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Abstract

In this paper, we study the set of lengths of closed geodesics (or equivalently, the set
of traces of the fundamental group) of a hyperbolic manifold. By “subarithmetic,” we
mean a manifold whose set of traces takes values in a ring of algebraic integers. For
such, we formulate the “Asymptotic Length-Saturation Conjecture”, which states that,
under certain natural conditions, there is an asymptotic local-global principle for the
trace set. We prove the first instance of the conjecture for punctured, Zariski dense
covers of the modular surface.

1 Introduction

By the length spectrum of a hyperbolic manifold M, we mean the set of lengths of
closed geodesics on M, with multiplicity. As is well-known, closed geodesics on M
correspond to hyperbolic conjugacy classes of its fundamental group

I = 71(M) < Isom(H") = PO, 1),

and lengths of the former are a simple function of traces of the latter, namely, trace
= 2 cosh(length/2). It is also classical to study the length set, that is, the set of lengths
of closed geodesics, now counted without multiplicity; again, this is intimately related
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to the set 7 (I") of traces (without multiplicity) of hyperbolic conjugacy classes of I".
In this paper, we initiate a detailed study of the latter for (sub)arithmetic manifolds,
from the viewpoint of local-global theory. In particular, we produce a density one
set of “admissible” traces for subgroups of the modular group containing parabolic
elements, see Theorem 1.11.

To motivate our main results, we begin with a few illustrative examples.

Example 1 Consider the Hecke (2, 3, 0o) triangle reflection group, or rather, its ori-
entation preserving cover, the modular group I' = SL,(Z). The trace set 7 (") of
the latter is elementarily seen to be all of Z, as for any desired integer ¢, one simply
expresses ¢ as ¢ = a + d and factors bc = ad — 1 to make a matrix (Z Z) € I having
trace 7. This is because I' is an arithmetic (or better yet, congruence) group, and hence
any solution to ad — bc = 1 over Z gives an element. We can compare these facts
with the well-known count (see, e.g., [14, §15.8]) for the number of points in I" in an
archimedean ball By of radius N: as with any lattice in SL,(R), we crudely have

#T N By ~ cN2, (1.1

for some constant ¢ > 0; this means that the average number of times that a particular
integer # =< N arises as a trace of a matrix in By is of order N°/N = N. But this
does not take into account the fact that trace is a conjugacy class invariant. For 1 > 2,
let H(t) denote the number of conjugacy classes of elements in I" with trace ¢. As is
well-known (see, e.g., [11]), H (¢) is equal to h(t? — 4), where h(D) is the classical
class number, that is, the number of equivalence classes of binary quadratic forms of
discriminant D (not necessarily primitive). By the Prime Geodesic Theorem we have
(compare to (1.1)):

2

SH® ~ — (1.2)
log(N?)

t<N

and so a “typical” value of H(¢) (for r < N) is more like N/log N, rather than N.
(Note that the fundamental unit €p for discriminant D = 2 — 4 is about as small
as possible, ep = (r + VD) /2, and hence this class number is as large as possible,
of size about /D). The discrepancy in counting matrices versus counting conjugacy
classes makes sense, as the archimedean size of elements under conjugation grow
exponentially (the stabilizer group of a conjugacy class is a discrete subgroup of some
SO(1, 1)), so (log N)-many matrices of size N are grouped together. This is a minor
issue here, but will play a major role in the next example.

Example 2 Now consider the Hecke (2, 5, co) triangle group, or rather its cover, the

group I generated by
_ 01 1¢
"=((50)-(7))

where ¢ = (14 «/5) /2 is the golden mean. (Recall that SL; (Z) has similar generators,
except with ¢ replaced by 1.) The group I' is nonarithmetic, but it is subarithmetic:
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Definition 1.3 A manifold, or its fundamental group, is called subarithmetic if its set
of traces takes values in a ring of algebraic integers.

In this case at hand, the ring is O = Z[¢]. Note that I" is a subgroup of the arithmetic
group [ = SL>(Z[¢]). The latter does not act discretely on H, but is a lattice in
SLy(R) x SL»(R), where it acts by the Galois conjugate in the second factor. (The
fact that I is a lattice in the first factor, while the second factor is non-compact, is one
way to see its nonarithmeticity.) In fact, I" is a thin group (see, e.g. [16]), as the set of
Z-points of its Zariski closure is exactly T, and it has infinite index in the latter. The
set of traces of T is again elementary to determine; it is the full order O = Z[¢], for
the same reason as in Example 1. But now we may ask, which ¢ € O are also traces
of I'?

The asymptotic count (1.1) of matrices in a ball By (in R* = M> > (R)) is still of
order N2, since T is a lattice in SL(R). But now O = 7 @ ¢Z is a quadratic ring. In
general, if O is an order in the ring of integers of a number field with k embeddings
into R and ¢ embeddings into C, let Oy denote the points of O in a fixed Euclidean
norm-N ball in R¥+2¢ under the image of all the embeddings

OCRx---xRxCx---xC. (1.4)

Returning to O = Z[¢], the number of elements in Oy is also roughly N2, the same
as the number of points of I" in By.

Therefore the average number of matrices in By having a given trace t € O is a
positive constant.

But what happens when we group by conjugacy classes? (In Example 1, this caused
the average count to drop by a factor of log N, but here we don’t have this factor to
spare!) Let Hr(¢) denote the number of conjugacy classes of I" having trace t € O. As
I' is a lattice in SL, (R), we still have the Prime Geodesic Theorem (see (1.2)), that

2

N
> Hr@) ~ eV (1.5)

N(1)<N?

where N : O — Z is the algebraic norm. Therefore there can’t be more than
O(N?/log N) elements t € O which actually arise as traces in ' N By, and thus
the density of those that do arise is zero! While we can’t say much about the class
number Hr (1), in every conjugacy class that does arise, there should be about log N
matrices of size N, as before. So when counting matrices, even though the “average”
multiplicity is bounded, what’s really going on is that 100% of the time, the multiplic-
ity is exactly zero, and very rarely there are somewhat large (of size at least log N)
multiplicities. See also recent work of McMullen [21] in this direction. We remark
that the number of elements of T" in a ball By is roughly N4, and Hz(t) is roughly of
order £2.
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Example 3 For our last example, consider the Hecke (2, 7, co) triangle group, or rather
its cover, the group I generated by

") (o))

where n = 2 cos(r/7). The ring O = Z[n] is cubic, and so the number of matrices of
size N in T is of order N2, while the number of possible values of the trace of size up
to N is N3, and hence it is clear that very few numbers in O can occur as traces.

Returning to the general setting, in light of these examples, to be able to say anything
about traces of I', we need some conditions. First we assume that I’ < PO(n, 1)
is discrete, finitely generated, and subarithmetic, so that tr(I") consists of algebraic
integers. By the trace ring, O, we mean the ring generated by the traces of I'. Let Oy
be as above (1.4).

Obstruction 1: Let « > 0 be the “growth exponent” of I', in the sense that

#I' N By = Nt

(When I'" < PO(n — 1, 1) is geometrically finite and § is the Hausdorff dimension of
its limit set, then o = § [18, 25, 26].) As in Example 3 (and Example 2), to be able to
study the length set, we require that « exceeds the rank of @. One can think of this as
an “archimedean local obstruction.”

Obstruction 2: There are also potentially other local obstructions. Already in the
case of a classical congruence group I'(q) := ker(SL2(Z) — SL2(g)), only the
numbers that are 2(mod ¢) can arise as traces in I'(g).

Definition 1.6 We say that t € O is admissible if, for every ideal Z C O, t €
T((T)modZ.

(We remark that Strong Approximation for Zariski dense groups [27] implies that it
suffices to check a finite list of ideals to determine admissibility; determining this finite
list in practice is often not difficult.)

Obstruction 3: There is one final archimedean local obstruction. Given any mani-
fold, we can take a cover that destroys the systole; that is, what was the shortest closed
geodesic need not remain closed under a cover, making the shortest length (that is,
smallest trace) of such a moving target. So we should allow for some “small” values
of O to not arise as traces.

We may now formulate our main conjecture.

Definition 1.7 With notation as above, we say that I length-saturates if: every admis-
sible r € O with sufficiently large norm arises in the trace set of I".

Definition 1.8 We say that I" asymptotically length-saturates if

#7 (') N By
#{t € Op t is admissible}

1, (1.9)
as N — oo.
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On length sets of subarithmetic hyperbolic manifolds 2787

Thus the modular group length-saturates, as in Example 1 (see also work of Marklof
[19] studying distinct length sets of arithmetic 3-folds), while the Hecke (2, 5, co)
group does not even asymptotically length-saturate (it fails Obstruction 1).

Conjecture 1.10 (Asymptotic Length-Saturation). Let I' < PO(n, 1) be discrete,
finitely generated, and subarithmetic, with growth exponent o exceeding the rank
of the trace ring O. Then T asymptotically length-saturates.

The stronger statement that with the same assumptions, I" length-saturates is false.
Indeed, already for certain cocompact arithmetic 2-folds corresponding to the norm-
one elements of a quaternionic division algebra, the trace equation can cut out a ternary
indefinite inhomogeneous quadric, which can exhibit infinitely many Brauer-Manin-
type obstructions.

In this paper, we make the first progress towards Conjecture 1.10, by proving
asymptotic length-saturation for punctured, geometrically finite, Zariski-dense covers
of the modular surface. Equivalently, the fundamental group of such a cover contains
parabolic elements, is finitely-generated, and is non-elementary.

Theorem 1.11 Let I be a finitely generated, non-elementary subgroup of SLo(Z)
containing a parabolic element; then I is asymptotically length-saturating. In fact, it
is effectively so, in that the right hand side of (1.9) is 1 + O (N %) for some ¢ > 0, as
N — oo.

Here is an explicit family of finitely-generated groups with §(I') — 1/2 and with
no local obstructions, to which the theorem applies. For m large, consider the group
'y < SL»(Z) generated by

(19 (1) (1) (o). and (5 7") (7)) (67)-

A fundamental domain for the action of I'g is shown in Fig. 1. By strong approximation,
there is some go = go(m) such that the reduction of I'g mod any prime p 1 go is onto.
Let P = P(m) be a very large prime coprime to go and let I" be the group generated
by I'p and the translation ((1) If ) Then since P is a unit mod g, the reduction of I' mod
q is easily seen to be all of SLy(g) (by which we mean SL;(Z/qZ)), for all g. Thus
all numbers are admissible; that is, there are no local obstructions. For P and m large,
the Hausdorff dimension of the limit set of I" can be made any number exceeding 1/2.

Remark 1.12 This family also gives examples of groups I' for which it should be
difficult to produce many traces! Indeed, these I" have no small traces at all: the
systole of the groups I'g grows with m, and taking P large enough does not create
a shorter closed geodesic. In particular, this is an example of a family of I"’s having
arbitrarily many local-global failures.

Remark 1.13 The question of length-saturation is closely related to the Local-Global
Conjecture for Apollonian packings, Zaremba’s Conjecture, and McMullen’s Classical
Arithmetic Chaos Conjecture (see, e.g. [15, 17, 20] for discussions of these). Each of
these problems amounts to understanding the image of a linear form (which in the
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Fig.1 The fundamental domain of I'g, and a typical orbit

setting of this paper is the trace) of a Zariski dense subgroup (or sub-semigroup). In
each of the previous cases, the expected multiplicity in a ball of size N was some fixed
positive power of N.

Note that in our setting here, there is no restriction on the growth exponent o of
I'; indeed, the Hausdorff dimension § of the limit set of I, which can be as small as
8 > 1/2 (due to the puncture, see [1]). Counting with multiplicity, we have that:

#{y eTNBy tr(y) < N} = N?T°D (N - )

So the multiplicity of a typical trace f < N in the trace set € 7 (I') may be extremely
small,

#ly eTNBy tr(y) =1} = N¥-I+o) (1.14)

where 26 — 1 can be any quantity just above 0, and yet our methods produce a density-
one set of traces in this setting.

Also note that the methods introduced in [3] and applied to both the Zaremba [4]
and Apollonian [5, 12, 28] settings required the linear form to have a bilinear structure.
That is, the linear form was of type:

Yy = (v, yw) (1.15)

for some fixed vectors v, w. The trace is not of this form, and so the best one can
currently say towards McMullen’s conjecture is a strong level of distribution, see [7].
It is not even currently known that a positive proportion of numbers arises in the set
of traces of a Zaremba-type semigroup (see [17, §3]). For related work in a somewhat
different direction, see also the recent PhD thesis of Brooke Ogrodnik [23, 24].

Remark 1.16 Returning to the setting of this paper, here are some further remarks:

(1) It is sometimes possible to completely determine the trace set of I', even if the
latter is thin. For example, take the “Lubotzky 1-2-3" group, I' = (7). (19))- It
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is easy to see that every trace is = 2(mod 9), and indeed the element (}9)(}3)"

has trace 2 + 9n, so all admissible traces are represented by this one arithmetic
progression.

(2) Since we have assumed that I" does contain a parabolic element, it is immediate that
its trace set 7 (I") comprises a positive proportion of integers, since, as above, 7 (I")
contains entire arithmetic progressions. Without assuming that '\ H is punctured,
current technology cannot not even produce a positive proportion of traces!

(3) On the other hand, an argument based on Furstenberg’s topology on the integers
shows that, if there is even a single local-global failure (that is, an admissible
t not in 7 (I")), then finitely many such arithmetic progressions cannot possibly
cover even a density-1 subset of 7 (I"). A sketch is the following: declare arith-
metic progressions to be open, and generate a topology from this basis; then give
the admissible numbers in 7 (I") the subspace topology. If a finite number of
arithmetic progressions cover a density-1 set of admissible numbers, then their
complement, assumed to be non-empty, must be open; hence it contains an arith-
metic progression, so the cover is not density-1.

1.1 Methods

We use the (orbital) circle method to access the trace set 7 (I'). In fact, our methods
apply not just to the trace function tr : SL,(Z) — Z but to any linear form, .Z, say,
on SL; (and hence we do not group traces by conjugacy class). It turns out (see (2.1))
that the trace function is the “generic” linear form. The main theorem, from which
Theorem 1.11 follows immediately, is the following.

Theorem 1.17 Let " be a geometrically finite, punctured, Zariski dense subgroup of
SLy(Z), and let £ : T — Z be any linear form. Let A denote the admissible values
of £; thatis, n € A if and only if n € £ (I') (mod q), for all q. Then there is some
® > 0, so that:

#ne ZT)N[1, N}

_ -0
#Hne AN[l, N} L+ 0N,

as N — oo. The implied constant is effective.

In the special case that the linear form is bilinear (as in (1.15)) and the critical
exponent of I' is sufficiently close to 1, the above theorem is proved by the second-
named author in [29], but there are major differences between that setting (and indeed
all previous work on the orbital circle method) and the present paper. For one thing,
we are able to, for the first time, handle the case of . being the trace, which is not
bilinear; see Remark 1.16(2). This introduces great difficulties even in the major arc
analysis, as described below, requiring delicate arguments with the Burgess bound
and Siegel zeros. There are also a number of key innovations in our handling of the
minor arcs, among other things, requiring a “third Kloosterman refinement” to get the
application and allow § to be as small as possible, any amount exceeding 1/2.

The starting point of our attack is to use the parabolic element in two ways to
produce not only arithmetic progressions, but values of binary quadratic polynomials
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in the set of values of the linear form .. By this we mean the following: given a fixed
element (¢%) € I' and a parabolic, say, (§ ¥') € I, we can compute that

w((45)(45)) =a+d+exp,
which is a linear form in x, whereas, say,
e (A1) (@55 (45)) = @+ 2be + & + (@ + d)cP(x +y) + 2 Py

is quadratic as a function of the pair (x, y). (Using three or more copies of the parabolic
produces cubic or higher forms; the added cost of increasingly larger coefficient sizes
seems not to be advantageous for this problem.)

Then varying x and y, and letting (f Z ) run over certain regions of I in a ball of size
N, we study the “representation number” Ry (n) of the number of times that n < N
occurs as a value of Z. In fact our construction of Ry is more complicated, as we
need to create multilinear forms at several scales for later estimates, see Sect. 2.1.

Following the (orbital) circle method, we decompose Ry (n) into a “main” term
My (n) and an “error”, Ey (n), where we integrate over the “major” and “minor” arcs,
resp. We note again that the main term is expected to be of size a singular series times
NZ—1 (see (1.14)), which may be an arbitrarily small (but fixed) positive power of N.
So we do not have much room to get an error off of the main term!

As in some other applications of the orbital circle method, we are only able to
control the error terms in L2, and hence produce only Asymptotic Length-Saturation,
and not full Length-Saturation (which perhaps could be expected in this setting). Even
this involves several novel techniques; there is a more standard analysis of cancellation
in certain exponential sums and averages thereof, and there is also an appeal at some
point to Hilbert’s Nullstellensatz in effective form (see Sect. 3.2).

In the major arcs, we use the work of Bourgain-Varju [10] and Bourgain-Gamburd-
Sarnak [2] for an archimedean spectral gap, together with infinite volume counting
methods of [8], to obtain an estimate for the main term M y (n). But there are several
surprises here as well! It turns out that the singular series is a very short sum (of
length N®) which is trying to approximate a quadratic Dirichlet L-function at 1, see
Sect. 3.6. On GRH, this L-value can indeed be approximated by such a short sum,
but our statement is unconditional! Since our error term estimate is anyway only as an
“average” over n, we also average on the main term; that is, we show (see Theorem
3.38) that, for all but very few n’s, the approximation is valid. But then we have another
problem: we need Siegel’s bound to know that the singular series, which is now one
such L-value, is not too small. Again, because we are stating only an average result,
we show (see Theorem 3.41) that we can bound these L-values from below for all
but an exceptional set of values of n, with effective constants, leading to the effective
constants in Theorem 1.17.

@ Springer



On length sets of subarithmetic hyperbolic manifolds 2791

Outline

We begin in Sect. 2 with the setup of the circle method, introducing the main repre-
sentation function, and its decomposition into a main term and error, corresponding
to major and minor arcs. The next two sections provide preparatory lemmata for the
main arguments. We record in Sect. 3 various infinite volume counting theorems in
congruence towers, the savings off of such counts in progressions for arbitrarily large
modulus (this is where Nullstellensatz is used), as well as the analysis of the singular
series, which involves Weil and Burgess bounds. In Sect. 4, we prepare various expo-
nential sum estimates used in the minor arcs analysis, using more standard analytic
techniques such as estimates for Kloosterman-type sums. These allow us to complete
the major arcs analysis in Sect. 5 and then the minor arc analysis in Sect. 6.

Notation

We use the standard notation e(x) we mean ¢>7**, and eq(x) = e(x/q). The notation

Z;(q) means summing over ¥ (mod ¢g) with (r, g) = 1. We use the symbols X = O(Y)

and X « Y interchangeably, and by X < Y, we mean X < ¥ « X. All implied
constants, unless specified otherwise, may depend at most on I" and the linear form
%, which are treated as fixed.

2 Preliminaries
We henceforth take I' < SL»(Z) to be a given finitely-generated, Zariski dense group

containing parabolic elements. We consider a linear form . : SLy(Z) — 7Z which is
not everywhere vanishing; explicitly, this means that

Z (‘;Z) > Aa+ Bb+ Cc+ Dd = tr[(iZ)(gg)] 2.1)

and we assume that at least one coefficient A, B, C, D is non-zero. Note that ¥ is of
bilinear type (see (1.15)) exactly when its “discriminant”,

A=Ay = AD— BC

vanishes. After conjugation, we may assume that I" contains the fixed parabolic ele-

ment
1P
(0 1) erl.

We make a few further simplifying assumptions.

e We may assume that gcd(A, B, C, D) = 1, since otherwise we can pull out a
common factor.
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2792 A. Kontorovich, X. Zhang

e By applying fixed elements of I' inside ., we may assume that the coefficients
A, B, C and D are all non-zero. Indeed, one has that:

(n(ca)m) =l (C0)n (50) 7]

and by the Zariski density of I, there exist elements yo, y1 € I'sothat o(4 § )y
has every entry non-zero.

e By Strong Approximation and passing to a finite index subgroup of I if necessary,
we may assume that for all (g1, g2) = 1, we have:

I'/T(q192) =T/T(q1) x I'/T(q2), (2.2)
where
I'lg) = {yel:y=I(modqg)} 2.3)

is the “principal congruence” subgroup of (the possibly thin group) I'. Moreover,
for all “good” primes p, we have that for ¢ = p*, the mod ¢ reduction is onto

[(g)\I' = SLa(¢).

e For a finite list of “bad” primes p (including p = 2), we have an exponent (‘“‘sat-
uration level”) k = k, so that

C(pND = {1}, (2.4)

and for £ > k, ['(pY\I is the full lift of the identity from SL;(p¥) to SLa(p?).
In particular, the parabolic element ((1) f ) e I satisfies

P =0(phH (2.5)

for all bad primes p.
e We may assume, by increasing the saturation densities &, if necessary, that

kp >Lp,3, (2~6)

where L = L, p is determined by pL||B. (Here, as below, B is the coefficient of
bin %, as defined in (2.1).)

2.1 Setup of the circle method

For y € T, we construct the shifted binary quadratic form:

fy(x.y) = aﬁf’((éﬁ")y(éﬁy)) 2.7)
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so that, if y = (fi ZZ ). then

fy(x,y) = (Aay, + Bb, + Ccy, + Dd,) + (Ac, + Bd,) Px + (Bay, + Dc,) Py
+Bcy, szy. (2.8)

Note that, for any integers x,y € Z and any y € I, the value of f, (x, y) arises
in Z(I"). Let N be the main growing parameter, and 7', X be parameters determined
by:

T =NV x = N9/20 g0 that TX? = N. (2.9)
Decompose T further at
T =TTy, with T» =T{, (2.10)

with C a very large constant depending only on the spectral gap for I, see (3.7).
We now define the main ensemble %1 as follows

¥
]

ab

71-)/2=<Cd)2)/1,y2€1“ . (2.11)
STi<lyill<n
1D <lnll<Ts

ﬁT«z,b,c,d

We show in Lemma 3.3 that .%7 has cardinality < T2 This is a sub-multi-set of T,
as the product y; > may have multiplicity; that is, for a fixed & € Fr,

> Ay < TP (2.12)
yeZr

Fixing a smooth nonnegative bump function Y with supp ¥ C [%, 1], define the main
“representation number”

Ry(m) = Y Y 3T (%) T (%) Ly, (eyy=n)-

yeFr xel yel

We decompose Ry into a “main” term and an error according to a (smoothed)
major/minor arcs decomposition of the circle. To this end, let

¥ (1) = max(l —|z],0)
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279%4 A. Kontorovich, X. Zhang

be the “tent” function whose Fourier transform is the Fejér-type kernel:

sin?(€)

V() = “me?

We fix parameters Qg, Ko to be determined as follows. We set

Qo= N%, Ky=N", (2.13)
where the exponents satisfy
Ko = 3ag (2.14)
and
Sa0 + ko < O. (2.15)

Here ® is the minimum of the two values in Lemmas 3.4 and 3.5. Setting
ap=0/10, ko =30/10

will satisfy all the criteria.
With these choices, let

Wy ko (B) == Y W ((B+m)£5),

meZ

and define the “major arcs” weight function as:

MO) = Y Y Wk @~ D). (2.16)

q<Qor(q)

Then the “main” term is given by:

1
Mpy@n) = f 93?(6)7/2;(9)6(—119)510, 2.17)
0
and of course the error is
1
En(n) = / (1 — M©B) Ry (B)e(—nb)d6,
0

so that

Rn(n) = My () + En(n).
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3 Major arc technical estimates

We record here a number of technical estimates needed in the analysis of the main
term.

3.1 Spectral analysis and counting

Let§ = dr be the Hausdorff dimension of the limit set of I', and recall that § > 1/2. By
Patterson-Sullivan theory [25, 26], § is related to the bottom eigenvalue 1y = §(1 —§)
of the hyperbolic Laplacian acting on L2(I'\H). Work of Lax-Phillips [18] shows
that the spectrum of the latter below 1/4 consists of finitely many eigenvalues. By
Bourgain-Varju [10] and Bourgain-Gamburd-Sarnak [2], there is a uniform spectral
gap, in the following sense.

Theorem 3.1 ([2, 10]). There exists a “spectral gap,”
Bp =06p(I") >0 (3.2)

so that, for all ¢ > 1, the eigenvalue g is the bottom of the spectrum of L*(I' (¢)\H),
and all other eigenvalues are at least A := se (1 — s@), where sg := 6 — ©¢. Here
I'(g) is as defined in (2.3).

Recalling the construction of Z7 from (2.11), we record the following counting
results, which follow from now-standard techniques.

Lemma3.3 As T — oo,
#Fr =< T2,

Proof This follows from infinite volume counting methods in Zariski dense groups
with § > 1/2; see, e.g., [8]. |

Lemma 3.4 There exists © > 0 so that, for any g > 1, yo € T'(@\T, |8] < 1/X?,
and x,y < X, we have that

S ey ) = —— 3 ey () + OUFrINO),
~ 4 [C:T(g] ~ 7
yeIT veIr
y=vyo(mod q)
as T — oo.

Proof The proof is the same as that of the similar statement in [8, Theorem 1.14]. O

Lemma 3.5 There exists ©® > 0 so that, for x,y < X and n < N, we have:

F
> / VBB e —mdp > T4 00 INO),
}/Ef}} 0
as T — oc.
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Proof We first note that
N Ko~ Ko
f V(Bg;)eB(y (x,y) —n))dp = Wl/f((fy(x’ y) — n)ﬁ) >0,
R

and if [f, (x, y) — n)%| < %, then IZ(-) > % So we need to show the count:

Y1 > 7T 0g7ve)
Iy n-nl<555) > "k, T '

yeFr

The latter follows from the same techniques as the proof of [8, Theorem 1.15]. m]

3.2 Nullstellensatz
Theorem 3.6 Let ® be the spectral gap in (3.2). Define C by
C=3x10%/0o, (3.7)

which is needed to specify the construction of the set Fr in (2.11) and (2.10). There
exists an ng > 0 depending only on the spectral gap for T, so that, forall1 < g < N,
and all r (mod gq),

1
D Liey=rmodg) < — |7l (3.8)
yeJr 9

The proof of this theorem follows a similar strategy to that of [5, Lemma 5.2];
unfortunately, that proof contains a minor gap, so we give full details here for how to

overcome it.
Proof We first drop the condition IIWT < a,b,c,d from Zr in (2.11), so that we
need to count the number of y; =< T, y» < T» so that the “c” entry of y;y»,

(e2, Y1y2e1) = r(mod q),

where e; are standard basis vectors. This decomposes into two cases according to the
size of g.
Case g < T2®°/ 3: In this case, we simply apply spectral theory in y» while leaving

y fixed, as follows. Break y, into progressions mod ¢:

Y D Wennmen=rimodq))

yixT1 y2xTa

= Z Z L{(e, 71 0e1)=r(mod g)} Z 1

y1xT1 o€l (g)\I' y2=<Ts
y2=yo(mod q)
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The bracketed term may be estimated using the uniform spectral gap (see [8]) to give

1 25 26—6),
< Z Z Lies.y1y0e1)=r(mod 9)) [?Tz + O(T; °)
y1xT1 yoel' (@\T’

1 _
<« aTzza lea + qulzs T228 ®o.

Here we used that [I" : I'(¢)] =< ¢>. This saves 1/g (more than claimed) as long as

/3
qg<T,""". X .
Caseq > T2®°/ T = Tl10 : The overview of the argument is as follows. For any fixed

2, we consider the set of y| < T for which (e2, y1y2¢1) = r(mod ¢q). Since different
integers having the same residue class mod ¢ differ by ¢, and ¢ is huge compared to
T1, we will show by Nullstellensatz that in fact the modular restriction can be lifted to
an absolute restriction (ez, y1y2€1) = rx, for some integer r,. (depending on y», which
is fixed). Then we will relax the absolute restriction back down to a modular one, but
with a much smaller modulus, (e, y1y2¢1) = ri(mod g), where g, =< T]®°/ 3, and
apply the previous argument to save a power of g, which itself is a tiny power of g.

Anissue arises in the use of Nullstellensatz that was overlooked in related arguments
in [5, 6]. Write y»e1 = (u, v) and y1e; = (¢, d), so that (e3, y1y2€1) = uc + vd, with
lu], |lv] < T> being “large” and fixed, and |c|, |d| < Tp being “small” variables. It
was claimed that, since (u, v) = 1, we may assume that, say, (¢, g) = 1, and rewrite
the modular condition as ¢ + vid = ru(mod q). Unfortunately the obvious linear
transformation that allows this rewrite requires changing the coefficients c, d to ones
of size bounded by 717> = T, and this ruins the heights of the polynomials to be used
in effective Nullstellensatz. So we need a more delicate argument to control the size
of coefficients, as follows.

Suppose ¢ < N has adivisor g | g of size T} < g < T2®°/ 3, say. Then we relax
(e2, Y1y2€1) = r(mod g) to the same congruence mod ¢, and count as in the previous
case. This saves 1/g > 1/T, which is a (very small) power of N > ¢, and completes
the argument in this case.

Next we suppose that ¢ has no divisor in this range. Let g be the largest divisor of
g not exceeding Ty, and write gg := ¢/q. We again relax the congruence restriction to
(e2, v1y2e1) = r(mod qo); if we can save a small power of g, this also saves a small
power of g. Then any prime divisor p of gy must exceed Tz(%/ 3, for otherwise either p

or pq is adivisor of g which is does not exceed T2®°/ 3 Therefore qo is “almost-prime”,

that is, there are primes p; > TZ(")O/ 3 N, say, so that

q0 = p1pP2 " Pt

with £ < [1/n].

Next we consider the values of u + av, fora = 1,2,...,£¢ + 1, and claim that
at least one such value is coprime to go. (The point here is that ¢ depends only on
¢, and is bounded only in terms of ®¢, which only depends on I'.) Consider first the
primes p; which divide either u# or v (recall that # and v are coprime); then since
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pj > T2®°/3 > £+ 1 (for N, and hence T3, large enough), none of the p; can

divide any value of u + ocv. Now consider the p; which are coprime to u and v. Then
since u + av is an arithmetic progression of length £ + 1 < p;, at most one value
aj € {1,2,...,£ + 1} can satisfy u + a; = 0(mod p;). Since the number of o’s
exceeds the number of p;’s, there is some « so that u + v is coprime to all the p;,
and hence coprime to gg.

Again, this « is bounded absolutely, and depends only on ¢, u, and v, and not on
c and d (which depend on y;). Now we proceed with the Nullstellensatz argument.
Using the modulus gg, we fix y», let (4, v) = y2e1, and consider the set

§S=S8, ={yel, |yl =T with uc + vd = r(mod go)},
where we have set (c, d) := yje>. Using o from the previous argument with u + av

coprime to gg, we write uc + vd = (u + av)c + v(d — ac), so that the congruence
condition becomes

c+vu+av)d—oac)=ru+ av)(modgp).
Now consider the (linear) polynomials P, € Z[U, V] given by
P,(U,V):=c+Ud—-oac)-V,

and consider the affine variety

V= ﬂ {P,, =0}.

y1€S

We claim that V(C) is nonempty. Note that the coefficients of P, are bounded by
(€+42)T;. Then if V(C) is empty, Hilbert’s Nullstellensatz, in effective form (see, e.g.,
[22, Theorem IV]) gives the existence of polynomials Q,, € Z[U, V] and an integer
0 > 1 so that

> P, (U. V)0, (U, V) =0, (3.9)

y1€eS

and with 9 bounded (for N, and hence 77, large enough) by
2 < exp(87(log Ty + log(¢ +2) + 8log8) < 10",

(“Large enough” is in terms of an implied constant depending only on I', since
£ depends only on ®g). But if we reduce (3.9) mod ¢go and set (U,V) =
(v(u + av), r(u + av)), we get 0 = 0(mod gg), which is impossible since gy =

~ 1081
q/q > T, .

@ Springer



On length sets of subarithmetic hyperbolic manifolds 2799

Therefore V(C) is nonempty, and hence V(Q) is nonempty, and so clearing denom-
inators, there exist coprime integers u, vy, 'y, So that for all y; € S,

UsC + Vod = 1y.

We have turned our congruence condition into an archimedean condition. Now we
take some g, < T1®°/ 3 coprime to u, vy, 'y, relax the archimedean condition back to
a modular one, u.c + v.d = r,(mod g, ), and count the number of y; =< Ty satisfying
this. As before, the spectral argument saves 1/g., which is some small power of g. O

3.3 Singular series preliminaries

Recall that gcd(A, B, C, D) = 1 and A = AD — BC. Let ¢, denote the Ramanujan
sum,

/

cq(m) := Z eqg(am).

a(mod q)

(There should be no confusion between ¢, and bottom left element ¢ = y, of a typical
matrix y = (¢%).) We study here sums arising in the singular series analysis, of the
form

1
G = — ,y) —n),
() lF(q)lee;q)\rcm(x y) —n)

for fixed x, y € Z. Note immediately that the sum, being over all y € I'(g)\TI, is
independent of x, y, which we may assume are both 0; thus f, = Aa+Bb+Cc+ Dd.
By the structure of I'(¢)\I" in (2.2), the sum is multiplicative, so we may assume that
g = p'is a prime power. For “good” primes, we have that I'(¢)\I" = SLa(g). For
“bad” primes, we have that I'( pk)\F = {I} for some “‘saturation exponent” k, while
T (pH\T for £ > k is the full lift to SLo(p?) of the identity in SL;(p¥).

3.4 Good primes

Lemma 3.10 Assume that q is a power of a good prime. Then we have that

I
Gy =———= Y cqlay,+Ady, —n).
T@\LT 4=

Proof Recalling that
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for any (*#) € SL,, and the sum being over all y € SLy(g), we may simplify the
expression in the following way. Assume WLOG that (A, g) = 1; then we can rescale
(45)t0 (4, G4), and continuing by elementary operations, we may replace (4 §)

by ((1) g), as claimed. O
3.4.1 Case A = 0(mod p)

Lemma 3.11 Assume A = 0(p). For ¢ = p a good prime, we have that:

=1 ifn=0(p),

6,(n) = ) .
[72—1 lf}’l ?_éO(P)
Proof Recall that
- 1 ifx=0,
cpx) = —1 else.

Write y = (5). Assume p is a good prime. From Lemma 3.10, we need to count
the number of (‘;Z) witha =n ora # n.

Consider the case n = 0(mod p). Then either a = n = 0(mod p) or not. In the
first case, bc = 1(mod p) and d is free (p(p — 1) matrices) and ¢, = p — 1 for a total
contribution of p(p — 1)2. In the second case a # n, there are p — 1 choices for a,
then p2 choices for b, ¢, and d = (bc + 1)a is determined. This is p2( p — 1) matrices
with ¢, = —1. Combining these contributions gives (—=1)p(p — 1) whenn = 0.

Now suppose n = 0. Then if a = n, then b and ¢ are free (with p? choices) and
d is determined, with ¢, = p — 1, for a net contribution of pr(p—1.Ifa # n,
then ¢, = —1 and we either have a = 0, bc = 1 and d free (p(p — 1) choices), or
a # 0 (with p — 2 choices), and b, ¢ free and d determined (p? choices). The total
contribution is then p when n # 0(p).

The size of SL»>(p) is p(p — 1)(p + 1), which gives the claim. O

Lemma 3.12 Assume A = 0(mod p). For ¢ = p* a power of a good prime (£ > 2),
we have that:

Gy(n) =0.
Proof For prime powers, we have that:

0 if x # 0(pt~1,
cpe(x) =1 —pt! if x # 0(p?) butx = 0(pt~"),
plp—1) ifx=00p"H.

So there is no contribution unless a + Ad = n(mod p*~!). Fix yy = (‘C’g Zg) €

SLz(pe_l) which solves ag + Adp = n(mod pe_l) and agdy — bocy = 1. Consider
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-1

any lifty = (¢4) e SLa(p") of y, thatis, a = ag + p*~'ay, etc. The restriction that

ad — be = 1(mod p*) becomes:
aidp + dyag — c1bp — bico = 0(mod p). (3.13)

(This is just the Jacobian of the determinant.) The above defines a 3-dimensional sub-
space in ay, by, c1, di. Assume WLOG that ay # O(mod p). Then (3.13) determines
d; once ay, by, ¢ are determined. We consider two cases, a + Ad = n(mod pe) or
not; since A = O(mod p), this is a restriction on aj, which leaves by, ¢ free (p2
choices, which is the same count either way). If a; is the unique value mod p for
which a + Ad = n(mod p?), then Cpt = p'~1(p —1). Butif a is one of the (p — 1)
values for which a + Ad # n(mod p*), then ¢ pt = — p'~!. The net contribution from
these two cases exactly cancels. O

3.4.2 Case A # 0(mod p)

Lemma 3.14 Assume A % O(mod p). For g = p a good prime, we have that:

n?—4A
I+p (—p )

6‘1(”) = p2 -1

’

where (;) is the Legendre symbol.

Proof Again by Lemma 3.10, we need to count the number of (‘g Z ) witha+Ad =n
or not. We decompose SL;(p) according to whether ¢ = 0 or not.
Ifc =0, theny = (§2), and we need to know whether a + Aa = n or not. This

n>—4A
p

equation is equivalent to a> — na + A = 0, which has ( ) + 1 solutions for

a with b free (with p choices), each contributing ¢, = p — 1 to &,. The remaining
(p -1- (”2_%) — 1) p solutions contribute ¢, = —1 each.

If ¢ #£ 0, then for any choice of d, we either have a = n — Ad (with one choice,
contributing ¢, = p — 1) or not (p — 1 choices contributing ¢, = —1). Then c is free
(p — 1 choices) and b = (ad — 1)c is determined. These two contributions exactly
cancel.

On using | SLa(p)| = p(p — 1)(p + 1), the net contribution is as claimed. O

Lemma 3.15 Assume A # O(mod p). Let p||(n*> — 4A). For ¢ = p* a power of a
good prime (€ > 2), we have that:

Sy(n)
0 ifL<{f—2oriflisoddand L > ¢,
pE32(p2 _ 1yl (““‘+/PL) ifisoddand L =0 — 1, Ny
p~ 22 (p+ 17! if L is even and L > ¢, (310
—p~E22(p2 — ! iftisevenand L = ¢ — 1.
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In any case,
S ,c(n) < p 2. (3.17)

Proof We decompose SL; according to the value of y,:

SL.ph = | %
ceZ/pt

where
G ={y € SLa(p®) : ye = c}.

Notice that T, = {n, x € Z/p"} acts on the lefton %, where n, = (), so we may
decompose 6. into I'so-cosets. The value f, = a+ Ad changesto f,,, = a+Ad+cx
when y is replaced by n, . If ¢ % 0(mod p*), then this is an arithmetic progression as
x varies (otherwise, it is constant). For some I" s -cosets, the values of this progression
are never = n(mod p*~!), in which case there is no contribution to S, since the

Ramanujan value c ¢ vanishes. If the progression does attain the value n(mod p*~!),
-1

P
then as x ranges mod p°, this value in Z/p*~! is attained with equal multiplicities

from its p lifts in Z/p®. Exactly one of these lifts is = n(mod p*), which contributes
Cpt = p'~1(p — 1), and the other (p — 1) lifts contribute Cpt = —pt~1. The two
types of contributions exactly cancel.

We are left to study the distribution of the values a + Aa from y = (&%) ranging
in %p. In particular, we need only consider the values a + Aa = n(mod p‘z_l) and
determine which of these are also = n(mod pe). The equation

a + Aa = n(mod pl)
is equivalent to
a>—na+A= 0(mod pe),
which on completing the square gives the equation:

(a —2n)* = 4(n® — 4A)(mod p*). (3.18)

We want to consider the number of solutions to (3.18) as compared to the solutions to
the same equation but mod p*~!:

(a —2n)? = 4(n® — 4A)(mod p* ). (3.19)
Consider first solutions to (3.19). If n2 —4A isnot a square mod pt=1, then (3.19) has
no solutions, and &, = 0. Assume henceforth that n? —4A is a square mod p‘~!.

Let pL|n? — 4A.
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Case: L <¢—2.

If L is odd, then (3.19) has no solutions. So we assume that L = 2L is even.
Since n”> — 4A is a square, we can thus write n> —4A = s p>L1 (mod p*~!) for some
s # 0(mod p). Then (3.19) becomes:

(a —2n —2sp*)(a — 2n + 2sp™') = 0(mod p*~1).

This equation is equivalent to the existence of U,V < € — 1 with U +V > ¢ — 1
such that

a—2n —2sptt = 0(mod pY), a — 2n + 2sp*' = 0(mod p").

Assume WLOG that U < V. Then taking the difference of these equations, we have
that U > L. But since s is invertible mod p, we must also have U < L1, that is,
U = Ly, and only the equation mod p" needs to be solved, which is solved uniquely.
Thus are then 2p~! solutions to (3.19), which are all of the form:

a=2n+2sph + kpeflle,

as k ranges in Z/ p*!.
For each such value of a, the question becomes: which of these also solves (3.18)?
Letting k range in Z/ p“1*! and inserting this expression for a into (3.18), we get:

(@ —2n)? = 452 p?L1 + skp'™! £ 3(n® — 4A)(mod pY),

where we used that 2(£—1—L{) > £.Sinces # 0(mod p), as k rangesin Z/ pL1+1 the
values of 4s% p?L'1 4 skp®~! range in an arithmetic progression of step size p‘~!, and
so are periodic, taking each value with equal probability. As before, the corresponding
Ramanujan values are then such that the contributions to &, exactly cancel.

Case L > ¢ — 1 and ¢ even:

In this case, (3.19) asks for (a — 2n)? = 0(mod p’~!). The solutions to this are

a=2n+ kp[/z,
as k ranges in Z/p%z’l.

To see which solutions lift to (3.18), we let k range in Z/p%/?. Then (3.18) asks
whether

(@ —2n)? = K2p* = 3(n? — 4A)(mod pb).

If n2 —4A = O(mod pe), that is, L > ¢, then every solution to (3.19) also solves
(3.18). So there are p‘/? values of a in (6’ g ), and another p® values of b which is free.
Each such matrix has a Ramanujan value ¢, = p'~1(p —1), for a net contribution of:
p(Z—Z)/2

p+1

&y =

3
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where we used that | SL»(p®)| = p3*Vp(p + D(p — 1).
Ifn2 —4A # 0(mod p?), thatis, L = £ — 1, then no solution to (3.19) lifts to (3.18).

Each matrix as above has a Ramanujan value of ¢; = — p'~1, for a net contribution
of:
o __ p2=0/2
q p2 _ 1 °

Case L > ¢ — 1 and ¢ odd:
Now the solutions to (3.19) are:

a=2n+ kp(efl)/z,

as k ranges in Z/p¢=1/2,
Inserting these values into (3.18) and letting k range in Z/p“*1D/2 we are asking
whether

(@—2n)? = K2pD £ 3(n? — 4A)(mod pb).

If L > ¢, then this equation is satisfied if and only if k¥ = 0(p), so again there is a
balance and the contributions to &, cancel.

Lastly, if L = ¢ — 1, which is even since ¢ is odd, then note that (n2 — 4A)/pL is
a non-zero square mod p if and only if n> — 4A is a square mod p®. Whether or not

this holds, there are (W) + 1 solutions for k(mod p), and every lift of these
to 7/ p+1/2 solves (3.18). The number of these lifts is

P12 <(—(”2 - ‘LA)/”L> + 1> ,

each contributing a Ramanujan value of ¢, = p“~1(p — 1). And of course the com-
plementary number of solutions to (3.19) that do not lift to (3.18) is

2 L
p(g_l)/z (17 1 ((n 4;A)/P )) ’

each giving a Ramanujan value of ¢, = — p'~!. Recalling that there are p’ values of
bin (42), the total contribution to S is then:

o = L2 (Rt
T pr—1 p

This completes the proof. O

We summarize this subsection as follows.

@ Springer



On length sets of subarithmetic hyperbolic manifolds 2805

Corollary 3.20 Let p be a good prime for T, and let
P () =146, + 6 (n) + -
be the “local factor” at p. Then for all p,
&P (n) =146, +6&,2(n)+ 0(p ).

Moreover,

e Ifp| A, then
6P my=1+0(0p".

o If pt Aand ptn®—4A, then
- 1 (n?—4A L
SPmy=1+—(——=)+00p™.
P p

e Ifpt Aand p||n* — 4A, then
6P ) =1+ 0(p72).
o If pt Aand p*|n* —4A with L > 2, then

sPmy=14+00p"h.

3.5 Bad primes

For bad primes, our strategy is as follows. Rather than evaluating &, (n) explicitly,
we show the following “density formula.”

Lemma 3.21 For any € > 0 and any prime p (good or bad), we have that

Ay € T(PHO\T = §, = n(mod p*)}

3.22
[T :T(pH] 022

1+68,(m) +- +6,(n)=p

This will tautologically capture the condition that n is admissible; that is, it clearly
vanishes if n is not admissible. And then, for £ large enough, we claim that & ot (n) =0,
so these probabilities stabilize.

Proof of Lemma 3.21 This follows immediately from

1
6 m = m —_ ,
() = yer%\reﬁ (fy —n)

@ Springer



2806 A. Kontorovich, X. Zhang

for any 0 < m < ¢, together with the fact that

L4+cp(x) + - +epe(x) = l{xEO(modpe)}pl'

Finally, we show that the densities stabilize.

Lemma 3.23 Let p be a bad prime, and let k = k,, be the “saturation level” of p, as
in (2.4). Let p“||B (and recall that B # 0, and that k > L by (2.6)). If £ > 2k, then
S,e(n) =0.

Proof Decompose T'(p“)\I" into disjoint Toe = {n, = (1)} cosets; here x ranges
in Z/ p* but is restricted (by saturation) to x = 0(p*). We claim that the Ramanujan
values on each coset exactly cancel. Note that f, = Aa + Bb + Cc + Dd changes
when y +— nyy to

fney = fy + (Ac + Bd)x.
Since ¢ = 0(mod p*) and d = 1(mod p¥), and p’| B with k > L, we have that
pLllAc + Bd.

Now as x ranges over p’ subject to x = 0(mod p*), since £ > 2k > k + L, the values
of f,, range in some non-constant arithmetic progression. The resulting Ramanujan
values cancel exactly, as claimed. O

So the high powers of bad primes have vanishing &,. For the lower powers, we
give the following trivial estimate on &,,.

Lemma 3.24 For any prime p (good or bad) and any £ > 1, we have:
& ,em)| < pt. (3.25)

Proof The density formula (3.22) gives upper and lower bounds for its left-hand side
of: p* and 0, respectively. Replace £ by £ — 1 and subtract to get the claim. O

3.6 Short sum of S

Define

&) =) &,n).

q=1

Lemma 3.26 Assume that A = 0. Then the series defining S (n) is absolutely conver-
gent,

Y 8y(n) =6(n) + 0.(Qy'n%),

q<Qo
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as Qo — oo, and satisfies, for n admissible,

— L6 K 1.
loglogn

Proof By Lemmas 3.11 and 3.12, we have that

D18, <. nf 0y

4=0Qo
For n admissible,
1
em=[](1-=).
pln P
where we also used Lemmas 3.21 and 3.23. The claim follows immediately. O
To prepare for the case A # 0, we need some preliminaries.

Lemma3.27 Let x be a Dirichlet character of conductor M and fix I1 € Z. Then

> x(@)| <e H'PMY O (HMITY,

g=<H
squarefree
(q.H=1

as H — oc.
Proof To capture both the squarefree and coprime conditions, we use Mdbius inver-

sion. Using £(s)/5(25) = }_, squarefree 1/7", We have that n(g)* = 2 m2)g H(m).
Similarly, Zdlx u(d) = 1if x = 1 and 0 otherwise. Therefore

Yoox@= Y x@)Y um= Y upmxm? Y x@

g=H q=H m?|q m<H? q=H/m?
squarefree (g,I)=1 (m, =1 (g.IDh=1
(g, TH=1

= > wmxm?® > x(@) wd)

<H!/? =<H /m? dlq

’(711,1'[):1 a=H/m d|1

= Y wmxm? Y p@xd Y x(@.

m<H? d<H/m? g=H /(m?d)

(m,I)=1 d|Tn
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Applying Burgess [9] to the last sum, we have that

H1/2
Z x(q)| <e Z Z md1/2M3/16+s e HSH1/2+SM3/16+S,

q=<H m<H? d< H /m?
squarefree d|m
(q.H=1
as claimed. (Slightly better estimates are available today but not needed here.) O

Going forward, we let ‘B be the (finitely many) primes which are “bad” (for I'),
B, be the primes not in 28| which divide A, and B3 = B3(n) be the primes not in
% or B, which divide n?> — 4A. Let B = B(n) = L;B;, and set

n=13) =[] »
peB

For all the other primes p 1 IT, Lemma 3.14 gives that
1 (n* —4A
(G (n)=—<—>+E ,
p » D p
where

1
< .

E,=Eyn)i=——~" 7~
p=Emi= oy p

We extend E, to a multiplicative function £, supported on square-free g.

Note that we now do not have absolute convergence, and must be much more careful
in our analysis.

We break the tail ZqZQo of &(n) into dyadic regions quH, with Q¢ < H — oo.

Lemma 3.28 Assume that A # 0. Then as H — 00,

Y Sgm)| K W) nEHT, (3.29)
q=<H

forany ¢ > Q.

Proof From Lemma 3.15, we have that &, vanishes if (¢, IT) = 1 and ¢ is not square-
free. For g square-free and coprime to I1, we have then that

1 [n?—4A 1 [(n?—4A
CHOES ]| (— (”—) + E,,) => - <”T> Ep(n). (3.30)

rlg P p ab=q
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Write any ¢ as

q =49% 41,
where
gs =[] p' andg= [] »*
Plg plg

plll (p, =1

From multiplicativity, we have that &, = &, - &,.
Then we have

DG = D Gn) Y Gy (n)

q=<H qB<H q1=<H/qm
plgs=pl|Il square-free
(q1,1)=1
n° —4A
- T ewm ¥ ¥ ()
g <H q1<H/qp ab=q,
rlgs=pIIl square-free
(g1,ID=1
1 (n?—4A
= Z 6‘1‘3 (n) Z Ep Z Z T
g <H b<H /g a<H/(qsb)
plgs=p|I1 square-free, (b,IT1)=1 square-free
(a,T)=1
3/8 7—1/2 1/2
LemH WBHTZ 3" Sy (n)gel
qs<H
rlgs=pIIl

where we used Lemma 3.27, partial summation, and Ej, < b®/b>.
To deal with the remaining g3 sum, we decompose

1/2 1/2 1/2 1 2
G (Mg = S (Meh. - Sguy (Mgh. - Sy (Mg

corresponding to B = B L B, L B3.

Since B is a finite set of primes which are bad for I', and only finitely many powers
of such primes have non-vanishing 6’1%1 by Lemma 3.23, the total contribution from
B is bounded by a constant depending only on I" and the linear form .Z, that is, on
A,B,C,D.

Recall that 8, consists of the good primes dividing A; Lemma 3.12 removes any
non-square-free gs3, contributions, and Lemma 3.11 otherwise gives Gq%2 n) K
1/gs3,. So again this contribution is bounded.

Finally, for B3, we use (3.17) to offset the factor of ql%/f, and (3.16) to kill the

contribution from any powers £ of p’ in g, unless £ < L +1 < 2L, where pLin® —
4A. Therefore the only gg3, contributing to the sum are divisors of (n*> —4A)?, and
the number of such is <« n®. This gives the claim. O
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2810 A. Kontorovich, X. Zhang

Lemma 3.28 is sufficient to show that G(n) converges (conditionally, not abso-
lutely), but does not allow us a good enough error estimate for the very short sum
> 7<0o &,(n), since H needs to be at least n3/4t for (3.29) to decay. If we replaced
our use of Burgess with GRH, we could get good estimates with H as small as Qy,
which is a tiny power of N. Unconditionally, we can only do this on average, as
follows.

Theorem 3.31 As H — oo, we have

2
YD eym| <. HE <H+$>,

n&N |g=<H

forany e > 0.

Proof As before, let 28| be the “bad” primes for I', and 95, be the primes not in 95,
which divide A. Since 283 depends on 1, we now have to handle it separately. We now
write B = B LB, and I1 := ]_[pe% p as before, and decompose

q9 =493 41,

with (g1, I[1) = 1. Furthermore, we will split off the square-full part of g, writing
g1 = q2 - q3, Where

w=[]r @o=a/a=1]]7r"

plai Phlla
>2

With this decomposition, we open the square and reverse orders:

2

2

n<N

> 8,

g=<H

2 X S > Sgs(n) > S, (n)

n&«N | g <H B3<H/qm 92<H /(g q3)
plgss = peB (q3,11)=1, square-full (g2,11)=1=(g2.93), square-free

> Y S (MBS, MGy, (MG (MG, (WS (1)

498.93,92.95 4395 "N

Here, instead of using the decomposition (3.30), we return to Lemma 3.14 and
write

n2—4A> p

GP(n)z( p pr—1

+ Eps
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where

B — 1
p_pz_l'

The crucial fact for our purposes here is that £, is now independent of n. Extending
E, to a multiplicative function on square-frees gives

1

E; < —,
q q2

(3.32)

where we used that || ol q( 1 —1/p?) =< 1. Then we can write, for any ¢ square-free
and coprime to IT, that

2 _4A 2 _4A
&,m =[] ((” ) pz”_ -+ E,,) =Y v ("T> E(b),

rla p ab=q

where ¥ is a multiplicative function supported on square-free numbers taking the
value ¥ (p) = p/(p* — 1) on primes. In particular,

1
Y(g) K 7 (3.33)

For ¢ and ¢}, we insert this expression to get:

2
YD &m| = 3 Y By (MG (1S, (1S ()
n<N |g=H 48.43.92.4% 4545 "N
n? —4A n? —4A
X Z W(a) (T) Eb Z w(a/) <T> Eb/
ab=q> a’h’:qé

< > Yo D v@y@)EsEy|

4%.93.92.9% -95.95 b=q2 a'b'=q;

X D |G (1008, (10084, (100G (0)|

no mod g

n* —4A\ [(n® —4A
x Z ( - )( ~ ) (3.34)

n<N
n=ng(mod q)

where we have decomposed n into progressions mod ¢, where

~ . / /
q = [‘]%, q¥Bv q3, 113]
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2812 A. Kontorovich, X. Zhang

While it is clear at, say, a and g3 are coprime (by construction, since a | ¢2), we
actually also have that there is no contribution unless a and ¢} are coprime. Indeed,

if p | a and p | g3, then either n? —4A = 0(p), in which case <ﬂ> vanishes, or

a
else qu (n) vanishes from (3.16) and the square-full-ness of qé. Therefore, we may
restrict the summations to

(@q) =, g =1

We first analyze the last n sum. Let @ := aa’/(a, a’)?, so that

(5) (757) = (55)

for n such that n2 — 4A is coprime to (a, a’). (Otherwise the characters vanish.)
Breaking the n sum further into residue classes mod a gives:

r (9)-g (=9 & oo

n<N m(mod a) n<N
n=ngp(mod q) n=ngp(mod q), n=m(mod a)

(n*—4A.,a,a)=1 (n*—4A.,a,a")=1

We wish to get square-root cancellation from Weil in the m summation, but the n sum
may be incomplete, which will give too large an error in terms of m. So we separate
the roles of n and m by completing the sum.

O R P E B

n<N k(a) | m(moda)
n=ng(mod q)
n?—4A,a,a")=1

x Z e;kn) | . (3.35)
n<N
n=ng(mod q)
n?—4A,a,a")=1

Now the m sum is free and is bounded by @'/>*¢ by Weil. We now deal with the last
n sum. We remove the gcd condition via Mobius inversion.
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Y akm= ) u@d Yy elkn)

n<N d|(a,a’) n<N
n=ngp(mod q) n=ng(mod q)
(n*—4A.a,a")=1 n%—4A=0(mod d)

= Y ud Y > ealkn) |, (3.36)

d|(a,a’) mo(modd) n<«<N

m3=4A(modd) | n=no(modq)
n=mq(mod d)

where we decomposed the n sum further into residue classes mo mod d. Note thatd | a
is square-free, and for each p | d, there are at most two solutions to m(z) =4A(p), so
the number of mg is at most d°. The last bracketed sum restricts n to a residue class
x, say, mod gd (since (d, q) = (a,q) = 1). Changing n — x + nqgd, the bracketed
term is a geometric series, giving:

> ealkn)| = |eatkn) D ealkgdn)

n&N n&<N/(qd)
n=ngp(mod q)
n=mgq(mod d)
< mi (N+1 ! ) (3.37)
min [ — —_— .
= il I
q I =2= ]
where || - || is the distance to the nearest integer. Inserting (3.37) into (3.36) and into

(3.35) gives

2
n- —4A - 1
O e [ I zmm( o)

n<N d|(a,a’) k(a) ” I
n=ng(mod q)

(n2—4A,a,a")=1

Since a and a’ are squareﬂee, d is coprime to a, and hence (¢d, a) = 1. So the k sum
is invariant under k — kgd. This finally gives

2
—4A N

> (nf) Lea* (MI 5 +Ez1/2).
a gal/

n&«N
n=ngp(mod q)
n?—4A,a,a")=1
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Returning to (3.34), we get that

2
1
Z Z Gq(n) < H° Z Z Z aa'b2b2
n<N |q=H 9%.43.92.9% -93.95 40=42 a'b'=q;
XD |8 (10084 (11008 (100G (0)
no mod g

N(a,d) (aa)'/?
* <c§(aa/)‘/2 @) )

where we used (3.33) and (3.32).

Next we analyze the contributions from g, q’%. Combining Lemma 3.12 and
Lemma 3.11 (for go,) with Lemma 3.23 and (3.25) (for gs,), we see that in fact
there is no contribution unless g, qé/B « 1, and in this case the constribution is
Sy 64y, K 1. Therefore q = lg3, q45].

Recall from (3.17) that G4 (ng) <K q3_ 12 . Finally, we analyze the number of
no(mod g) for which 6q36 is non-vanishing. Suppose that p"||[g3, ¢5]. Then since
A # 0(p), (3.16) shows that if Gpm(ng) # 0, then no 4A = 0(mod p™1). The
number of such ng(mod p™) is at most 2p <« p™/?, since m > 2. So the number of
no(mod §) which contribute is <, §!/>+¢.

Putting everything together gives

YUY 6,m| <eHTY (g3 g5) Py ey

n<N |g=<H 93.495

/ n1/2
EEE ()

n1/2
92,95 alaz a'|q) q2q2 [43. q3](aa )

Lett := (a, a’), whichis a divisor of (g2, ¢3), and leta; := a/t and | := a’/t. Then

2

SN em| < HEY (gs. D 2a; gl

n&N |q=<H 3.5

7\1/2
X3 s Z P Z > <—N(‘”“13] +(a1a;>3/2)
’ a

[93. 93

—1/2 1—1/2
<H Y Y ([qs,q3])'/2q3 V2

G3<H q L<H

(g3, TH=1" (.7 1)=1
q3 )=

square-full square-full
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H N (92, 9%)
+ > X o
\1/2 / /\3/2
(9393) lg3, g5] Mo/ Rloryp (9295)

(92.M)=1=(92,93) (4! T1)=1=(¢},¢})
square-free % square-frzg 3

Next we need some cancellation from (g2, ¢5). Let d = (g2, ¢5) which is a divisor of
g2 such that ¢} = 0(d).

2

Z ZGq(n) < H? Z Z ([613’61§])1/2q3_1/2q§_1/2

n&N |g=<H q3<<H q3<<H
(g3, T)=1"(r =1
square-full square _full

H N d
nia T 7 > > > (@ad

(@343) [93. 431 @=<H/qy  dlga  q)<H/(q5d)

(q2,11)=1=(q2,93) ’ (!
2 quarefree | (@3 T=1=(q3.43)
square-free

1 N (g3.9)"?
< HY D > +— :
R A ( (@309 (g3,4)'? * H (q3g3)">

(g3,ID)=1 (s
square-full (@5, ID=1

square-full

Finally, we bound (g3, qg) <« H in the numerator and (g3, qg) > 1 in the denominator.
It remains to estimate a sum of the form

1
2. i
a<H 43
square-full

Since g¢3 is square-full, any such g3 can be written as g3 = k>£ where £ | k. Then

1 1 1
Z 1—/2<< Z ZW<<8 Z k8%<<H8.

a<H 1B k2« H Clk k2<H
square-full
The claim follows immediately. O

Theorem 3.31 allows us to show, for almost all n (with power savings error), that
the very short sum ZqSQo 6, (no) (with Qo = N, a9 > 0 small) is a good approx-
imation (also with power savings error) for G(n).
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2816 A. Kontorovich, X. Zhang

Theorem 3.38 For any n > 0 with n < %ao, there is a set & of “exceptional” n of
cardinality

EN[, Nl < N1
such that, foralln < N, n ¢ &,

> 8y = &)+ ON).
9=Qo

Proof Recall that the series G(n) does converge (conditionally) by Lemma 3.28, but
the error there is insufficient to approximate it to the required error in all ranges of H.

For n > 0 fixed, let

EN):={nell,N]:|6n) - Y &ym|=N"
9=Qo

We estimate

#E(N) = > I < N7 Y 18m)— ) &)
n&«N n«N 4=Qo
|83 <0, Sy m|=N"

2 2
KNI D 8| + Y Y S

n<N \ Qg<H<N*> |g=<H H>N*5 |g=<H
dyadic dyadic

We apply Theorem 3.31 in the first term, and Lemma 3.28 (individually) in the second
term.

2n+ 4/5 3/4 1
#éa(N) <<8Nn€ N/+T+ Z ZVZ/H

H> N4/5 n&N
dyadic

N

< N2n+s <N4/5 + T/z + N7/4N4/5) )
o

Since 7/4 —4/5 = 19/20 < 1, we have a power savings as long as 2n < %ao, where

Qo = N%_ Aslongasn < %ao, we are guaranteed to have &(N) <« N'~". This

completes the proof. O
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Theorem 3.39 For all admissible n < N, and all ¢ > 0,
&(n) > n" L(1, xn).

where

2 —1
L) =[] <1 1 (ﬂ» . (3.40)

, P\ P

The implied constant is effective.

Proof By the multiplicativity of &, we have that

S =[[(1+6,0)+6,m)+ ).
p

(Since the series only converges conditionally, we argue by considering the functions
s quN S,(n)g~* and s > ]_[p(l +6,m)p~* + 6pz(n)p—2s + ---); for
MRe(s) > 0, both converge absolutely and coincide, and hence their limiting values as
s — 07 do too.)

For p € B a “bad” prime for T', this is a finite sum (Lemma 3.23) which is non-
vanishing only if n is admissible by Lemma 3.21. For the other primes p, the Euler
factor is (1 + &, (n) + & ,2(n))(1 + O(p~?/%)). Recall that B, contains the (finite
list of) primes p | A. By Lemma 3.11 and Lemma 3.12, we have

[Ta+6,ms——

e, loglogn

For all other primes we apply Corollary 3.20. If p t A and p { n> — 4A, we have

1 (n?—4A Dy
1+6p(n)+6pz(n)=1+; Y +O0(p™),

while if p ¥ A but p | n? — 4A,
L+ 6,n) +6,m) =14 0(p™H.

The product of the latter (finite set of primes) is 3>, n~°. O

By Siegel’s theorem, L(1, x,) >, n~—¢ with an ineffective implied constant. But
since we anyway only prove our result on average over n, we want to make this constant
effective.

Theorem 3.41 There is an exceptional set & with the following property. For all admis-
sible n < N outside of &, and any ¢ > 0, we have

&) >, n"°.
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Moreover
#E < N°. (3.42)

The implied constants are all effective. (But the exact determination of the exceptional
set & is ineffective!)

Proof Consider the characters x;, = ( ) appearing in (3.40). These need not be

—4A
primitive, and are 1nduced from characters (q—) where g, := sqf (n?> —4A) « N?is
the square-free part of n> — 4A; that is,

n* —4A = g,m>, (3.43)

for some integer m. Group admissible n < N according to the values of g,; that is,
for a given square-free ¢ <« N2, let

N, = {n = N :sqf(n* — 4A) = g}

If (n, m) is a solution to n? —qm2 = 4A, then the ideal (n+ ,/qm) in Z[/q] has norm
|[4A]. The prime ideals p dividing (n + ,/gm) and their multiplicities are bounded in
terms of those of the rational primes dividing 4A (which is fixed). Therefore there are
« 1 inequivalent solutions to (3.43), and equivalent solutions grow exponentially in
terms of the units in Z[,/q]. Therefore

max #N, <. N°, (3.44)
q<N?

for any ¢ > O with absolute implied constants.

By Landau’s theorem (see, e.g., [14, Theorem 5.28]), there is an absolute constant
A > 0, such that for all distinct primitive real characters x, x’ of conductors g, g’
(resp.), with L-functions L(s, x), L(s, x") having largest real zeros B, B’ (resp.), we
have:

A

max (B, f) <1 —W-

Therefore, there is at most a single exceptional q < N2 such that, for all other square-
free ¢ <« N? and their corresponding largest real zeros A (if any such exist), we
have

/

log N’

B=1-

where A’ > 0 is another absolute constant.

We then define the exceptional set & := N, so that the bound (3.42) is confirmed
by (3.44), again with absolute constants. (Though we cannot effectively determine the
elements of &, we can effectively control their cardinality.)
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Then we use standard arguments (see, e.g., [13]), and take into account the imprim-
itive factors, to show that L(1, x,) >>. N ¢ with absolute implied constants, for all
n ¢ &. This gives the claim. O

4 Minor arc technical estimates

We collect here various lemmata needed in the analysis of the minor arcs. We begin
by defining the exponential sum

1
Sqrik. tiy) = =YY eg(rfy (x.y) + kx + £y). (4.1)

x(q) y(q)

Lemma 4.2 Assume that (r,q) = 1. Write q1 := (BCPZ, q), 9 = q192, and BcP? =
q1E, with EE = 1(mod q3). Then

_ (BcP?,q)

Sy(r ok, t;y) eq(r(Aa+ Bb+ Cc + Dd))1{—¢=pr(Ba+Dc)(mod g1)

—k=Pr(Ac+Bd)(mod q1)}
xeqq, (—FE(Pr(Ba+ Dc) + £)(Pr(Ac + Bd) +k))

Note that the last exponential term is well-defined by the congruence conditions on ¢
and k, and independent of the lifts of r, E to Z/(qq1)-

Proof Write y = (%) and insert (2.8):

1
Sy(r k. L:y) = —eq(r(Aa+ Bb + Cc+ Dd) Y eq(r(Ac + Bd)Px + kx)
q

x(q)
2
X Zeq(y[r((Ba + Dc)P + BcP<x) + £]).
y(@)
The y sum vanishes unless
BcP%x = —tF — (Ba+ Dc)P  (mod q), 4.3)

in which case the sum contributes q.

Let g1 = ged(BcP?, g) and write ¢ = ¢1q2 and BcP? = g1 E. Then (4.3) has a
solution only if the right hand side is congruent to zero mod g . If this is the case, then
x is determined mod ¢,

_tr + (B Dc)P
x=x9:=—FE r+( ;H_ ) (mod ¢3).
1
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So x = x¢ + ¢ox’, where x” € Z/q;. Thus we have:

Sq(l", k, E, ]/) = eq(r(Aa + Bb + Cc + Dd))1{765Pr(Ba+Dc)(mod(BcP2‘q))}

Xéeq (xo(r(Ac + Bd)P + k)) Z eq, (x'(r(Ac + Bd)P + k)).
x'(q1)

The x’ sum vanishes unless
—k = Pr(Ac + Bd)(mod q1),

in which case it contributes g;. O

Next we need cancellation over the » sum on the product of two such. A preliminary
calculation is the following.

Lemma 4.4 Assume that (r,q) = 1 as before, and also use (f,/ Z:) = y'. Write
q1 := (BcP?,q), ¢ = q1q2, and BcP* = g1 E, with EE = 1(mod g2). Similarly, set
q) := (Bc'P%,q), ¢ = q|q}, and Bc' P? = q|E’, with E'E’' = 1(mod ¢}). Then

!/

D 8k ) (r Ky

r(q)
_ (BcP?,q) (BCP?q)  ¢(q)
g qa  oqqq)

/

Z L{—¢=pPr(Ba+De)mod g1) L {—¢'=Pr(Ba'+De')(mod ¢])
rqqg)) ~EPrActBmMOdg)) = pr(ac+Bd')(modg)))

X €gq14 (rJ+rK+1L), 4.5)
where

J :=qi1qi(Aa + Bb+ Cc+ Dd) — qi1q}(Ad’ + Bb' + Cc' + Dd')
—q\E(q1EaA + aB*d P> + Ac*DP? + q1 EdD)
+q1E'(q|E'd A+ d'B*d'P? + Ac>DP? + ¢|E'd'D),

K = —q{Etk+q E'U'K,
and

L := —q{EP(Act + Bak + Bd{ + Dck)
+q1E'P(AC't' + Bd'k' + Bd't' + DC'k)).

Moreover,

J = EE'BP*c —)(B* = Acc!)  (mod(q2, ¢b)), (4.6)
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where A = AD — BC.
Note that for every value of r(mod gq1q}) occurring in (4.5), we have that

rJ + 7K + L = 0(mod q14)). 4.7

Proof Inserting Lemma 4.2, and extending the r sum to modulus g¢1¢/ (which over-
counts by a factor of ¢ (qq14})/¢(q)), we have that

D Sk b y)S (KUY

r(q)
_ (BeP?.q) (BIP?q)  4(q)
g q  b@qnqp)

Z Li—¢=pPr(Ba+Dc)mod g1 Li—e'=pr(Ba’ +Dc’)(mod q})
r(gq1q)) —k=Pr(Ac+Bd)(modq1)} _j/= Pr(Ac+Bd')(mod q})}

Cqqiq (rq141(Aa + Bb + Cc + Dd))
Cgqiq(—rq191(Ad’ + Bb' + Cc' + Dd'))

—7q) E(Pr(Ba + Dc) + £)(Pr(Ac + Bd) + k))
Fq1E'(Pr(Ba’ + Dc') + €)(Pr(Ac’ + Bd) + K)) .

4414, (

€qq14; (

By the congruence restrictions on r, the values of E and E’ are independent of their
lifts to Z/(qq1q}). Collecting terms gives (4.5). .

In the modulus qqlqi, we do not know that, for example, EE = 1, since we
took arbitrary lifts. But this does hold when reduced mod g5, or any divisor thereof.
Therefore to prove (4.6), we compute J mod (g2, qé), as follows.

J = —q{EP*(B* + Ac®) + 1 E'P*(B* + Ac?)
= EE'BP*(c — ¢)(B* — Acc’)  (mod(qa, 4})),
where we used ad — bc = a'd’ — b'¢’ = 1.
To see (4.7), observe that in the above analysis, the exponential sum modulus has

actually been ¢ all along, with some artificial replacements of terms like e, (X) by
eqq, (q1X) etc. O

As a corollary, we record a simplified version of this lemma.

Corollary 4.8 With the same notation as Lemma 4.4, we have:

ZS r k6 )Sy(r K 0y | « ——1 ).

r(q)
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Proof Returning to Lemma 4.4, we estimate

/

/
e 1
ZSq (r,k, ¢ V)Sq (r k', ¢; )//) =< -5 Z 1 {—¢=Pr(Ba+Dc)(mod q;) >

@ q rqaid)) —'=Pr(Bd’+Dc’)(mod g))}

where we used that ¢ (q) /¢ (qq19]) = 1/(q14}), since every prime dividing g1¢] also
divides q.
Since B, P are fixed throughout, consider the condition

—¢ = Pr(Ba+ Dc)(mod q), => —€ = r PBa(mod(q1, ¢)).

Since det y = 1, we have that a is invertible mod c, so r is restricted to a bounded
(in terms of B, P) number of residues mod ¢;. Similarly, r is also restricted to a
bounded number of residue classes mod ¢;. Therefore the total number of » mod
qq1q; satisfying the congruence is at most gq1¢}/[q1, ¢;]. This gives the claim. O

Next we record a Kloosterman-type estimate necessary in what follows.

Lemma4.9 Fixany J,K,L € Z andlet qo | q. Then

/

_ . 1
3 e Ur+Ki+ L) < min (i, ¥+ —7 ged(a/q0, K)”“) :
40

r@ 90

r=ro(mod qo)

Proof If gy = 1, this is just Kloosterman’s estimate, so we assume go > 1. The first
bound in the minimum is just the trivial bound, and is sometimes better than the second
bound.

Following Kloosterman’s method, we take the fourth moment, and consider

4
/
U= 2 Y. eUr+KE+L) (4.10)
J’,K’ mod g r(q)
r=ro(mod qo)
We open the power and evaluate.
I
U= Z Z eq(J/(rl+r2_r3—r4)+K/(171+f2—f3_f4))

J'.K'mod g ri,r2,r3,74(q)
rj=ro(mod qo)

4.11)
The J’, K’ sum is a complete sum over all of Z/g, which vanishes unless
ri+r—r3—rs=0modg), v +7r—r3 —rs =0(modgq),
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in which case they contribute g each. So we have that

2
U=gq Z 1£r1-tr2jr3jr450(modq)
raraarsralg) 123 —T4=0(mod ¢)}
rj=ro(modgo)

We need to count the number of r; contributing to the remaining sum. The count is
multiplicative, so we may assume that ¢ is a prime power. Set ¢ := q/qo, and let
R € Z/q be defined by: r; — r3 = Rqo; the first condition above is that we also have
r4 — r2 = Rqo. For the second condition on the r;, we multiply through by ryr2r3ry,
getting the condition:

(ro —r3) R(qoR + ry + r3) = 0(mod q).

Recall that gg > 1, and notice that goR + r» + r3 = 2rg(mod qo) is then invertible
mod g (except perhaps when 2 | ¢, in which case an extra constant factor contributes
to the estimate below). We now evaluate the count as follows. First sum over divisors
q | ¢, then over those R with (R, §) = q. The above condition becomes

r3 = rp(modq/q).

Then r3 has < qq/q = qoq possible values. In total, we have:

/
Z 1{_r1 +ry—r3—r4=0(mod q)
ryrasry,ralg) 123 —ra=0(mod ¢)}
rj=ro(mod qo)

<) > > > Lps=rmodd/a)

qlg R(modg) ra(modg)  r3(modgq)
(R,q)=q ra=ro(mod qo) r3=ro(mod go)
2+4-¢

q-~ q
<D =4q09 K¢
alg

In summary, we obtain the following estimate:

q2+a
Uu <<sq2 .
q0

Next we determine the multiplicity of the size of the original sum (that is, when
(J', K"y = (J, K)) contributing to /. Any change of variables r + rs with s €
(Z/q)* and s = 1(mod gg) corresponds to a change in the coefficients ¢; : (J, K) —
(Js, K5). Another invariance comes from the map o, , : (J, K) — (J+uq, K+vq),
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because

Yo e (I +ug)r + (K +vg)i + L)

r(q)
r=ro(mod qg)

/
= ey, (urg + vrop) Z eq(Jr+Kr+1L),

r(q)
r=ro(mod qo)

with both sides having the same magnitude.

Next we must determine the number of distinct (J/, K') obtained by the above
transformations which contribute the same magnitude to U as (J, K). Assume that
gcd(J, q) < ged(K, g). We use ¢4 to produce as many values of J’ as possible, and
for each such, we use oy, to construct distinct K's.

The s € (Z/q)* with s = 1(mod go) which give distinct values of Js(mod g) are
determined by solving

J=Js(q).

The number of distinct values of Js(mod q) is then g/ gcd(q, goJ). For each such
value of sJ, applying o, produces a distinct pair (J, K') where v ranges in Z/qo.
In total, we have that:

q / 2q2—i-s
— 40 eq(Jr+Kr+L) <UKeq ,
gcd(q, q0J, 90K) % ! B
r=ro(mod qo)

from which the claim follows. O

Lemma 4.12 With the same notation as Lemma 4.4, we have that

U
D Sk b )Sr K Y
r(q)

_ 1/4
<e 7 (q1g)D (@1, gV ged (q(qr. g, T, K)VY

forany ¢ > 0.

Proof Applying (4.5), we decompose the sum on r mod gg1¢] into residue classes
mod go := [q1, ¢{] to catch the indicator functions.
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D Sy k. b )Syr Ky

r(q)
_ (BcP?,q) (BCP2q)  ¢(q)
T g q  $qqq)

/

Z L{—¢=Pro(Ba+Dc)(mod g1) L{—e'=Pro(Ba'+De'y(mod ¢))
10(q0) —k=Pro(Ac+Bd)(mod q1)} 7k/EPr0(Ac’+Bd/)(m0dq{)}

/
D qqq (rd +FK + L) (4.13)

r(gq147)
r=ro(qo)

On the last summation, we apply Lemma 4.9.

(BcP?,q) (BI'P?,q)  ¢(q)
q q é(qq19))

&€

/

Z L{—¢=Pro(Ba+Dc)(mod g1) L{—e'=Pro(Ba'+De')y(mod ¢))
10(q0) —k=Pro(Ac+Bd)(mod q1)} 7k/EPr0(Ac’+Bd/)(m0dq{)}

)3/4+8

/ 1 / 1/4
(9914 —i/z &¢d(qq141/90, J. K) .
90

Finally, we estimate the number of r( contributing. Recall that ¢; = (Bch, q). Since
B, P are fixed throughout, consider the condition

—{ = Pro(Ba 4+ Dc)(mod q1), — —¢ = ro P Ba(mod(q1, ¢)).

Since det y = 1, we have that a is invertible mod c, so r is restricted to a bounded (in
terms of B, P)number of residues mod ¢ . Similarly, rg is bounded mod qi ,and hence
the sum on rg has a bounded number of contributions. The claim follows immediately.

O

If ¢ # ¢/, this analysis will suffice. But we need more work if ¢ = ¢/, since then J
in (4.6) will be 0 mod ¢5. (Note here that in this case, g1 = g}, g2 = g5, and E = E'.)

Lemma 4.14 With notation as in Lemma 4.4 and assuming ¢ = ¢/, we have that:

!
Sk GS,(r KLUy <e g 34 g% ged (g, O — €k)'*,
q q q q1 & q

r(q)

Proof Applying Lemma 4.12 gives

!/
D Sk S K Ty e q g ged (g, KOV,
r(q)
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where
K = qlE"(E’k' — k),

which gives the claim on bounding ged(q, E) by g1, since E is invertible mod ¢>. O

This suffices as long as k¢ # k'¢’. In the final case that both ¢ = ¢’ and k€ = k'¢’,
we have

Lemma 4.15 Assume that ¢ = ¢’ and kt = k't’. Then

/ (BCP2 q) 2
D Sk G y)S, (KLY < (—) Y N t=pr(Bat Do) (modar)-
@) q @) —k=Pr(Ac+Bd)(mod q1)}
Proof Inserting Lemma 4.2 and estimating the » sum trivially gives:

/
Z ’Sq(r, k, 6; 9)Sy(r k', €5 y")
r(q)

2
(BCP2, q)
= <— Z Y—¢=pPr(Ba+Dc)(mod g1) L{—¢'=Pr(Ba’+De)(mod g1)-
q rq) —k=Pr(ActBd)(modq))} —k'=Pr(Ac+Bd')(mod 1))

Dropping the conditions on k', ¢ gives the claim. a

Now we need an estimate where we average over q itself. To this end, we will first
need the following result.

Lemma 4.16 Given positive integers R > S > W, U, V, X, we have that

®(q) = SUsU, (U, X)W) §2 .
Z 2 eq(UX) <<g + _ZS
(q,U)=1,q=V (W) RUW R
R<q<R+S
[U, W]log R XS
" R RZUW’ 4.17)

for every e > 0.

Proof If gcd(V, W) is not coprime to U, then the sum is empty, whence (4.17) holds
trivially. So we assume that (V, W, U) = 1. Observe that the trivial bound is S/(RW),
so this is what must be improved upon.

Since (g, U) = 1, there exist x, y with

X

Uy=1, or
qgx +Uy U

y 1
+ == )
g qU
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so that U = y(mod ¢). Then

eg(UX) = e(g)() - e( _ %X) + 0(X/(qU)) = ey (—xX) + O(X/(qU)).

We have that the left hand side of (4.17) is:

?(q) - XS
LHS = —qgX o0 . 4.18
> a0+ 0 gy (4.18)
(q,U)=1,g=V (W)
R<q<R+S

Leaving the last error term aside, we break ¢ into residue classes mod U; := [U, W].

- #(q)
LHS| = E ey (—qoX) E — |- 4.19)
qo(mod Uy) q=q0(U1)
(q0,U)=1,q0=V (W) R<q<R+S

Our point will be that the bracketed sum is independent of g, to first order, and
therefore we can get cancellation from the first gg sum. To this end, next use Mobius
inversion in the form ¢ (n) = n Zdln u(d)/d,

! d d !
[.}z v L %: ? S S @20

q=qo(U1) dlgq d<R+S q=q0(U1),q=0(d)
R=q=R+S R<q<R+S

Introduce a parameter 0 < D < R 4 § and break the sum on d according tod < D
or not. We deal with the large d first.

(d) 11 1
Y Y L€ g X oG X

D<d<R+S qd=qo(Uy) D<d<R+S d R<dq<R+S
R<dq=R+S
1 1 <S )
3 X 4
RD<d§R+Sd d
< S +logR
RD R’

which saves either D or S over the trivial bound.

Next we handle small d’s. Observe that since (g, U) = 1, we have that (qq, U1) |
W. But we must also have go = V (W), and thus (g0, U1) = (V, W) =: V1, say. Since
q =0(d), welett :=q/d. Then

wu(d) 1 w(d) 1
d Z dt Z 42 Z t
d<D td=qo(Uy) d<D td=qo(Uy)
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The condition dt = ¢o(U;) admits a solution in ¢ iff d; := (d, U;) divides
(g0, U1) = Vi. Write d = djdy with (dy, Uy1/d;) = 1. For d satisfying this con-
dition, the restriction on ¢ becomes ¢ = d» (go/d1)(mod Uy /dy), which of course is
now uniquely determined modulo Uj /d;. Thus

u(d) 1 u(d) 1
o X @ X = 2. n

d<D td=qo(Uy) d<D.d=d\dp =d. d d Uy /d
REGISRYS  di=@Updiv, RGeasa)
d—="—d '"d
d 1 s
-z a(ee(3)
d<D,d=d\dy d t=d>(qo/d1)(mod Uy /dy) R/ K
dy=(d,U),di |y SR v

R R S
ast=gty

1 d) [ Sd S
> %<ﬁ+0(1)>(1+0(5>>.
d<D,d=dd;
d1=(d,U1),d |V}

(dr,Uy/d1)=1
“4.21)

The conditions (da, U1/d1) = 1 and (da, d1) = 1 (from Mobius) are together equiv-
alent to (dp, Uy) = 1. This allows to separate the d; and d, sums, and extend the d;
sum to infinity. The “main” contribution becomes:

1 Z n(d) Sd,
R d<D.d—=d\d> d dU
di=(d,U1),d1|V1(d2,U1/d1)=1

N p(d) 3 w(dz)

= 577, 2

RU: d|Vi d dr<D/d; 2

(d2,U1)=1
M(dl) Z wu(dz)
= > +0(d1/D)
2
RUI di|Vi b= B
(d2,U1)=1
N w(dy)

== [My, + 0(d1/D)].

RU; T dl

where

My, = [] <1—i2> = 1, (4.22)

p.ptUL

is 1/¢(2) with the primes of Uy removed.
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Continuing the analysis gives

S d SWe
T RU Miz Uiy, + . <DRU )
]d1|V1 1 1
_ 5 My Va+ O SWr
~Ru, U TP\ DRU, )
where
1
V=] (1 — —)
rIVi p
satisfies
Vit < Vo<1 (4.23)

We return to handle the error terms of (4.21). The first is:

1 1 log D
r Z E < R
d<D,d=d\dp
di=(d,U1),d1|V1

(dr,Uy/d1)=1

saving about S/W over the trivial bound. The second is:

1 3 1 .8d; S < 52 Dt
- Ty & 2 )
A<D dmdidy ddU; R R-U,
di=(d,U1),di|V\
(d2, U1 /d1)=1

which saves about R/S.
Putting everything together into (4.20) gives:

(4.20) = > My Vs + O SWE | loeD | s D) oS 4 gk
TR T Y \DRU, T R T R, RD R

S 52 S  logR
=—Mulvz+0£< Df 4 — 4 % )

RU; R2U; RD R

which is, at least in the main term, independent of g, as desired. Inserting this into
(4.19) now gives
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S 52 S logR
LHS, = —goX) | —— My, V- O, ———D* + —
1 > eu(—=qo )[RUl uV2+ S<R2U1 t2o T % )]
go(mod U1)
(q0,U)=1,q0=V (W)
S s2 SU;  UjlogR
= —My, V. —goX O: | =D+ — .
Ry, Mo V2 > ev(=qoX) | + 5<R2 t2p Tz
go(mod Uy)
(90,U)=1,q0=V (W)
(4.24)

We analyze the bracketed summation by first decomposing it into residue classes mod
U:

[] — Z/: ev(—gX) > 1.

gmod U go(mod Uy)
q=V (mod(W,U)) q0=q(U),qo=V (W)

Using Uy = [U, W] (recall that this is the lcm) and the compatibility condition
g = V(mod(W, U)), the Chinese Remainder Theorem gives that the last summation
has exactly one ¢go contributing. Therefore only the first summation remains. Let
X1 = (U, X) and write X = XX, and U = XU, with (X,, Up) = 1. Then we
break into residues mod U,

/! !/
[ : ] = ) enqX) > L.
q2(U2) gmodU
7=V (mod(W,U>)) 4=q2(U2).q=V (mod(W.U))

In the last summation, we again get a unique contribution from the compatibility
condition on g» which together with the Chinese Remainder Theorem determines
g uniquely mod [Uj, (W, U)]. Therefore the second summation evaluates to:
¢ U)/p([Uz, (W, U)]). In summary, we have that

__ew__ oy B
[} ~ 9([U2, (W, U))) Z e, (=q2X2).
q2(U2)
2=V (mod(W,U2))

Looking locally, it is easy to see that the remaining summation either vanishes or is 1
in absolute value.
Returning to (4.24) and inserting the above argument gives that:

3

U s2 SU, UjlogR
LHS) <. ¢U) } pe g 2L Y1oeR

RIU, W] [¢<[U/<U, X), W, 0] R? RD R

@ Springer



On length sets of subarithmetic hyperbolic manifolds 2831

where we used (4.22) and (4.23). We choose D = S for simplicity. Returning all the
way to the left hand side of (4.17), we have from (4.18) that:

LHS <

¢(U) N S—zs*f N (U, W]log R XS
RIU,WI|o(U/U,X), W,U)])|  R2 R R2UW’

Finally recall the well-known fact that m /¢ (m) <. m?, so:
¢(U/(U, X), (W, U)]) > U(U/WU, X),(W,UD)).

The claim then follows. O
Now we can give the final estimate, as follows.

Lemma 4.25 Assume that ¢ = ¢’ and k€ = k'C’. Then for parameters Q > V — oo,
and any ¢ > 0, we have that:

Z ZSq(r,k,E; YISy, kK, U5 y")

0=<q<0+V r(q)

<0 Y Narmak=dv'=a'k (modigr.cn)Nay >
a11BcP? 0 Q(llql o
—Bcp? PlO1=(p>.q1)|Q1
E=bel/an (E.q1/Q1)=1

X[V(EQ1,Z) Vie §+V|Z|}
0EQ; > 0 Q]

where

Z=Zk, LK, 0, v, v)
= (Act + Bak + Bl + Dck) — (Act' + Bd'k' + Bd't' + Dck'), (4.26)

and

Ny =Nk, 0,k €y, v))

o x . —{=Pr(Ba+Dc),—k=Pr(Ac+Bd),
=#r e @/m”: 7K/5Pr(8a’+Dc),7k’EPr(AC+Bd/)}' .27)

Proof We apply Lemma 4.4, but with the special condition ¢; = ¢{ and K = 0:

! 2 2
-— BcP
S Y S,k NS E R Gy = Y (BeP, q)” ¢()
0=q=Q+V r(g) o<a<o+v 4 ¢(qq1)

/

Z L{—¢=Pr(Ba+Dc)(mod 1) L{—¢'=Pr(Ba'+De)(mod g1y €qq1 (T + L),
rigq) —k=Pr(ActBd)(modqi)} —K'=Pr(Ac+Bd')(modq))

(4.28)
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where under these conditions, we obtain:

J = q1(Aa + Bb + Dd) — qi(Ad’ + Bb' + Dd')
—E(q1EaA + aB*dP? + g EdD)
+E(q1Ed' A+ a'B*d' P? + q1 Ed'D),

and

L = —EP(Act + Bak + Bdt + Dck) + EP(Act’ + Bd'k' + Bd't' + Dck').
(4.29)

The condition (4.6) here becomes:
J = 0(mod q).
Returning to (4.29), we have that
= —EPB(ak —ad'k' +dt — d't')(mod(qy, ¢)).
But the restrictions on r in (4.28) require that
PrB = —d{ = —ak = —d'l' = —d'k'(mod(qy, ¢)),
where we used that ad = a’d’ = 1(mod c). Therefore
L = 0(mod(q1, c)). (4.30)

The sum on r is multiplicative with respect to the modulus, but ¢; and g are not
necessarily coprime. To fix this, introduce a new parameter

0= [] p".

r'lq
plg2

so that Q2 | ¢, and ¢2 | Q». Then let Q1 be defined by
q = 0102,
and it is easy to see that (Q1, Q2) = 1 and Q1 | q1. Moreover, if p | Qj, then

(p®>, q1) | QOj; that is, the largest prime power of any prime dividing Q occurs in
Q1. It will be convenient to define

m = (q1, Q2).
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Decompose ¢ further as

q1 = (01,91)(Q2,q91) = Q1m.

Note that (E, g2) = 1,and m | g2, 50 (E, q1/Q1) = 1. Then
N2
qq1 = Q10om.
Let
Q5:=Qom and Qf =07,
so that
qq1 = 0105,

with (Q], Q%) = 1. The lift E can be chosen so that EE = 1(mod Q’). Observe for
later use that

(g1, Q) = Q1.
Then the same calculation leading to (4.6) gives
J = 0(mod Q5).
Now we split the r sum according to these moduli. Let 51, 52 be determined by:

51 52 1 1

—_— = — = s
o) 0, 010, qaq
that is, s1 Q% = 1(mod Q/), and s, = Q_/lmod 0/, which implies that

5= 01" mod 0. 4.31)

We will also need the basic fact that, if a | b, then ¢ (ab) = ¢ (b) - a. Then we can
write

’
Y Sk i )S, (K Y

0<q<0+V r(g)

= Z Z Vde=ak=a't'=a'k (mod( )>1q12 ¢q)
= =ak=d'l'=a’k'(mod(q1,0))} ~ 5 -
E|BcP? 0<q<Q+V 9" ¢(@) - a
q1=BcP?/E (a,BcPY)=q1, gq1=0] 0}

!
| D Lce=pr(Ba+t Deymod(ar. 0)) —'=Pr(Ba’+ De)modigr. 0} €0, (51 (T + L))
r(Q’l) 7kEPr(AC+Bd)(m0d(q1,Q’l))) 7k/EPr(AL‘+Bd/)(m0d(q1,Q’l))}
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/

x | eg,(s2L) Z L t=pr(Ba+De)mod(gr. 04) L—t'=Pr(Ba'+ De)(mod(q1. 0})
r(Qy) —k=Pr(Ac+Bd)mod(gi.05)) —k'=Pr(Ac+Bd’)(mod(g1.0))))

q1
= Z l{dlzakzd’l’za’k’(mod(ql,c))] Z E
E|BcP? 0 Q(nlql o 1
q1=BcP?/E plO1=(p*,q1)|01
e /=03
(E\q1/Q1)=1
1
03
(02,E)=(02,01)=1, Q|Q2—0(l11)
0<010,<0+
q=010>
2=0102/q
05=49q1/Q}

x Z Y{—¢=Pr|(Ba+De)mod 01) L{—¢'=Pr\ (Ba'+Dey(mod 01)€ 0, (Q2(r1]+L))
Q) —k=Pri(Ac+Bd)(mod Q1)} —k’ Pri(Ac+Bd')(mod Q1)}

!/
x | eg,(s2L) > L t=Pr(BatDe)(mod(gr. 0p) Vi—t'=Pr(Ba'+ D) (mod(qr. 0y)) | - (4.32)
r(Qh) —k=Pr(Act+Bd)(mod(gi.05)) —K'=Pr(Ac+Bd’)(mod(g1.05)))

Next we make the following two claims: (i) that the first sum on | only depends only
on the value of Q7 modulo ¢g;; and (ii), that we can count the number of solutions in
the r sum mod Q/z. We first work on (ii). Observe that

m=(q1. 02) = (q1. Qb) = -,
01

which is a divisor of Q/2. That is, (m, Q1) = 1. Recalling the definition (4.27) of N,
the sum on r(Q/z) clearly contributes

¢(Q2) (g1, Q2)
A/m Nm NN
%5 m) = ¢(Q2) o ((q1, Q2))

Next we argue (7). Recall from the analogue of (4.7) in this setting that any r| occurring
in the first summation satisfies:

riJ +L=0(Qy).
Therefore the r| summation in (4.32) is:

’

—rJ+L
Q1 Z L{—¢=pPri(Ba+Dc)(mod 1) L{—¢'=Pr (Ba'+De)(mod 01) €01 (Q2(Q2, 41)7)
r(01) —k Pri(Ac+Bd)(mod Q1)} —k'=Pri(Ac+Bd’)(mod Q1)} Q1
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The term @2 only depends on the residue class, Qg, say, mod Q1, so we break the
sum according to these residue classes. Returning to the original expression, we have:

Do D Sk S Ky

0=q=0+V r(q)
q1 m
Z Vde=ak=d'¢'=a'k (mod(q1,¢))) Z E/\fmm
E|BcP? Oilq1 1
q1=BcP?/E P\Qlﬁ}p”éql)\Qn
1=¥1
m=q1/Q1, (m,Q))=1
(E,q1/Q1)=1
’
—_nJ+L
x Z Qi Z Li—¢=pr (Ba+De)mod 01)L{—¢’=Pr  (Ba'+De)(mod 01)€ Q) (ngT)
Qg(mOdQ1)/ 1(01) —k=Pri(Ac+Bd)(mod Q1)} —k'=Pr;(Ac+Bd')(mod Q1)} 1
¢(02)
x Z 02 eg,(s20L)
(Qz.EQl)=1,Q2£0(M),Q2£Q8(mod Q1) 2
0=<0102<0+V
q=0102
©2=0102/q1
L 05,=441/0Q} |
Let
"o.__
0y = (01,0),

with 01/Q7 = 1. (Recall here that P is a constant depending only on the group I",
and implied constants may depend on I and the fixed parameters A, B, C, D.) From
(4.30), we have that L = 0(mod QY), since Q7 | (g1, ¢). Let

my = (m, c),
so that m/m; =< 1. By the same argument, we also have that L = O(modm), and

since (m1, Q) = 1, we have that L = 0(mod Q7m ).
So using (4.31) the last sum can be written as

$(Q2) L
. = Z 7€Q2(S2;)
(02,EQ1)=1,02=0(m),02=0%(mod Q1) 2
0<0102<0+V
$(Q2) -
= > o7 c0:UX).
(02.U)=1,0,=0(m),0>=0%(mod Q1) 2
0<010250+V

where U = EQ(Q1/Q7))(m/my) < EQy, and

¥ — —P(Acl 4+ Bak + Bdt + Dck) + P(Actl' + Ba'k' + Bd't' + Dck’)
B Q''my '
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by (4.29). Note that

PZ

= 1 ’
1mi

where Z is defined as in (4.26). It is at this point that we apply Lemma 4.16, with
R=0/01,S=V/Qi,and W = [m, Q1] = q. Note that

1 1
(U,X)=K(EQ1,X)=K——(EQimQY, PZ) = K—(Eq1 01, Z).
le q1

Here K is an absolute constant, not the same in each occurrence. Then
U, U, X)W)=K(EQ1, EQ1q91,2) K (EQ1, 2).

Now applying Lemma 4.16 gives:

e (VEQL,Z) V2  Qic V|X|>
[ ] e ( 0EQiqn 0 "0 Tok)

Returning to the original summation, we have:

!/
Do D Sk S K Y

0=q=0+V r(q)

<L 0° Z Lde=ak=d'¢'=a'k (mod(qy,¢)))

E|BcP?
q1=BcP?/E
m
Z q1Nm_¢(m)
O1lq1
P11=(p>,q1)|01
01=03
m=q1/Q1, (m,01)=1,(E,q1/Q1)=1
/ V(EQ1, Z)
< | Y Yt=pri(BatDe)mod 0 V(—¢'=Pr (Ba'+ Deymod 01) O0FEO.a
r(Qy) —Kk=Pri(Ac+Bd)(mod Q1)) —k'=Pri(Ac+Bd')(mod Q1)} QEQi1q1

@t o ok

Note that the 71 (mod Q1) summation is exactly N, 0;->and since (m, Q1) = 1, we have
that NV, - Ng, = Nj,. Now we have, crudely, that

V:  Qic V|X|]
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Z ZSq(r,k,E; YISg(r k' U5 y")

0=9=0+V r(q)

e 0% Y Ndt=ak=d't=a'k modigr.c») > N

E|BcP? 0 Q(nlql o
—BcP2/E PIO1=(p>,qi 1
n=BeP*{ (E.q1/Q1=1

V(EQ\,Z) V? &  V|Z|
X[ 0EQ, 07 5+7]
from which is the claim. O
Next we analyze the size of N, in (4.27).
Lemma4.33 Letm | BcP2. Then
N < 1. (4.34)

Proof Our goal is to count the number of r in (Z/m)* satisfying —¢ = Pr(Ba+ Dc),
—k = Pr(Ac + Bd), and also —¢' = Pr(Ba’ + Dc), =k’ = Pr(Ac + Bd’). Let

my = (m, c),

sothatm | ¢, and m < m (since B and P are fixed). Reducing the moduli mod
gives the equations:

—al=rPB, —dk =rPB, —a't' =rPB, —d'k' = rPB(mod m)).

Here we used that (a,c) = 1 since y € SL,(Z), etc. There are clearly a bounded
number of solutions in r to the above, which gives the claim. O

And lastly, we analyze the number of elements in SL»(Z) with a given value of ¢
and satisfying a congruence in Z in (4.26).

Lemma4.35 Let y € SLy(Z) N Bt be given with y. = ¢, and fix a divisor Z1 | ¢
withc K T. Also fixk, £, k', £’ with k€ = k€. Then the number of y' € SL,(Z) with
y.=cand|d'|, |b'|,|d'| < T and satisfying Z = 0(mod Z,) is bounded by

T
K 721, td = ka), (4.36)
1

as T — oo.
Proof In the variables a’, d’, we have the pair of equations: a’d’ = 1(mod Z;) and

Z = (Act + Bak + Bdl + Dck) — (Act' + Ba'k’ + Bd't' + Dck') = 0(Z)),
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or
Bk'a’* — (Bak + Bdt)d' + Bt' = 0(Z)).

Let By := (B, Z;) and set Z, := Zi/Bj and B, := B/Bj, with (B, Zy) = 1.
Dividing through by Bj, the equation reduces to

K'a? — (ak + d0)a’ + ¢ = 0(Z,).
Let
Z:= .0, 7).

Since k¢ = k' li’ , we have that Z2 | k¢. Working locally, suppose that Z | £. Then
reducing mod Z gives the equation

—(ak)a' = 0(2).
But (a, Z) = (a,c¢) = 1 and @’ is also coprim~e to Z, WhiCh implies that k = O(Z).
Therefore there are no solutions unless both Z | k and Z | £. In this case, we can

divide the whole equation by Z. Set ky := k/Z, ..., 0 = 0')Z and Z3 := Z»/Z.
Then the equation becomes

kja* — (aky + dty)a’' + €] = 0(Z3),
with (k{, £, Z3) = 1. Working locally, we may assume that (k}, Z3) = 1. Now we
can simply solve the equation. Assuming for simplicity that Z3 is odd (with minor
modifications otherwise), we have that

(a' — 2K (aky + d€1))* = k| €} + 4k (aky + de1)* = 2k|(ak; — dly))*(mod Z3),

where we again used that k¢ = k¢’ and ad = 1(mod Z3). The equation is now a
difference of squares, so

(a —kje1d)(a" — kjkia) = 0(mod Z3).

Again working locally, suppose that Z3 = pU. Then for V + W = U, we get a
solution

a' =k¢1d(mod p¥) and @’ = k}kja(mod p").
Assume WLOG that V. < W. Then for there to be any solutions, it must be the case
that £1d — kja = O(mod p"), and if this is the case, then there are pV~W = pV

solutions for a’. Let

Z4 = (23, 01d — kya).
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By the above discussion, the number of solutions for a’(mod Z3) is at most
min(Zy4, v/ Z3).
So once the value of @’ mod Z3 is fixed, the total number of such @’ < T is

< T < TZ < Tk, ¢, Z)
Z3 Z> Z1 '

Thus we can bound the total number of values of a’ by
ZyT (K 0, Z1)/Z) < T(Z3, hd — kia)(K', €', Z1) [ Z) K T(Zy, bd — ka)/ Z;.

With a’ and c fixed, the number of d’, " is <« 1, since they are all of order T and
a’d’ — b'c = 1. This completes the proof. O

5 Major arc analysis

Theorem 5.1 There isann > 0 and a set & C 7 of “exceptional” n, of zero density,
1 _
N#(é’ N[—=N,N]) = O(N),

such that, forn ¢ &, n < N, we have that

My () > G(n)@ Lo (@N_,d ’

as N — oo, where, for admissible n ¢ & and for any ¢ > 0, the “singular series”
&(n) satisfies

S(n) >, n|™".

The implied constants are absolute.

Proof We begin with (2.17):
l —
Mpy(n) = / MO)R N (0)e(—nb)do
0

1 ! .
= fo D22 V(B HmFORNG + Pe(=n(G + p)dp

q<Qor(q) meZ

= [ X SR+ precns + prus as

R g<00r@
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We have that

Ry (% +B)

=Y (H)T(3) X wthuem| Y e

x,yEZL el @\l yeFr
y=yo(mod q)

For the bracketed term, we apply Lemma 3.4, together with |8| < Ko/N < 1/X>.

RvG+B =2 T(3)T(5) X elrfnbry

x,yeZ el (@\T

1
T T & Bl x+01FrIN®)

V4 619’\7
Inserting this into My gives:

Mym =Y 1 ($)7 (%) [ > [rilr(q)] > Zeq(r(fyo(xa)’)—n))i|

X,YEL q<Qo ’ Vel (@\I' r(q)

x { > /ﬂ; I/f(ﬁ,%)e(ﬂ(fy(x,y)—n))dﬁ}

)/Gtg"\]‘

RN O) e
+0 (’XI()N—OQ{;KO),

where we have split into modular and archimedean components. The proof then follows
on applying Theorem 3.38 and Theorem 3.41 to the modular component, and Lemma
3.5 to the archimedean part, together with the choice of parameters in (2.15). O

6 Minor arc analysis

Our goal is to estimate Ey in ¢2, or what is the same (by Parseval), to bound
2 a2 ! 2175 oy 12
IENIT = lIENIT = /0 [1 =IO RN (O)|°dO.

The main result of this section is the following.

Theorem 6.1 There exists some n > 0 so that, as N — 00,

R (0)[?
N

IENI? < N7
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A standard argument concludes the main Theorem 1.17 (and hence Theorem 1.11)
from Theorems 5.1 and 6.1. We begin the analysis as follows. In Dirichlet’s approxi-
mation theorem, we choose the level

M =TX,

so that for every 6 € [0, 1], thereisag < M and (r,q) = 1 so that 6 = :7 + B with

‘9 " Bl < —
——| = < —.
q qgM

Now we decompose the circle into dyadic regions of the form

r 1

so that

el < Y fw 11— MO (R (©)[2d0.
Q

o<M
dyadic

This decomposes further into three ranges, according to whether Q satisfies: O < Qo,
or Qp < QO < X/Y,or X/Y < Q < XT = M. Here we have set

Y :=T®=D/M0 Ny >0, 6.2)

to be a small power of N.
On the latter two ranges, the weight |1 — 9t(0)|? is exactly 1. To keep track, we
define the integrals:

NP —
Z0y.ko :Z/ o=I+8 ﬁK_O‘ IR (0)7d6,
q9<Qo,|Bl<Ko/N

Toy = b= 1p IR ()10,
q
4<0Q0.Ko/N<IB|<1/(gM)
— 2
Iy = bt/ RN ©)|db. (6.3)

0<¢<20,(r,q)=1,181<1/(QM)
6.1 Preliminaries

We first estimate Ry (6) for 6 = = + B as follows. We begin by decomposing x and
y according to their residue classes mod ¢ and applying Poisson summation in x and
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y gives:

Ry@) =Y. Y T(%)T<§)e<<2+ﬂ)fy(x,y))

yeFr x,yeL

=x2 Y Y S,k ) Tx Bk L g ), (6.4)

yeFr kel

where S, is given in (4.1) and
Teukotegiv) = [[ 00000 elBl, X, %) = Eikr + ey
x,y€

Lemma 6.5 Suppose that q < X /Y. Then for any L < 0o, we have that
\Tx(B. k. ogiy)| <o X7F, (6.6)

unless |k|, |£| < 1, in which case, we have:

1
\Tx(B.k, €. ¢: )| < min (1, Wﬂ) ©6.7)

Alternatively, if X/Y < q, then we have the same arbitrary cancellation (6.6),
unless |k|, [£] < Y% (in which case, we only need the trivial bound).

Proof The phase of Jx can be written as e(g) where
X
g(x, y) =By (x X, yX) — ;(kx +£y).
Inputting (2.8), the partial derivatives of g are
X 2
deg(x. ) = (BaBey PPXy — k) + 0UBITX) (©:8)

and similarly

X 2
oyg(x,y) = ; (ﬁchyP Xx — Z) + O(IBIT X). (6.9)

First consider the case thatg < X/Y.Recallingthat || < 1/(QTX),B, P,x,y < 1,
and ¢, < T, we have that Vg # 0 unless

k|, 4] < [BlgTX < 1.

Outside of this range, not only does Vg not vanish, but it is of order at least Y, since
q < X /Y. Thus, we may apply non-stationary phase, giving (6.6).
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Now suppose that the pair (k, £) is such that Vg does vanish at some point p in the
support of Y x Y. In this case, we apply stationary phase to show that

|Tx| < min(1, A,'%),
where A, is absolute determinant of the Hessian of g at p. Since

Ap = | det(3,(g)| = (1B1Bey P2X*)? < (IBITX),
we have that

i 1 1
A -
P S TX2 T NiB|

which gives (6.7). (In fact, since the form is bilinear in the variables, it is possible to
evaluate the integrals explicitly, though this is not needed here.)

In the case that X /Y < ¢, we can only apply non-stationary phase if the phase is
actually growing, which is the case if max(|k|, |£|) > Y %. This completes the proof.
|

6.2 Minorarcs l: case g < Qo

Proposition 6.10 Assume that g < X. Then

r X277
R — . 6.11
h(q +ﬁ)‘ <N ©-11)

Proof Inserting Lemma 6.5 gives

ﬂ( +ﬂ) < X2 NS,k £ ;/)|N|ﬁ|

yeFr k<1

which gives the result on trivially estimating |S,| < 1. O

Corollary 6.12 We have:

Ry (0)> 02

I ——
00.ky K N Ko

and

Ry ()* 03

7z .
0 K N Ko
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Proof Inserting the L> bound (6.11) gives:

2 X T
N2|8|2

N

RN (), Ko
— o « ———— 03—,
ﬂKo < K% 95 N

29y, ko <</ 6= 1p
q<Q0,|BI<Ko/N

giving the claim. Similarly,

2

X2|.F
1 46 «

1o, K / r ‘
o 0=5+f | NIB]
q<Q0,Ko/N<|B]

IRy (0)]> Q3N
N2 Ko’

as claimed. O

The choice of parameters (2.14) ensures that these are power savings, as required
in Theorem 6.1.

6.3 Minorarcsll: case Qp < Q < X/Y

Next take the intermediate range, where Qp < Q < X/Y. We need to estimate (6.3).
Inserting (6.4) and opening the square gives

2
To= o=r/q-+p X2 YN Sk ) Ix (B k. Logiy)| dO
0=4<20,(r,q)=1,|B|<1/(QM) yeFr k.Lel
/7
=x* > > ¥ [Z Sy (r k. 6 y)Sq (r K, s y/)}
v,y eFr k k' Uelq=Q | r(q)
/ TIx Bk, L, q;v)Tx(B. K U, q;y")dB.
|Bl<1/(QM)
We apply Lemma 6.5 to get

4 /
Ip < XW S D DSk S KT (6.13)

vy e Fr kLK <1 g=Q |r(q)

Now we introduce a parameter
H:= ol"*, (6.14)
where 79 is the constant in (3.8), and decompose
(<) (=)
Io <1 o T z 0

according to whether gecd(c, ¢’) < H or ged(c, ¢’) > H. We first deal with the large
gcd.
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Proposition 6.15 There exists some n > 0 so that:

Ry O
78 « | N7T
0 <N

Proof Let h > H be the ged of ¢ and ¢’. Then applying Corollary 4.8 (and notation
therein) to (6.13), we have

ey LT T Yoy e

yeFr hley q|BeP? y'eFr g |Bc P2 1
hzH q1<Q ¢=0(h) ¢'«0 9= 0((41 q1)

where in the last sum, we weakened the condition that ¢ is divisible by both ¢; and
g} to just being divisible by their gcd. Now estimating divisor sums and applying
Nullstellensatz (3.8) in the ' summation gives

X4
I(QZ) <<8N£WH7710 |\ Fr |2’

from which the claim follows. |

Next we handle the small ged.

Proposition 6.16 There exists some n > 0 so that:

o RNOP
5 « R N
Y

Proof We begin with the observation that (¢, ¢’) < H implies that ¢ # ¢/, since
¢ x T and H = o(T). We apply Lemma 4.12, estimate gcd (q(ql,qi), J) by

ged ((6127 q5), J) q(;qzl q,l) , and apply (4.6), giving

75 <<g Z D a e ,)1/4(41611) Pq1,qn)"?

v,y €eFr q=<0
(c,c)<H

(ng <(CI2» g5). (¢ — ¢\ (B? — ACc/))>l/4

Since ¢ = q192 = g} g5, we have that (g2, ¢5) = q/[q1, q{]. We crudely estimate

- 1/4
15« N Z a7 @) (eed (g, BPAC = (B - Ac)))
y.v'eFr
c#c!
qI:(Bch,q)
4j=(BJ' P2q)

(6.17)
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Let h = (q1,4)), then h | BP2(c,c’), and h < min(Q, H). Then we can write
q1 = hg.q| = hg', with (g, g’) = 1. Alsonote that & | (¢, BP?(c —c')(B* — Acc’)),
SO we can write

(q, BP*(c — ¢)(B* = Acc)) = hg.
Then it follows that
(&.8) < (BP*(c —c)/h, g) - (BP*(B* — Acc'), g).
The first gcd on the right hand side above is 1, since a factor of both should have been

included in /. Since g | BP?Acc’, the second ged is equal to (BP?B?,g) < 1. A
similar argument shows that

€, 8) <1,

and hence we have the bound

lhg, hg', hgl > gg'g

on their least common multiple. (Since & may be small, it will not help us in this
estimate.)
Similarly, we note that

(8,¢) € (BP2(c =), ¢)- (B®> = Acc, ¢).

The second gcd is again bounded, while the first is bounded by H, by the definition
of 7, g).
Thus we can estimate:

I anie Yy Y Y X%

veZr  y'eFr  hBPX(c.c') g|BP%c g'|BP%
c#c (e, d)<H hkQ  gk0 ¢'<0

x > (hghgy (he)'* 37 1

§IBP*(c—c)(B*~Acc') q=0Q
2880, (3.0)<H q=0([hg,hg’ hg))
x4
€ —5/4 179/4
LN — H Z Z 3/4 Z 1.
yeFr g<K0 y'eFr
(g.0)<H BP2(c—c')(B2—Acc)=0(3)

For fixed ¢, let R = R(g) C Z/gZ denote the set of roots mod g of the polynomial
BP?(c — x)(B* — Acx). If A = 0, then this is a linear polynomial with leading
coefficient BP?, so #R <« 1.If A # 0, then this is a reducible quadratic polynomial
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with leading coefficient BP2Ac; since (g,¢) < H, it follows that #R <. H Ite
Finally, we have that

Z—(Q<) e Ns 5/4H9/4 Z Z ~3/4 Z Z

yeFr g<0 a€R(g) y 'eFr
(g.0)0<H d=a(g)

We apply Nullstellensatz (3.8) in the last summation to obtain:
(<) 0S4 o/
IQ <e Ng H Z Z ~3/4 Zrl
yeFr g<<Q

X4
<<8N<‘,‘WQ71/4H13/4Q1/477]0|ﬁT|2.

The choice of the parameter H in (6.14) ensures that we have saved a powerof Q > Q.
The claim follows since Qy is a power of N (by (2.13)). O

These two propositions establish Theorem 6.1 in the intermediate range of Q.
6.4 Minorarcslll: caseX/Y < Q<M
In this largest range, we return to the exact evaluation:

/
To=x* Y > DD S0k y)S,r K Y

y.y'eFr k Lk Ul g=Q | r(q)

/ IxB. k, L, q; v)Tx (B, K, 0. q;y)dB.
Bl<1/(QM)

Now we break
Tp <T5+7T)
o=Zgtiy
depending on whether ¢ = ¢’ or not. We first handle the latter case.

Proposition 6.18 There is an n > 0 so that

5 2
7 Ry (0)]

-
0 N N,

as N — oc.
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Proof To begin, we can use the last part of Lemma 6.5 to show that:

4 /
T/ < QX— ) DIEEED DD S ) DA N NP A AN T

VY EFT [kl lel KL< B 9=2 (@)

+ O(N~100y, (6.19)

We will omit this last term henceforth. In the case ¢ # ¢/, we estimate using Lemma
4.12, crudely (e.g., g1 < T, etc) giving:

4
- X
IQ < oM Z Z
q=Q y.y' eFr
q1=(BcP?,q),q}=(Bc'P?,q)

_ 1/4
x > a7 (qig) (@1, gV ged (q(q1. 4], T, K)
[l el k'], €| < 52
Nax4T3/2

T0AM > 2 > ged (g, 7, K)'/*.

P=Q Y.V €T |k lel, k1|« X2

<

Recall from Lemma 4.4 that J does not depend on k, k’, £, £’ but K does. Then

Y4x4T3/2 Q4
#* ALt ¥ 1/4
Ip < 09 M |:X4+1]Z Z ged (g, J)/™.
=0 y,y'eFr
c#c!

By (4.6), we have that:
ged (g, /) < T god (g2, 43). /) < T2 ged (@2, 43). (c = )(B? = Aec)) < T,

since B> — Acc’ is never zero. Then

1 < % [)Q(—j + 1} 0|71 |PT/*
< v* [T3/2M7/4 i %
< Y472 X2 Xle‘* < vt |R/N]\(7.)|2 XT;-

Jigerse

The claim again follows due to the large power of X savings (relative to the small loss
of powers of T and Y); see (2.9) and (6.2). O
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Next we analyze the case that ¢ = ¢’. At this stage, we decompose IE further
according to whether k¢ = k¢ or not,

- —= | =
IQ < IQ +IQ .
We first analyze the case that k¢ # k'¢’.

Proposition 6.20 There is an n > 0 so that

v RNOP
7 —— N7,
0 < N

as N — oo.

Proof We again apply Lemma 6.5 as in (6.19). In this case, we then apply Lemma
4.14, which gives:

= x* _ 1/4
<o L X Xla T ae(e ok ).
vV €T |kl eIk, | < B 9<Q
c=cC kl#k/ﬁ/

The ged is bounded by [k€| <« (Yq/X)?, giving:

_ Y]/Zx4
1,7 < oM > > [q’s/‘”sqf(q/x)”z]
vV €T kLI IK 1 |« B 4=Q
c=cC k@#k%/
x4 2 0! —5/472 A1/2y—1/2
Q—M|«9ZT| [F+1:| QO T Q"X
Ry (0)> T°
N XU+

L Y3
LY

The claim again follows due to the large power of X savings. O

The last case is when ¢ = ¢ and k¢ = k’¢’; here we will fight not for powers of Q
but powers of the much smaller parameter 7. We can save a factor of 72! from the
fact that ¢ = ¢’ (and hence there are only T values for y’, not 72% < |.Z7|). But this
is insufficient for a power gain in the end. So new ideas are needed.

Proposition 6.21 There is an n > 0 so that

as N — oo.
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Before beginning the proof, we return to the original formulation:

/
Io==X" D Y Y DSk S Ky

vy eFrk k' 0eZ.g=0 | r(q)
c=c’ kt=k't'

!/ Tx(B.k, €.4: 1 Tx B K O, a5 7B,
|Bl<1/(OM)

We apply the last part of Lemma 6.5 to truncate the k, £, k', £’ range:

/
Iy~ =x" Y > DD Sk b y)S,(r Ky

VY €T (k|16 1K) 10| < L2 a<Q Lr(@)
e=c’ ke=k'¢

./ Tx Bk b, a3 ) Tx Bl T g 7B,
[Bl<1/(OM)

Over this range of k, £,k’, £/, we need to level out the ¢ dependence from the
archimedean component 7. But the range of ¢ < Q is too long for this purpose,
so we decompose the sum into U intervals, where U is a parameter chosen to be

U=

Each interval is of length Q/U = Q'/2, which is much larger than 7. Let Q| range
over the starting points of these intervals. Then we have:

=Xy Y %

Y €Tkl K| < B2 S UL
=¢ ke=k't/ 01=0+jF

/
Z ZSq(r,k,E; YISy k85 y")

QliqSQH—% r(q)

‘/ Tx(B k. €, 4: ) Tx B K O a5 7 )dB.
BI<1/(OM)

On each of these sub-intervals, we will replace ¢ in J by Q1, thereby freeing the g
variable for a purely modular analysis, as follows.
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Lemma 6.22 For any ¢ > 0, we have that:

__ 1
Ip™ <egpr Xt )0 > ) )
o CoOM
¢ VVE/T kl.jeLk e < 5 J€L-Ub {0, <g<01+ §
=c’ ko=k't' QI_Q‘HU

/
D Sk b y)S (KUY
r(q)
RNO)2T
L RvOP T
N U

Proof Returning to the definition of 7, we see that

Y
|jX(:3’ k, Z, q; V) - Jx(ﬁv k’ E’ Qla V)' < 57

since k, £ < Y Q/X. We replace the two appearances of ¢ in J one at a time.
Each time, we apply Lemma 4.15 to the resulting difference, which is bounded by

L x* .0
2
< EQM Z Z Z q2 Zl{ {=Pr(Ba+Dc)(mod q1)
V.Y E/T kI, 1€), 1K1, ¢ |<< qg=Q r(q) —k=Pr(Ac+Bd)(mod gq1)}
e=c' ke=K'¢/ n=(¢q)
1
2
<G U Q3M Z Z ql Z Z Zl{ {=PrBa(mod q)»
y.v'eFr qilc kL. lel<Ye (@) —k=PrBd(mod q1)}

c=c @<K0 ¢q= O(md 1)

where we used that ¢ = 0(q;). Since (a, ¢) = (¢, d) = 1, for given £, the value of r
is determined up to constants mod ¢, so there are < g /g values of r contributing.

For each value of (¢, r), we have that k is determined mod ¢, but we won’t use this.
In total, we bound the difference by

1 x4 000
Yoo o L9 X xox

)/,}//Eyj‘ qilc q=Q
c=c q1<K0 g=0(mod q)

, 000
YUQ3M 2. X a q—yq—y

yye%r qilc

<

c=c <0
RN ()] T
Yz——.
< N U
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Finally, we estimate trivially that

1
/ Tx(Bk 0, Q1) Tx B R T, 01 y)df < ——
1B<1/(OM) oM

whence the claim follows, since Q > X/Y.

Now we have leveled out the sum, and are in position to apply the crucial Lemma

4.25.

Proof of Proposition 6.21 Inserting Lemma 4.25 into Lemma 6.22 gives:

I>= <<8LX4 > > U

Q QM / YO
vV €T [kl 1), 1K' 1 | < 52

c=c¢ ke=k't/
xQ° Y Nge=ak=av=a'k (mod(gr.en N >
ql|B’cP2 10 Q(l\(Il )0
—Bep? =(p>°,
E=bel "ot
EQ, 7Z c A3 VA
Een2) , e o 2 (6.23)
UEQ; U 0 UQ
g IRy O)* T
N U’

where Z and NV, are as defined in the statement of Lemma 4.25.
We first handle the contribution from the latter three terms in (6.23)

c AU |z

o’ LT [5rgel

oM ;
vV €FT k|11 IK']. 10| < 52
c=c ke=k't'
N€Y2 4 Q 2 T TgU T2
— XN ) |5+
< o |T|<X>[U 0 0

P2 RvOP 72 T T_3]

Ney? R D
< N[U X "X

where we bounded Z <« TY Q/X « YT? from (4.26) and used (4.34). With U =
Q'/2, this is sufficient savings if T is small enough relative to Q > X/Y; these are all

power savings. Only the first term of (6.23) remains to be handled.
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0° 4
om> 2 > Y Naemak=de=akmodigr,o)
vV €T k| e K10 < 52 q1|BeP?
e=c ko=k'0' E=BcP?/q,
Z (EQ1,2)
E
O1lq1 Q1
2101=(p>,q1)| 01
(E.q1/01)=1
6
4
QMX Z Z Z l{dZEakEd’Z/sa/k’(mod(ql,c))}
VEFT k|, 1K 1101« X2 q11BcP?
ke=k't' E=BcP?/q

1
— z 112(,)= .
> EO, D Lzo=omed z)

O1lq1 Z1|EQ) y'eFr
r1Q1=(p>,q1)|0Q1 c=c'
(E,q1/Q1=1

Now we apply (4.36) to the last summation, expanding y’ € Fr to all of SLy(Z)
(recalling that in .7, all entries are < T'). This gives

_8X4 Z Z Z Vao=ak=a't'=a'k' (mod(g1,0))}

VETT k|, lel, K 1,101 < X2 q11BcP?

ke=k'¢’ E=BcP%/q
1
> o T(Z,td — ka)
O1lq Qi Z1|EQ:
P11=(p>,q1)| Q1
(E,q1/Q1)=1
4
>ty > Y g X X2
veFr q|BcP? 0 Q(||(11 )\Q Y 211E01 2212,
2 PI01=(p>,q1 1
E=BeP T e aij 0=

> oL

kI lel< X2 w101« t2
dt=ak(mod(qi1,c))  kt=k't'
dt=ak(mod Z>)

The k’, £ sum is a divisor sum. Note that (g1, ¢) < gq1. Replace the condition d¢ =

ak mod(qy, ¢) by d¢ = akmod(q;/Q1, c). Note that g1/ Q1 is coprime to EQ1. So
with k fixed, £ is restricted to a residue class mod (q1/Q1, ¢)Z>. This gives

WY Y Y gy Yo

Ye€Zr qi|BcP? 0 Q(I )‘Q Z1|EQ1
2 rIQ1=(p>,q1 1
E=BeP"/ar (E.q1/Q1)=
Ry 1
Q L—l—l < Y2X2Fr| < yzw .
X \X(q1/0Q1,0)2Z> N T
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This gives the claim, by the choice of Y in (6.2). O

Theorem 6.1 has now been established in all ranges of Q, thus completing the proof
Theorem 1.11.
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