariski dense subgroup of
SL2(Z), and let L : � → Z be any linear form. Let A denote the admissible values
of L ; that is, n ∈ A if and only if n ∈ L (�) (mod q), for all q. Then there is some
� > 0, so that:

#{n ∈ L (�) ∩ [1, N ]}
#{n ∈ A ∩ [1, N ]} = 1 + O(N−�),

as N → ∞. The implied constant is effective.

In the special case that the linear form is bilinear (as in (1.15)) and the critical
exponent of � is sufficiently close to 1, the above theorem is proved by the second-
named author in [29], but there are major differences between that setting (and indeed
all previous work on the orbital circle method) and the present paper. For one thing,
we are able to, for the first time, handle the case of L being the trace, which is not
bilinear; see Remark 1.16(2). This introduces great difficulties even in the major arc
analysis, as described below, requiring delicate arguments with the Burgess bound
and Siegel zeros. There are also a number of key innovations in our handling of the
minor arcs, among other things, requiring a “third Kloosterman refinement” to get the
application and allow δ to be as small as possible, any amount exceeding 1/2.

The starting point of our attack is to use the parabolic element in two ways to
produce not only arithmetic progressions, but values of binary quadratic polynomials
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in the set of values of the linear formL . By this we mean the following: given a fixed
element

(
a b
c d

) ∈ � and a parabolic, say,
(
1 P
0 1

) ∈ �, we can compute that

tr
((

a b
c d

)(
1 P
0 1

)x) = a + d + cx P,

which is a linear form in x , whereas, say,

tr
((

1 P
0 1

)x( a b
c d

)(
1 P
0 1

)y( a b
c d

)) = a2 + 2bc + d2 + (a + d)cP(x + y) + c2P2xy

is quadratic as a function of the pair (x, y). (Using three ormore copies of the parabolic
produces cubic or higher forms; the added cost of increasingly larger coefficient sizes
seems not to be advantageous for this problem.)

Then varying x and y, and letting
(
a b
c d

)
run over certain regions of� in a ball of size

N , we study the “representation number” RN (n) of the number of times that n � N
occurs as a value of L . In fact our construction of RN is more complicated, as we
need to create multilinear forms at several scales for later estimates, see Sect. 2.1.

Following the (orbital) circle method, we decompose RN (n) into a “main” term
MN (n) and an “error”, EN (n), where we integrate over the “major” and “minor” arcs,
resp. We note again that the main term is expected to be of size a singular series times
N 2δ−1 (see (1.14)), which may be an arbitrarily small (but fixed) positive power of N .
So we do not have much room to get an error off of the main term!

As in some other applications of the orbital circle method, we are only able to
control the error terms in L2, and hence produce only Asymptotic Length-Saturation,
and not full Length-Saturation (which perhaps could be expected in this setting). Even
this involves several novel techniques; there is amore standard analysis of cancellation
in certain exponential sums and averages thereof, and there is also an appeal at some
point to Hilbert’s Nullstellensatz in effective form (see Sect. 3.2).

In the major arcs, we use the work of Bourgain-Varju [10] and Bourgain-Gamburd-
Sarnak [2] for an archimedean spectral gap, together with infinite volume counting
methods of [8], to obtain an estimate for the main termMN (n). But there are several
surprises here as well! It turns out that the singular series is a very short sum (of
length N ε) which is trying to approximate a quadratic Dirichlet L-function at 1, see
Sect. 3.6. On GRH, this L-value can indeed be approximated by such a short sum,
but our statement is unconditional! Since our error term estimate is anyway only as an
“average” over n, we also average on the main term; that is, we show (see Theorem
3.38) that, for all but very few n’s, the approximation is valid. But thenwe have another
problem: we need Siegel’s bound to know that the singular series, which is now one
such L-value, is not too small. Again, because we are stating only an average result,
we show (see Theorem 3.41) that we can bound these L-values from below for all
but an exceptional set of values of n, with effective constants, leading to the effective
constants in Theorem 1.17.
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Outline

We begin in Sect. 2 with the setup of the circle method, introducing the main repre-
sentation function, and its decomposition into a main term and error, corresponding
to major and minor arcs. The next two sections provide preparatory lemmata for the
main arguments. We record in Sect. 3 various infinite volume counting theorems in
congruence towers, the savings off of such counts in progressions for arbitrarily large
modulus (this is where Nullstellensatz is used), as well as the analysis of the singular
series, which involves Weil and Burgess bounds. In Sect. 4, we prepare various expo-
nential sum estimates used in the minor arcs analysis, using more standard analytic
techniques such as estimates for Kloosterman-type sums. These allow us to complete
the major arcs analysis in Sect. 5 and then the minor arc analysis in Sect. 6.

Notation

We use the standard notation e(x) we mean e2π i x , and eq(x) = e(x/q). The notation∑′
r(q) means summing over r(mod q)with (r , q) = 1.We use the symbols X = O(Y )

and X � Y interchangeably, and by X � Y , we mean X � Y � X . All implied
constants, unless specified otherwise, may depend at most on � and the linear form
L , which are treated as fixed.

2 Preliminaries

We henceforth take � < SL2(Z) to be a given finitely-generated, Zariski dense group
containing parabolic elements. We consider a linear formL : SL2(Z) → Z which is
not everywhere vanishing; explicitly, this means that

L

(
a b
c d

)
�→ Aa + Bb + Cc + Dd = tr

[(
a b
c d

)(
A C
B D

)]
, (2.1)

and we assume that at least one coefficient A, B,C, D is non-zero. Note thatL is of
bilinear type (see (1.15)) exactly when its “discriminant”,


 = 
L = AD − BC

vanishes. After conjugation, we may assume that � contains the fixed parabolic ele-
ment

(
1 P
0 1

)
∈ �.

We make a few further simplifying assumptions.

• We may assume that gcd(A, B,C, D) = 1, since otherwise we can pull out a
common factor.
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• By applying fixed elements of � inside L , we may assume that the coefficients
A, B, C and D are all non-zero. Indeed, one has that:

L

(
γ1

(
a b
c d

)
γ0

)
= tr

[(
a b
c d

)
γ0

(
A C
B D

)
γ1

]
,

and by the Zariski density of �, there exist elements γ0, γ1 ∈ � so that γ0
(
A C
B D

)
γ1

has every entry non-zero.
• By Strong Approximation and passing to a finite index subgroup of � if necessary,
we may assume that for all (q1, q2) = 1, we have:

�/�(q1q2) ∼= �/�(q1) × �/�(q2), (2.2)

where

�(q) = {γ ∈ � : γ ≡ I (mod q)} (2.3)

is the “principal congruence” subgroup of (the possibly thin group) �. Moreover,
for all “good” primes p, we have that for q = p�, the mod q reduction is onto

�(q)\� = SL2(q).

• For a finite list of “bad” primes p (including p = 2), we have an exponent (“sat-
uration level”) k = kp so that

�(pk)\� = {I }, (2.4)

and for � > k, �(p�)\� is the full lift of the identity from SL2(pk) to SL2(p�).
In particular, the parabolic element

(
1 P
0 1

) ∈ � satisfies

P ≡ 0(pk) (2.5)

for all bad primes p.
• We may assume, by increasing the saturation densities kp if necessary, that

kp > L p,B, (2.6)

where L = L p,B is determined by pL‖B. (Here, as below, B is the coefficient of
b inL , as defined in (2.1).)

2.1 Setup of the circle method

For γ ∈ �, we construct the shifted binary quadratic form:

fγ (x, y) = L

((
1 Px
0 1

)
γ
( 1 Py
0 1

))
, (2.7)
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so that, if γ = ( aγ bγ

cγ dγ

)
, then

fγ (x, y) = (Aaγ + Bbγ + Ccγ + Ddγ ) + (Acγ + Bdγ )Px + (Baγ + Dcγ )Py

+Bcγ P
2xy. (2.8)

Note that, for any integers x, y ∈ Z and any γ ∈ �, the value of fγ (x, y) arises
inL (�). Let N be the main growing parameter, and T , X be parameters determined
by:

T = N 1/100, X = N 99/200, so that T X2 = N . (2.9)

Decompose T further at

T = T1T2, with T2 = T C
1 , (2.10)

with C a very large constant depending only on the spectral gap for �, see (3.7).
We now define the main ensemble FT as follows

FT :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ1 · γ2 =
(
a b
c d

)
: γ1, γ2 ∈ �

1
2 T1≤‖γ1‖<T1
1
2 T2≤‖γ2‖<T2
1

100 T<a,b,c,d

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (2.11)

We show in Lemma 3.3 that FT has cardinality � T 2δ . This is a sub-multi-set of �,
as the product γ1γ2 may have multiplicity; that is, for a fixed ξ ∈ FT ,

∑

γ∈FT

1{γ=ξ} � T 2δ
1 . (2.12)

Fixing a smooth nonnegative bump function ϒ with suppϒ ⊂ [ 12 , 1], define the main
“representation number”

RN (n) =
∑

γ∈FT

∑

x∈Z

∑

y∈Z

ϒ
( x

X

)
ϒ
( y

X

)
1{fγ (x,y)=n}.

We decompose RN into a “main” term and an error according to a (smoothed)
major/minor arcs decomposition of the circle. To this end, let

ψ(t) = max(1 − |t |, 0)
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be the “tent” function whose Fourier transform is the Fejér-type kernel:

ψ̂(ξ) = sin2(πξ)

(πξ)2
.

We fix parameters Q0, K0 to be determined as follows. We set

Q0 = Nα0 , K0 = N κ0 , (2.13)

where the exponents satisfy

κ0 = 3α0 (2.14)

and

5α0 + κ0 < �. (2.15)

Here � is the minimum of the two values in Lemmas 3.4 and 3.5. Setting

α0 = �/10, κ0 = 3�/10

will satisfy all the criteria.
With these choices, let

�N ,K0(β) :=
∑

m∈Z

ψ((β + m) N
K0

),

and define the “major arcs” weight function as:

M(θ) =
∑

q<Q0

′∑

r(q)

�N ,K0(θ − r
q ). (2.16)

Then the “main” term is given by:

MN (n) =
∫ 1

0
M(θ)R̂N (θ)e(−nθ)dθ, (2.17)

and of course the error is

EN (n) =
∫ 1

0
(1 − M(θ))R̂N (θ)e(−nθ)dθ,

so that

RN (n) = MN (n) + EN (n).
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3 Major arc technical estimates

We record here a number of technical estimates needed in the analysis of the main
term.

3.1 Spectral analysis and counting

Let δ = δ� be theHausdorff dimension of the limit set of�, and recall that δ > 1/2. By
Patterson-Sullivan theory [25, 26], δ is related to the bottom eigenvalue λ0 = δ(1− δ)

of the hyperbolic Laplacian acting on L2(�\H). Work of Lax-Phillips [18] shows
that the spectrum of the latter below 1/4 consists of finitely many eigenvalues. By
Bourgain-Varju [10] and Bourgain-Gamburd-Sarnak [2], there is a uniform spectral
gap, in the following sense.

Theorem 3.1 ([2, 10]). There exists a “spectral gap,”

�0 = �0(�) > 0 (3.2)

so that, for all q ≥ 1, the eigenvalue λ0 is the bottom of the spectrum of L2(�(q)\H),
and all other eigenvalues are at least λ� := s�(1 − s�), where s� := δ − �0. Here
�(q) is as defined in (2.3).

Recalling the construction of FT from (2.11), we record the following counting
results, which follow from now-standard techniques.

Lemma 3.3 As T → ∞,

#FT � T 2δ.

Proof This follows from infinite volume counting methods in Zariski dense groups
with δ > 1/2; see, e.g., [8]. ��
Lemma 3.4 There exists � > 0 so that, for any q ≥ 1, γ0 ∈ �(q)\�, |β| < 1/X2,
and x, y � X, we have that

∑

γ∈FT
γ≡γ0(mod q)

e(βfγ (x, y)) = 1

[� : �(q)]
∑

γ∈FT

e(βfγ (x, y)) + O(|FT |N−�),

as T → ∞.

Proof The proof is the same as that of the similar statement in [8, Theorem 1.14]. ��
Lemma 3.5 There exists � > 0 so that, for x, y � X and n � N, we have:

∑

γ∈FT

∫

R

ψ(β N
K0

)e(β(fγ (x, y) − n))dβ � |FT |
K0

+ O(|FT |N−�),

as T → ∞.
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Proof We first note that
∫

R

ψ(β N
K0

)e(β(fγ (x, y) − n))dβ = K0

N
ψ̂((fγ (x, y) − n)

K0

N
) ≥ 0,

and if |fγ (x, y) − n) K0
N | < 1

2 , then ψ̂(·) > 2
5 . So we need to show the count:

∑

γ∈FT

1{|fγ (x,y)−n|< N
2K0

} � |FT |
K0

+ O(|FT |N−�).

The latter follows from the same techniques as the proof of [8, Theorem 1.15]. ��

3.2 Nullstellensatz

Theorem 3.6 Let �0 be the spectral gap in (3.2). Define C by

C = 3 × 108/�0, (3.7)

which is needed to specify the construction of the set FT in (2.11) and (2.10). There
exists an η0 > 0 depending only on the spectral gap for �, so that, for all 1 ≤ q < N,
and all r(mod q),

∑

γ∈FT

1{cγ ≡r(mod q)} � 1

qη0
|FT |. (3.8)

The proof of this theorem follows a similar strategy to that of [5, Lemma 5.2];
unfortunately, that proof contains a minor gap, so we give full details here for how to
overcome it.

Proof We first drop the condition 1
100T < a, b, c, d from FT in (2.11), so that we

need to count the number of γ1 � T1, γ2 � T2 so that the “c” entry of γ1γ2,

〈e2, γ1γ2e1〉 ≡ r(mod q),

where e j are standard basis vectors. This decomposes into two cases according to the
size of q.

Case q < T�0/3
2 : In this case, we simply apply spectral theory in γ2 while leaving

γ1 fixed, as follows. Break γ2 into progressions mod q:

∑

γ1�T1

∑

γ2�T2

1{〈e2,γ1γ2e1〉≡r(mod q)}

=
∑

γ1�T1

∑

γ0∈�(q)\�

⎡

⎢⎢
⎣1{〈e2,γ1γ0e1〉≡r(mod q)}

∑

γ2�T2
γ2≡γ0(mod q)

1

⎤

⎥⎥
⎦ .
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The bracketed term may be estimated using the uniform spectral gap (see [8]) to give

�
∑

γ1�T1

∑

γ0∈�(q)\�
1{〈e2,γ1γ0e1〉≡r(mod q)}

[
1

q3
T 2δ
2 + O(T 2δ−�0

2 )

]

� 1

q
T 2δ
2 T 2δ

1 + q2T 2δ
1 T 2δ−�0

2 .

Here we used that [� : �(q)] � q3. This saves 1/q (more than claimed) as long as
q < T�0/3

2 .

Case q ≥ T�0/3
2 = T 108

1 :The overview of the argument is as follows. For any fixed
γ2, we consider the set of γ1 � T1 for which 〈e2, γ1γ2e1〉 ≡ r(mod q). Since different
integers having the same residue class mod q differ by q, and q is huge compared to
T1, we will show by Nullstellensatz that in fact the modular restriction can be lifted to
an absolute restriction 〈e2, γ1γ2e1〉 = r∗, for some integer r∗ (depending on γ2, which
is fixed). Then we will relax the absolute restriction back down to a modular one, but
with a much smaller modulus, 〈e2, γ1γ2e1〉 ≡ r∗(mod q∗), where q∗ � T�0/3

1 , and
apply the previous argument to save a power of q∗, which itself is a tiny power of q.

An issue arises in the use ofNullstellensatz thatwas overlooked in related arguments
in [5, 6]. Write γ2e1 = (u, v) and γ1e1 = (c, d), so that 〈e2, γ1γ2e1〉 = uc+ vd, with
|u|, |v| ≤ T2 being “large” and fixed, and |c|, |d| ≤ T1 being “small” variables. It
was claimed that, since (u, v) = 1, we may assume that, say, (u, q) = 1, and rewrite
the modular condition as c + vūd ≡ r ū(mod q). Unfortunately the obvious linear
transformation that allows this rewrite requires changing the coefficients c, d to ones
of size bounded by T1T2 = T , and this ruins the heights of the polynomials to be used
in effective Nullstellensatz. So we need a more delicate argument to control the size
of coefficients, as follows.

Suppose q < N has a divisor q̃ | q of size T1 < q̃ < T�0/3
2 , say. Then we relax

〈e2, γ1γ2e1〉 ≡ r(mod q) to the same congruence mod q̃ , and count as in the previous
case. This saves 1/q̃ > 1/T1, which is a (very small) power of N > q, and completes
the argument in this case.

Next we suppose that q has no divisor in this range. Let q̃ be the largest divisor of
q not exceeding T1, and write q0 := q/q̃ . We again relax the congruence restriction to
〈e2, γ1γ2e1〉 ≡ r(mod q0); if we can save a small power of q0, this also saves a small
power of q. Then any prime divisor p of q0 must exceed T�0/3

2 , for otherwise either p

or pq̃ is a divisor of q which is does not exceed T�0/3
2 . Therefore q0 is “almost-prime”,

that is, there are primes p j ≥ T�0/3
2 = Nη, say, so that

q0 = p1 p2 · · · p�,

with � < �1/η�.
Next we consider the values of u + αv, for α = 1, 2, . . . , � + 1, and claim that

at least one such value is coprime to q0. (The point here is that � depends only on
q, and is bounded only in terms of �0, which only depends on �.) Consider first the
primes p j which divide either u or v (recall that u and v are coprime); then since
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p j > T�0/3
2 > � + 1 (for N , and hence T2, large enough), none of the p j can

divide any value of u + αv. Now consider the p j which are coprime to u and v. Then
since u + αv is an arithmetic progression of length � + 1 < p j , at most one value
α j ∈ {1, 2, . . . , � + 1} can satisfy u + α j ≡ 0(mod p j ). Since the number of α’s
exceeds the number of p j ’s, there is some α so that u + αv is coprime to all the p j ,
and hence coprime to q0.

Again, this α is bounded absolutely, and depends only on q, u, and v, and not on
c and d (which depend on γ1). Now we proceed with the Nullstellensatz argument.
Using the modulus q0, we fix γ2, let (u, v) = γ2e1, and consider the set

S = Sγ2 := {γ1 ∈ �, ‖γ1‖ ≤ T1 with uc + vd ≡ r(mod q0)},

where we have set (c, d) := γ1e2. Using α from the previous argument with u + αv

coprime to q0, we write uc + vd = (u + αv)c + v(d − αc), so that the congruence
condition becomes

c + v(u + αv)(d − αc) ≡ r(u + αv)(mod q0).

Now consider the (linear) polynomials Pγ1 ∈ Z[U , V ] given by

Pγ1(U , V ) := c +U (d − αc) − V ,

and consider the affine variety

V :=
⋂

γ1∈S
{Pγ1 = 0}.

We claim that V(C) is nonempty. Note that the coefficients of Pγ1 are bounded by
(�+2)T1. Then if V(C) is empty, Hilbert’s Nullstellensatz, in effective form (see, e.g.,
[22, Theorem IV]) gives the existence of polynomials Qγ1 ∈ Z[U , V ] and an integer
d ≥ 1 so that

∑

γ1∈S
Pγ1(U , V )Qγ1(U , V ) = d, (3.9)

and with d bounded (for N , and hence T1, large enough) by

d ≤ exp(87(log T1 + log(� + 2) + 8 log 8) ≤ T 107
1 .

(“Large enough” is in terms of an implied constant depending only on �, since
� depends only on �0). But if we reduce (3.9) mod q0 and set (U , V ) ≡
(v(u + αv), r(u + αv)), we get d ≡ 0(mod q0), which is impossible since q0 =
q/q̃ > T 108−1

1 .
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Therefore V(C) is nonempty, and hence V(Q) is nonempty, and so clearing denom-
inators, there exist coprime integers u∗, v∗, r∗, so that for all γ1 ∈ S,

u∗c + v∗d = r∗.

We have turned our congruence condition into an archimedean condition. Now we
take some q∗ � T�0/3

1 coprime to u∗, v∗, r∗, relax the archimedean condition back to
a modular one, u∗c+ v∗d ≡ r∗(mod q∗), and count the number of γ1 � T1 satisfying
this. As before, the spectral argument saves 1/q∗, which is some small power of q. ��

3.3 Singular series preliminaries

Recall that gcd(A, B,C, D) = 1 and 
 = AD − BC . Let cq denote the Ramanujan
sum,

cq(m) :=
′∑

a(mod q)

eq(am).

(There should be no confusion between cq and bottom left element c = γc of a typical
matrix γ = (

a b
c d

)
.) We study here sums arising in the singular series analysis, of the

form

Sq(n) := 1

|�(q)\�|
∑

γ∈�(q)\�
cq(fγ (x, y) − n),

for fixed x, y ∈ Z. Note immediately that the sum, being over all γ ∈ �(q)\�, is
independent of x, y, which wemay assume are both 0; thus fγ = Aa+Bb+Cc+Dd.
By the structure of �(q)\� in (2.2), the sum is multiplicative, so we may assume that
q = p� is a prime power. For “good” primes, we have that �(q)\� = SL2(q). For
“bad” primes, we have that �(pk)\� = {I } for some “saturation exponent” k, while
�(p�)\� for � > k is the full lift to SL2(p�) of the identity in SL2(pk).

3.4 Good primes

Lemma 3.10 Assume that q is a power of a good prime. Then we have that

Sq(n) = 1

|�(q)\�|
∑

γ∈�(q)\�
cq(aγ + 
dγ − n).

Proof Recalling that

fγ (0, 0) = tr
[
γ
(
A C
B D

)] = tr
[(

α β
κ δ

)
γ
(
A C
B D

)(
δ −β

−κ α

)]
,
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for any
(

α β
κ δ

) ∈ SL2, and the sum being over all γ ∈ SL2(q), we may simplify the
expression in the following way. AssumeWLOG that (A, q) = 1; then we can rescale(
A C
B D

)
to
(

1 C Ā
BA DA

)
, and continuing by elementary operations, we may replace

(
A C
B D

)

by
(
1 0
0 


)
, as claimed. ��

3.4.1 Case1 ≡ 0(mod p)

Lemma 3.11 Assume 
 ≡ 0(p). For q = p a good prime, we have that:

Sq(n) =
⎧
⎨

⎩

−1
p+1 i f n ≡ 0(p),

1
p2−1

i f n �≡ 0(p).

Proof Recall that

cp(x) =
{
p − 1 if x = 0,

−1 else.

Write γ = (
a b
c d

)
. Assume p is a good prime. From Lemma 3.10, we need to count

the number of
(
a b
c d

)
with a = n or a �= n.

Consider the case n ≡ 0(mod p). Then either a ≡ n ≡ 0(mod p) or not. In the
first case, bc ≡ 1(mod p) and d is free (p(p− 1) matrices) and cp = p− 1 for a total
contribution of p(p − 1)2. In the second case a �= n, there are p − 1 choices for a,
then p2 choices for b, c, and d = (bc+ 1)ā is determined. This is p2(p− 1) matrices
with cp = −1. Combining these contributions gives (−1)p(p − 1) when n ≡ 0.

Now suppose n �≡ 0. Then if a ≡ n, then b and c are free (with p2 choices) and
d is determined, with cp = p − 1, for a net contribution of p2(p − 1). If a �≡ n,
then cp = −1 and we either have a = 0, bc ≡ 1 and d free (p(p − 1) choices), or
a �= 0 (with p − 2 choices), and b, c free and d determined (p2 choices). The total
contribution is then p when n �≡ 0(p).

The size of SL2(p) is p(p − 1)(p + 1), which gives the claim. ��
Lemma 3.12 Assume 
 ≡ 0(mod p). For q = p� a power of a good prime (� ≥ 2),
we have that:

Sq(n) = 0.

Proof For prime powers, we have that:

cp� (x) =

⎧
⎪⎨

⎪⎩

0 if x � �= 0(p�−1),

−p�−1 if x �≡ 0(p�) but x ≡ 0(p�−1),

p�−1(p − 1) if x ≡ 0(p�).

So there is no contribution unless a + 
d ≡ n(mod p�−1). Fix γ0 = ( a0 b0
c0 d0

) ∈
SL2(p�−1) which solves a0 + 
d0 ≡ n(mod p�−1) and a0d0 − b0c0 = 1. Consider
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any lift γ = (
a b
c d

) ∈ SL2(p�) of γ0, that is, a = a0 + p�−1a1, etc. The restriction that
ad − bc ≡ 1(mod p�) becomes:

a1d0 + d1a0 − c1b0 − b1c0 ≡ 0(mod p). (3.13)

(This is just the Jacobian of the determinant.) The above defines a 3-dimensional sub-
space in a1, b1, c1, d1. Assume WLOG that a0 �= 0(mod p). Then (3.13) determines
d1 once a1, b1, c1 are determined. We consider two cases, a + 
d ≡ n(mod p�) or
not; since 
 ≡ 0(mod p), this is a restriction on a1, which leaves b1, c1 free (p2

choices, which is the same count either way). If a1 is the unique value mod p for
which a + 
d ≡ n(mod p�), then cp� = p�−1(p − 1). But if a1 is one of the (p − 1)
values for which a+
d �≡ n(mod p�), then cp� = −p�−1. The net contribution from
these two cases exactly cancels. ��

3.4.2 Case1 �≡ 0(mod p)

Lemma 3.14 Assume 
 �≡ 0(mod p). For q = p a good prime, we have that:

Sq(n) =
1 + p

(
n2−4


p

)

p2 − 1
,

where
( ·
p

)
is the Legendre symbol.

Proof Again by Lemma 3.10, we need to count the number of
(
a b
c d

)
with a+
d = n

or not. We decompose SL2(p) according to whether c = 0 or not.
If c = 0, then γ = (

a b
0 ā

)
, and we need to know whether a + 
ā ≡ n or not. This

equation is equivalent to a2 − na + 
 ≡ 0, which has
(
n2−4


p

)
+ 1 solutions for

a with b free (with p choices), each contributing cp = p − 1 to Sq . The remaining(
p − 1 −

(
n2−4


p

)
− 1

)
p solutions contribute cp = −1 each.

If c �≡ 0, then for any choice of d, we either have a ≡ n − 
d (with one choice,
contributing cp = p − 1) or not (p − 1 choices contributing cp = −1). Then c is free
(p − 1 choices) and b = (ad − 1)c̄ is determined. These two contributions exactly
cancel.

On using |SL2(p)| = p(p − 1)(p + 1), the net contribution is as claimed. ��
Lemma 3.15 Assume 
 �≡ 0(mod p). Let pL‖(n2 − 4
). For q = p� a power of a
good prime (� ≥ 2), we have that:

Sq(n)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L ≤ � − 2, or if � is odd and L ≥ �,

p−(�−3)/2(p2 − 1)−1
(

(n2−4
)/pL

p

)
if � is odd and L = � − 1,

p−(�−2)/2(p + 1)−1 if � is even and L ≥ �,

−p−(�−2)/2(p2 − 1)−1 if � is even and L = � − 1.

(3.16)
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In any case,

Sp� (n) � p−�/2. (3.17)

Proof We decompose SL2 according to the value of γc:

SL2(p
�) =

⊔

c∈Z/p�

Cc,

where

Cc = {γ ∈ SL2(p
�) : γc = c}.

Notice that�∞ = {nx x ∈ Z/p�} acts on the left onCc, where nx = (
1 x
0 1

)
, so wemay

decomposeCc into�∞-cosets. The value fγ = a+
d changes to fnxγ = a+
d+cx
when γ is replaced by nxγ . If c �≡ 0(mod p�), then this is an arithmetic progression as
x varies (otherwise, it is constant). For some �∞-cosets, the values of this progression
are never ≡ n(mod p�−1), in which case there is no contribution to Sq since the
Ramanujan value cp� vanishes. If the progression does attain the value n(mod p�−1),
then as x ranges mod p�, this value in Z/p�−1 is attained with equal multiplicities
from its p lifts in Z/p�. Exactly one of these lifts is ≡ n(mod p�), which contributes
cp� = p�−1(p − 1), and the other (p − 1) lifts contribute cp� = −p�−1. The two
types of contributions exactly cancel.

We are left to study the distribution of the values a + 
ā from γ = (
a b
0 ā

)
ranging

in C0. In particular, we need only consider the values a + 
ā ≡ n(mod p�−1) and
determine which of these are also ≡ n(mod p�). The equation

a + 
ā ≡ n(mod p�)

is equivalent to

a2 − na + 
 ≡ 0(mod p�),

which on completing the square gives the equation:

(a − 2̄n)2 ≡ 4̄(n2 − 4
)(mod p�). (3.18)

We want to consider the number of solutions to (3.18) as compared to the solutions to
the same equation but mod p�−1:

(a − 2̄n)2 ≡ 4̄(n2 − 4
)(mod p�−1). (3.19)

Consider first solutions to (3.19). If n2 −4
 is not a square mod p�−1, then (3.19) has
no solutions, and Sq = 0. Assume henceforth that n2 − 4
 is a square mod p�−1.
Let pL‖n2 − 4
.
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Case: L ≤ � − 2.
If L is odd, then (3.19) has no solutions. So we assume that L = 2L1 is even.

Since n2 − 4
 is a square, we can thus write n2 − 4
 ≡ s2 p2L1(mod p�−1) for some
s �≡ 0(mod p). Then (3.19) becomes:

(a − 2̄n − 2̄spL1)(a − 2̄n + 2̄spL1) ≡ 0(mod p�−1).

This equation is equivalent to the existence of U , V ≤ � − 1 with U + V ≥ � − 1
such that

a − 2̄n − 2̄spL1 ≡ 0(mod pU ), a − 2̄n + 2̄spL1 ≡ 0(mod pV ).

Assume WLOG that U ≤ V . Then taking the difference of these equations, we have
that U ≥ L1. But since s is invertible mod p, we must also have U ≤ L1, that is,
U = L1, and only the equation mod pV needs to be solved, which is solved uniquely.
Thus are then 2pL1 solutions to (3.19), which are all of the form:

a = 2̄n ± 2̄spL1 + kp�−1−L1,

as k ranges in Z/pL1 .
For each such value of a, the question becomes: which of these also solves (3.18)?

Letting k range in Z/pL1+1 and inserting this expression for a into (3.18), we get:

(a − 2̄n)2 ≡ 4̄s2 p2L1 ± skp�−1 ?≡ 4̄(n2 − 4
)(mod p�),

wherewe used that 2(�−1−L1) ≥ �. Since s �≡ 0(mod p), as k ranges inZ/pL1+1, the
values of 4̄s2 p2L1 ± skp�−1 range in an arithmetic progression of step size p�−1, and
so are periodic, taking each value with equal probability. As before, the corresponding
Ramanujan values are then such that the contributions to Sq exactly cancel.

Case L ≥ � − 1 and � even:
In this case, (3.19) asks for (a − 2̄n)2 ≡ 0(mod p�−1). The solutions to this are

a = 2̄n + kp�/2,

as k ranges in Z/p
1
2 �−1.

To see which solutions lift to (3.18), we let k range in Z/p�/2. Then (3.18) asks
whether

(a − 2̄n)2 ≡ k2 p� ?≡ 4̄(n2 − 4
)(mod p�).

If n2 − 4
 ≡ 0(mod p�), that is, L ≥ �, then every solution to (3.19) also solves
(3.18). So there are p�/2 values of a in

(
a b
0 ā

)
, and another p� values of b which is free.

Each such matrix has a Ramanujan value cq = p�−1(p−1), for a net contribution of:

Sq = p(2−�)/2

p + 1
,
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where we used that |SL2(p�)| = p3(�−1) p(p + 1)(p − 1).
If n2−4
 �≡ 0(mod p�), that is, L = �−1, then no solution to (3.19) lifts to (3.18).

Each matrix as above has a Ramanujan value of cq = −p�−1, for a net contribution
of:

Sq = − p(2−�)/2

p2 − 1
.

Case L ≥ � − 1 and � odd:
Now the solutions to (3.19) are:

a = 2̄n + kp(�−1)/2,

as k ranges in Z/p(�−1)/2.
Inserting these values into (3.18) and letting k range in Z/p(�+1)/2, we are asking

whether

(a − 2̄n)2 ≡ k2 p(�−1) ?≡ 4̄(n2 − 4
)(mod p�).

If L ≥ �, then this equation is satisfied if and only if k ≡ 0(p), so again there is a
balance and the contributions to Sq cancel.

Lastly, if L = � − 1, which is even since � is odd, then note that (n2 − 4
)/pL is
a non-zero square mod p if and only if n2 − 4
 is a square mod p�. Whether or not

this holds, there are
(

(n2−4
)/pL

p

)
+ 1 solutions for k(mod p), and every lift of these

to Z/p(�+1)/2 solves (3.18). The number of these lifts is

p(�−1)/2
((

(n2 − 4
)/pL

p

)
+ 1

)
,

each contributing a Ramanujan value of cq = p�−1(p − 1). And of course the com-
plementary number of solutions to (3.19) that do not lift to (3.18) is

p(�−1)/2
(
p − 1 −

(
(n2 − 4
)/pL

p

))
,

each giving a Ramanujan value of cq = −p�−1. Recalling that there are p� values of
b in

(
a b
0 ā

)
, the total contribution to Sq is then:

Sq = p−(�−3)/2

p2 − 1

(
(n2 − 4
)/pL

p

)
.

This completes the proof. ��
We summarize this subsection as follows.
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On length sets of subarithmetic hyperbolic manifolds 2805

Corollary 3.20 Let p be a good prime for �, and let

S(p)(n) := 1 + Sp(n) + Sp2(n) + · · ·

be the “local factor” at p. Then for all p,

S(p)(n) = 1 + Sp(n) + Sp2(n) + O(p−3/2).

Moreover,

• If p | 
, then

S(p)(n) = 1 + O(p−1).

• If p � 
 and p � n2 − 4
, then

S(p)(n) = 1 + 1

p

(
n2 − 4


p

)
+ O(p−2).

• If p � 
 and p‖n2 − 4
, then

S(p)(n) = 1 + O(p−2).

• If p � 
 and pL‖n2 − 4
 with L ≥ 2, then

S(p)(n) = 1 + O(p−1).

3.5 Bad primes

For bad primes, our strategy is as follows. Rather than evaluating Sq(n) explicitly,
we show the following “density formula.”

Lemma 3.21 For any � ≥ 0 and any prime p (good or bad), we have that

1 + Sp(n) + · · · + Sp� (n) = p� #{γ ∈ �(p�)\� : fγ ≡ n(mod p�)}
[� : �(p�)] . (3.22)

This will tautologically capture the condition that n is admissible; that is, it clearly
vanishes if n is not admissible.And then, for � large enough,we claim thatSp� (n) = 0,
so these probabilities stabilize.

Proof of Lemma 3.21 This follows immediately from

Spm (n) = 1

|�(p�)\�|
∑

γ∈�(p�)\�
cpm (fγ − n),
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2806 A. Kontorovich, X. Zhang

for any 0 ≤ m ≤ �, together with the fact that

1 + cp(x) + · · · + cp� (x) = 1{x≡0(mod p�)} p�.

��
Finally, we show that the densities stabilize.

Lemma 3.23 Let p be a bad prime, and let k = kp be the “saturation level” of p, as
in (2.4). Let pL‖B (and recall that B �= 0, and that k > L by (2.6)). If � > 2k, then
Sp� (n) = 0.

Proof Decompose �(p�)\� into disjoint �∞ = {nx = (
1 x
0 1

)} cosets; here x ranges
in Z/p� but is restricted (by saturation) to x ≡ 0(pk). We claim that the Ramanujan
values on each coset exactly cancel. Note that fγ = Aa + Bb + Cc + Dd changes
when γ �→ nxγ to

fnxγ = fγ + (Ac + Bd)x .

Since c ≡ 0(mod pk) and d ≡ 1(mod pk), and pL‖B with k > L , we have that

pL‖Ac + Bd.

Now as x ranges over p� subject to x ≡ 0(mod pk), since � > 2k > k + L , the values
of fnxγ range in some non-constant arithmetic progression. The resulting Ramanujan
values cancel exactly, as claimed. ��

So the high powers of bad primes have vanishing Sq . For the lower powers, we
give the following trivial estimate on Sq .

Lemma 3.24 For any prime p (good or bad) and any � ≥ 1, we have:

|Sp� (n)| ≤ p�. (3.25)

Proof The density formula (3.22) gives upper and lower bounds for its left-hand side
of: p� and 0, respectively. Replace � by � − 1 and subtract to get the claim. ��

3.6 Short sum ofSq

Define

S(n) =
∑

q≥1

Sq(n).

Lemma 3.26 Assume that 
 = 0. Then the series definingS(n) is absolutely conver-
gent,

∑

q<Q0

Sq(n) = S(n) + Oε(Q
−1
0 nε),
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as Q0 → ∞, and satisfies, for n admissible,

1

log log n
� S(n) � 1.

Proof By Lemmas 3.11 and 3.12, we have that

∑

q≥Q0

|Sq(n)| �ε nεQ−1
0 .

For n admissible,

S(n) �
∏

p|n

(
1 − 1

p

)
,

where we also used Lemmas 3.21 and 3.23. The claim follows immediately. ��

To prepare for the case 
 �= 0, we need some preliminaries.

Lemma 3.27 Let χ be a Dirichlet character of conductor M and fix � ∈ Z. Then

∣
∣∣∣∣∣
∣∣∣∣∣

∑

q�H
squarefree
(q,�)=1

χ(q)

∣
∣∣∣∣∣
∣∣∣∣∣

�ε H1/2M3/16(HM�)ε,

as H → ∞.

Proof To capture both the squarefree and coprime conditions, we use Möbius inver-
sion. Using ζ(s)/ζ(2 s) = ∑

n squarefree 1/n
s , we have that μ(q)2 = ∑

m2|q μ(m).
Similarly,

∑
d|x μ(d) = 1 if x = 1 and 0 otherwise. Therefore

∑

q�H
squarefree
(q,�)=1

χ(q) =
∑

q�H
(q,�)=1

χ(q)
∑

m2|q
μ(m) =

∑

m�H1/2

(m,�)=1

μ(m)χ(m)2
∑

q�H/m2

(q,�)=1

χ(q)

=
∑

m�H1/2

(m,�)=1

μ(m)χ(m)2
∑

q�H/m2

χ(q)
∑

d|q
d|�

μ(d)

=
∑

m�H1/2

(m,�)=1

μ(m)χ(m)2
∑

d�H/m2

d|�

μ(d)χ(d)
∑

q�H/(m2d)

χ(q).
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2808 A. Kontorovich, X. Zhang

Applying Burgess [9] to the last sum, we have that

∣
∣∣∣∣∣
∣∣∣∣∣

∑

q�H
squarefree
(q,�)=1

χ(q)

∣
∣∣∣∣∣
∣∣∣∣∣

�ε

∑

m�H1/2

∑

d�H/m2

d|�

H1/2

md1/2
M3/16+ε �ε �εH1/2+εM3/16+ε,

as claimed. (Slightly better estimates are available today but not needed here.) ��
Going forward, we let B1 be the (finitely many) primes which are “bad” (for �),

B2 be the primes not in B1 which divide 
, and B3 = B3(n) be the primes not in
B1 or B2 which divide n2 − 4
. Let B = B(n) = � jB j , and set

� = �(B) :=
∏

p∈B
p.

For all the other primes p � �, Lemma 3.14 gives that

Sp(n) = 1

p

(
n2 − 4


p

)
+ Ep,

where

Ep = Ep(n) :=
p +

(
n2−4


p

)

p(p2 − 1)
� 1

p2
.

We extend Ep to a multiplicative function Eq supported on square-free q.
Note that we now do not have absolute convergence, andmust bemuchmore careful

in our analysis.
We break the tail

∑
q≥Q0

ofS(n) into dyadic regions
∑

q�H , with Q0 ≤ H → ∞.

Lemma 3.28 Assume that 
 �= 0. Then as H → ∞,

∣∣∣
∣∣∣

∑

q�H

Sq(n)

∣∣∣
∣∣∣
�ε (nH)εn3/8H−1/2, (3.29)

for any ε > 0.

Proof From Lemma 3.15, we have thatSq vanishes if (q,�) = 1 and q is not square-
free. For q square-free and coprime to �, we have then that

Sq(n) =
∏

p|q

(
1

p

(
n2 − 4


p

)
+ Ep

)
=
∑

ab=q

1

a

(
n2 − 4


a

)
Eb(n). (3.30)
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Write any q as

q = qB · q1,

where

qB =
∏

p�‖q
p|�

p�, and q1 =
∏

p�‖q
(p,�)=1

p�

From multiplicativity, we have that Sq = SqB · Sq1 .
Then we have

∑

q�H

Sq(n) =
∑

qB�H
p|qB�⇒p|�

SqB(n)
∑

q1�H/qB
square-free
(q1,�)=1

Sq1(n)

=
∑

qB�H
p|qB�⇒p|�

SqB(n)
∑

q1�H/qB
square-free
(q1,�)=1

∑

ab=q1

1

a

(
n2 − 4


a

)
Eb

=
∑

qB�H
p|qB�⇒p|�

SqB(n)
∑

b�H/qB
square-free, (b,�)=1

Eb

∑

a�H/(qBb)
square-free
(a,�)=1

1

a

(
n2 − 4


a

)

�ε(nH)εn3/8H−1/2
∑

qB�H
p|qB�⇒p|�

SqB(n)q1/2B ,

where we used Lemma 3.27, partial summation, and Eb � bε/b2.
To deal with the remaining qB sum, we decompose

SqB(n)q1/2B = SqB1
(n)q1/2B1

· SqB2
(n)q1/2B2

· SqB3
(n)q1/2B3

,

corresponding toB = B1 � B2 � B3.
SinceB1 is a finite set of primes which are bad for�, and only finitelymany powers

of such primes have non-vanishingSqB1
by Lemma 3.23, the total contribution from

B1 is bounded by a constant depending only on � and the linear form L , that is, on
A, B,C, D.

Recall that B2 consists of the good primes dividing 
; Lemma 3.12 removes any
non-square-free qB2 contributions, and Lemma 3.11 otherwise gives SqB2

(n) �
1/qB2 . So again this contribution is bounded.

Finally, for B3, we use (3.17) to offset the factor of q1/2B3
, and (3.16) to kill the

contribution from any powers � of p� in qB3 unless � ≤ L + 1 ≤ 2L , where pL‖n2 −
4
. Therefore the only qB3 contributing to the sum are divisors of (n2 − 4
)2, and
the number of such is � nε. This gives the claim. ��
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2810 A. Kontorovich, X. Zhang

Lemma 3.28 is sufficient to show that S(n) converges (conditionally, not abso-
lutely), but does not allow us a good enough error estimate for the very short sum∑

q<Q0
Sq(n), since H needs to be at least n3/4+ for (3.29) to decay. If we replaced

our use of Burgess with GRH, we could get good estimates with H as small as Q0,
which is a tiny power of N . Unconditionally, we can only do this on average, as
follows.

Theorem 3.31 As H → ∞, we have

∑

n�N

∣∣∣∣
∣∣

∑

q�H

Sq(n)

∣∣∣∣
∣∣

2

�ε H ε

(
H + N

H1/2

)
,

for any ε > 0.

Proof As before, let B1 be the “bad” primes for �, and B2 be the primes not in B1
which divide 
. SinceB3 depends on n, we now have to handle it separately. We now
writeB = B1 � B2 and � := ∏

p∈B p as before, and decompose

q = qB · q1,

with (q1,�) = 1. Furthermore, we will split off the square-full part of q1, writing
q1 = q2 · q3, where

q2 :=
∏

p‖q1
p, q3 := q1/q2 =

∏

p�‖q1
�≥2

p�.

With this decomposition, we open the square and reverse orders:

∑

n�N

∣∣
∣∣
∣∣

∑

q�H

Sq (n)

∣∣
∣∣
∣∣

2

=
∑

n�N

∣∣
∣∣
∣∣
∣∣

∑

qB�H
p|qB�⇒p∈B

SqB(n)
∑

q3�H/qB
(q3,�)=1, square-full

Sq3 (n)
∑

q2�H/(qBq3)
(q2,�)=1=(q2,q3), square-free

Sq2 (n)

∣∣
∣∣
∣∣
∣∣

2

=
∑

qB,q3,q2,q ′
B,q ′

3,q
′
2

∑

n�N

SqB(n)Sq ′
B

(n)Sq3 (n)Sq ′
3
(n)Sq2 (n)Sq ′

2
(n)

Here, instead of using the decomposition (3.30), we return to Lemma 3.14 and
write

Sp(n) =
(
n2 − 4


p

)
p

p2 − 1
+ Ep,
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where

Ep = 1

p2 − 1
.

The crucial fact for our purposes here is that Ep is now independent of n. Extending
Ep to a multiplicative function on square-frees gives

Eq � 1

q2
, (3.32)

where we used that
∏

p|q(1 − 1/p2) � 1. Then we can write, for any q square-free
and coprime to �, that

Sq(n) =
∏

p|q

((
n2 − 4


p

)
p

p2 − 1
+ Ep

)
=
∑

ab=q

ψ(a)

(
n2 − 4


a

)
E(b),

where ψ is a multiplicative function supported on square-free numbers taking the
value ψ(p) = p/(p2 − 1) on primes. In particular,

ψ(q) � 1

q
. (3.33)

For q2 and q ′
2, we insert this expression to get:

∑

n�N

∣∣∣∣∣
∣

∑

q�H

Sq(n)

∣∣∣∣∣
∣

2

=
∑

qB,q3,q2,q ′
B,q ′

3,q
′
2

∑

n�N

SqB(n)Sq ′
B

(n)Sq3(n)Sq ′
3
(n)

×
∑

ab=q2

ψ(a)

(
n2 − 4


a

)
Eb

∑

a′b′=q ′
2

ψ(a′)
(
n2 − 4


a′

)
Eb′

≤
∑

qB,q3,q2,q ′
B,q ′

3,q
′
2

∑

ab=q2

∑

a′b′=q ′
2

ψ(a)ψ(a′)|EbEb′ |

×
∑

n0 mod q̃

∣
∣∣SqB(n0)Sq ′

B
(n0)Sq3(n0)Sq ′

3
(n0)

∣
∣∣

×

∣∣∣
∣∣∣∣∣

∑

n�N
n≡n0(mod q̃)

(
n2 − 4


a

)(
n2 − 4


a′

)
∣∣∣
∣∣∣∣∣

, (3.34)

where we have decomposed n into progressions mod q̃ , where

q̃ := [qB, q ′
B, q3, q

′
3].
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While it is clear at, say, a and q3 are coprime (by construction, since a | q2), we
actually also have that there is no contribution unless a and q ′

3 are coprime. Indeed,

if p | a and p | q ′
3, then either n

2 − 4
 ≡ 0(p), in which case
(
n2−4


a

)
vanishes, or

else Sq ′
3
(n) vanishes from (3.16) and the square-full-ness of q ′

3. Therefore, we may
restrict the summations to

(a, q̃) = (a′, q̃) = 1.

We first analyze the last n sum. Let ã := aa′/(a, a′)2, so that
(
n2 − 4


a

)(
n2 − 4


a′

)
=
(
n2 − 4


ã

)
,

for n such that n2 − 4
 is coprime to (a, a′). (Otherwise the characters vanish.)
Breaking the n sum further into residue classes mod ã gives:

∑

n�N
n≡n0(mod q̃)

(n2−4
,a,a′)=1

(
n2 − 4


ã

)
=

∑

m(mod ã)

(
m2 − 4


ã

)

⎡

⎢⎢⎢⎢⎢
⎣

∑

n�N
n≡n0(mod q̃), n≡m(mod ã)

(n2−4
,a,a′)=1

1

⎤

⎥⎥⎥⎥⎥
⎦

We wish to get square-root cancellation fromWeil in the m summation, but the n sum
may be incomplete, which will give too large an error in terms of m. So we separate
the roles of n and m by completing the sum.

∑

n�N
n≡n0(mod q̃)

(n2−4
,a,a′)=1

(
n2 − 4


ã

)
= 1

ã

∑

k(ã)

⎡

⎣
∑

m(mod ã)

(
m2 − 4


ã

)
eã(−km)

⎤

⎦

×

⎡

⎢⎢⎢
⎢⎢
⎣

∑

n�N
n≡n0(mod q̃)

(n2−4
,a,a′)=1

eã(kn)

⎤

⎥⎥⎥
⎥⎥
⎦

. (3.35)

Now the m sum is free and is bounded by ã1/2+ε by Weil. We now deal with the last
n sum. We remove the gcd condition via Möbius inversion.
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∑

n�N
n≡n0(mod q̃)

(n2−4
,a,a′)=1

eã(kn) =
∑

d|(a,a′)
μ(d)

∑

n�N
n≡n0(mod q̃)

n2−4
≡0(mod d)

eã(kn)

=
∑

d|(a,a′)
μ(d)

∑

m0(mod d)

m2
0≡4
(mod d)

⎡

⎢⎢⎢
⎢
⎣

∑

n�N
n≡n0(mod q̃)
n≡m0(mod d)

eã(kn)

⎤

⎥⎥⎥
⎥
⎦

, (3.36)

where we decomposed the n sum further into residue classesm0 mod d. Note that d | a
is square-free, and for each p | d, there are at most two solutions to m2

0 ≡ 4
(p), so
the number of m0 is at most dε. The last bracketed sum restricts n to a residue class
x , say, mod q̃d (since (d, q̃) = (a, q̃) = 1). Changing n �→ x + nq̃d, the bracketed
term is a geometric series, giving:

∣∣∣∣∣
∣∣∣∣∣

∑

n�N
n≡n0(mod q̃)
n≡m0(mod d)

eã(kn)

∣∣∣∣∣
∣∣∣∣∣

=
∣∣∣
∣∣∣
eã(kx)

∑

n�N/(q̃d)

eã(kq̃dn)

∣∣∣
∣∣∣

� min

(
N

q̃
+ 1,

1

‖ kq̃d
ã ‖

)

, (3.37)

where ‖ · ‖ is the distance to the nearest integer. Inserting (3.37) into (3.36) and into
(3.35) gives

∣∣∣∣
∣∣∣∣∣
∣∣

∑

n�N
n≡n0(mod q̃)

(n2−4
,a,a′)=1

(
n2 − 4


ã

)

∣∣∣∣
∣∣∣∣∣
∣∣

�εã
1/2+ε

∑

d|(a,a′)
dε 1

ã

∑

k(ã)

min

(
N

q̃
+ 1,

1

‖ kq̃d
ã ‖

)

.

Since a and a′ are square-free, d is coprime to ã, and hence (q̃d, ã) = 1. So the k sum
is invariant under k �→ kq̃d. This finally gives

∣∣∣∣
∣∣∣∣∣∣
∣

∑

n�N
n≡n0(mod q̃)

(n2−4
,a,a′)=1

(
n2 − 4


ã

)

∣∣∣∣
∣∣∣∣∣∣
∣

�εã
ε

(
N

q̃ã1/2
+ ã1/2

)
.
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Returning to (3.34), we get that

∑

n�N

∣∣∣∣∣
∣

∑

q�H

Sq(n)

∣∣∣∣∣
∣

2

� H ε
∑

qB,q3,q2,q ′
B,q ′

3,q
′
2

∑

ab=q2

∑

a′b′=q ′
2

1

aa′b2b′2

×
∑

n0 mod q̃

∣
∣∣SqB(n0)Sq ′

B
(n0)Sq3(n0)Sq ′

3
(n0)

∣
∣∣

×
(

N (a, a′)
q̃(aa′)1/2

+ (aa′)1/2

(a, a′)

)
,

where we used (3.33) and (3.32).
Next we analyze the contributions from qB, q ′

B. Combining Lemma 3.12 and
Lemma 3.11 (for qB2 ) with Lemma 3.23 and (3.25) (for qB1 ), we see that in fact
there is no contribution unless qB, q ′

B � 1, and in this case the constribution is
SqBSq ′

B
� 1. Therefore q̃ � [q3, q ′

3].
Recall from (3.17) that Sq3(n0) � q−1/2

3 . Finally, we analyze the number of
n0(mod q̃) for whichSq3Sq ′

3
is non-vanishing. Suppose that pm‖[q3, q ′

3]. Then since

 �≡ 0(p), (3.16) shows that, if Spm (n0) �= 0, then n20 − 4
 ≡ 0(mod pm−1). The
number of such n0(mod pm) is at most 2p � pm/2, since m ≥ 2. So the number of
n0(mod q̃) which contribute is �ε q̃1/2+ε.

Putting everything together gives

∑

n�N

∣∣∣
∣∣∣

∑

q�H

Sq(n)

∣∣∣
∣∣∣

2

�εH
ε
∑

q3,q ′
3

([q3, q ′
3])1/2q−1/2

3 q ′−1/2
3

×
∑

q2,q ′
2

∑

a|q2

∑

a′|q ′
2

aa′

q22q
′2
2

(
N (a, a′)

[q3, q ′
3](aa′)1/2

+ (aa′)1/2

(a, a′)

)
.

Let t := (a, a′), which is a divisor of (q2, q ′
2), and let a1 := a/t and a′

1 := a′/t . Then

∑

n�N

∣∣∣∣∣
∣

∑

q�H

Sq(n)

∣∣∣∣∣
∣

2

�ε H ε
∑

q3,q ′
3

([q3, q ′
3])1/2q−1/2

3 q ′−1/2
3

×
∑

q2,q ′
2

1

q22q
′2
2

∑

t |(q2,q ′
2)

t2
∑

a1| q2t

∑

a′
1|

q′
2
t

(
N (a1a′

1)
1/2

[q3, q ′
3]

+ (a1a
′
1)

3/2

)

� H ε
∑

q3�H
(q3,�)=1
square-full

∑

q ′
3�H

(q ′
3,�)=1

square-full

([q3, q ′
3])1/2q−1/2

3 q ′−1/2
3
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×

⎛

⎜⎜⎜⎜⎜
⎜
⎝

H

(q3q ′
3)

1/2 + N

[q3, q ′
3]

∑

q2�H/q3
(q2,�)=1=(q2,q3)

square-free

∑

q ′
2�H/q ′

3
(q ′

2,�)=1=(q ′
2,q

′
3)

square-free

(q2, q ′
2)

(q2q ′
2)

3/2

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.

Next we need some cancellation from (q2, q ′
2). Let d = (q2, q ′

2) which is a divisor of
q2 such that q ′

2 ≡ 0(d).

∑

n�N

∣∣∣∣∣∣

∑

q�H

Sq(n)

∣∣∣∣∣∣

2

�ε H ε
∑

q3�H
(q3,�)=1
square-full

∑

q ′
3�H

(q ′
3,�)=1

square-full

([q3, q ′
3])1/2q−1/2

3 q ′−1/2
3

×

⎛

⎜⎜⎜⎜⎜
⎜
⎝

H

(q3q ′
3)

1/2 + N

[q3, q ′
3]

∑

q2�H/q3
(q2,�)=1=(q2,q3)

square-free

∑

d|q2

∑

q ′
2�H/(q ′

3d)

(q ′
2,�)=1=(q ′

2,q
′
3)

square-free

d

(q2q ′
2d)3/2

⎞

⎟⎟⎟⎟⎟
⎟
⎠

�ε H ε
∑

q3�H
(q3,�)=1
square-full

∑

q ′
3�H

(q ′
3,�)=1

square-full

(

H
1

(q3q ′
3)

1/2(q3, q ′
3)

1/2 + N

H

(q3, q ′
3)

1/2

(q3q ′
3)

1/2

)

.

Finally, we bound (q3, q ′
3) � H in the numerator and (q3, q ′

3) ≥ 1 in the denominator.
It remains to estimate a sum of the form

∑

q3�H
square-full

1

q1/23

.

Since q3 is square-full, any such q3 can be written as q3 = k2� where � | k. Then
∑

q3�H
square-full

1

q1/23

�
∑

k2�H

∑

�|k

1

k�1/2
�ε

∑

k2�H

kε 1

k
� H ε.

The claim follows immediately. ��

Theorem 3.31 allows us to show, for almost all n (with power savings error), that
the very short sum

∑
q≤Q0

Sq(n0) (with Q0 = Nα0 , α0 > 0 small) is a good approx-
imation (also with power savings error) forS(n).

123



2816 A. Kontorovich, X. Zhang

Theorem 3.38 For any η > 0 with η < 1
6α0, there is a set E of “exceptional” n of

cardinality

E ∩ [1, N ] � N 1−η

such that, for all n � N, n /∈ E ,

∑

q≤Q0

Sq(n) = S(n) + O(N−η).

Proof Recall that the series S(n) does converge (conditionally) by Lemma 3.28, but
the error there is insufficient to approximate it to the required error in all ranges of H .

For η > 0 fixed, let

E (N ) :=
⎧
⎨

⎩
n ∈ [1, N ] :

∣∣∣∣∣∣
S(n) −

∑

q≤Q0

Sq(n)

∣∣∣∣∣∣
≥ N−η

⎫
⎬

⎭
.

We estimate

#E (N ) =
∑

n�N∣
∣
∣S(n)−∑q≤Q0

Sq (n)

∣
∣
∣≥N−η

1 ≤ N 2η
∑

n�N

∣
∣∣∣∣∣
S(n) −

∑

q≤Q0

Sq(n)

∣
∣∣∣∣∣

2

� N 2η
∑

n�N

⎛

⎜⎜⎜
⎝

∑

Q0<H<N4/5

dyadic

∣
∣∣∣∣∣

∑

q�H

Sq(n)

∣
∣∣∣∣∣

2

+
∑

H≥N4/5

dyadic

∣
∣∣∣∣∣

∑

q�H

Sq(n)

∣
∣∣∣∣∣

2

⎞

⎟⎟⎟
⎠

.

We apply Theorem 3.31 in the first term, and Lemma 3.28 (individually) in the second
term.

#E (N ) �εN
2η+ε

⎛

⎜⎜
⎝N 4/5 + N

Q1/2
0

+
∑

H≥N4/5

dyadic

∑

n�N

n3/4H−1

⎞

⎟⎟
⎠

� N 2η+ε

(

N 4/5 + N

Q1/2
0

+ N 7/4N−4/5

)

.

Since 7/4− 4/5 = 19/20 < 1, we have a power savings as long as 2η < 1
2α0, where

Q0 = Nα0 . As long as η < 1
6α0, we are guaranteed to have E (N ) � N 1−η. This

completes the proof. ��
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Theorem 3.39 For all admissible n � N, and all ε > 0,

S(n) �ε n−εL(1, χn),

where

L(1, χn) :=
∏

p

(
1 − 1

p

(
n2 − 4


p

))−1

. (3.40)

The implied constant is effective.

Proof By the multiplicativity of Sq , we have that

S(n) =
∏

p

(
1 + Sp(n) + Sp2(n) + · · · ) .

(Since the series only converges conditionally, we argue by considering the functions
s �→ ∑

q∈N
Sq(n)q−s and s �→ ∏

p(1 + Sp(n)p−s + Sp2(n)p−2s + · · · ); for
Re(s) > 0, both converge absolutely and coincide, and hence their limiting values as
s → 0+ do too.)

For p ∈ B1 a “bad” prime for �, this is a finite sum (Lemma 3.23) which is non-
vanishing only if n is admissible by Lemma 3.21. For the other primes p, the Euler
factor is (1 + Sp(n) + Sp2(n))(1 + O(p−3/2)). Recall that B2 contains the (finite
list of) primes p | 
. By Lemma 3.11 and Lemma 3.12, we have

∏

p∈B2

(1 + Sp(n)) � 1

log log n
.

For all other primes we apply Corollary 3.20. If p � 
 and p � n2 − 4
, we have

1 + Sp(n) + Sp2(n) = 1 + 1

p

(
n2 − 4


p

)
+ O(p−2),

while if p � 
 but p | n2 − 4
,

1 + Sp(n) + Sp2(n) = 1 + O(p−1).

The product of the latter (finite set of primes) is �ε n−ε. ��
By Siegel’s theorem, L(1, χn) �ε n−ε with an ineffective implied constant. But

sincewe anyway only prove our result on average over n, wewant tomake this constant
effective.

Theorem 3.41 There is an exceptional setE with the following property. For all admis-
sible n � N outside of E , and any ε > 0, we have

S(n) �ε n−ε.
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2818 A. Kontorovich, X. Zhang

Moreover

#E �ε N ε. (3.42)

The implied constants are all effective. (But the exact determination of the exceptional
set E is ineffective!)

Proof Consider the characters χn =
(
n2−4


·
)
appearing in (3.40). These need not be

primitive, and are induced from characters
( qn

·
)
, where qn := sqf(n2 − 4
) � N 2 is

the square-free part of n2 − 4
; that is,

n2 − 4
 = qnm
2, (3.43)

for some integer m. Group admissible n � N according to the values of qn ; that is,
for a given square-free q � N 2, let

Nq := {n � N : sqf(n2 − 4
) = q}.

If (n,m) is a solution to n2−qm2 = 4
, then the ideal (n+√
qm) inZ[√q] has norm

|4
|. The prime ideals p dividing (n + √
qm) and their multiplicities are bounded in

terms of those of the rational primes dividing 4
 (which is fixed). Therefore there are
� 1 inequivalent solutions to (3.43), and equivalent solutions grow exponentially in
terms of the units in Z[√q]. Therefore

max
q�N2

#Nq �ε N ε, (3.44)

for any ε > 0 with absolute implied constants.
By Landau’s theorem (see, e.g., [14, Theorem 5.28]), there is an absolute constant

A > 0, such that for all distinct primitive real characters χ , χ ′ of conductors q, q ′
(resp.), with L-functions L(s, χ), L(s, χ ′) having largest real zeros β, β ′ (resp.), we
have:

max(β, β ′) ≤ 1 − A

log(qq ′)
.

Therefore, there is at most a single exceptional q � N 2 such that, for all other square-
free q � N 2 and their corresponding largest real zeros β (if any such exist), we
have

β ≤ 1 − A′

log N
,

where A′ > 0 is another absolute constant.
We then define the exceptional set E := Nq, so that the bound (3.42) is confirmed

by (3.44), again with absolute constants. (Though we cannot effectively determine the
elements of E , we can effectively control their cardinality.)
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Then we use standard arguments (see, e.g., [13]), and take into account the imprim-
itive factors, to show that L(1, χn) �ε N−ε with absolute implied constants, for all
n /∈ E . This gives the claim. ��

4 Minor arc technical estimates

We collect here various lemmata needed in the analysis of the minor arcs. We begin
by defining the exponential sum

Sq(r , k, �; γ ) = 1

q2
∑

x(q)

∑

y(q)

eq(r fγ (x, y) + kx + �y). (4.1)

Lemma 4.2 Assume that (r , q) = 1. Write q1 := (BcP2, q), q = q1q2, and BcP2 =
q1E, with E Ē ≡ 1(mod q2). Then

Sq(r , k, �; γ ) = (BcP2, q)

q
eq(r(Aa + Bb + Cc + Dd))1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}

×eqq1
(−r̄ Ē(Pr(Ba + Dc) + �)(Pr(Ac + Bd) + k)

)

Note that the last exponential term is well-defined by the congruence conditions on �

and k, and independent of the lifts of r̄ , Ē to Z/(qq1).

Proof Write γ = (
a b
c d

)
and insert (2.8):

Sq(r , k, �; γ ) = 1

q2
eq(r(Aa + Bb + Cc + Dd))

∑

x(q)

eq(r(Ac + Bd)Px + kx)

×
∑

y(q)

eq(y[r((Ba + Dc)P + BcP2x) + �]).

The y sum vanishes unless

BcP2x ≡ −�r̄ − (Ba + Dc)P (mod q), (4.3)

in which case the sum contributes q.
Let q1 = gcd(BcP2, q) and write q = q1q2 and BcP2 = q1E . Then (4.3) has a

solution only if the right hand side is congruent to zero mod q1. If this is the case, then
x is determined mod q2,

x ≡ x0 := −E
�r̄ + (Ba + Dc)P

q1
(mod q2).
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2820 A. Kontorovich, X. Zhang

So x ≡ x0 + q2x ′, where x ′ ∈ Z/q1. Thus we have:

Sq(r , k, �; γ ) = eq(r(Aa + Bb + Cc + Dd))1{−�≡Pr(Ba+Dc)(mod(BcP2,q))}

× 1

q
eq(x0(r(Ac + Bd)P + k))

∑

x ′(q1)
eq1(x

′(r(Ac + Bd)P + k)).

The x ′ sum vanishes unless

−k ≡ Pr(Ac + Bd)(mod q1),

in which case it contributes q1. ��
Next we need cancellation over the r sum on the product of two such. A preliminary

calculation is the following.

Lemma 4.4 Assume that (r , q) = 1 as before, and also use
(
a′ b′
c′ d ′

) = γ ′. Write

q1 := (BcP2, q), q = q1q2, and BcP2 = q1E, with E Ē ≡ 1(mod q2). Similarly, set
q ′
1 := (Bc′P2, q), q = q ′

1q
′
2, and Bc′P2 = q ′

1E
′, with E ′ Ē ′ ≡ 1(mod q ′

2). Then

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

= (BcP2, q)

q

(Bc′P2, q)

q

φ(q)

φ(qq1q ′
1)

′∑

r(qq1q ′
1)

1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}
1{−�′≡Pr(Ba′+Dc′)(mod q ′

1)

−k′≡Pr(Ac′+Bd ′)(mod q ′
1)}

× eqq1q ′
1
(r J + r̄ K + L), (4.5)

where

J :=q1q
′
1(Aa + Bb + Cc + Dd) − q1q

′
1(Aa

′ + Bb′ + Cc′ + Dd ′)
−q ′

1 Ē(q1EaA + aB2dP2 + Ac2DP2 + q1EdD)

+q1 Ē
′(q ′

1E
′a′A + a′B2d ′P2 + Ac′2DP2 + q ′

1E
′d ′D),

K := −q ′
1 Ē�k + q1 Ē

′�′k′,

and

L := −q ′
1 Ē P(Ac� + Bak + Bd� + Dck)

+q1 Ē
′P(Ac′�′ + Ba′k′ + Bd ′�′ + Dc′k′).

Moreover,

J ≡ Ē Ē ′BP4(c − c′)(B2 − 
cc′) (mod(q2, q
′
2)), (4.6)
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where 
 = AD − BC.
Note that for every value of r(mod qq1q ′

1) occurring in (4.5), we have that

r J + r̄ K + L ≡ 0(mod q1q
′
1). (4.7)

Proof Inserting Lemma 4.2, and extending the r sum to modulus qq1q ′
1 (which over-

counts by a factor of φ(qq1q ′
1)/φ(q)), we have that

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

= (BcP2, q)

q

(Bc′P2, q)

q

φ(q)

φ(qq1q ′
1)

′∑

r(qq1q ′
1)

1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}
1{−�′≡Pr(Ba′+Dc′)(mod q ′

1)

−k′≡Pr(Ac′+Bd ′)(mod q ′
1)}

eqq1q ′
1
(rq1q

′
1(Aa + Bb + Cc + Dd))

eqq1q ′
1
(−rq1q

′
1(Aa

′ + Bb′ + Cc′ + Dd ′))

eqq1q ′
1

(−r̄q ′
1 Ē(Pr(Ba + Dc) + �)(Pr(Ac + Bd) + k)

)

eqq1q ′
1

(
r̄q1 Ē

′(Pr(Ba′ + Dc′) + �′)(Pr(Ac′ + Bd ′) + k′)
)
.

By the congruence restrictions on r , the values of Ē and Ē ′ are independent of their
lifts to Z/(qq1q ′

1). Collecting terms gives (4.5).
In the modulus qq1q ′

1, we do not know that, for example, E Ē ≡ 1, since we
took arbitrary lifts. But this does hold when reduced mod q2, or any divisor thereof.
Therefore to prove (4.6), we compute J mod (q2, q ′

2), as follows.

J ≡ −q ′
1 Ē P2(B2 + 
c2) + q1 Ē

′P2(B2 + 
c′2)
≡ Ē Ē ′BP4(c − c′)(B2 − 
cc′) (mod(q2, q

′
2)),

where we used ad − bc = a′d ′ − b′c′ = 1.
To see (4.7), observe that in the above analysis, the exponential sum modulus has

actually been q all along, with some artificial replacements of terms like eq(X) by
eqq1(q1X) etc. ��

As a corollary, we record a simplified version of this lemma.

Corollary 4.8 With the same notation as Lemma 4.4, we have:

∣∣∣∣
∣∣

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣∣
∣∣
� (q1, q ′

1)

q
.
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2822 A. Kontorovich, X. Zhang

Proof Returning to Lemma 4.4, we estimate

∣∣∣
∣∣∣

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣
∣∣∣
≤ 1

q2

′∑

r(qq1q ′
1)

1 {−�≡Pr(Ba+Dc)(mod q1)
−�′≡Pr(Ba′+Dc′)(mod q ′

1)}
,

where we used that φ(q)/φ(qq1q ′
1) = 1/(q1q ′

1), since every prime dividing q1q ′
1 also

divides q.
Since B, P are fixed throughout, consider the condition

−� ≡ Pr(Ba + Dc)(mod q1), �⇒ −� ≡ r PBa(mod(q1, c)).

Since det γ = 1, we have that a is invertible mod c, so r is restricted to a bounded
(in terms of B, P) number of residues mod q1. Similarly, r is also restricted to a
bounded number of residue classes mod q ′

1. Therefore the total number of r mod
qq1q ′

1 satisfying the congruence is at most qq1q ′
1/[q1, q ′

1]. This gives the claim. ��
Next we record a Kloosterman-type estimate necessary in what follows.

Lemma 4.9 Fix any J , K , L ∈ Z and let q0 | q. Then
∣∣∣∣
∣∣∣∣

′∑

r(q)
r≡r0(mod q0)

eq (Jr + Kr̄ + L)

∣∣∣∣
∣∣∣∣

�ε min

(
q

q0
, q3/4+ε 1

q1/40

gcd(q/q0, J , K )1/4

)

.

Proof If q0 = 1, this is just Kloosterman’s estimate, so we assume q0 > 1. The first
bound in theminimum is just the trivial bound, and is sometimes better than the second
bound.

Following Kloosterman’s method, we take the fourth moment, and consider

U =
∑

J ′,K ′ mod q

∣∣∣
∣∣∣∣∣

′∑

r(q)
r≡r0(mod q0)

eq
(
J ′r + K ′r̄ + L

)

∣∣∣
∣∣∣∣∣

4

. (4.10)

We open the power and evaluate.

U =
∑

J ′,K ′ mod q

′∑

r1,r2,r3,r4(q)
r j≡r0(mod q0)

eq
(
J ′(r1 + r2 − r3 − r4) + K ′(r̄1 + r̄2 − r̄3 − r̄4)

)

(4.11)

The J ′, K ′ sum is a complete sum over all of Z/q, which vanishes unless

r1 + r2 − r3 − r4 ≡ 0(mod q), r̄1 + r̄2 − r̄3 − r̄4 ≡ 0(mod q),
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in which case they contribute q each. So we have that

U = q2
′∑

r1,r2,r3,r4(q)
r j≡r0(mod q0)

1{r1+r2−r3−r4≡0(mod q)
r̄1+r̄2−r̄3−r̄4≡0(mod q)}

We need to count the number of r j contributing to the remaining sum. The count is
multiplicative, so we may assume that q is a prime power. Set q̃ := q/q0, and let
R ∈ Z/q̃ be defined by: r1 − r3 = Rq0; the first condition above is that we also have
r4 − r2 ≡ Rq0. For the second condition on the r j , we multiply through by r1r2r3r4,
getting the condition:

(r2 − r3) R (q0R + r2 + r3) ≡ 0(mod q̃).

Recall that q0 > 1, and notice that q0R + r2 + r3 ≡ 2r0(mod q0) is then invertible
mod q (except perhaps when 2 | q, in which case an extra constant factor contributes
to the estimate below). We now evaluate the count as follows. First sum over divisors
q | q̃ , then over those R with (R, q̃) = q. The above condition becomes

r3 ≡ r2(mod q̃/q).

Then r3 has � qq/q̃ = q0q possible values. In total, we have:

′∑

r1,r2,r3,r4(q)
r j≡r0(mod q0)

1{r1+r2−r3−r4≡0(mod q)
r̄1+r̄2−r̄3−r̄4≡0(mod q)}

�
∑

q|̃q

∑

R(mod q̃)
(R ,̃q)=q

∑

r2(mod q)
r2≡r0(mod q0)

∑

r3(mod q)
r3≡r0(mod q0)

1{r3≡r2(mod q̃/q)}

�
∑

q|̃q

q̃

q
q̃q0q �ε

q2+ε

q0
.

In summary, we obtain the following estimate:

U �εq
2 q

2+ε

q0
.

Next we determine the multiplicity of the size of the original sum (that is, when
(J ′, K ′) = (J , K )) contributing to U . Any change of variables r �→ rs with s ∈
(Z/q)× and s ≡ 1(mod q0) corresponds to a change in the coefficients ιs : (J , K ) �→
(Js, K s̄). Another invariance comes from themap σu,v : (J , K ) �→ (J+uq̃, K+vq̃),
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because

′∑

r(q)
r≡r0(mod q0)

eq ((J + uq̃)r + (K + vq̃)r̄ + L)

= eq0 (ur0 + vr̄0)
′∑

r(q)
r≡r0(mod q0)

eq (Jr + Kr̄ + L) ,

with both sides having the same magnitude.
Next we must determine the number of distinct (J ′, K ′) obtained by the above

transformations which contribute the same magnitude to U as (J , K ). Assume that
gcd(J , q) ≤ gcd(K , q). We use ιs to produce as many values of J ′ as possible, and
for each such, we use σ0,v to construct distinct K ′s.

The s ∈ (Z/q)× with s ≡ 1(mod q0) which give distinct values of Js(mod q) are
determined by solving

J ≡ Js(q).

The number of distinct values of Js(mod q) is then q/ gcd(q, q0 J ). For each such
value of s J , applying σ0,v produces a distinct pair (J ′, K ′) where v ranges in Z/q0.

In total, we have that:

q

gcd(q, q0 J , q0K )
q0

∣∣∣∣
∣∣∣∣

′∑

r(q)
r≡r0(mod q0)

eq (Jr + Kr̄ + L)

∣∣∣∣
∣∣∣∣

4

≤ U �ε q2
q2+ε

q0
,

from which the claim follows. ��
Lemma 4.12 With the same notation as Lemma 4.4, we have that

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

�ε q−5/4+ε(q1q
′
1)

1/2(q1, q
′
1)

1/4 gcd
(
q(q1, q

′
1), J , K

)1/4
,

for any ε > 0.

Proof Applying (4.5), we decompose the sum on r mod qq1q ′
1 into residue classes

mod q0 := [q1, q ′
1] to catch the indicator functions.
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′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

= (BcP2, q)

q

(Bc′P2, q)

q

φ(q)

φ(qq1q ′
1)

′∑

r0(q0)

1{−�≡Pr0(Ba+Dc)(mod q1)−k≡Pr0(Ac+Bd)(mod q1)}
1{−�′≡Pr0(Ba′+Dc′)(mod q ′

1)

−k′≡Pr0(Ac′+Bd ′)(mod q ′
1)}

′∑

r(qq1q ′
1)

r≡r0(q0)

eqq1q ′
1
(r J + r̄ K + L). (4.13)

On the last summation, we apply Lemma 4.9.

�ε

(BcP2, q)

q

(Bc′P2, q)

q

φ(q)

φ(qq1q ′
1)

′∑

r0(q0)

1{−�≡Pr0(Ba+Dc)(mod q1)−k≡Pr0(Ac+Bd)(mod q1)}
1{−�′≡Pr0(Ba′+Dc′)(mod q ′

1)

−k′≡Pr0(Ac′+Bd ′)(mod q ′
1)}

(qq1q
′
1)

3/4+ε 1

q1/40

gcd(qq1q
′
1/q0, J , K )1/4.

Finally, we estimate the number of r0 contributing. Recall that q1 = (BcP2, q). Since
B, P are fixed throughout, consider the condition

−� ≡ Pr0(Ba + Dc)(mod q1), �⇒ −� ≡ r0PBa(mod(q1, c)).

Since det γ = 1, we have that a is invertible mod c, so r0 is restricted to a bounded (in
terms of B, P) number of residues mod q1. Similarly, r0 is boundedmod q ′

1, and hence
the sum on r0 has a bounded number of contributions. The claim follows immediately.

��
If c �= c′, this analysis will suffice. But we need more work if c = c′, since then J

in (4.6) will be 0 mod q2. (Note here that in this case, q1 = q ′
1, q2 = q ′

2, and E = E ′.)

Lemma 4.14 With notation as in Lemma 4.4 and assuming c = c′, we have that:

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′) �ε q−5/4+εq21 gcd
(
q, �′k′ − �k

)1/4
,

Proof Applying Lemma 4.12 gives

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′) �ε q−5/4+εq3/21 gcd (q, K )1/4 ,
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where

K = q1 Ē(�′k′ − �k),

which gives the claim on bounding gcd(q, Ē) by q1, since E is invertible mod q2. ��
This suffices as long as k� �= k′�′. In the final case that both c = c′ and k� = k′�′,

we have

Lemma 4.15 Assume that c = c′ and k� = k′�′. Then

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′) �
(

(BcP2, q)

q

)2 ′∑

r(q)

1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}
.

Proof Inserting Lemma 4.2 and estimating the r sum trivially gives:

′∑

r(q)

∣
∣∣Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣
∣∣

≤
(

(BcP2, q)

q

)2 ′∑

r(q)

1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}
1{−�′≡Pr(Ba′+Dc)(mod q1)

−k′≡Pr(Ac+Bd ′)(mod q1)}
.

Dropping the conditions on k′, �′ gives the claim. ��
Now we need an estimate where we average over q itself. To this end, we will first

need the following result.

Lemma 4.16 Given positive integers R ≥ S ≥ W , U , V , X, we have that

∑

(q,U )=1,q≡V (W )
R≤q≤R+S

φ(q)

q2
eq(Ū X) �ε

SU ε(U , (U , X)W )

RUW
+ S2

R2 S
ε

+[U ,W ] log R
R

+ XS

R2UW
, (4.17)

for every ε > 0.

Proof If gcd(V ,W ) is not coprime to U , then the sum is empty, whence (4.17) holds
trivially. Sowe assume that (V ,W ,U ) = 1. Observe that the trivial bound is S/(RW ),
so this is what must be improved upon.

Since (q,U ) = 1, there exist x, y with

qx +Uy = 1, or
x

U
+ y

q
= 1

qU
,
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so that Ū ≡ y(mod q). Then

eq(Ū X) = e

(
y

q
X

)
= e

(
− x

U
X

)
+ O(X/(qU )) = eU (−x X) + O(X/(qU )).

We have that the left hand side of (4.17) is:

LHS =
∑

(q,U )=1,q≡V (W )
R≤q≤R+S

φ(q)

q2
eU (−q̄ X) + O

(
XS

R2UW

)
. (4.18)

Leaving the last error term aside, we break q into residue classes modU1 := [U ,W ].

LHS1 =
∑

q0(modU1)
(q0,U )=1,q0≡V (W )

eU (−q̄0X)

⎡

⎢⎢
⎣

∑

q≡q0(U1)
R≤q≤R+S

φ(q)

q2

⎤

⎥⎥
⎦ . (4.19)

Our point will be that the bracketed sum is independent of q0, to first order, and
therefore we can get cancellation from the first q0 sum. To this end, next use Möbius
inversion in the form φ(n) = n

∑
d|n μ(d)/d,

[
·
]

=
∑

q≡q0(U1)
R≤q≤R+S

1

q2
q
∑

d|q

μ(d)

d
=

∑

d≤R+S

μ(d)

d

∑

q≡q0(U1),q≡0(d)
R≤q≤R+S

1

q
. (4.20)

Introduce a parameter 0 < D < R + S and break the sum on d according to d ≤ D
or not. We deal with the large d first.

∑

D<d≤R+S

μ(d)

d

∑

qd≡q0(U1)
R≤dq≤R+S

1

dq
� 1

R

∑

D<d≤R+S

1

d

∑

R≤dq≤R+S

1

= 1

R

∑

D<d≤R+S

1

d

(
S

d
+ 1

)

� S

RD
+ log R

R
,

which saves either D or S over the trivial bound.
Next we handle small d’s. Observe that since (q0,U ) = 1, we have that (q0,U1) |

W . But we must also have q0 ≡ V (W ), and thus (q0,U1) = (V ,W ) =: V1, say. Since
q ≡ 0(d), we let t := q/d. Then

∑

d≤D

μ(d)

d

∑

td≡q0(U1)
R≤dt≤R+S

1

dt
=
∑

d≤D

μ(d)

d2
∑

td≡q0(U1)
R
d ≤t≤ R

d + S
d

1

t
.
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The condition dt ≡ q0(U1) admits a solution in t iff d1 := (d,U1) divides
(q0,U1) = V1. Write d = d1d2 with (d2,U1/d1) = 1. For d satisfying this con-
dition, the restriction on t becomes t ≡ d̄2(q0/d1)(modU1/d1), which of course is
now uniquely determined modulo U1/d1. Thus

∑

d≤D

μ(d)

d

∑

td≡q0(U1)
R≤dt≤R+S

1

dt
=

∑

d≤D,d=d1d2
d1=(d,U1),d1|V1

μ(d)

d2

∑

t≡d̄2(q0/d1)(modU1/d1)
R
d ≤t≤ R

d + S
d

1

t

=
∑

d≤D,d=d1d2
d1=(d,U1),d1|V1

μ(d)

d2

∑

t≡d̄2(q0/d1)(modU1/d1)
R
d ≤t≤ R

d + S
d

1

R/d

(
1+O

(
S

R

))

= 1

R

∑

d≤D,d=d1d2
d1=(d,U1),d1|V1
(d2,U1/d1)=1

μ(d)

d

(
Sd1
dU1

+ O(1)

)(
1 + O

(
S

R

))
.

(4.21)

The conditions (d2,U1/d1) = 1 and (d2, d1) = 1 (from Möbius) are together equiv-
alent to (d2,U1) = 1. This allows to separate the d1 and d2 sums, and extend the d2
sum to infinity. The “main” contribution becomes:

1

R

∑

d≤D,d=d1d2
d1=(d,U1),d1|V1(d2,U1/d1)=1

μ(d)

d

Sd1
dU1

= S

RU1

∑

d1|V1

μ(d1)

d1

∑

d2≤D/d1
(d2,U1)=1

μ(d2)

d22

= S

RU1

∑

d1|V1

μ(d1)

d1

⎡

⎢
⎢
⎣

∑

d2≤∞
(d2,U1)=1

μ(d2)

d22
+ O(d1/D)

⎤

⎥
⎥
⎦

= S

RU1

∑

d1|V1

μ(d1)

d1

[
MU1 + O(d1/D)

]
,

where

MU1 :=
∏

p,p�U1

(
1 − 1

p2

)
� 1, (4.22)

is 1/ζ(2) with the primes of U1 removed.
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Continuing the analysis gives

= S

RU1

∑

d1|V1

μ(d1)

d1
MU1 + Oε

(
SW ε

DRU1

)

= S

RU1
MU1V2 + Oε

(
SW ε

DRU1

)
,

where

V2 :=
∏

p|V1

(
1 − 1

p

)

satisfies

V−ε
1 �ε V2 ≤ 1. (4.23)

We return to handle the error terms of (4.21). The first is:

1

R

∑

d≤D,d=d1d2
d1=(d,U1),d1|V1
(d2,U1/d1)=1

1

d
� log D

R
,

saving about S/W over the trivial bound. The second is:

1

R

∑

d≤D,d=d1d2
d1=(d,U1),d1|V1
(d2,U1/d1)=1

1

d

Sd1
dU1

S

R
�ε

S2

R2U1
Dε,

which saves about R/S.
Putting everything together into (4.20) gives:

(4.20) = S

RU1
MU1V2 + Oε

(
SW ε

DRU1
+ log D

R
+ S2

R2U1
Dε

)
+ O

(
S

RD
+ log R

R

)

= S

RU1
MU1V2 + Oε

(
S2

R2U1
Dε + S

RD
+ log R

R

)
,

which is, at least in the main term, independent of q0, as desired. Inserting this into
(4.19) now gives
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LHS1 =
∑

q0(modU1)
(q0,U )=1,q0≡V (W )

eU (−q̄0X)

[
S

RU1
MU1V2 + Oε

(
S2

R2U1
Dε + S

RD
+ log R

R

)]

= S

RU1
MU1V2

⎡

⎢
⎢
⎣

∑

q0(modU1)
(q0,U )=1,q0≡V (W )

eU (−q̄0X)

⎤

⎥
⎥
⎦+ Oε

(
S2

R2 D
ε + SU1

RD
+ U1 log R

R

)
.

(4.24)

We analyze the bracketed summation by first decomposing it into residue classes mod
U :

[
·
]

=
′∑

q modU
q≡V (mod(W ,U ))

eU (−q̄ X)
∑

q0(modU1)
q0≡q(U ),q0≡V (W )

1.

Using U1 = [U ,W ] (recall that this is the lcm) and the compatibility condition
q ≡ V (mod(W ,U )), the Chinese Remainder Theorem gives that the last summation
has exactly one q0 contributing. Therefore only the first summation remains. Let
X1 := (U , X) and write X = X1X2 and U = X1U2 with (X2,U2) = 1. Then we
break into residues mod U2

[
·
]

=
′∑

q2(U2)
q2≡V (mod(W ,U2))

eU2(−q̄2X2)

′∑

q modU
q≡q2(U2),q≡V (mod(W ,U ))

1.

In the last summation, we again get a unique contribution from the compatibility
condition on q2 which together with the Chinese Remainder Theorem determines
q uniquely mod [U2, (W ,U )]. Therefore the second summation evaluates to:
φ(U )/φ([U2, (W ,U )]). In summary, we have that

[
·
]

= φ(U )

φ([U2, (W ,U )])
′∑

q2(U2)
q2≡V (mod(W ,U2))

eU2(−q̄2X2).

Looking locally, it is easy to see that the remaining summation either vanishes or is 1
in absolute value.

Returning to (4.24) and inserting the above argument gives that:

LHS1 �ε

S

R[U ,W ]
[

φ(U )

φ([U/(U , X), (W ,U )])
]

+ S2

R2 D
ε + SU1

RD
+ U1 log R

R
,
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where we used (4.22) and (4.23). We choose D = S for simplicity. Returning all the
way to the left hand side of (4.17), we have from (4.18) that:

LHS �ε

S

R[U ,W ]
[

φ(U )

φ([U/(U , X), (W ,U )])
]

+ S2

R2 S
ε + [U ,W ] log R

R
+ XS

R2UW
.

Finally recall the well-known fact that m/φ(m) �ε mε, so:

φ([U/(U , X), (W ,U )]) �ε U
−ε([U/(U , X), (W ,U )]).

The claim then follows. ��
Now we can give the final estimate, as follows.

Lemma 4.25 Assume that c = c′ and k� = k′�′. Then for parameters Q ≥ V → ∞,
and any ε > 0, we have that:

∣∣∣∣
∣∣

∑

Q≤q≤Q+V

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣∣
∣∣

� Qε
∑

q1|BcP2

E=BcP2/q1

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}Nq1

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

×
[
V (EQ1, Z)

QEQ1
+ V 2c

Q2 + c3

Q
+ V |Z |

Q2

]
,

where

Z = Z(k, �, k′, �′, γ, γ ′)
:= (Ac� + Bak + Bd� + Dck) − (Ac�′ + Ba′k′ + Bd ′�′ + Dck′), (4.26)

and

Nm = Nm(k, �, k′, �′, γ, γ ′)
:= #{r ∈ (Z/m)× : −�≡Pr(Ba+Dc),−k≡Pr(Ac+Bd),

−�′≡Pr(Ba′+Dc),−k′≡Pr(Ac+Bd ′)}. (4.27)

Proof We apply Lemma 4.4, but with the special condition q1 = q ′
1 and K = 0:

∑

Q≤q≤Q+V

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′) =
∑

Q≤q≤Q+V

(BcP2, q)2

q2
φ(q)

φ(qq1)

′∑

r(qq1)

1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}
1{−�′≡Pr(Ba′+Dc)(mod q1)

−k′≡Pr(Ac+Bd ′)(mod q1)}
eqq1(r J + L),

(4.28)
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where under these conditions, we obtain:

J = q1(Aa + Bb + Dd) − q1(Aa
′ + Bb′ + Dd ′)

−Ē(q1EaA + aB2dP2 + q1EdD)

+Ē(q1Ea
′A + a′B2d ′P2 + q1Ed

′D),

and

L = −Ē P(Ac� + Bak + Bd� + Dck) + Ē P(Ac�′ + Ba′k′ + Bd ′�′ + Dck′).
(4.29)

The condition (4.6) here becomes:

J ≡ 0(mod q2).

Returning to (4.29), we have that

L ≡ −Ē PB(ak − a′k′ + d� − d ′�′)(mod(q1, c)).

But the restrictions on r in (4.28) require that

Pr B ≡ −d� ≡ −ak ≡ −d ′�′ ≡ −a′k′(mod(q1, c)),

where we used that ad ≡ a′d ′ ≡ 1(mod c). Therefore

L ≡ 0(mod(q1, c)). (4.30)

The sum on r is multiplicative with respect to the modulus, but q1 and q2 are not
necessarily coprime. To fix this, introduce a new parameter

Q2 :=
∏

pu‖q
p|q2

pu,

so that Q2 | q, and q2 | Q2. Then let Q1 be defined by

q = Q1Q2,

and it is easy to see that (Q1, Q2) = 1 and Q1 | q1. Moreover, if p | Q1, then
(p∞, q1) | Q1; that is, the largest prime power of any prime dividing Q1 occurs in
Q1. It will be convenient to define

m = (q1, Q2).
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Decompose q1 further as

q1 = (Q1, q1)(Q2, q1) = Q1m.

Note that (E, q2) = 1, and m | q2, so (E, q1/Q1) = 1. Then

qq1 = Q2
1Q2m.

Let

Q′
2 := Q2m and Q′

1 = Q2
1,

so that

qq1 = Q′
1Q

′
2,

with (Q′
1, Q

′
2) = 1. The lift Ē can be chosen so that E Ē ≡ 1(mod Q′

2). Observe for
later use that

(q1, Q
′
1) = Q1.

Then the same calculation leading to (4.6) gives

J ≡ 0(mod Q′
2).

Now we split the r sum according to these moduli. Let s1, s2 be determined by:

s1
Q′

1
+ s2

Q′
2

= 1

Q′
1Q

′
2

= 1

qq1
,

that is, s1Q′
2 ≡ 1(mod Q′

1), and s2 ≡ Q′
1 mod Q′

2, which implies that

s2 ≡ Q1
2
mod Q2. (4.31)

We will also need the basic fact that, if a | b, then φ(ab) = φ(b) · a. Then we can
write

∑

Q≤q≤Q+V

′∑

r(q)

Sq (r , k, �; γ )Sq (r , k′, �′; γ ′)

=
∑

E |BcP2

q1=BcP2/E

∑

Q≤q≤Q+V
(q,BcP2)=q1, qq1=Q′

1Q
′
2

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}
q21
q2

φ(q)

φ(q) · q1

×
⎛

⎝
′∑

r(Q′
1)

1{−�≡Pr(Ba+Dc)(mod(q1,Q′
1))

−k≡Pr(Ac+Bd)(mod(q1,Q′
1))}

1{−�′≡Pr(Ba′+Dc)(mod(q1,Q′
1))

−k′≡Pr(Ac+Bd ′)(mod(q1,Q′
1))}

eQ′
1
(s1(r J + L))

⎞

⎠
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×
⎛

⎝eQ′
2
(s2L)

′∑

r(Q′
2)

1{−�≡Pr(Ba+Dc)(mod(q1,Q′
2))

−k≡Pr(Ac+Bd)(mod(q1,Q′
2))}

1{−�′≡Pr(Ba′+Dc)(mod(q1,Q′
2))

−k′≡Pr(Ac+Bd ′)(mod(q1,Q′
2))}

⎞

⎠

=
∑

E |BcP2

q1=BcP2/E

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}
∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

Q′
1=Q2

1
(E,q1/Q1)=1

q1
Q2

1

∑

(Q2,E)=(Q2,Q1)=1,Q1Q2≡0(q1)
Q≤Q1Q2≤Q+V

q=Q1Q2
q2=Q1Q2/q1
Q′
2=qq1/Q′

1

1

Q2
2

×
⎛

⎝
′∑

r1(Q′
1)

1{−�≡Pr1(Ba+Dc)(mod Q1)−k≡Pr1(Ac+Bd)(mod Q1)}
1{−�′≡Pr1(Ba′+Dc)(mod Q1)

−k′≡Pr1(Ac+Bd ′)(mod Q1)}
eQ′

1
(Q′

2(r1 J + L))

⎞

⎠

×
⎛

⎝eQ′
2
(s2L)

′∑

r(Q′
2)

1{−�≡Pr(Ba+Dc)(mod(q1,Q′
2))−k≡Pr(Ac+Bd)(mod(q1,Q′
2))}

1{−�′≡Pr(Ba′+Dc)(mod(q1,Q′
2))−k′≡Pr(Ac+Bd ′)(mod(q1,Q′
2))}

⎞

⎠ . (4.32)

Next we make the following two claims: (i) that the first sum on r1 only depends only
on the value of Q2 modulo q1; and (i i), that we can count the number of solutions in
the r sum mod Q′

2. We first work on (i i). Observe that

m = (q1, Q2) = (q1, Q
′
2) = q1

Q1
,

which is a divisor of Q′
2. That is, (m, Q1) = 1. Recalling the definition (4.27) ofNm ,

the sum on r(Q′
2) clearly contributes

′∑

r(Q′
2)

= Nm
φ(Q′

2)

φ(m)
= φ(Q2)Nm

(q1, Q2)

φ((q1, Q2))
.

Nextwe argue (i). Recall from the analogue of (4.7) in this setting that any r1 occurring
in the first summation satisfies:

r1 J + L ≡ 0(Q1).

Therefore the r1 summation in (4.32) is:

⎛

⎝Q1

′∑

r1(Q1)

1{−�≡Pr1(Ba+Dc)(mod Q1)−k≡Pr1(Ac+Bd)(mod Q1)}
1{−�′≡Pr1(Ba′+Dc)(mod Q1)

−k′≡Pr1(Ac+Bd ′)(mod Q1)}
eQ1 (Q2(Q2, q1)

r1 J + L

Q1
)

⎞

⎠ .
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The term Q2 only depends on the residue class, Q0
2, say, mod Q1, so we break the

sum according to these residue classes. Returning to the original expression, we have:

∑

Q≤q≤Q+V

′∑

r(q)

Sq (r , k, �; γ )Sq (r , k′, �′; γ ′)

∑

E |BcP2

q1=BcP2/E

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}
∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

Q′
1=Q2

1
m=q1/Q1, (m,Q1)=1

(E,q1/Q1)=1

q1
Q2

1

Nm
m

φ(m)

×
∑

Q0
2(mod Q1)′

⎛

⎝Q1

′∑

r1(Q1)

1{−�≡Pr1(Ba+Dc)(mod Q1)−k≡Pr1(Ac+Bd)(mod Q1)}
1{−�′≡Pr1(Ba′+Dc)(mod Q1)

−k′≡Pr1(Ac+Bd ′)(mod Q1)}
eQ1 (Q

0
2m

r1 J + L

Q1
)

⎞

⎠

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∑

(Q2,EQ1)=1,Q2≡0(m),Q2≡Q0
2(mod Q1)

Q≤Q1Q2≤Q+V
q=Q1Q2

q2=Q1Q2/q1
Q′
2=qq1/Q′

1

φ(Q2)

Q2
2

eQ′
2
(s2L)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Let

Q′′
1 := (Q1, c),

with Q1/Q′′
1 � 1. (Recall here that P is a constant depending only on the group �,

and implied constants may depend on � and the fixed parameters A, B,C, D.) From
(4.30), we have that L ≡ 0(mod Q′′

1), since Q′′
1 | (q1, c). Let

m1 := (m, c),

so that m/m1 � 1. By the same argument, we also have that L ≡ 0(modm1), and
since (m1, Q′′

1) = 1, we have that L ≡ 0(mod Q′′
1m1).

So using (4.31) the last sum can be written as

[
·
]

=
∑

(Q2,EQ1)=1,Q2≡0(m),Q2≡Q0
2(mod Q1)

Q≤Q1Q2≤Q+V

φ(Q2)

Q2
2

eQ2(s2
L

m
)

=
∑

(Q2,U )=1,Q2≡0(m),Q2≡Q0
2(mod Q1)

Q≤Q1Q2≤Q+V

φ(Q2)

Q2
2

eQ2(Ū X),

where U = EQ1(Q1/Q′′
1)(m/m1) � EQ1, and

X = −P(Ac� + Bak + Bd� + Dck) + P(Ac�′ + Ba′k′ + Bd ′�′ + Dck′)
Q′′

1m1
,
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by (4.29). Note that

X = PZ

Q′′
1m1

,

where Z is defined as in (4.26). It is at this point that we apply Lemma 4.16, with
R = Q/Q1, S = V /Q1, and W = [m, Q1] = q1. Note that

(U , X) = K (EQ1, X) = K
1

mQ′′
1
(EQ1mQ′′

1, PZ) = K
1

q1
(Eq1Q1, Z).

Here K is an absolute constant, not the same in each occurrence. Then

(U , (U , X)W ) = K (EQ1, EQ1q1, Z) � (EQ1, Z).

Now applying Lemma 4.16 gives:

[
·
]

�εQ
ε

(
V (EQ1, Z)

QEQ1q1
+ V 2

Q2 + Q1c

Q
+ V |X |

Q2c

)
.

Returning to the original summation, we have:

∣∣∣
∣∣∣

∑

Q≤q≤Q+V

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣
∣∣∣

�ε Qε
∑

E |BcP2

q1=BcP2/E

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

Q′
1=Q2

1
m=q1/Q1, (m,Q1)=1,(E,q1/Q1)=1

q1Nm
m

φ(m)

×
⎛

⎝
′∑

r1(Q1)

1{−�≡Pr1(Ba+Dc)(mod Q1)−k≡Pr1(Ac+Bd)(mod Q1)}
1{−�′≡Pr1(Ba′+Dc)(mod Q1)

−k′≡Pr1(Ac+Bd ′)(mod Q1)}

⎞

⎠
[
V (EQ1, Z)

QEQ1q1

+V 2

Q2 + Q1c

Q
+ V |X |

Q2c

]
.

Note that the r1(mod Q1) summation is exactlyNQ1 , and since (m, Q1) = 1, we have
that Nm · NQ1 = Nq1 . Now we have, crudely, that
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∣∣∣∣
∣∣

∑

Q≤q≤Q+V

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣∣
∣∣

�ε Qε
∑

E |BcP2

q1=BcP2/E

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}
∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

Nq1

×
[
V (EQ1, Z)

QEQ1
+ V 2c

Q2 + c3

Q
+ V |Z |

Q2

]
,

from which is the claim. ��
Next we analyze the size of Nm in (4.27).

Lemma 4.33 Let m | BcP2. Then

Nm � 1. (4.34)

Proof Our goal is to count the number of r in (Z/m)× satisfying−� ≡ Pr(Ba+Dc),
−k ≡ Pr(Ac + Bd), and also −�′ ≡ Pr(Ba′ + Dc), −k′ ≡ Pr(Ac + Bd ′). Let

m1 := (m, c),

so that m1 | c, and m � m1 (since B and P are fixed). Reducing the moduli mod m1
gives the equations:

−ā� ≡ r PB, −d̄k ≡ r PB, −ā′�′ ≡ r PB, −d̄ ′k′ ≡ r PB(modm1).

Here we used that (a, c) = 1 since γ ∈ SL2(Z), etc. There are clearly a bounded
number of solutions in r to the above, which gives the claim. ��

And lastly, we analyze the number of elements in SL2(Z) with a given value of c
and satisfying a congruence in Z in (4.26).

Lemma 4.35 Let γ ∈ SL2(Z) ∩ BT be given with γc = c, and fix a divisor Z1 | c
with c � T . Also fix k, �, k′, �′ with k� = k′�′. Then the number of γ ′ ∈ SL2(Z) with
γ ′
c = c and |a′|, |b′|, |d ′| � T and satisfying Z ≡ 0(mod Z1) is bounded by

� T

Z1
(Z1, �d − ka), (4.36)

as T → ∞.

Proof In the variables a′, d ′, we have the pair of equations: a′d ′ ≡ 1(mod Z1) and

Z = (Ac� + Bak + Bd� + Dck) − (Ac�′ + Ba′k′ + Bd ′�′ + Dck′) ≡ 0(Z1),
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or

Bk′a′2 − (Bak + Bd�)a′ + B�′ ≡ 0(Z1).

Let B1 := (B, Z1) and set Z2 := Z1/B1 and B2 := B/B1, with (B2, Z2) = 1.
Dividing through by B1, the equation reduces to

k′a′2 − (ak + d�)a′ + �′ ≡ 0(Z2).

Let

Z̃ := (k′, �′, Z2).

Since k� = k′�′, we have that Z̃2 | k�. Working locally, suppose that Z̃ | �. Then
reducing mod Z̃ gives the equation

−(ak)a′ ≡ 0(Z̃).

But (a, Z̃) = (a, c) = 1 and a′ is also coprime to Z̃ , which implies that k ≡ 0(Z̃).
Therefore there are no solutions unless both Z̃ | k and Z̃ | �. In this case, we can
divide the whole equation by Z̃ . Set k1 := k/Z̃ , . . . , �′

1 := �′/Z̃ and Z3 := Z2/Z̃ .
Then the equation becomes

k′
1a

′2 − (ak1 + d�1)a
′ + �′

1 ≡ 0(Z3),

with (k′
1, �

′
1, Z3) = 1. Working locally, we may assume that (k′

1, Z3) = 1. Now we
can simply solve the equation. Assuming for simplicity that Z3 is odd (with minor
modifications otherwise), we have that

(a′ − 2̄k̄′
1(ak1 + d�1))

2 ≡ −k̄′
1�

′
1 + 4̄k̄′2

1 (ak1 + d�1)
2 ≡ (2̄k̄′

1(ak1 − d�1))
2(mod Z3),

where we again used that k� = k′�′ and ad ≡ 1(mod Z3). The equation is now a
difference of squares, so

(a′ − k̄′
1�1d)(a′ − k̄′

1k1a) ≡ 0(mod Z3).

Again working locally, suppose that Z3 = pU . Then for V + W = U , we get a
solution

a′ ≡ k̄′
1�1d(mod pV ) and a′ ≡ k̄′

1k1a(mod pW ).

Assume WLOG that V ≤ W . Then for there to be any solutions, it must be the case
that �1d − k1a ≡ 0(mod pV ), and if this is the case, then there are pU−W = pV

solutions for a′. Let

Z4 := (Z3, �1d − k1a).
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By the above discussion, the number of solutions for a′(mod Z3) is at most

min(Z4,
√
Z3).

So once the value of a′ mod Z3 is fixed, the total number of such a′ � T is

� T

Z3
� T Z̃

Z2
� T (k′, �′, Z1)

Z1
.

Thus we can bound the total number of values of a′ by

Z4T (k′, �′, Z1)/Z1 � T (Z3, �1d − k1a)(k′, �′, Z1)/Z1 � T (Z1, �d − ka)/Z1.

With a′ and c fixed, the number of d ′, b′ is � 1, since they are all of order T and
a′d ′ − b′c = 1. This completes the proof. ��

5 Major arc analysis

Theorem 5.1 There is an η > 0 and a set E ⊂ Z of “exceptional” n, of zero density,

1

N
#(E ∩ [−N , N ]) = O(N−η),

such that, for n /∈ E , n � N, we have that

MN (n) � S(n)
R̂N (0)

N
+ O

(
R̂N (0)

N
N−η

)

,

as N → ∞, where, for admissible n /∈ E and for any ε > 0, the “singular series”
S(n) satisfies

S(n) �ε |n|−ε.

The implied constants are absolute.

Proof We begin with (2.17):

MN (n) =
∫ 1

0
M(θ)R̂N (θ)e(−nθ)dθ

=
∫ 1

0

∑

q<Q0

′∑

r(q)

∑

m∈Z

ψ((β + m) N
K0

)R̂N ( rq + β)e(−n( rq + β))dβ

=
∫

R

∑

q<Q0

′∑

r(q)

R̂N ( rq + β)e(−n( rq + β))ψ(β N
K0

)dβ.
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We have that

RN ( rq + β)

=
∑

x,y∈Z

ϒ
( x

X

)
ϒ
( y

X

) ∑

γ0∈�(q)\�
eq(r fγ0(x, y))

⎡

⎢⎢
⎣

∑

γ∈FT
γ≡γ0(mod q)

e(βfγ (x, y))

⎤

⎥⎥
⎦ .

For the bracketed term, we apply Lemma 3.4, together with |β| < K0/N < 1/X2.

RN ( rq + β) =
∑

x,y∈Z

ϒ
( x
X

)
ϒ
( y

X

) ∑

γ0∈�(q)\�
eq(r fγ0(x, y))

⎡

⎣ 1

[� : �(q)]
∑

γ∈FT

e(βfγ (x, y)) + O(|FT |N−�)

⎤

⎦ .

Inserting this intoMN gives:

MN (n) =
∑

x,y∈Z

ϒ
( x

X

)
ϒ
( y

X

)
⎡

⎣
∑

q<Q0

1

[� : �(q)]
∑

γ0∈�(q)\�

′∑

r(q)

eq (r(fγ0 (x, y) − n))

⎤

⎦

×
⎡

⎣
∑

γ∈FT

∫

R

ψ(β N
K0

)e(β(fγ (x, y) − n))dβ

⎤

⎦

+O

(
R̂N (0)

N
N−�Q5

0K0

)

,

wherewehave split intomodular and archimedean components. Theproof then follows
on applying Theorem 3.38 and Theorem 3.41 to the modular component, and Lemma
3.5 to the archimedean part, together with the choice of parameters in (2.15). ��

6 Minor arc analysis

Our goal is to estimate EN in �2, or what is the same (by Parseval), to bound

‖EN‖2 = ‖ÊN‖2 =
∫ 1

0
|1 − M(θ)|2|R̂N (θ)|2dθ.

The main result of this section is the following.

Theorem 6.1 There exists some η > 0 so that, as N → ∞,

‖EN‖2 � |̂RN (0)|2
N

N−η.
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A standard argument concludes the main Theorem 1.17 (and hence Theorem 1.11)
from Theorems 5.1 and 6.1. We begin the analysis as follows. In Dirichlet’s approxi-
mation theorem, we choose the level

M = T X ,

so that for every θ ∈ [0, 1], there is a q < M and (r , q) = 1 so that θ = r
q + β with

∣
∣∣∣θ − r

q

∣
∣∣∣ = |β| <

1

qM
.

Now we decompose the circle into dyadic regions of the form

WQ =
{
θ = r

q
+ β q � Q, (r , q) = 1, |β| � 1

QM

}
,

so that

‖EN‖2 �
∑

Q<M
dyadic

∫

WQ

|1 − M(θ)|2|R̂N (θ)|2dθ.

This decomposes further into three ranges, according to whether Q satisfies: Q < Q0,
or Q0 < Q < X/Y , or X/Y < Q < XT = M . Here we have set

Y := T (2δ−1)/10 = N y, y > 0, (6.2)

to be a small power of N .
On the latter two ranges, the weight |1 − M(θ)|2 is exactly 1. To keep track, we

define the integrals:

IQ0,K0 :=
∫

θ= r
q +β

q<Q0,|β|<K0/N

∣∣
∣∣β

N

K0

∣∣
∣∣

2

|R̂N (θ)|2dθ,

IQ0 :=
∫

θ= r
q +β

q<Q0,K0/N≤|β|<1/(qM)

|R̂N (θ)|2dθ,

IQ :=
∫

θ=r/q+β
Q≤q<2Q,(r ,q)=1,|β|<1/(QM)

∣
∣R̂N (θ)

∣
∣2 dθ. (6.3)

6.1 Preliminaries

We first estimate R̂N (θ) for θ = r
q + β as follows. We begin by decomposing x and

y according to their residue classes mod q and applying Poisson summation in x and

123



2842 A. Kontorovich, X. Zhang

y gives:

RN (θ) =
∑

γ∈FT

∑

x,y∈Z

ϒ
( x

X

)
ϒ
( y

X

)
e

((
r

q
+ β

)
fγ (x, y)

)

= X2
∑

γ∈FT

∑

k,�∈Z

Sq(r , k, �; γ )JX (β, k, �, q; γ ), (6.4)

where Sq is given in (4.1) and

JX (β, k, �, q; γ ) =
∫∫

x,y∈R

ϒ (x) ϒ (y) e(βfγ (x X , yX) − X
q (kx + �y))dxdy.

Lemma 6.5 Suppose that q < X/Y . Then for any L < ∞, we have that

|JX (β, k, �, q; γ )| �L X−L , (6.6)

unless |k|, |�| � 1, in which case, we have:

|JX (β, k, �, q; γ )| � min

(
1,

1

N |β|
)

. (6.7)

Alternatively, if X/Y ≤ q, then we have the same arbitrary cancellation (6.6),
unless |k|, |�| � Y q

X (in which case, we only need the trivial bound).

Proof The phase of JX can be written as e(g) where

g(x, y) = βfγ (x X , yX) − X

q
(kx + �y).

Inputting (2.8), the partial derivatives of g are

∂x g(x, y) = X

q

(
βqBcγ P

2Xy − k
)

+ O(|β|T X) (6.8)

and similarly

∂yg(x, y) = X

q

(
βqBcγ P

2Xx − �
)

+ O(|β|T X). (6.9)

First consider the case that q < X/Y . Recalling that |β| � 1/(QT X), B, P, x, y � 1,
and cγ � T , we have that ∇g �= 0 unless

|k|, |�| � |β|qT X � 1.

Outside of this range, not only does ∇g not vanish, but it is of order at least Y , since
q < X/Y . Thus, we may apply non-stationary phase, giving (6.6).
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Now suppose that the pair (k, �) is such that ∇g does vanish at some point p in the
support of ϒ × ϒ . In this case, we apply stationary phase to show that

|JX | � min(1,
−1/2
p ),

where 
p is absolute determinant of the Hessian of g at p. Since


p = | det(∂i, j (g))| = (|β|Bcγ P
2X2)2 � (|β|T X2)2,

we have that



−1/2
p � 1

T X2|β| = 1

N |β| ,

which gives (6.7). (In fact, since the form is bilinear in the variables, it is possible to
evaluate the integrals explicitly, though this is not needed here.)

In the case that X/Y ≤ q, we can only apply non-stationary phase if the phase is
actually growing, which is the case if max(|k|, |�|) > Y q

X . This completes the proof.
��

6.2 Minor arcs I: case q < Q0

Proposition 6.10 Assume that q < X. Then

∣∣∣∣R̂N

(
r

q
+ β

)∣∣∣∣ � X2|FT |
N |β| . (6.11)

Proof Inserting Lemma 6.5 gives

R̂N

(
r

q
+ β

)
� X2

∑

γ∈FT

∑

k,��1

|Sq(r , k, �; γ )| 1

N |β| ,

which gives the result on trivially estimating |Sq | ≤ 1. ��
Corollary 6.12 We have:

IQ0,K0 � |̂RN (0)|2
N

Q2
0

K0
,

and

IQ0 � |̂RN (0)|2
N

Q2
0

K0
.
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Proof Inserting the L∞ bound (6.11) gives:

IQ0,K0 �
∫

θ= r
q +β

q<Q0,|β|<K0/N

∣∣∣∣β
N

K0

∣∣∣∣

2 X4|FT |2
N 2|β|2 dθ � |R̂N (0)|2

K 2
0

Q2
0
K0

N
,

giving the claim. Similarly,

IQ0 �
∫

θ= r
q +β

q<Q0,K0/N<|β|

∣
∣∣∣
X2|FT |
N |β|

∣
∣∣∣

2

dθ � |R̂N (0)|2
N 2

Q2
0N

K0
,

as claimed. ��
The choice of parameters (2.14) ensures that these are power savings, as required

in Theorem 6.1.

6.3 Minor arcs II: caseQ0 ≤ Q < X/Y

Next take the intermediate range, where Q0 ≤ Q < X/Y . We need to estimate (6.3).
Inserting (6.4) and opening the square gives

IQ =
∫

θ=r/q+β
Q≤q<2Q,(r ,q)=1,|β|<1/(QM)

∣∣
∣
∣
∣∣
X2

∑

γ∈FT

∑

k,�∈Z

Sq (r , k, �; γ )JX (β, k, �, q; γ )

∣∣
∣
∣
∣∣

2

dθ

= X4
∑

γ,γ ′∈FT

∑

k,�,k′,�′∈Z

∑

q�Q

⎡

⎣
′∑

r(q)

Sq (r , k, �; γ )Sq (r , k′, �′; γ ′)

⎤

⎦

∫

|β|<1/(QM)
JX (β, k, �, q; γ )JX (β, k′, �′, q; γ ′)dβ.

We apply Lemma 6.5 to get

IQ � X4

N

∑

γ,γ ′∈FT

∑

k,�,k′,�′�1

∑

q�Q

∣∣∣∣∣
∣

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣∣∣
∣
. (6.13)

Now we introduce a parameter

H := Qη0/4
0 , (6.14)

where η0 is the constant in (3.8), and decompose

IQ ≤ I(<)
Q + I(≥)

Q ,

according to whether gcd(c, c′) < H or gcd(c, c′) ≥ H . We first deal with the large
gcd.
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Proposition 6.15 There exists some η > 0 so that:

I(≥)
Q � |̂RN (0)|2

N
N−η.

Proof Let h ≥ H be the gcd of c and c′. Then applying Corollary 4.8 (and notation
therein) to (6.13), we have

I(≥)
Q � X4

N

∑

γ∈FT

∑

h|cγ
h≥H

∑

q1|BcP2

q1�Q

∑

γ ′∈FT
c′≡0(h)

∑

q ′
1|Bc′P2

q ′
1�Q

∑

q�Q
q≡0((q1,q ′

1))

(q1, q ′
1)

q
,

where in the last sum, we weakened the condition that q is divisible by both q1 and
q ′
1 to just being divisible by their gcd. Now estimating divisor sums and applying
Nullstellensatz (3.8) in the γ ′ summation gives

I(≥)
Q �εN

ε X
4

N
H−η0 |FT |2,

from which the claim follows. ��
Next we handle the small gcd.

Proposition 6.16 There exists some η > 0 so that:

I(<)
Q � |̂RN (0)|2

N
N−η.

Proof We begin with the observation that (c, c′) < H implies that c �= c′, since
c � T and H = o(T ). We apply Lemma 4.12, estimate gcd

(
q(q1, q ′

1), J
)
by

gcd
(
(q2, q ′

2), J
) q(q1,q ′

1)

(q2,q ′
2)

, and apply (4.6), giving

I(<)
Q �ε

X4

N

∑

γ,γ ′∈FT
(c,c′)<H

∑

q�Q

q−1+ε 1

(q2, q ′
2)

1/4 (q1q
′
1)

1/2(q1, q
′
1)

1/2

(
gcd

(
(q2, q

′
2), (c − c′)(B2 − 
cc′)

))1/4
.

Since q = q1q2 = q ′
1q

′
2, we have that (q2, q

′
2) = q/[q1, q ′

1]. We crudely estimate

I(<)
Q �ε N ε X4

N

∑

q�Q

q−5/4
∑

γ,γ ′∈FT
c �=c′

q1=(BcP2,q)

q ′
1=(Bc′P2,q)

(q1q
′
1)
(
gcd

(
q, BP2(c − c′)(B2 − 
cc′)

))1/4
.

(6.17)
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Let h = (q1, q ′
1), then h | BP2(c, c′), and h � min(Q, H). Then we can write

q1 = hg, q ′
1 = hg′, with (g, g′) = 1. Also note that h | (q, BP2(c−c′)(B2 −
cc′)),

so we can write

(q, BP2(c − c′)(B2 − 
cc′)) = hg̃.

Then it follows that

(g̃, g) � (BP2(c − c′)/h, g) · (BP2(B2 − 
cc′), g).

The first gcd on the right hand side above is 1, since a factor of both should have been
included in h. Since g | BP2
cc′, the second gcd is equal to (BP2B2, g) � 1. A
similar argument shows that

(g̃, g′) � 1,

and hence we have the bound

[hg, hg′, hg̃] � gg′g̃

on their least common multiple. (Since h may be small, it will not help us in this
estimate.)

Similarly, we note that

(g̃, c) � (BP2(c − c′), c) · (B2 − 
cc′, c).

The second gcd is again bounded, while the first is bounded by H , by the definition
of I(<)

Q .
Thus we can estimate:

I(<)
Q �εN

ε X
4

N
Q−5/4

∑

γ∈FT

∑

γ ′∈FT
c �=c′,(c,c′)<H

∑

h|BP2(c,c′)
h�Q

∑

g|BP2c
g�Q

∑

g′|BP2c′
g′�Q

×
∑

g̃|BP2(c−c′)(B2−
cc′)
gg′ g̃�Q, (g̃,c)�H

(hghg′) (hg̃)1/4
∑

q�Q
q≡0([hg,hg′,hg̃])

1

�εN
ε X

4

N
Q−5/4H9/4

∑

γ∈FT

∑

g̃�Q
(g̃,c)�H

Q

g̃3/4
∑

γ ′∈FT
BP2(c−c′)(B2−
cc′)≡0(g̃)

1.

For fixed c, let R = R(g̃) ⊂ Z/g̃Z denote the set of roots mod g̃ of the polynomial
BP2(c − x)(B2 − 
cx). If 
 = 0, then this is a linear polynomial with leading
coefficient BP2, so #R � 1. If 
 �= 0, then this is a reducible quadratic polynomial
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with leading coefficient BP2
c; since (g̃, c) � H , it follows that #R �ε H1+ε.
Finally, we have that

I(<)
Q �εN

ε X
4

N
Q−5/4H9/4

∑

γ∈FT

∑

g̃�Q
(g̃,c)�H

Q

g̃3/4
∑

α∈R(g̃)

∑

γ ′∈FT
c′≡α(g̃)

1.

We apply Nullstellensatz (3.8) in the last summation to obtain:

I(<)
Q �εN

ε X
4

N
Q−5/4H9/4

∑

γ∈FT

∑

g̃�Q

Q

g̃3/4
H

1

g̃η0
|FT |

�εN
ε X

4

N
Q−1/4H13/4Q1/4−η0 |FT |2.

The choice of the parameter H in (6.14) ensures thatwehave saved a power of Q ≥ Q0.
The claim follows since Q0 is a power of N (by (2.13)). ��

These two propositions establish Theorem 6.1 in the intermediate range of Q.

6.4 Minor arcs III: case X/Y ≤ Q < M

In this largest range, we return to the exact evaluation:

IQ = X4
∑

γ,γ ′∈FT

∑

k,�,k′,�′∈Z

∑

q�Q

⎡

⎣
′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

⎤

⎦

∫

|β|<1/(QM)

JX (β, k, �, q; γ )JX (β, k′, �′, q; γ ′)dβ.

Now we break

IQ ≤ I=
Q + I �=

Q

depending on whether c = c′ or not. We first handle the latter case.

Proposition 6.18 There is an η > 0 so that

I �=
Q � |R̂N (0)|2

N
N−η,

as N → ∞.
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Proof To begin, we can use the last part of Lemma 6.5 to show that:

I �=
Q � X4

QM

∑

γ,γ ′∈FT

∑

|k|,|�|,|k′|,|�′|� Yq
X

∑

q�Q

∣∣∣∣∣
∣

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣∣∣
∣

+ O(N−100). (6.19)

We will omit this last term henceforth. In the case c �= c′, we estimate using Lemma
4.12, crudely (e.g., q1 � T , etc) giving:

I �=
Q � X4

QM

∑

q�Q

∑

γ,γ ′∈FT
q1=(BcP2,q),q ′

1=(Bc′P2,q)

×
∑

|k|,|�|,|k′|,|�′|� Yq
X

q−5/4+ε(q1q
′
1)

1/2(q1, q
′
1)

1/4 gcd
(
q(q1, q

′
1), J , K

)1/4

� N εX4T 3/2

Q9/4M

∑

q�Q

∑

γ,γ ′∈FT

∑

|k|,|�|,|k′|,|�′|� Yq
X

gcd (q, J , K )1/4 .

Recall from Lemma 4.4 that J does not depend on k, k′, �, �′ but K does. Then

I �=
Q � Y 4X4T 3/2

Q9/4M

[
Q4

X4 + 1

] ∑

q�Q

∑

γ,γ ′∈FT
c �=c′

gcd (q, J )1/4 .

By (4.6), we have that:

gcd (q, J ) � T 2 gcd
(
(q2, q

′
2), J

) � T 2 gcd
(
(q2, q

′
2), (c − c′)(B2 − 
cc′)

)
� T 5,

since B2 − 
cc′ is never zero. Then

I �=
Q � N εX4T 3/2

Q9/4M

[
Q4

X4 + 1

]
Q|FT |2T 5/4

� Y 4
[
T 3/2M7/4 + X4T 3/2

X5/4M

]
|FT |2T 5/4

� Y 4|FT |2X2 T 5

X1/4 � Y 4 |R̂N (0)|2
N

T 6

X1/4 .

The claim again follows due to the large power of X savings (relative to the small loss
of powers of T and Y ); see (2.9) and (6.2). ��
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Next we analyze the case that c = c′. At this stage, we decompose I=
Q further

according to whether k� = k′�′ or not,

I=
Q � I=,=

Q + I=,�=
Q .

We first analyze the case that k� �= k′�′.

Proposition 6.20 There is an η > 0 so that

I=,�=
Q � |R̂N (0)|2

N
N−η,

as N → ∞.

Proof We again apply Lemma 6.5 as in (6.19). In this case, we then apply Lemma
4.14, which gives:

I=,�=
Q � X4

QM

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Yq
X

k� �=k′�′

∑

q�Q

[
q−5/4+εq21 gcd

(
q, �′k′ − �k

)1/4]
.

The gcd is bounded by |k�| � (Yq/X)2, giving:

I=,�=
Q � Y 1/2X4

QM

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Yq
X

k� �=k′�′

∑

q�Q

[
q−5/4+εq21 (q/X)1/2

]

� Y 5 X4

QM
|FT |2

[
Q4

X4 + 1

]
QQ−5/4T 2Q1/2X−1/2

� Y 5 |R̂N (0)|2
N

T 6

X1/4 .

The claim again follows due to the large power of X savings. ��
The last case is when c = c′ and k� = k′�′; here we will fight not for powers of Q

but powers of the much smaller parameter T . We can save a factor of T 2δ−1 from the
fact that c = c′ (and hence there are only T values for γ ′, not T 2δ � |FT |). But this
is insufficient for a power gain in the end. So new ideas are needed.

Proposition 6.21 There is an η > 0 so that

I=,=
Q � |R̂N (0)|2

N
N−η,

as N → ∞.
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Before beginning the proof, we return to the original formulation:

I=,=
Q = X4

∑

γ,γ ′∈FT
c=c′

∑

k,�,k′,�′∈Z

k�=k′�′

∑

q�Q

⎡

⎣
′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

⎤

⎦

∫

|β|<1/(QM)

JX (β, k, �, q; γ )JX (β, k′, �′, q; γ ′)dβ.

We apply the last part of Lemma 6.5 to truncate the k, �, k′, �′ range:

I=,=
Q = X4

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

∑

q�Q

⎡

⎣
′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

⎤

⎦

∫

|β|<1/(QM)

JX (β, k, �, q; γ )JX (β, k′, �′, q; γ ′)dβ.

Over this range of k, �, k′, �′, we need to level out the q dependence from the
archimedean component J . But the range of q � Q is too long for this purpose,
so we decompose the sum into U intervals, where U is a parameter chosen to be

U = Q1/2.

Each interval is of length Q/U = Q1/2, which is much larger than T . Let Q1 range
over the starting points of these intervals. Then we have:

I=,=
Q = X4

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

∑

j∈{1,...,U }
Q1=Q+ j QU

∑

Q1≤q≤Q1+ Q
U

⎡

⎣
′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

⎤

⎦

∫

|β|<1/(QM)

JX (β, k, �, q; γ )JX (β, k′, �′, q; γ ′)dβ.

On each of these sub-intervals, we will replace q in J by Q1, thereby freeing the q
variable for a purely modular analysis, as follows.
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Lemma 6.22 For any ε > 0, we have that:

I=,=
Q �ε

1

QM
X4

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

∑

j∈{1,...,U }
Q1=Q+ j QU

∣∣∣∣∣
∣∣

∑

Q1≤q≤Q1+ Q
U

′∑

r(q)

Sq(r , k, �; γ )Sq(r , k′, �′; γ ′)

∣∣∣∣∣
∣

+ Y 4 |R̂N (0)|2
N

T

U
.

Proof Returning to the definition of J , we see that

|JX (β, k, �, q; γ ) − JX (β, k, �, Q1; γ )| � Y

U
,

since k, � � Y Q/X . We replace the two appearances of q in J one at a time.
Each time, we apply Lemma 4.15 to the resulting difference, which is bounded by

� Y 2 1

U

X4

QM

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Yq
X

k�=k′�′

∑

q�Q
q1=(c,q)

⎡

⎣ (c, q)2

q2

′∑

r(q)

1{−�≡Pr(Ba+Dc)(mod q1)−k≡Pr(Ac+Bd)(mod q1)}

⎤

⎦

� Y 2 1

U

X4

Q3M

∑

γ,γ ′∈FT
c=c′

∑

q1|c
q1�Q

q21
∑

q�Q
q≡0(mod q1)

∑

|k|,|�|� Yq
X

′∑

r(q)

1{−�≡Pr Ba(mod q1)−k≡Pr Bd(mod q1)}
,

where we used that c ≡ 0(q1). Since (a, c) = (c, d) = 1, for given �, the value of r
is determined up to constants mod q1, so there are � q/q1 values of r contributing.
For each value of (�, r), we have that k is determined mod q1, but we won’t use this.
In total, we bound the difference by

� Y 2 1

U

X4

Q3M

∑

γ,γ ′∈FT
c=c′

∑

q1|c
q1�Q

q21
∑

q�Q
q≡0(mod q1)

Q

X

Q

q1

Q

X

� Y 2 1

U

X4

Q3M

∑

γ,γ ′∈FT
c=c′

∑

q1|c
q1�Q

q21
Q

q1

Q

X

Q

q1

Q

X

� Y 2 |R̂N (0)|2
N

T

U
.
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Finally, we estimate trivially that

∫

|β|<1/(QM)

JX (β, k, �, Q1; γ )JX (β, k′, �′, Q1; γ ′)dβ � 1

QM
,

whence the claim follows, since Q ≥ X/Y . ��

Now we have leveled out the sum, and are in position to apply the crucial Lemma
4.25.

Proof of Proposition 6.21 Inserting Lemma 4.25 into Lemma 6.22 gives:

I=,=
Q �ε

1

QM
X4

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

U

×Qε
∑

q1|BcP2

E=BcP2/q1

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}Nq1

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

×
[
(EQ1, Z)

UEQ1
+ c

U 2 + c3

Q
+ |Z |

UQ

]
(6.23)

+ N ε |R̂N (0)|2
N

T

U
,

where Z and Nq1 are as defined in the statement of Lemma 4.25.
We first handle the contribution from the latter three terms in (6.23)

Qε

QM
X4

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

[
c

U
+ c3U

Q
+ |Z |

Q

]

� N εY 2

QM
X4|FT |2

(
Q

X

)2 [ T
U

+ T 3U

Q
+ T 2

Q

]

� N εY 2 |RN (0)|2
N

[
T 2

U
+ T 4U

X
+ T 3

X

]
,

where we bounded Z � TY Q/X � YT 2 from (4.26) and used (4.34). With U =
Q1/2, this is sufficient savings if T is small enough relative to Q ≥ X/Y ; these are all
power savings. Only the first term of (6.23) remains to be handled.
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Qε

QM
X4

∑

γ,γ ′∈FT
c=c′

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

∑

q1|BcP2

E=BcP2/q1

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

(EQ1, Z)

EQ1

� Qε

QM
X4

∑

γ∈FT

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

∑

q1|BcP2

E=BcP2/q1

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

1

EQ1

∑

Z1|EQ1

Z1

∑

γ ′∈FT
c=c′

1{Z(γ ′)≡0(mod Z1)}.

Now we apply (4.36) to the last summation, expanding γ ′ ∈ FT to all of SL2(Z)

(recalling that in FT , all entries are � T ). This gives

Qε

QM
X4

∑

γ∈FT

∑

|k|,|�|,|k′|,|�′|� Y Q
X

k�=k′�′

∑

q1|BcP2

E=BcP2/q1

1{d�≡ak≡d ′�′≡a′k′(mod(q1,c))}

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

1

EQ1

∑

Z1|EQ1

T (Z1, �d − ka)

� Qε

QM
T X4

∑

γ∈FT

∑

q1|BcP2

E=BcP2/q1

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

1

EQ1

∑

Z1|EQ1

∑

Z2|Z1

Z2

∑

|k|,|�|� Y Q
X

d�≡ak(mod(q1,c))
d�≡ak(mod Z2)

∑

|k′|,|�′|� Y Q
X

k�=k′�′

1.

The k′, �′ sum is a divisor sum. Note that (q1, c) � q1. Replace the condition d� ≡
akmod(q1, c) by d� ≡ akmod(q1/Q1, c). Note that q1/Q1 is coprime to EQ1. So
with k fixed, � is restricted to a residue class mod (q1/Q1, c)Z2. This gives

Y 4

QM
T X4

∑

γ∈FT

∑

q1|BcP2

E=BcP2/q1

∑

Q1|q1
p|Q1�⇒(p∞,q1)|Q1

(E,q1/Q1)=1

1

EQ1

∑

Z2|EQ1

Z2

Q

X

(
Q

X(q1/Q1, c)Z2
+ 1

)
� Y 2X2|FT | � Y 2 |R̂N (0)|2

N

1

T 2δ−1 .
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This gives the claim, by the choice of Y in (6.2). ��
Theorem 6.1 has now been established in all ranges of Q, thus completing the proof

Theorem 1.11.
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