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On superintegral Kleinian sphere packings,
bugs, and arithmetic groups

By Michael Kapovich at Davis and Alex Kontorovich at New York

Abstract. We develop the notion of a Kleinian Sphere Packing, a generalization of
“crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Naka-
mura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci.
USA 116 (2019), no. 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist
in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian
packings, that is, the superintegral ones come from Q-arithmetic lattices of simplest type. The
same holds for more general objects we call Kleinian Bugs, in which the spheres need not be
disjoint but can meet with dihedral angles �

m
for finitely many m. We settle two questions from

Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over
number fields, and (ii) that integral packings only arise from non-uniform lattices.

1. Introduction

The classical Apollonian packing in the plane, usually described by an ad hoc construc-
tion involving inscribing tangent circles, exhibits a number of thereafter surprising arithmetic
and dynamical properties; see, e.g., [15]. In this paper, we complete the program initiated
in [17] to understand the relationship between such packings and the theory of arithmetic
groups in hyperbolic space.

1.1. Kleinian (and crystallographic) packings. A sphere packing (or just “packing”)
P of Sn Š 𝜕1HnC1 (n � 2) is an infinite collection of round balls in Sn with pairwise dis-
joint interiors, such that the union of the balls is dense in Sn. We identify the ideal boundary
Sn D 𝜕1HnC1 with the one-point compactification of Euclidean n-space Sn D Rn [ ¹1º.
By abuse of terminology, we will conflate the collection of balls P with the collection of round
spheres bounded by these balls. In view of the density condition, a packing contains balls with
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Figure 1. (a) A packing P , (b) its reflection group �P , and (c) its superpacking zP .

arbitrarily small Euclidean radii. (Of course, the radii are only defined once we choose an iden-
tification Sn Š 𝜕1HnC1, in particular, we choose a point at 1.) The bend1) of a sphere is
the reciprocal of its radius, with the convention that a sphere containing 1 in its interior has
negative radius and bend. A packing is integral if all its spheres have integer bends.

Next we attach to any sphere packing its “superpacking.” For an .n � 1/-sphere S � Sn,
denote by RS reflection through S acting on HnC1. Given a packing P , let

(1.1) �P D hRS W S 2 Pi < Isom.HnC1/

be the reflection group of P , generated by reflections through the spheres in P . The super-
packing

(1.2) zP WD �P � P

is defined as the orbit of the packing under the action of its reflection group, see Figure 1.
A packing is superintegral if its superpacking has all integer bends.2) Note that no tangency
conditions are imposed on the spheres; indeed the circles in the packing shown in Figure 1.a/

are all disjoint (and this packing is superintegral).
As we will show, superintegrality, even in the absence of any other structure imposed on

the packing P , is already related to (sub)arithmeticity, as follows. Recall that a group of hyper-
bolic isometries is called “k-arithmetic” (of simplest type, as assumed throughout) if, possibly
after conjugation, it is commensurable with the group OF .o/ of o-integral automorphs of a
hyperbolic3) quadratic form F defined over a totally real number field k with ring of integers o

(see, e.g., [35]). We call a Zariski-dense, discrete subgroup � < Isom.HnC1/ k-subarithmetic
if � is contained in a k-arithmetic lattice.

Theorem 1.3 (Subarithmeticity Theorem). If an orbit

O D � � S0

of a fixed sphere S0 � 𝜕1HnC1 under a Zariski dense subgroup � < Isom.HnC1/ has all
integer bends, then � is Q-subarithmetic. More precisely, there exists an isotropic rational
hyperbolic quadratic form F so that � is contained in OF .Z/.

1) Note that in the theory of Kleinian groups, “bend” more often refers to dihedral angle; but for integral
sphere packings, bend is used for inversive radii. For circles, bend is the curvature, but for higher-dimensional
spheres, (Gaussian) curvature is inverse square-radius.

2) It turns out that this condition is strictly stronger than integrality; that is, there exist packings, even
crystallographic ones, which are integral but not superintegral [17].

3) See Definition 3.1.
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Corollary 1.4. In particular, if a general packing P happens to be superintegral, then
its reflection group �P is necessarily Q-subarithmetic.

Remark 1.5. These conclusions need not hold for o-(super)integral packings, that is,
ones with all bends in a ring of integers o; see Section 1.2.

In general, there is not much more one can say about integral or superintegral packings
without assuming more structure.

Definition 1.6. A sphere packing P is Kleinian if its set of limit points also arises as
the limit set of a geometrically finite4) group �S < Isom.HnC1/. We call �S a symmetry group
of the packing.

In the special case that � is generated by finitely many reflections in hyperplanes, P is
called crystallographic; such were defined and studied in [17]. It is well known and easy to
see (e.g., from the Poincaré Fundamental Polyhedron Theorem) that discrete, finitely gener-
ated, hyperbolic reflection groups are geometrically finite, so every crystallographic packing is
also Kleinian.

The following statement is both standard and deserves to be stated explicitly.

Theorem 1.7. Let �S < Isom.HnC1/ be geometrically finite. Then its domain of dis-
continuity is a disjoint union of open round balls (that is, is a Kleinian sphere packing) if and
only if the boundary of the convex core M � of the orbifold M D HnC1=�S is totally geodesic.

An important role is played by the “supergroup” of a Kleinian packing. If P has sym-
metry group �S , then the supergroup z� is defined by

z� WD h�S ; �Pi:

That is, the supergroup is the group generated by both �S and �P . Note that both the symme-
try group �S and supergroup z� are not uniquely determined by the packing P; indeed, any
nontrivial normal subgroup of �S will have the same limit set. A priori it is not even obvious
that z� acts discretely, but it is in fact a lattice, acting on HnC1 with finite covolume; see the
Structure Theorem 1.22.

We turn our attention now to the integral and superintegral Kleinian packings. An imme-
diate corollary of the Subarithmeticity Theorem 1.3 is that, if a Kleinian packing P is integral,
then any symmetry group �S is Q-subarithmetic. If P is moreover superintegral, then its
supergroup z� is itself Q-arithmetic. This is because the superpacking zP can also be given as
the orbit of the packing P under the action of z� , together with the obvious fact that, if a group
is subarithmetic and a lattice, then it is arithmetic!

In the case of crystallographic packings, the main result of [17, Theorem 18] was the fol-
lowing finiteness theorem. Before stating the theorem, note that it is shown in [17, Theorem 3]
that there exist infinitely many conformally inequivalent superintegral crystallographic pack-
ings in certain dimensions up to n D 18. We say that two Kleinian packings are commensurable
if (conjugates of) their supergroups are.

4) See Definition 2.1.
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Theorem 1.8 (Finiteness Theorem [17]). Superintegral crystallographic packings exist
in only finitely-many dimensions, and there are finitely many in each dimension, up to commen-
surability.

Indeed, if a crystallographic packing is superintegral, then its supergroup is a Q-arith-
metic reflective lattice. Arithmetic reflective lattices are known (see, e.g., the discussion in [1])
to lie in finitely many commensurability classes in finitely many dimensions, which implies
Theorem 1.8. Moreover, there are no Q-arithmetic reflective lattices acting on HnC1 with
n C 1 D 20 or n C 1 � 22, see [11], so there are no superintegral crystallographic packings in
n D 19 or n � 21 dimensions. Worse yet, crystallographic packings are not yet known to exist
(nevermind integrality) in dimensions n D 14; 15; 16; 18 and 20, although reflective lattices are
known in one more than these dimensions [17].

While the classification of commensurability types of superintegral crystallographic
packings awaits first that of arithmetic hyperbolic reflection groups, one can completely clas-
sify superintegral Kleinian packings in terms of arithmetic groups. The following is the first
main theorem of this paper.

Theorem 1.9 (Classification Theorem). A hyperbolic lattice is commensurable to
a supergroup of a superintegral Kleinian packing if and only if it is a non-uniform Q-arithmetic
lattice of simplest type.

So in contradistinction with the Finiteness Theorem 1.8 for crystallographic packings,
more general Kleinian packings exist in every dimension. Moreover, the Classification Theo-
rem 1.9 answers a question posed in [17] on whether there exist superintegral crystallographic
packings with cocompact supergroups: there do not! We emphasize again that the spheres in
a superintegral Kleinian (or even just crystallographic) packing could all be disjoint, but the
supergroup z� must have cusps. See Example 3.20.

Remark 1.10. The precise role of Q-isotropy of the corresponding quadratic form
leading to (super)integrality of packings is elucidated in Lemma 3.6, which shows that the
“covector” corresponding to the bend is itself isotropic in the dual form.

Remark 1.11. Note that even if a symmetry group �S is geometrically finite and the
convex core M � of M D HnC1=�S has totally geodesic boundary (so its limit set gives rise
to a Kleinian packing P), and if the supergroup z� of P is non-uniform and Q-arithmetic of
simplest type, it still need not be the case that the packing P is necessarily integral, for any
conformal choice of coordinates on Sn, see Example 3.21. But the next theorem states that,
if M � has only one boundary component (that is, �S acts transitively on the spheres in the
packing), then the packing is necessarily superintegral.

Theorem 1.12. (i) Suppose that a supergroup z� of a packing P is a non-uniform
Q-arithmetic of simplest type (i.e. is commensurable to OF .Z/, where F is a rational hyper-
bolic quadratic form) and, moreover, a symmetry group �S < z� acts transitively on the set of
spheres in the packing P . Then there is always a conformal change of coordinates such that
P is superintegral.
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(ii) More generally, let � be any non-uniform Q-arithmetic group of the simplest type
and let S be a sphere for which the reflection RS lies in � . Then the �-orbit of S can be made
integral by a suitable conformal change of coordinates.

There are two main ingredients leading to the proof of the Classification Theorem 1.9,
one geometric (constructing a Kleinian packing from the Structure Theorem 1.22 below), and
the second arithmetic, to ensure that the packing thus constructed is indeed superintegral; it is
the second stage that forces Q-arithmeticity and non-uniformity of the lattice.

A key step in the geometric argument relies on Millson’s theorem [22] that every arith-
metic hyperbolic lattice of simplest type is commensurable to a lattice z� such that HnC1=z�

contains a non-separating totally geodesic complete hypersurface of finite volume.
We will also show that, in each commensurability class, there are not only infinitely many

conformally inequivalent packings (as shown for crystallographic packings in [17]), but their
Hausdorff dimensions can be made arbitrarily close to maximal.

Theorem 1.13 (Abundance Theorem). In every dimension n � 2, there exist quasi-
conformally inequivalent superintegral Kleinian packings, whose limit sets have Hausdorff
dimension approaching n.

Note the contrast to Phillips–Sarnak’s [26, Theorem 5.4] and Doyle’s [10] work on
Schottky groups, showing that their limit sets have Hausdorff dimensions bounded strictly
away from the ambient dimension n. Also note that the conformally inequivalent superinte-
gral Polyhedral Circle Packings in 𝜕1H3 constructed in [17, Theorem 7] are all Schottky, so
their dimensions cannot approach n D 2.

1.2. Packings over number fields. To complete the discussion of Kleinian packings
(before we turn to Kleinian “bugs”), we show that the theory breaks down over number fields,
answering another question posed in [17]. For a totally real number field k with ring of inte-
gers o, a packing is o-integral (resp. o-superintegral) if every bend in its packing (resp. super-
packing) lies in o.

Proposition 1.14. The Subarithmeticity Theorem does not hold in number fields.

Indeed, already for the simplest case of the golden ring k D Q.
p

5/, there exist o-super-
integral crystallographic packings whose supergroups are non-arithmetic. (See Example 3.26.)
But this is not the whole story, as we also have the following.

Theorem 1.15. For any k-arithmetic hyperbolic lattice of simplest type OF .o/, there
is a totally real, quadratic extension k0 � k, with ring of integers o0, such that OF .o/ is
commensurable to the supergroup of an o0-superintegral Kleinian packing.

Note that there is no condition on being non-uniform here, unlike Theorem 1.9. Thus,
even the Q-anisotropic form x2

1 C x2
2 C x2

3 � 7x2
4 has o0-superintegral Kleinian packings, for

certain quadratic rings o0. This leaves open the problem of giving a proper formulation for how
to characterize which o0-superintegral packings come from arithmetic groups.
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Figure 2. A portion of a polyhedron P having bounding facet F˛ lying in the hyperplane H˛ . Also
shown is the ideal boundary B˛ � 𝜕1HnC1 of the complementary half-space H�

˛ , and
the cooriented round sphere 𝜕1H˛ bounding B˛ .

1.3. Kleinian bugs. To further extend the notion of a packing, we will allow spheres to
meet at a finite set of dihedral angles, as follows.

A cooriented round sphere in Sn is a round sphere together with a choice of a nowhere
vanishing normal vector field. Cooriented spheres are in a natural bijective correspondence
with cooriented hyperbolic hyperplanes in HnC1. A convex polyhedron, P , in HnC1 is the
intersection of a locally finite family of hyperbolic half-spaces HC

˛ in HnC1. It suffices to
consider only half-spaces HC

˛ such that the hyperplanes H˛ intersect 𝜕P along facets F˛. We
coorient these hyperplanes H˛ so that the normal vector fields point into the complementary
half-spaces H�

˛ . The ideal boundary 𝜕1H�
˛ of the half-space H�

˛ is a round ball B˛ bounded
by the cooriented round sphere 𝜕1H˛, see Figure 2.

Definition 1.16. A bug B is defined to be an infinite collection of cooriented spheres
in Sn Š 𝜕1HnC1 containing facets of a convex polyhedron P D PB � HnC1, with dihedral
angles lying in a finite subset of

�

N
D

²
�

m
W m 2 N

³
;

such that the union of round balls bounded by these spheres is dense in Sn. As before, a bug is
integral if its spheres all have integer bends.

In plainer terms (forgetting coorientations), a bug is a collection of spheres, any pair of
which is either disjoint, tangent or which intersect at angles �=m, for finitely many m 2 N.
See Figure 3 for an integral bug, and Figure 4 for the corresponding hyperbolic polyhedron P ,
which should justify our calling these objects “bugs.”

1.3.1. Geometric aspects of bugs. Before turning to any arithmetic properties of bugs,
we discuss purely geometric aspects, culminating in the Structure Theorem 1.22. As in (1.1),
the reflection group generated by reflections through the spheres in B, denoted �B , is discrete
and has as its fundamental domain the hyperbolic convex polyhedron P D PB bounded by the
hemispheres.
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Figure 3. An integral bug with all dihedral angles �
3 . A number at the center of a circle denotes

its bend, that is, inverse radius. The thick unlabeled blue circle has bend �76. The color
scheme is as described in Remark 1.24.

Figure 4. View from H3 of the bug polyhedron P from Figure 3. The polyhedron is exterior
to all solid hemispheres shown, and interior to the one opaque hemisphere, which has
bend �76.
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(a) (b)

Figure 5. (a) The bug is Kleinian with symmetry group generated by reflections in the thick red
circles. (b) The accumulation set in 𝜕1HnC1 does not in general contain spheres.

In this setting, we need a substitute for the limit set of the packing, which will no longer
necessarily contain spheres, see Figure 5 (b).

Definition 1.17. The accumulation set A.B/ of a bug B consists of those points �

in 𝜕1HnC1 such that every neighborhood of � contains infinitely many spheres in B.

As a first (it turns out, insufficient) step, we define “geometric” bugs in terms of symmetry
groups as before:

Definition 1.18. A bug B is geometric if there exists a geometrically finite subgroup
�S < Isom.HnC1/ such that

(i) the accumulation set of the bug is the limit set of �S , and

(ii) �S preserves the bug polyhedron P D PB .

Such a �S is called a symmetry group of the bug.

Recall again that a symmetry group of a bug is not unique. But its commensurability class
is uniquely determined by the bug, provided that the accumulation set of B consists of more
than two points; see Lemma 2.14.

The supergroup is defined in the now-familiar way:

Definition 1.19. Given a bug B and a symmetry group �S , the supergroup

z� WD h�S ; �Bi < Isom.HnC1/

is defined as the group generated by the symmetry group �S and the reflection group �B .
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Naively, one could have expected that, as in the crystallographic or Kleinian packing set-
ting, the supergroup of a bug is a lattice; unfortunately this is false in general (see Example 2.9),
owing to the possible “incompatibility” of parabolic subgroups. Recall that a discrete subgroup
… < Isom.HnC1/ is called parabolic5) if it contains a parabolic element g and stabilizes the
fixed point of g. Such a subgroup consists of parabolic and elliptic elements.

Definition 1.20. An ordered pair of subgroups �1; �2 < Isom.HnC1/ is said to be
cusp-compatible if, for every maximal parabolic subgroup …2 < �2, there exists a subgroup
…1 < �1 such that the subgroup … generated by …1; …2 is virtually abelian of virtual rank n.

Note that cusp compatibility depends only on the commensurability classes of �1; �2.

Definition 1.21. A bug B is called Kleinian if it is geometric with symmetry group �S

such that the ordered pair �B , �S is cusp-compatible.

We remark that, if B is not just a bug but also a packing, then the cusp-compatibility
condition is automatic, see Lemma 2.17.

In Section 2 we will prove the second main theorem of this paper, which is the following
extension of the Crystallographic Structure Theorem in [17, Theorem 28].

Theorem 1.22 (Structure Theorem for Kleinian bugs and packings). The following
statements hold:

(1) If B is a Kleinian bug, then its supergroup z� is a lattice.

(2) (i) Conversely, suppose we are given a lattice z� < Isom.HnC1/, a convex fundamen-
tal polyhedron D of z� , and a finite set S 0 of elements 
j 2 z� pairing the facets
of D. Let R � S 0 be a nonempty subset consisting of reflections (assuming such
exist) in some facets F˛ � 𝜕D, with ˛ in an indexing set A. As before, let H˛ be
the cooriented hyperbolic hyperplanes containing the facets F˛. Let S WD S 0 n R and
�S WD hSi < z� . Then the orbit of the set of cooriented spheres in ¹𝜕1H˛I˛ 2 Aº

under the group �S ,
B WD �S � ¹𝜕1H˛ W ˛ 2 Aº;

is a Kleinian bug with a symmetry group �S .

(ii) Suppose, moreover, that:

(a) the facets F˛, ˛ 2 A, have pairwise disjoint or tangent cooriented spheres 𝜕1H˛,
(b) the hyperplanes H˛ meet the other bounding walls of D either tangentially or

orthogonally (or not at all).

Then B is in fact a Kleinian packing, that is, if two spheres of B intersect, they do so
tangentially.

In particular, every lattice z� < Isom.HnC1/ containing a reflection yields a Kleinian bug.

Remark 1.23. While it is not hard to show that the supergroup of a crystallographic or
Kleinian packing is a lattice, the proof of Theorem 1.22 is rather more involved, see Section 2.

5) Sadly, this classical terminology is inconsistent with the one used in the theory of algebraic groups.
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Remark 1.24. We applied the above construction to create the bug in Figures 3–4 from
the extended Bianchi group bBi.19/;6) namely, two reflective walls were chosen for R � S 0

from this lattice, and the bug was created as the orbit of these two walls under the remaining
generators. The orbit of one wall was colored blue and the other red.

1.3.2. Arithmetic aspects of bugs. Turning our attention to arithmetic properties of
bugs, we mimic (1.2) with the following.

Definition 1.25. The superbug zB of an (arbitrary) bug B is defined as the orbit of the
bug under its reflection group, �B:

zB WD �B � B:

A bug is superintegral if every sphere in its superbug has integer bend.

The Subarithmeticity Theorem 1.3 applies just as well to bugs, giving the following:

Theorem 1.26. The following statements hold:

� If a bug (with no further structure imposed) is superintegral, then its reflection group �B

is Q-subarithmetic.
� If a bug is Kleinian and integral, then its symmetry group �S is Q-subarithmetic.
� If a bug is Kleinian and superintegral, then its supergroup z� is Q-arithmetic.

In the opposite direction, we already have from the Classification Theorem 1.9 that every
non-uniform Q-arithmetic lattice (of simplest type) is commensurable to the supergroup of
a superintegral Kleinian packing (and hence bug). Similarly, we have from Theorem 1.12
that if a symmetry group �S (resp. supergroup z�) of a Kleinian bug is non-uniform and
Q-subarithmetic (resp. Q-arithmetic), then there is a conformal choice of coordinates for which
the bug can be made integral (resp. superintegral).

Remark 1.27. When a Kleinian bug (or just packing) is integral but not superinte-
gral, we have the following curious situation: its symmetry group �S is a subgroup of some
integer orthogonal group OF .Z/, but it is also contained in a (non-arithmetic) lattice, the
supergroup z� .

Note further that there are essentially only three ways that a lattice z� < Isom.HnC1/

(with n � 2) can be non-arithmetic. By Selberg’s Rigidity [29], after conjugation, z� is con-
tained in some OnC1;1.k/, where k is a number field with a given embedding to R. For z� to
be non-arithmetic, either:

(i) k is not totally real, or

(ii) k is totally real but for at least one non-identity embedding �, the orthogonal group
OnC1;1.�.k// is non-compact (that is, the quadratic from is not hyperbolic), or

(iii) k is totally real and the quadratic form is hyperbolic, but the entries of z� as elements of k

have unbounded denominators.
6) Here and throughout, bBi.D/ denotes the extended Bianchi group, that is, the maximal discrete subgroup

of Isom.H3/ containing the group PSL2.OD/, where OD is the ring of integers of Q.
p
�D/.
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Lattices satisfying the last condition (iii) are called quasi-arithmetic by Vinberg. The only
currently known integral but non-superintegral bugs (e.g., the crystallographic packings con-
structed in [17, Lemma 20]) all come from this last situation (with k D Q). It is interesting to
investigate whether this is the only non-arithmeticity type possible for integral but not super-
integral bugs. (Note that for o-superintegrality, the non-arithmeticity in Proposition 1.14 is of
type (ii); see Example 3.26.)

1.4. Outline of the paper. In Section 2 we prove geometric results on bugs, including
the key the Structure Theorem 1.22. We spend Section 3 discussing the arithmetic properties
of bugs, including the main Subarithmeticity Theorem 1.3. Of particular interest to the reader
may be Section 3.3 where a number of archetypal examples are constructed. We conclude in
Section 4 with a discussion of Hausdorff dimensions of accumulation sets of superintegral
bugs, proving the Abundance Theorem 1.13.

Acknowledgement. The second-named author would like to thank Curt McMullen and
Peter Sarnak for many enlightening conversations and suggestions.

2. Proof of the Structure Theorem 1.22

In what follows, d denotes the hyperbolic distance on HnC1. For a subset A � HnC1 the
ideal boundary of A, denoted 𝜕1A, is the accumulation set of A in the ideal boundary sphere
Sn D 𝜕1HnC1 of HnC1.

Recall that for a discrete subgroup � < Isom.HnC1/, the convex hull of the limit set ƒ

of � , denoted C D C� , is the intersection of all �-invariant closed convex nonempty subsets
in HnC1. The convex hull has the property that 𝜕1C D ƒ unless ƒ is a singleton (in which
case C D ;). The convex core M � of the orbifold M D HnC1=� is the quotient C=� .

Definition 2.1. A discrete subgroup � < Isom.HnC1/ is geometrically finite if � is
virtually torsion free and there is an "-thickening of the convex core M � of the orbifold
M D HnC1=� that has finite volume.

A sufficient condition for geometric finiteness is the existence of a finitely-sided funda-
mental polyhedron of � in HnC1.

Definition 2.2. A discrete subgroup � < Isom.HnC1/ is called convex-cocompact if its
limit set is not a singleton and the convex core M � of the orbifold M D HnC1=� is compact.
Equivalently, there exists a closed convex nonempty �-invariant subset of HnC1 on which �

acts cocompactly.

Convex-cocompact subgroups have the property that

(2.3) inf¹d.gx; x/ W g 2 ��; x 2 C�º > 0;

where �� � � consists of elements of infinite order.
We refer to [7, 27] for more background on geometrically finite and convex-cocompact

isometry groups of hyperbolic space.
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Part (1). Let B be a Kleinian bug and let P � HnC1 be the corresponding convex
polyhedron. We wish to show that the supergroup z� is a lattice.

If ˆ � HnC1 is a convex fundamental domain of an arbitrary discrete subgroup �

of Isom.HnC1/, then the �-orbit of the relative interior of 𝜕1ˆ (with respect to Sn) is dense
in the domain of discontinuity of � in Sn. Since B is a bug, for ˆ D P , this relative interior
of 𝜕1P is empty and, hence the limit set of �B is equal to the entire sphere Sn.

The ideal boundary 𝜕1P � 𝜕1HnC1 D Sn is the disjoint union

(2.4) 𝜕1P D A.P / t V.P /;

where each point of V.P / is isolated in the accumulation set A.P / WD A.B/ of B; elements
of V.P / are the “ideal vertices” of P . For each � 2 V.P / and every horoball B � Hn centered
at �, the intersection P \ B has finite volume.

The convex polyhedron P D PB is the fundamental domain of the reflection group
�B < Isom.HnC1/ generated by isometric reflections in facets of P , if and only if each dihe-
dral angle of P belongs to �

N , see [20, 27].

We start the proof of part (1) with two auxiliary lemmata.
For each nonempty closed convex subset C � HnC1 we have the nearest-point projec-

tion �C W HnC1 ! C . This projection is a continuous (actually, 1-Lipschitz) map.

Lemma 2.5. Suppose that C is a closed convex subset of HnC1 and C � A, where A

is a closed subset of HnC1 such that 𝜕1C D 𝜕1A. Then the restriction of �C to A is a proper
map, i.e. preimages of compact subsets of C are compact.

Proof. Assume that this is not the case. Then there exist sequences yi 2 C and xi 2 A

such that �.xi / D yi , lim yi D y 2 C , while lim xi D � 2 𝜕1A D 𝜕1C . Let � D y� denote
the geodesic ray in HnC1 emanating from y and asymptotic to �. By convexity of C , � is
contained in C . Since lim xi D �, the angles †xiy� converge to zero as i ! 1, since xi ! � .
It follows that the points zi WD ��.xi / satisfy

lim
i!1

d.xi ; zi /

d.xi ; yi /
D lim

i!1

d.xi ; zi /

d.xi ; y/
D 0:

This is a contradiction since zi 2 C and yi is the nearest-point projection of xi to C .

Lemma 2.6. Suppose � 0 C � < Isom.HnC1/ Š PO.n C 1; 1/, where � 0 is a Zariski
dense discrete subgroup. Then � is also discrete.7)

Proof. Let 
i 2 � be a sequence converging to 1 2 PO.n C 1; 1/. Then for every 
 2 � 0

we have
lim

i!1

i

�1

i D 
:

Since gi WD 
i

�1
i 2 � 0 and the latter is discrete, it follows that gi D 
 for all sufficiently

large i (depending on 
 ). Since � < PO.n C 1; 1/ is Zariski dense, it contains a Zariski dense
Schottky subgroup † of finite rank r > 1 with free generators �1; : : : ; �r . Hence there exists

7) The same holds for subgroups of arbitrary algebraic Lie groups with discrete center.
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i0 such that for all i � i0 we have


i�k
�1
i D �k; k D 1; : : : ; r:

By the Zariski density of †, we obtain that 
i belongs to the center of PO.n C 1; 1/ for all
i � i0. Since PO.n C 1; 1/ is centerless, 
i D 1 for all i � i0. Thus, � is discrete.

Recall that �1 WD �B < Isom.HnC1/ is the discrete reflection group with the convex
fundamental polyhedron P � HnC1. As we noted earlier, the limit set of �B is the entire
sphere at infinity Sn D 𝜕1HnC1; in particular, �B is Zariski dense in PO.n C 1; 1/. Since B
is a bug, the polyhedron P has infinitely many faces, equivalently, A.P / is nonempty. Thus,
if we put an accumulation point in A.P / at infinity (in the upper half-space model), then the
spheres of B are cooriented so that they bound round balls in Rn. In this setting, the density
condition simply means that the union of these round balls is dense in Rn.

The group �2 WD �S is a symmetry group of the bug B, i.e. a group of isometries
of HnC1 preserving P . Then supergroup of the bug B is the subgroup z� < Isom.HnC1/

generated by �1; �2.
Since �2 preserves P , it normalizes �1; hence, �1 is a normal subgroup of z� . In view

of Lemma 2.6 and Zariski density of �1, the subgroup z� < Isom.HnC1/ is discrete. Our goal
is to show that z� is not just Zariski dense and discrete, but is also a lattice. We build up to the
general case from some initial assumptions which simplify the exposition.

Theorem 2.7. If, in addition to the above assumptions, �2 is convex-cocompact and
A.P / D 𝜕1P (i.e. V.P / D ;), then the supergroup z� is a uniform lattice in Isom.HnC1/.

Proof. Since HnC1=z� is homeomorphic (actually, isometric) to P=�2, it suffices to
show that the quotient P=�2 is compact. Since �2 is convex-cocompact, it acts cocompactly
on the convex hull C of its limit set ƒ D 𝜕1P . Let K � C be a compact fundamental set of the
action of �2 on C , i.e. �2 � K D C . Then, by Lemma 2.5 (applied with A D P ), the preimage
K 0 WD ��1

C .K/ \ P is also compact. Since �C is equivariant with respect to the action of �2,
it follows that K 0 is a compact fundamental set of the action of �2 on P . Hence, P=�2 is
compact and z� is a uniform lattice.

Next we relax the assumption that the ideal boundary 𝜕1P coincides with the accu-
mulation set A.P / (that is, we allow V.P / in (2.4) to be nonempty), while keeping convex-
cocompactness of �2. We let �nC1 denote the Margulis constant of HnC1 (see, e.g., [14]
or [27]).

Theorem 2.8. If �2 is convex-cocompact, the supergroup z� is a lattice in Isom.HnC1/.

Proof. Let C D C�2
again denote the closed convex hull of the limit set of �2.

Each ideal vertex �j 2 V.P /; j 2 J , represents a finite volume cusp of the orbifold
O D HnC1=�1 Š P ; its stabilizer �1;j in �1 is generated by reflections in the faces of P

asymptotic to �j . We will use certain open horoballs B�j
� HnC1 centered at the points �j .

We call such a horoball B � HnC1 an "-Margulis horoball, where 0 < " � �nC1, if it is the
maximal horoball such that for each x 2 B, there exists a parabolic element g 2 �1;j satisfying

d.x; g.x// < ":
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Figure 6. A Kleinian bug which is not cusp-compatible.

The Margulis lemma implies that Margulis horoballs B�j
are pairwise disjoint. In view of (2.3),

we can choose " such that each "-Margulis horoball is disjoint from C .8) From now on,
we fix a collection B�j

; j 2 J , of such "-Margulis horoballs. This collection is necessarily
�2-invariant. Since each intersection B�j

\ P has finite volume and HnC1=z� has the same
volume as P=�2, in order to prove that z� is a lattice it suffices to show that the quotient�

P n

[
j2J

B�j

�
=�2

is compact. (This will also force finiteness of the number of �2-orbits of the horoballs B�j
.)

Compactness of the quotient again follows by applying Lemma 2.5 to the set

A WD P n

[
j2J

B�j

as in the proof of Theorem 2.7.

Lastly, we would like to relax the convex-cocompactness assumption on �2, replacing it
with geometric finiteness. Unfortunately, in general, the subgroup z� < Isom.HnC1/ will not be
a lattice, already in the case n D 3. This can happen even if the limit set A.P / is Zariski-dense
in Sn.

Example 2.9. A concrete example is the bug consisting of circles of unit diameter cen-
tered at the set ZŒi � [ .1

2
C

1
2
i C ZŒi �/, that is, the Gaussian integers and their translates by

the vector 1
2
C

1
2
i . The group �1 is generated by reflections in these circles. The group �2 is

generated by reflections in the lines ¹<.z/ D 0º and ¹<.z/ D 1º. The situation is illustrated in
Figure 6. The accumulation point is 1, and the group z� D h�1; �2i is a non-lattice. On the
other hand, if we take � 0

2 generated by the reflections in the lines ¹<.z/ D 0º, ¹<.z/ D 1º,
¹=.z/ D 0º, ¹=.z/ D 1º, then the group z� 0 D h�1; � 0

2i is a lattice.

Example 2.10. More generally, let �2 be a geometrically finite subgroup of Isom.H3/

which has at least one rank-one cusp. Then (by either using the Andreev–Thurston theorem, see
[32, Sections 13.6–13.7], or Brooks’s theorem, see [9] or [14]) there exists a quasiconformal

8) This is not really necessary but provides a clearer picture of the situation.
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deformation � 0
2 of �2 and a reflection group �1 such that the fundamental domain of �1 is

invariant under � 0
2 and its accumulation set equals the limit set of � 0

2, but the groups �1, � 0
2 are

not cusp-compatible.

A necessary condition for z� to be a lattice is that the z�-stabilizer of each parabolic fixed
point of �2 is virtually abelian of virtual rank n. (Recall that a group G is a virtually abelian
if it contains a free abelian subgroup of finite index. The virtual rank of G is defined to be
the rank of any maximal free abelian subgroup of G. By Bieberbach’s Theorem, a discrete
parabolic subgroup of Isom.HnC1/ is necessarily virtually abelian of virtual rank � n.) We
thus arrive at the following definition of cusp-compatibility, for the pair of discrete groups
�1 D �P , �2 D �S , repeated from Definition 1.20.

Definition 2.11. The subgroups �1; �2 < Isom.HnC1/ are cusp-compatible if for every
maximal parabolic subgroup …2 < �2, there exists a subgroup …1 < �1 such that the sub-
group … generated by …1; …2 is virtually abelian of virtual rank n.

Observe that the subgroup …1 in this definition necessarily fixes the limit set (the single
fixed point at infinity) ¹�º � Sn of …2. Thus, … fixes � as well. In view of the discreteness of
z� (and, hence, of …), we can (and will) as well assume that …1 is the full stabilizer of � in �1.
(The group …1 might be finite.) Since �1 is normal in z� , the subgroup …1 is normal in … and
… splits as the semidirect product …1 Ì …2.

Lemma 2.12. The following statements hold:

(1) The group …1 is generated by reflections in the facets of P asymptotic to � and, hence,
has a fundamental domain P� in HnC1 equal to the intersection of all half-spaces defined
by facets of P asymptotic to �.

(2) The fundamental domain P� is invariant under the action of …2.

Proof. (1) Let s˛ denote the isometric reflections in the facets F˛ of P generating the
reflection group �1. Every element 
 2 �1 is represented by a reduced word w in the generators
s˛. Suppose that w has the form u � s˛ � v, where v is the product of reflections in the facets
of P�, while s˛ is the reflection in a facet F˛ not asymptotic to �. Then s˛v.P / is contained
in the half-space H�

˛ whose closure in HnC1 [ 𝜕1HnC1 does not contain �. It follows that
u � s˛ � v.P / is also contained in H�

˛ and, hence, 
 cannot possibly fix �.
(2) Since P is preserved by �2, and, hence, by its subgroup …2, and …2 fixes �, the

elements of …2 send facets of P asymptotic to � to facets of P asymptotic to �.

The following lemma provides a list of equivalent algebraic and geometric characteriza-
tions of cusp-compatibility in the context of the pair of groups �1 D �P , �2 D �S :

Lemma 2.13. The following are equivalent for subgroups …1; …2 of �1; �2 as above:

(1) The subgroup … generated by …1; …2 is virtually abelian of virtual rank n.

(2) Virtual ranks of …1; …2 add up to n.

(3) … acts cocompactly on 𝜕1HnC1 n ¹�º.
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(4) …2 acts cocompactly on the intersection P� \ 𝜕B, for every horoball B � HnC1 cen-
tered at �.

(5) …2 acts cocompactly on the intersection P \ 𝜕B, for every horoball B � HnC1 centered
at �.

(6) …2 acts with finite covolume on the intersection P� \ B, for every horoball B � HnC1

centered at �.

(7) …2 acts with finite covolume on the intersection P \ B, for some horoball B � HnC1

centered at �.

Proof. The equivalence (1), (2) follows from the semidirect product decomposition
… D …1 Ì …2. The equivalence (1), (3) follows from the fact that a discrete subgroup of
Rn is a uniform lattice if and only if this subgroup has rank n.

To prove the equivalence (3), (4) observe that, by Lemma 2.12, P� \ 𝜕B is the fun-
damental domain for the action of …1 on the horosphere 𝜕B and this intersection is invariant
under …2. Therefore, cocompactness of the action of … on the horosphere is equivalent to the
cocompactness of the action of …2 on P� \ 𝜕B.

The proofs of equivalences (3), (5), (6), (7) are similar to the proof of (3), (4)
and are left to the reader.

Subgroups …1; …2 are called compatible if they satisfy one of the equivalent conditions
in this lemma. Note that since P � P�, compactness of .P� \ 𝜕B/=…2, implies that only
finitely many …2-orbits of faces of P might intersect B. Moreover, the compatibility of …1; …2

(in the form of the third condition) implies that any sequence of faces of P converging to �

(possibly outside of a horoball B) is contained in finitely many …2-orbits of faces.

Lemma 2.14. Suppose that A.P / has cardinality � 2. Then any two symmetry groups
of B are commensurable and, in particular, the cusp-compatibility of the subgroups �1; �2

depends only on P .

Proof. Suppose �2; � 0
2 < Isom.HnC1/ are geometrically finite subgroups preserving P

and having A.P / as their limit sets. Since jA.P /j � 2, by the definition of geometric finite-
ness, the groups �2; � 0

2 act with finite covolume on the "-neighborhood Y of the convex hull of
A.P / (which is their common limit set). As both �2; � 0

2 preserve the polyhedron P , they gen-
erate a discrete subgroup �3 < Isom.HnC1/, which, therefore, acts properly discontinuously,
with finite covolume on Y . Thus, j�3 W �2j < 1, j�3 W � 0

2j < 1, which implies commensura-
bility of �2; � 0

2. Therefore, .�1; �2/ is cusp-compatible if and only if .�1; � 0
2/ is.

Remark 2.15. Example 2.9 shows that, when jA.P /j D 1, cusp-compatibility depends
not only on P but also on �2.

Theorem 2.16. If �2 is geometrically finite and the pair �1; �2 is cusp-compatible,
then the subgroup z� generated by �1; �2 is a lattice in Isom.HnC1/.

Proof. Similarly to the proof of Theorem 2.8, we define open horoballs B�j
; j 2 J .

Since each �j does not belong to A.P /, it follows that all �j lie in the discontinuity domain of
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the group �2. This, together with geometric finiteness of �2 implies that there exists a collection
¹xB�i

I i 2 I º of closed (Margulis) horoballs centered at parabolic fixed points of �2, such that:

(1) The collection of horoballs is �2-invariant.

(2) The horoballs are pairwise disjoint and disjoint from the horoballs xB�j
.

(3) Each horoball xB�i
intersects only those faces of P which are asymptotic to �i .

Set

A WD P n

�[
j2J

B�j
[

[
i2I

B�i

�
:

There are two cases to consider. First, suppose that A.P / D ƒ.�2/ is a singleton ¹�º.
Then the set ¹B�i

W i 2 I º consists of a single horoball B. Consider the nearest-point projection
�xB W HnC1 ! xB. For x … xB, this projection is given by the unique intersection point of the
geodesic ray x� with the horosphere 𝜕B. As in the proof of Theorem 2.8, the restriction of
�xB to A is a proper map. The image �xB.A/ is contained in 𝜕B \ P : By the convexity of P ,
for each x 2 A the ray x� is contained in P , hence, the intersection point x� \ 𝜕B belongs
to 𝜕B \ P .

Since the pair �1; �2 is cusp-compatible, by Lemma 2.13 (5), the action of �2 on P \ 𝜕B
is cocompact. Combining this with the fact that the map �xB W A ! xB is proper and its image is
contained in 𝜕B \ P , we conclude that the quotient A=�2 is compact. Since .P \ B/=�2 has
finite volume and the volume of each cusp P \ B�j

is finite, we conclude that P=�2 has finite
volume and, therefore, z� is a lattice.

We now consider the “generic” case when �2 has at least two limit points. As before, let
C D C�2

denote the closed convex hull in HnC1 of the limit set ƒ D ƒ.�2/. Since we have
ƒ D A.P / � 𝜕1P , convexity of P implies that C � P . We let C 0 � C be the complement
to the union of open horoballs B�i

, i 2 I . The group �2 acts cocompactly on C 0 since it is
geometrically finite. As in the proof of Theorem 2.8, the restriction of �C to A is a proper
map and .A \ ��1

C .C 0//=�2 is compact. Lastly, Lemma 2.13 (and the discussion following
it) implies that for every horoball B�i

; i 2 I , its �2-stabilizer …�i
acts with finite covolume

on P \ ��1
C .B�i

/. Hence, P=�2 has finite volume and, since Vol.P=�2/ D Vol.HnC1=z�/, it
follows that z� is a lattice.

The next lemma establishes the cusp-compatibility condition in the special case of bugs
which are packings.

Lemma 2.17. If B is a Kleinian packing, then the cusp-compatibility condition always
holds.

Proof. Since B is a Kleinian packing, the polyhedron P is the intersection of half-
spaces HC

˛ , which are bounded by pairwise disjoint hyperbolic hyperplanes H˛. In particular,
𝜕1P has no isolated points and, hence, equals the accumulation set A.P /, which is the limit set
ƒ of �S , and P D C�S

, the closed convex hull of ƒ. Since �S is geometrically finite, it follows
that C�S

=�S has finite volume. But C�S
=�S D P=�S is naturally isometric to HnC1=z� . We

conclude that z� is a lattice, which is equivalent to the cusp-compatibility condition.

Part (2). We prove part (2) (i).
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Step 1. For each defining hyperplane H˛ of D, ˛ … A, we let HC
˛ � HnC1 denote the

closed half-space bounded by H˛ and containing D. We define DS as the intersection of these
half-spaces,

DS D

\
˛…A

HC
˛ :

Each facet of DS is contained in one of the facets of D which is not of the form F˛; ˛ 2 A.
And conversely, each facet of D not of the form F˛; ˛ 2 A, is contained in one of the facets
of DS . The generators 
 2 S still pair the facets of DS . We leave it to the reader to check
that, since D is a fundamental polyhedron of � , the conditions of the Poincaré’s Fundamental
Domain Theorem (see [27]) still hold for DS and the face-pairing transformations 
 2 S , and,
hence, DS is a fundamental polyhedron of �S . Since, by the construction, DS is finitely-sided,
the group �S is geometrically finite with the fundamental domain DS .

Step 2. We let R denote the collection of all z�-images of the hyperplanes H˛; ˛ 2 A.
Since D is a fundamental domain of z� , none of the hyperplanes in R intersects the interior
of D. The hyperplanes in R define a partition of HnC1 into (convex) connected components;
the closure of one of these components, denoted P , contains D. We let �R < z� denote the
subgroup generated by reflections in the hyperplanes H 2 R. Thus, �R is a nontrivial normal
subgroup in the lattice z�; hence, the limit set of �R is the entire sphere Sn. The polyhedron P

is a fundamental domain of �R and �R is generated by reflections in those hyperplanes H 2 R

for which H \ P are facets of P . Since �R < z� and the latter is a lattice, it follows that the
dihedral angles of P come from a finite subset of �

N . We conclude that P defines a bug B.

Step 3. We next verify that �S is a symmetry group of the bug B. We first check that the
generators 
 2 S of �S preserve the polyhedron P . It suffices to show that each 
 sends facets
of P to facets of P . The element 
 pairs a facet F
 of D to a facet F 0


 of D. Let Gˇ be a facet
of P and let Hˇ 2 R be the hyperbolic hyperplane containing Gˇ . We pick a generic base-
point o in the interior of D and a generic point x on the facet Gˇ . Then, by the convexity of P

and since o 2 D � P , the geodesic segment ox is disjoint from all the hyperplanes H 2 R

except for the point x 2 Gˇ . Similarly, the geodesic segment o
.o/ is contained in D [ 
.D/

and crosses their intersection at an interior point of F 0

 (since o was chosen generically). It

follows that the segment o
.o/ is also disjoint from all the hyperplanes in R. Thus, the union

o
.o/ [ 
.o/
.x/

is a path connecting o to 
.x/ and disjoint from all the hyperplanes in R except for the point

.x/ 2 
Hˇ . Hence, 
.x/ lies in a facet of P . Thus, we verified that the generators 
 2 S have
the property that they send facets of P to facets of P and, moreover, respect their coorientation:
The half-space HC

˛ determined by a facet F˛ and containing o, maps to the half-space HC
˛0

containing o. Therefore, the entire group �S preserves P .

Step 4. Since, by the construction, z� is a lattice generated by �R and �S , the group �S

acts on the set of facets of P with finitely many orbits. Thus, if � is an accumulation point
of the bug B, there is a facet G˛ of P and an infinite sequence 
i 2 �S such that 
i .G˛/

converges to � . In other words, A.B/ is contained in the limit set of �S . The opposite inclusion
follows from the fact that �S preserves the polyhedron P . We conclude, therefore, that �S is
a symmetry group of B and B is geometric with �R D �B .
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Step 5. Lastly, the cusp-compatibility of the pair of groups �R; �S follows from the
fact that they generate a lattice z� .

Thus, we proved that B is a Kleinian bug, which concludes the proof of part (2) (i) of
Theorem 1.22.

Proof of part (2) (ii). We continue with the notation from the proof of part (2) (i). How-
ever, before starting the actual proof of (ii) we will have a discussion related to combinatorics of
convex fundamental polyhedra. Each facet F of 𝜕D is paired with another facet F 0 by a unique
generator 
 D 
F;F 0 2 S 0; 
.F / D F 0, where, possibly, F D F 0.

Remark 2.18. Following Ratcliffe in [27], we require that if a generator 
 2 S 0 pre-
serves a facet F of D, then it fixes F pointwise, i.e. is a reflection in F . To achieve this, one
performs, if necessary, a subdivision of geometric facets of D. We refer to [27] for details.
Accordingly, if F1; F2 are distinct facets of the same geometric facet of 𝜕D and 
i W Fi ! F 0

i ,
i D 1; 2, pair these facets, and it happens that 
1 D 
2 are equal as elements of z� , then we still
regard 
1; 
2 as distinct elements of S 0.

A ridge of a convex polyhedron in HnC1 is the .n � 1/-dimensional intersection of
two facets.

The pseudogroup G . The pair .D; S 0/ defines a pseudogroup G acting on 𝜕D, which
we discuss below. Each generator 
 2 S 0 is an element of G ; it is a partially defined map
between the two facets of D paired as 
 W F ! F 0. Then the unique generator sending F 0 ! F

is 
�1. A composition 
2 ı 
1 of two generators


1 W F1 ! F 0
1; 
2 W F2 ! F 0

2

is admissible if F 0
1 \ F2 is a common ridge of these facets. A (possibly empty) word

w D 
l ı � � � ı 
1; 
i W Fi ! F 0
i ; i D 1; : : : ; l;

is admissible if each consecutive composition in it is admissible. Thus, each admissible word
defines a map from one ridge E to another ridge E 0, the domain and the range of w (unless
l D 1 in which case the domain and the range are facets). Here E is a boundary ridge of F1 and
E 0 is a boundary ridge of E 0

l
. The pseudogroup G then consists of admissible compositions of

the generators. Note that each admissible word is necessarily a reduced word in the alphabet S 0:

iC1 ¤ 
�1

i for each i .
The pseudogroup G defines an equivalence relation �G on D: x �G y (x is G -equivalent

to y) if and only if there exists an element 
 2 G sending x to y. This equivalence relation is
the one obtained by saturating the non-reflexive and non-transitive relation given by

x � y; x 2 F; y 2 F 0; y D 
F;F 0.x/:

An important fact, coming from the assumption that D is a fundamental polyhedron of � is
that the natural projection of quotient spaces

D=�G
! HnC1=z�

is a homeomorphism; this implies that two points in D are G -equivalent if and only if they are
z�-equivalent, i.e. belong to the same z�-orbit.
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Ridge-chains and cycles. Suppose that E DE1 DF1 \F 0
0 is a ridge of D. Let 
1 2 S 0

denote the generator pairing the facet F1 to another facet, F 0
1; this yields a new ridge

E2 WD 
1.E1/ D F 0
1 \ F2:

Then let 
2 2 S 0 be the generator pairing F2 to a facet F 0
2. The composition 
2 ı 
1 is admis-

sible (by the construction). This composition process continues (uniquely), until we return to
the original ridge so that


k W Ek ! E1 and 
k.Fk/ D F 0
k D F 0

0:

(The process has to terminate since D has only finitely many faces; in the case of polyhedra
with infinitely many faces, such termination is a consequence of one of the axioms of funda-
mental polyhedra.) There is an important caveat regarding this definition that applies in the
special case when the first return to the initial ridge yields F 0

k
D F1 instead of F 0

k
D F 0

0; we
discuss this in Remark 2.19 below.

The finite sequence
cE D .
1; 
2; : : : ; 
k/

is called a ridge-cycle; it corresponds to the word

wcE
D 
k ı � � � ı 
1;

which is an admissible composition. Its subwords

wcE;E0 D 
l ı � � � ı 
1; l � k;

correspond to ridge-chains
cE;E 0 D .
1; 
2; : : : ; 
l/;

where E 0 D ElC1 D 
l.El/. (The notation is slightly ambiguous since the chain cE;E 0 is not
uniquely determined by E; E 0; the same, of course, applies to the notation cE .) The element

cE;E0 2 � corresponding to the composition wcE;E0 sends E1 to EkC1. We will refer to
wcE;E0 as the word of the ridge-chain cE;E 0 .

We let �i denote the interior dihedral angles of D along the ridges Ei ; the sum

�cE;E0 D

lX
iD1

�i

is the total angle of the ridge-chain cE;E 0 .

Remark 2.19. (1) In the sequence of facets given by a ridge-chain, we could have
F 0

i D Fi ; this happens when 
i is the reflection in the facet Fi . Accordingly, in the case
F 0

i D Fi we will have 
i .Ei / D EiC1 D Ei .
(2) In this situation (i.e. F 0

i D Fi ), the word wcE
contains a prefix subword which is

a “palindrome”
u D .
i�1 ı � � � ı 
1/�1

ı 
i ı .
i�1 ı � � � ı 
1/:

The word u represents an element of � sending F1 back to itself and the ridge E back to itself.
In this case, of course, u does not send F1 to F 0

0 as required by the definition of a ridge-cycle.
Thus, the actual cycle-word w will be longer than u and will equal v ı u, where v is another
palindromic composition, starting with a face-pairing F 0

0 ! F0. As a simple example of this
situation, one can take the case when both F 0

0; F1 are reflective facets with the corresponding
generating reflections 
0; 
1 respectively. Then w D 
0 ı 
1.
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(3) Each ridge E of D defines exactly two ridge-cycles, which differ by swapping the
facets F1; F 0

0, reversing the order in the sequence .
i / and inverting the generators in the cycle.
The total angle is, of course, independent of which of the two ridge-cycles is used.

Conversely, suppose we are given an admissible composition

w D 
l ı � � � ı 
1

representing 
 2 z� sending a ridge E D F 0
0 \ F1 to a ridge E 0. This alone, however, does not

guarantee that corresponding sequence of generators is a chain since for some i , 1 � i < k,
we may have that 
i ı � � � ı 
1 sends E to itself and 
i W Fi ! F 0

i D F 0
0. Taking the minimal i

with this property, we obtain a ridge-cycle cE and the corresponding word wcE
. Hence, we

decompose w as
w D w0

ı .wcE
/t ;

where w0 is a subword in wcE
which represents an element 
 0, 
 0.E/ D E 0. In particular, w0

is the word of a ridge-chain cE;E 0 .

The fact that D is a convex fundamental polyhedron of z� implies that for every ridge E,
the total angle �E is of the form 2�

m
, and 
cE

has order m. Suppose now that the ridge-cycle
cE is such that the consecutive facets Fi ; F 0

i are equal (this happens when 
i is a reflection).
In this case the angle �i appears twice in the sum defining the total angle �E . In particular,
if �1 D �k D

�
2

and �s D
�
2

for some 1 � s � k, and 
s; 
k are reflections, then both �1; �s

contribute twice to the total angle and, thus, there are exactly two possibilities for the ridge-
cycle cE :

(1) k D 2, s D 1, E D E1 D E2, �cE
D � , and the ridge-cycle is as in the simple example

in Remark 2.19 (2) above. In particular, the reflections 
1; 
2 commute and 
i .Hj /DHj ,
j D 1; 2, is taken modulo 2.

(2) k D 4, s D 2, E1 ¤ E2, �cE
D 2� , and, up to inversion,

wcE
D �0 ı 
�1

1 ı �2 ı 
1;

where �2 D 
2 is the reflection in the facet F2, while �0 D 
4 is the reflection in the facet
F 0

0 D F4. The composition 
cE
then has order 1, i.e. the word wcE

represents the neutral
element of the group z� . In particular, in this case,

�2 D 
1 ı �0 ı 
�1
1 :

In both cases (1) and (2), there are exactly four images of D (one of which is D itself) under
the elements of z� , sharing the ridge E, all with right dihedral angles at E. The hyperplanes
H0; H1 bounding these images and containing the faces F 0

0; F1 are orthogonal to each other
and divide the hyperbolic space in four quadrants, each containing one of the above images
of D. The stabilizer of E in z� preserves both hyperplanes.

We are now ready for the proof of part 2 (ii). Suppose that the bug B is not a packing and
two walls in R have nonempty transversal intersection in the hyperbolic space; the intersection
necessarily has codimension 2. Since D is a fundamental polyhedron of z� , this intersection
comes from D in the following sense: There exists a pair of ridges E; E 0 (possibly equal!)
formed, respectively, by pairs of facets F1; F 0

0 (the ridge E) and Fs; F 0
s (the ridge E 0). The

facets F 0
0; F 0

s are contained in hyperplanes H D H0; H 0 D Hs 2 R fixed by reflections �0; �s .
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There exists an element g 2 z� which carries E to E 0 and sends H to a hyperplane g.H/ which
meets H 0 orthogonally along E 0. In particular, E; E 0 are in the same z�-orbit. It follows that
there exists a chain cE;E 0 corresponding to a word wE;E 0 representing an element 
 D 
E;E 0

which sends E to E 0. The element 
 need not be equal to g, but g D 
 0 ı 
 , where 
 0 2 z�

is an elliptic isometry preserving E 0. Since H; H 0 are both in R, the dihedral angles of D

along E; E 0 are both right angles. Thus, the discussion above regarding the ridge-chain wE;E 0

applies. In particular, both H; g.H/ define facets of D. Recall that by the assumptions of
part 2 (ii), the hyperplanes in R defining facets of D are pairwise disjoint, which implies that
g.H/ D H 0, a contradiction.

This concludes the proof of Theorem 1.22.

3. (Sub)arithmeticity

In this section, we prove the various (sub)arithmeticity theorems. We will be repeatedly
using the Lorentzian model of hyperbolic space HnC1 and the corresponding parameterization
of round spheres in Sn D 𝜕1HnC1 by unit vectors of the associated quadratic form.

Definition 3.1. A quadratic form F over a totally real number field k is called hyper-
bolic if it has signature .n C 1; 1/ in the identity embedding k ! R, and is definite in all others
embeddings. A quadratic space is an .n C 2/-dimensional real vector space V together with a
real quadratic form F on V defining a bilinear from h � ; � i in the usual way. A quadratic space
is said to be hyperbolic if F has signature .n C 1; 1/.

We let Q denote the standard hyperbolic quadratic form with half-Hessian:

(3.2) Q D

264 �
1
2

I

�
1
2

375 :

3.1. Inversive coordinates. Before embarking on the proofs, we recall the very conve-
nient (in this context) inversive coordinate system (see, e.g., [16, 18, 36]). For convenience, we
work here with the standard hyperbolic quadratic form Q, but the entire discussion applies to
all quadratic forms after an appropriate change of coordinates.

To a cooriented round sphere S in the boundary Sn D 𝜕1HnC1 D Rn [ ¹1º having
center z D .x1; : : : ; xn/ and signed radius r , we associate the column vector

vS WD

�
1

r
;
z

r
;
1

yr

�t

2 RnC2:

Here yr is the co-radius, defined to be the signed radius of the image of S under reflection
through the unit sphere; more concretely,

(3.3) yr D
r

jzj2 � r2
:

When S is a hyperplane, the inversive coordinates are those obtained from a limit of spheres.
That is, 1

r
D 0, 1

yr
is half the distance from the hyperplane to the origin, and z

r
is the unit normal

to the cooriented hyperplane.
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Rewriting (3.3) as ˇ̌̌̌
z

r

ˇ̌̌̌2
�

1

r

1

yr
D 1;

we see that Q.vS / D 1.
The Möbius group Mobn (the group of Möbius transformations of Sn) acts on the space

Sph.n/ of (cooriented) round spheres and the group OQ of automorphisms of the form Q acts
on the 1-sheeted hyperboloid ¹Q.v/ D 1º.

Lemma 3.4. The map j W S 7! vS is equivariant with respect to the actions of Mobn

and OQ. More precisely, j conjugates the Möbius action on the space of cooriented spheres
S 2 Sph.n/ to the Lorentzian action on the inversive coordinate vectors vS 2 ¹QS D 1º.

Proof. The proof is essentially contained in the proof of [13, Theorem 7.5]. Iversen
constructs an equivariant map � of Sn to the projectivization of the conic ¹Q D 0º. In the proof
he verifies that

�RS ��1
D �j.S/;

where RS is inversion in S 2 Sph.n/ and �v is the Lorentzian reflection in v?, the Lorentzian
orthogonal complement to the vector v. To prove equivariance of j it remains to observe that
for every g 2 Mobn, S 2 Sph.n/ and vS D j.S/,

��gS ��1
D �gRSg�1��1

D g�RS ��1g�1
D g�vS

g�1
D �gvS

:

Hence, j sends the sphere gS to gvS .

Remark 3.5. Iversen uses the description of spheres S in Rn by the quadratic equations

bhx; xi � 2hx; f i C a D 0;

Assuming the normalization jf j2 � ab D 1, the inversive coordinates then become (for r < 1)

.b; f; a/:

The natural invariant, the negative of the cosine of the angle between the spheres, is given by

hf1; f2i �
1

2
.a1b2 C b1a2/;

see [13, Section I.8], i.e. the Lorentzian inner product for vectors in ¹Q D �1º. In the case
when S is a cooriented hyperplane, b D 0, f is the unit vector normal to S and a Dbr is the
coradius. This gives an alternative proof of the lemma.

Fixing one sheet of the two-sheeted hyperboloid ¹Q D �1º as a model of HnC1, the
original sphere S corresponds to the boundary at infinity of the intersection with ¹Q D �1º of
the plane Q-orthogonal to vS . Then under the isomorphism j� induced by j ,

Isom.HnC1/ Š OC

Q.R/;

where OC

Q is the “orthochronous” subgroup of OQ which preserves the two sheets of Q D �1

(rather than allowing them to interchange).
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The pair .RnC2; Q/ defines a hyperbolic quadratic space. Write .RnC2/� for the dual
vector space, and Q� for the induced dual form. The key observation elucidating the role of
isotropic vectors in the study of the arithmetic of sphere packings is the following.

Lemma 3.6. The “bend” covector b D .0; : : : ; 0;�2/ 2 .RnC2/� is isotropic,

(3.7) Q�.b/ D 0

and captures the bend of a sphere S with inversive coordinates vS D .1
r
; z

r
; 1
yr
/t . That is,

(3.8) b.vS / D
1

r
:

Similarly, the co-bend covector yb D .�2; 0; : : : ; 0/ is also isotropic, and has yb.vS / D 1
yr

. In the
dual inner product h � ; � i� defined by Q�, we have

(3.9) hb; ybi� D �2:

Proof. Direct and elementary computation.

We can also identify the hyperbolic space HnC1 with a component of the two-sheeted
hyperboloid ¹F D �1º, where .V; F / is another real hyperbolic quadratic space of the same
dimension n C 2. A convenient way to choose coordinates here is as follows. Let h � ; � iF
denote the bilinear form on V corresponding to F , and let F � be the dual form on the dual
space V �.

Lemma 3.10. The dual space V � admits an orthogonal splitting

(3.11) V �
D V �

1 ˚ V �
2

so that dim V �
1 D 2 with

(3.12) F �
jV �

1
D

 
0 �2

�2 0

!
;

and F � restricts to a definite form on the second factor.

Proof. Take two linearly independent light-like covectors ˛0; ˛nC1 2 V � (i.e. we have
F �.˛0/ D F �.˛nC1/ D 0), and rescale ˛nC1 to ensure that h˛0; ˛nC1iF � D �2, as in (3.9).
Let V �

1 be the span of these vectors. Defining V �
2 to be the orthogonal complement spanned by

an arbitrary orthonormal system ˛1; : : : ; ˛n gives the required splitting.

We next transition to the number-theoretic discussion.

Addendum 3.13. Suppose that F is a hyperbolic quadratic form on an .n C 2/-dimen-
sional real vector space V and there is a basis of V with respect to which the form is a hyper-
bolic over a (totally real) field k. Then:

(1) There is field extension k0 � k of degree at most two with ring of integers o0, and a choice
of covectors ˛0; : : : ; ˛nC1 so that the splitting (3.11) is realized with V �

1 spanned by
˛0; ˛nC1 and V �

2 D h˛1; : : : ; ˛ni, where ˛0 can be chosen to be defined over o0.

(2) If k D Q and F is isotropic over Q, then we can take k0 D k D Q and o0 D Z. More-
over, V contains a rational unit vector u (of F ).
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Proof. (1) For a general field k, we can find an isotropic covector ˛0 over a suitable
quadratic extension k0.9) We may clear denominators to ensure that ˛0 is defined over o0. Then
we proceed as in the proof of Lemma 3.10, finding a second isotropic vector ˛nC1 (again
over k0) and rescaling to ensure (3.12). Lastly, choose an orthonormal basis ˛1; : : : ; ˛n for the
orthogonal complement V �

2 of V �
1 .

(2) Since F is isotropic over Q, so is the dual form F �. We then let ˛0, ˛nC1 denote
linearly independent rational isotropic vectors of F �. As before, by rescaling we may assume
that ˛0 is an integer vector and (3.12) is satisfied. In order to find a rational unit vector, we
similarly find two rational isotropic vectors v; w 2 V such that hv; wiF D

1
2

. Then the vector
u WD v C w has hu; uiF D 1, as desired.

3.2. Constructing (super)integral Kleinian bugs/packings.

Proof of Theorem 1.12. We first prove part (ii). Let � be a non-uniform Q-arithmetic
group of simplest type, commensurable to OF .Z/, where F is a hyperbolic quadratic form
defined over Q (with respect to some basis for V ). Let RS 2 � be a reflection with respect to
a rational vector u D wS :

RS W x 7! I � 2
hx; wS i

hwS ; wS i
wS :

Hence, a D hwS ; wS i is rational. Dividing F by a we obtain a new rational hyperbolic form
a�1F , with respect to which wS is a unit vector. Then we choose coordinates ˛0; : : : ; ˛nC1

for V � as in Addendum 3.13, adapted to the form a�1F .
Since � is commensurable to OF .Z/, all the vectors in the �-orbit of the vector u have

uniformly bounded denominators, hence, their bends ˛0.�u/ also have uniformly bounded
denominators. Under the correspondence, 
.S/ 7! 
.u/ defined in Section 3.1 (with respect to
the form a�1F ), the radius of the sphere 
.S/ equals ˛0.u/. Hence, by a suitable rescaling in
the Euclidean space Rn (equivalently, rescaling the choice of ˛0 to clear the denominators), all
the bends can be made integral, as claimed.

The proof of part (i) is now clear. By rescaling the form F , we get a new form rational
hyperbolic form a�1F such that the reflection RS 2 � is given by a unit (with respect to
a�1F ) vector wS . The group z� , of course, preserves the new form. Since, by the assumption,
the action of the symmetry group �S < z� on the packing P is transitive, so is the action
of z� on the superpacking zP . Thus, by part (ii), after a suitable rescaling, the superpacking zP
becomes integral.

We now prepare for the proof of Theorem 1.15. Before getting to questions of (super)inte-
grality, we construct the necessary packings as follows.

Proposition 3.14. Let OF .o/ < Isom.HnC1/ be a k-arithmetic lattice of simplest type.
Then there is a sequence of conformally inequivalent Kleinian packings Pj such that OF .o/

is commensurable to a supergroup z�j of Pj which acts transitively on Pj .

9) As an aside, recall Godement’s compactness criterion, that OF .o/ is non-uniform if and only if F is
isotropic over k, see [6]; and furthermore, if this is the case, then k D Q. Indeed, if F represents 0 nontrivially,
then so does every Galois conjugate F � . But F � is definite since F is hyperbolic, so there can be no other Galois
conjugates, and k D Q.
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Proof. While this result is stated in arithmetic terms, most of the proof is non-arithmetic.

Geometric setup. Suppose that � < G D Isom.HnC1/ is a torsion-free lattice such
that the hyperbolic manifold M D HnC1=� contains a properly embedded complete con-
nected non-separating totally geodesic hypersurface of finite n-dimensional volume N . The
hypersurface N lifts to a hyperplane H in HnC1. We will assume that the reflection RH in H

normalizes the group � and let z� denote the subgroup of G generated by RH and � . The group
z� contains � as an index 2 subgroup; hence, z� is again a lattice. Since RH normalizes � , it
descends to an isometric reflection � W M ! M fixing N pointwise.

Remark 3.15. Abundance of examples of this type (coming from arithmetic groups)
was first established by John Millson in [22]. More precisely, he proved that every k-arithmetic
lattice OF .o/ in O.n C 1; 1/ of simplest type (where o is the ring of integers of the field k and
F is a hyperbolic quadratic form over k) is commensurable to a group z� as above.

Our goal is define a sequence of Kleinian packings Pj with the supergroups z�j com-
mensurable to z� and acting transitively on Pj .

The hypersurface N does not separate M and, hence, defines a nontrivial element �

of H 1.M /, which is Poincaré-dual to the locally-finite fundamental class of the hypersur-
face N . Since � fixes N pointwise, ��.�/ D ��. The class � defines a homomorphism

� W � ! H1.M / ! Z:

Let p W yM ! M denote the infinite cyclic covering corresponding to the kernel ker.�/ of �.
As ��.�/D��, it follows that ker.�/ is RH -invariant; hence � lifts to a reflection � W yM ! yM

fixing pointwise one of the components N0 of the preimage of N in yM . We let D denote
a component of p�1.M � N / whose boundary contains N0. Then xD is a fundamental domain
of the action of the deck-transformation group Z D h�i of the regular covering p W yM ! M .
Furthermore, for each j 2 N,

Dj WD

[
�j�i�j

� i . xD/ D
[

0�i�j

� i . xD/ [ �

� [
0�i�j

� i . xD/

�
is a fundamental domain for the index 2j subgroup in Z. Each domain Dj is � -invariant, has
finite volume (2j times the volume of M ) and two boundary component, both totally geodesic
in yM and isometric to N via the restriction of the covering map p, see Figure 7.

Remark 3.16. For future reference, we record the following obvious properties of the
domains Dj :

(1) cl.Dj / � DjC1 for each j .

(2)
S

j�1 Dj D yM .

The fundamental group �j of Dj embeds in �1. yM / (since Dj has totally-geodesic
boundary) and, hence, �1.M /. Since �1.M / is isomorphic to the lattice � , the group �j will
be identified with a subgroup (again denoted �j ) of � . Then the preimage of Dj in HnC1 under
the covering map q W HnC1 ! yM contains a (unique) �j -invariant component Pj D zDj . Since
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Figure 7. Infinite cyclic covering.10)

𝜕N is totally-geodesic, it follows that Pj is a convex domain with totally-geodesic boundary.
By the construction, each boundary component of Pj is fixed by a reflection in z� conjugate
to RH . Thus, the collection of hyperplanes bounding Pj defines a sphere packing Pj with the
reflection group �R;j , generated by reflections in the walls bounding Pj . The group �j acts
on Pj with quotient of finite volume (isometric to Dj ); in particular, the limit set ƒj of �j

equals 𝜕1Pj and Pj is the closed convex hull of this limit set, Pj D C�j
. We conclude that �j

is geometrically finite. Thus, Pj is a Kleinian packing.
The supergroup of the packing generated by �R;j and �j , however, acts on Pj with

two orbits: These two orbits correspond to the two connected components of 𝜕Dj . To fix this
problem, we note that the reflection � discussed above swaps these boundary components.
Hence, we lift � to a reflection z� in HnC1 preserving Pj and let z�j denote the subgroup of
Isom.HnC1/ generated by �j and z� . The group z�j , which is an index 2 extension of �j , is still
a symmetry group of the packing Pj and acts transitively on the packing.

We are almost done with the proof of the proposition. It remains to show that the packings
Pj are conformally inequivalent for different j ; equivalently, we claim that the convex subsets
Pj � HnC1 are pairwise non-isometric.

10) Many thanks to Jules Flin for this drawing.
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To distinguish the sets Pj , we define the following invariant:

�j D sup
xx2Dj

d.xx; 𝜕Dj / D sup
x2Pj

d.x; 𝜕Pj /:

Here d.x;𝜕Pj / denotes the minimal distance from x to the points of 𝜕Pj , similar for d.xx;𝜕Dj /.
Since each Pj has finite volume, �j is finite for each j . Then Remark 3.16 (1) implies that the
sequence �j is strictly increasing with j and, hence the sets Pj are pairwise non-isometric.

Remark 3.17. (1) In Section 4 we will give a different argument for conformal inequiv-
alence of packings (possibly after passing to a subsequence) using Hausdorff dimensions of the
limit sets of the groups �j .

(2) Two Kleinian packings are conformally equivalent if and only if they are quasiconfor-
mally (more precisely, quasisymmetrically) equivalent, provided that n � 2, see [5,12]. Hence,
we obtain infinitely many quasiconformally inequivalent packings in every dimension n � 2.

Proof of Theorem 1.15. We are given OF .o/, a k-arithmetic hyperbolic lattice of sim-
plest type, with o the ring of integers of k. In Proposition 3.14, we constructed a Kleinian
packing P D �S � S0 with a symmetry group �S which acts transitively on the spheres in the
packing, and an arithmetic super-symmetry group z� (commensurable to OF .o/). The group
z� contains a reflection R through the sphere S0. As in the proof of Theorem 1.12, the normal
vector w 2 V to S0 has all coordinates in k. By Addendum 3.13, after a conformal change of
coordinates on Rn, the “bend” covector ˛0 is defined over o0, the ring of integers of a quadratic
extension k0 of k. The supergroup z� of the packing is commensurable to OF .o/, and so the
orbit of w under the supergroup is defined entirely over k; it is only when we measure the bends
using the covector ˛0 (after a suitable rescaling) that we obtain elements of o0. Regardless, the
superpacking has all bends in o0, as claimed.

Proof of the Classification Theorem 1.9. The same proof gives the forward direction of
the Classification Theorem 1.9; indeed, if F is defined over Q and isotropic, then by the same
argument as above, the packing constructed in Proposition 3.14 is superintegral by part (i)
of Theorem 1.12. The backwards direction is a direct consequence of the Subarithmeticity
Theorem 1.3, which we turn to now. We will give two proofs, one that is basically identical to
the proof of [17, Theorem 19], and another using somewhat different ideas.

First proof of Theorem 1.3. Suppose that Q is the standard quadratic form of the sig-
nature .n C 1; 1/ as in equation (3.2), and let � < G D OC

Q.R/ be a discrete, Zariski dense
subgroup acting on the inversive coordinates vS0

of a sphere S0, so that the bends, that is, first
entries, in the orbit O D �vS0

are all integers. The action of � is on the left (on column vec-
tors) and involves all the entries of vS0

; we conjugate it to a right action just on (row vectors
of) bends, as follows.

By the Zariski density of � , the orbit O is also Zariski dense in the one-sheeted hyper-
boloid Q D 1, and hence contains n C 2 linearly independent vectors

¹v1 D vS0
; v2; : : : ; vnC2º � O:

These vectors provide a coordinate system for the dual vector space .RnC2/� so that if one
applies these coordinates to the covector ˛0 (that is, the first coordinate in RnC2), one gets inte-
gers. Moreover, for each 
 2 � , the pairing of vectors and covectors h
vi ; ˛0i D hvi ;

�
�1˛0i
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is also an integer. Hence, the vectors vi evaluate to integers on the �-orbit of the covector ˛0

in .RnC2/�. Hence � preserves the finite index sublattice L generated by the �-orbit of ˛0

in .ZnC2/�; here .ZnC2/� consists of covectors with integer coordinates with respect to the
coordinate system given by v1; : : : ; vnC2. Thus � < GL, where GL D¹g 2OC

Q.R/ W gLDLº.
The latter group is easily seen to be (and is sometimes taken to be the very definition of)
a congruence subgroup. Note also that the co-vector ˛0 is rational with respect to the integral
structure given by L and isotropic, see Lemma 3.6. It follows that GL, regarded as a lattice
acting on the dual vector space V �, is non-uniform, i.e. contains a unipotent element. Then GL

itself, regarded as a subgroup of G, contains a unipotent element, and, hence, is non-uniform.
To conclude: � is a subgroup of a non-uniform Q-arithmetic hyperbolic group of simplest type,
as claimed.

Second proof of Theorem 1.3. Let � < OC

Q.R/ be a discrete, Zariski dense subgroup
acting on the inversive coordinates vS0

of a sphere S0, so that the bends, that is, first entries,
in the orbit O D �vS0

are all integers. The first coordinate on RnC2 is a (nonzero) linear
functional ˛ on the real vector space V D RnC2. The key is the following general lemma:

Lemma 3.18. Let V be a finite-dimensional real vector space, � < GL.V / an irreduc-
ible subgroup, i.e. a subgroup which has no proper invariant subspaces. Let v 2 V and ˛ 2 V �

be nonzero vectors with the property that ˛.gv/ 2 Z for all g 2 � . Define the Z-submodule L

in V generated by the orbit � � v. Then L is a free Z-module of rank equal to the dimension
of V .

Proof. The group � obviously acts on L by automorphisms and ˛ still takes only integer
values on L. The irreducibility of � implies that L spans V as a real vector space. It remains
to prove that L is a discrete subgroup of V regarded as an abelian Lie group. Let xL denote the
closure of L in the classical topology on V and let W WD xL0 be the identity component of this
Lie subgroup of V ; this component is a (real) linear subspace in V . The group � preserves this
subspace. In view of irreducibility of � , the subspace W is either ¹0º or the entire V . However,
˛ ¤ 0 still takes only integer values on W , hence, W ¤ V and we conclude that W D ¹0º, i.e.
L is a discrete subgroup of V .

We apply this lemma in our setting. The submodule L � V D RnC2 defines an integral
structure on V . We claim that the quadratic form Q is rational with respect to this integral
structure. Since GZ, the set of integer points in G D OQ, contains � , it is Zariski dense in G,
hence, is an (arithmetic) lattice. It follows from [23, Exercise 4, Section 5A] that G is defined
over Q. We claim that the form Q is also defined over Q. The proof is the same as the one of
[23, Exercise 4, Section 5A]: Consider the vector space U of all quadratic forms on V . In view
of Zariski density of � in G, there is a unique �-invariant line in U ˝ C. Since � consists
of integer matrices (with respect to the integer structure on V defined by L), for every Galois
automorphism � of C, for every q 2 U , we have


�.q/�
D 
�.q� /; 
 2 �:

Therefore, since Q is �-invariant, so are the forms Q� ; � 2 Gal.C/. Thus, the forms Q�

belong to the line CQ, i.e. for every � 2 Gal.Q/ there exists z 2 C� such that

Q�
D zQ:
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(a) (b)

Figure 8. (a) A fundamental domain for the extended Bianchi groupbBi.23/, and (b) a superintegral
Kleinian packing attached to it.

Lastly, Q.v/ D 1 and v 2 L, hence,

z D zQ.v/ D Q� .v/ D Q� .v� / D .Q.v//�
D 1:

It follows that Q itself is a rational form with respect to the rational structure on V defined by
the lattice L.

Lastly, the argument that � is contained in a non-uniform lattice is the same as in the first
proof: The covector ˛0 is isotropic and rational with respect to the integral structure defined by
the lattice L.

3.3. Caveats and examples. We collect here some examples that illustrate various
caveats given in the introduction to the main theorems. We begin with an explicit example
of a superintegral Kleinian packing which is not crystallographic.

Example 3.19. The extended Bianchi group bBi.23/ (see footnote 6) is not reflective
(see [2] and [21]). Indeed, applying Vinberg’s algorithm [34] to the quadratic form

f D �2xy C 2z2
C 2zw C

23 C 1

2
w2

shows that the subgroup of Of .Z/ generated by all reflections has infinite index in Of .Z/.
One can give a fundamental domain in H3 for Of .Z/ as shown in Figure 8.a/; here the blue
walls act by reflections, and there is a pair of commuting unipotent elements, one identify-
ing the green walls, and another identifying the orange ones. By part (2) (ii) of the Structure
Theorem 1.22, we can construct a superintegral packing from this fundamental polyhedron; see
Figure 8 (b). So this is a superintegral packing which is Kleinian but not crystallographic.11)

11) Note that this particular packing appeared previously in work of Stange [30] and Martin [19] but was not
recognized there as being dense (and hence was not considered a “packing” by our definition), due to the significant
distances between disjoint circles. The general theory given here makes this density apparent.
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(a) (b)

Figure 9. (a) The Coxeter diagram for bBi.30/, and (b) a superintegral packing with all spheres
disjoint.

As mentioned above Remark 1.10, a superintegral Kleinian packing can have all spheres
disjoint (as observed already in [17]); but its supergroup must still be non-uniform and Q-arith-
metic. One such is the following.

Example 3.20. We consider the extended Bianchi group z� D bBi.30/. Equivalently,
z� Š OF .Z/ is the integer orthogonal group preserving the form F D �xy C z2 C 30w2.
This group is reflective (see [2]), and applying Vinberg’s algorithm [34] gives the Coxeter dia-
gram12) shown in Figure 9. The node marked “8” is totally isolated from the others, being
either orthogonal or some given distance apart from the other generating reflective walls. (So
are nodes “9”, “10”, and “11” but we choose to use “8”.) Dropping this wall from the generators
and letting the remaining generators act on it by reflections (as in the Structure Theorem 1.22)
gives the superintegral crystallographic packing shown in Figure 9 (b).

As observed already in [17], if a packing cannot be realized as the orbit of a single sphere
(that is, there is no symmetry group for which the action on the spheres in the packing is
transitive), then the resulting packing (or bug) need not be superintegral (or even integral); cf.
Remark 1.11. Here is an explicit example of a non-integral bug with non-uniform, Q-arithmetic
supergroup.

Example 3.21. Let z� be the extended Bianchi group bBi.6/. Equivalently, z� Š OF .Z/

is isomorphic to the integer orthogonal group preserving the form F D �xy C z2 C 6w2.
That it is reflective (generated by reflections) is essentially due to Bianchi [4]; see also [2].
Applying Vinberg’s algorithm to this group produces the following normal vectors:

.0; 0;�1; 0/t ; .1; 0; 1; 0/t ; .0; 0; 0;�1/t ;

.6; 0; 0; 1/t ; .�1; 1; 0; 0/t ; .2; 2; 0; 1/t :

12) The diagram has nodes for each facet, and facets that are orthogonal are not connected; the dihedral angle
�
3 is denoted by a single line, angle �

4 is a double line, and angle �
1

D 0 is a thick solid line. Nodes of separated
facets are connected with a dotted line.
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Figure 10. (a) The spheres with inversive coordinates (3.22) in Example 3.21. (b) Their Coxeter
diagram.

Making a (choice of) change of variables from F to the universal form Q in (3.2), these
correspond to spheres with the following (realization of) inversive coordinates:

v1 D .0;�1; 0; 0/t ; v2 D .0; 1; 0; 1/t ; v3 D .0; 0;�1; 0/t ;(3.22)

v4 D .0; 0; 1;
p

6/t ; v5 D .1; 0; 0;�1/t ; v6 D .
p

2; 0;
p

3;
p

2/t :(3.23)

See Figure 10 (a) for the corresponding spheres (as circles in R2). Writing V for the 4 � 6

matrix whose columns are vj , we can compute the 6 � 6 Gramian of all Q-inner products:

V tQV D G D

0BBBBBBBBBBB@

1 �1 0 0 0 0

�1 1 0 0 �
1
2

�
1p
2

0 0 1 �1 0 �
p

3

0 0 �1 1 �

q
3
2

0

0 �
1
2

0 �

q
3
2

1 0

0 �
1p
2

�
p

3 0 0 1

1CCCCCCCCCCCA
:

Equivalently, z� has the Coxeter diagram given in Figure 10 (b). A different realization of vj

from (3.22) will of course have different inversive coordinates V but the Gramian and Coxeter
diagram are invariants.

Now we construct the bug. To this end, write Rj for the Möbius action of reflection
through sphere vj , that is,

Rj D I4�4 C 2vj � vt
j � Q:

We apply part 2 (i) of the Structure Theorem 1.22 with S 0 D ¹R1; : : : ; R6º, hS 0i D z� , and take
R D ¹R3; R6º so that S D S 0 n R. The bug we obtain is then the orbit

(3.24) B D hSi � ¹v3; v6º;

as shown in Figure 11. This particular realization of the bug is evidently non-integral, but we
have not yet ruled out that there cannot be some other conformally equivalent realization of
this bug which is integral. (Indeed, there exist realizations of the classical Apollonian packing
that are non-integral.)

Lemma 3.25. There does not exist a conformal realization of the bug in (3.24) that is
integral.
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Figure 11. A non-integral bug; the bend of a circle is shown at its center.

Proof. We mimic the first proof of Theorem 1.3 by looking at a right “bends” action.
This time, we will do it using an over-determined system of equations, leading to an irrational
linear relation among the bends, which is realization-independent (and hence the bug cannot
ever be integral).

To begin, notice that the spheres

v3; v6; R2 � v6; R1 ı R2 � v6 and R5 ı R1 ı R2 � v6

are all in the bug B. Write W for the 4 � 5 matrix whose columns are the inversive coordinates
of these spheres. The kernel of W ,

K WD ker.W / WD ¹g 2 Mat5�5.R/ W W g D 0º;

is independent of the realization of the bug. Indeed, if g 2 Isom.H3/ is any isometry and we
move the whole bug by left-acting by g, then the inversive coordinates matrix W changes
to gW , leaving the kernel K invariant. Notice that the kernel contains, e.g.,

K D

0BBBBBB@
�
p

3 0 0 0 0

1 0 0 0 0

�3 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1CCCCCCA 2 K:

So in any realization of this bug B, if the spheres in W have bends, respectively, a, b, c, d ,
and e, say, then

0 D .a; b; c; d; e/ � K � .1; 0; 0; 0; 0/t
D �

p
3a C b � 3c C e:

Suppose this is the case with bends a; : : : ; e all integers; then we must have a D 0. Note
that this applies to not only one particular realization of these five spheres, but to any such;
in particular, the entire orbit of these five spheres under the symmetry group � D hSi has the
bend a D 0. But then � satisfies an extra polynomial equation, and is not Zariski dense, which
is a contradiction.

Lastly, we prove Proposition 1.14 by exhibiting the following.
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Figure 12. Icosahedral packing.

Example 3.26. In [17], a procedure was given for construction a packing P D P.…/

modeled on a (convexly-realizable combinatorial type of a) polyhedron …. In the case of …

being the icosahedron, the resulting packing shown in Figure 12. In can be shown that the
entire superpacking can be made to have bends in o D ZŒ��, where � D

1C
p

5
2

is the golden
mean. But Vinberg’s criterion applied to the “superGramian” (in the nomenclature of [17])
shows that the supergroup is non-arithmetic, because the quadratic form it defines (over Q.�/)
fails to become definite under the Galois conjugate embedding. For details of this computation,
see http://math.rutgers.edu/~alexk/maths/Icosahedron.nb.

4. Hausdorff dimensions of limit sets of packings

In Proposition 3.14 and its application to (the forward direction of) the Classification
Theorem 1.9, we showed how to construct superintegral Kleinian packings from Q-arithmetic
non-uniform lattices. We now extend this construction to show that for infinitely many j the
Hausdorff dimensions of the limit sets of the groups �j constructed in the proof of Proposi-
tion 3.14 are pairwise distinct and, moreover, the sequence of Hausdorff dimensions converges
to the maximal Hausdorff dimension, n. This will follow from the following theorem where
dim stands for the Hausdorff dimension, which implies Theorem 1.13. We continue with the
notation introduced in the proof of Proposition 3.14.

Theorem 4.1. One has limj!1 dim.ƒ.�j // D n and for all j , dim.ƒ.�j // < n.

Note first that the discrete groups �j contain geometrically finite subgroups which are
conjugates of �1.N /. In particular,

ı.�j / � dim.ƒ.�1.N /// D n � 1 �
n

2
;

provided that n � 2.

http://math.rutgers.edu/~alexk/maths/Icosahedron.nb
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We next discuss a relation between the Hausdorff dimension of the limit set, the critical
exponent and the bottom of the spectrum of the Laplacian.

For a complete connected Riemannian manifold M we let �.M / denote bottom of the
L2-spectrum of the Laplacian of M . This number can be computed via Rayleigh quotients as
follows:

� D inf

R
� jruj2R

� u2
;

where the infimum is taken over all smooth compactly supported functions (called “test” or
“trial” functions) u 2 C1

c .M / and � WD ¹u > 0º.

Theorem 4.2 (Semicontinuity of �). The function �.M / is upper semicontinuous with
respect to the topology of smooth Gromov–Hausdorff convergence:

Mi ! M H) lim inf
i!1

�.Mi / � �.M /:

Proof. This is clear using the Rayleigh quotient definition: Every test-function on M is
the C 1-limit of a sequence of test-functions on the manifolds Mi .

Remark 4.3. (1) The same theorem (and proof) applies to Riemannian orbifolds.
(2) The bottom of the spectrum is not continuous with respect to the topology of smooth

Gromov–Hausdorff convergence. For instance, for n � 3 let M be a hyperbolic .n C 1/-man-
ifold of finite volume, let Mi ! M be a profinite sequence of (finite) covers of M . Then the
manifolds Mi converge to the hyperbolic n-space, �.Mi / D 0, while �.HnC1/ D n2

4
.

Given a discrete subgroup � < Isom.HnC1/, let ı.�/ denote the critical exponent of �

(see, e.g., [24]). A discrete subgroup � < Isom.HnC1/ is called nonelementary if its limit
set consists of more than two points. If � is geometrically finite and nonelementary, then
ı.�/ is equal to the Hausdorff dimension of the limit set of � , see [24, 25, 31, 33]. We will
need the Elstrod–Patterson–Sullivan formula (see, for example, [24]), relating, for a discrete
subgroup � < Isom.HnC1/, the critical exponent ı D ı.�/ and the bottom of the spectrum
� D �.HnC1=�/:

Theorem 4.4. One has

� D

8̂̂<̂
:̂
�

n

2

�2

if ı �
n

2
;

ı.n � ı/ if ı �
n

2
:

Definition 4.5. A sequence of closed subgroups �i of a Lie group G is said to con-
verge to a closed subgroup � < G geometrically or in Chabauty topology if the following two
conditions are met:

(1) For every 
 2 � there exists a sequence 
i 2 �i which converges to 
 .

(2) If a sequence 
i 2 �i subconverges to 
 2 G, then 
 2 � .

Suppose now that X is a complete connected Riemannian manifold, G is the isometry
group of X . Then G (equipped with the compact-open topology) is a Lie group. Fix a base-
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point x 2 X . Consider a sequence of subgroups �i < G and a subgroup � < G and quotient
manifolds/orbifolds Mi D X=�i , M D X=� . Let xxi ; xx denote the projections of x to Mi , M

respectively.
The following theorem was proven in [3] in the case when X is the hyperbolic space

(which will suffice for us), but the same proof works for any complete connected Riemannian
manifold.

Theorem 4.6 (see [3]). A sequence of discrete subgroups �i < G converges geometri-
cally to a discrete subgroup � < G if and only if the sequence of pointed Riemannian mani-
folds/orbifolds .Mi ; xxi / converges to .M; xx/ in the smooth Gromov–Hausdorff topology.

Corollary 4.7 (Semicontinuity of � and ı). The following statements hold:

(a) Suppose that �i is a sequence of discrete (nonelementary) subgroups of Isom.HnC1/

converging to a discrete subgroup � < Isom.HnC1/. Then

lim inf
i!1

�.HnC1=�i / � �.HnC1=�/:

(b) Suppose, in addition, that inf¹ı.�/; ı.�i /; i 2 Nº �
n
2

. Then

(4.8) lim inf
i!1

ı.�i / � ı.�/:

In particular, if ı.�i / � ı.�/ for all i (e.g., if �i < �), then

lim
i!1

ı.�i / D ı.�/:

Proof. The first inequality is a direct corollary of the two theorems above. The second
inequality follows from the relation of ı and �:

� D ı.n � ı/ if ı �
n

2
;

see Theorem 4.4.

Lastly, we need the following theorem due to T. Roblin [28] (see also R. Brooks [8]):

Theorem 4.9. Let � < Isom.HnC1/ be a geometrically finite13) subgroup and b� < �

a normal subgroup with amenable quotient �=b� . Then ı.y�/ D ı.�/.

Thus, if � is a lattice andb� < � is a normal subgroup with cyclic quotient, then ı.y�/D n.
We can now finish the proof of Theorem 4.1. Let �j be the discrete groups as in the

theorem.

Lemma 4.10. The sequence �j geometrically converges to y� .

Proof. This follows from the fact that the sequence of domains Dj exhausts yM (see
Remark 3.16), which ensures Gromov–Hausdorff convergence of the corresponding hyperbolic
manifolds, hence, geometric convergence of discrete subgroups.

13) More generally, a group of divergence type, i.e. a group whose Poincaré series diverges at the critical
exponent.
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Thus, we conclude that

lim
j!1

dim.ƒ.�j // D dim.ƒ.�// D n:

On the other hand, ı.�j / < n since each �j is geometrically finite and its limit set is
a proper subset of Sn (Sullivan [31] and Tukia [33], independently). This concludes the proof
of Theorem 4.1 and, hence, of Theorem 1.13.
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