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ABSTRACT: Within metal-ligand cooperative systems employing acidic groups, studies that empirically assess distance relation-
ships are needed to maximize cooperative interactions with substrates. We report the formation of two Cu(I)-N,H4 complexes using
1,4,7-triazacyclononane (TACN) ligand frameworks bearing two tert-butyl groups and either a Lewis acidic trialkylborane or an inert
alkyl group. Metal-Lewis acid cooperativity imparts heightened acidification of the hydrazine substrate and plays a key role in sub-

strate release to a competitive Lewis acidic group.

The environment surrounding the active site(s) of metalloen-
zymes features flexible and dynamic amino acid networks to
assist selective substrate binding and/or facilitate subsequent
transformations.! Despite the prevalence of such secondary
sphere interactions in biology, these design features are under-
explored in the field of synthetic transition metal chemistry,
where emphasis is often placed on primary sphere ligand tuning
to effect substrate transformations.? To address this knowledge
gap, a major thrust of our group’s efforts,® and others,* is to ex-
amine requirements of tethered acidic groups in metal systems
to facilitate substrate binding and reactivity. We previously de-
scribed ideal-fit conditions (geometric and distance require-
ments) for cooperative binding modes of p-1,1 and p-1,2 sub-
strates in tetrahedral complexes using bidentate and meridional
tridentate ligand platforms.*»* Importantly, such secondary-
sphere design rules are dependent on how the appended groups
are anchored to a given primary sphere ligand. Thus, because
optimized parameters for substrate binding are ligand depend-
ent, empirical studies are needed to clarify substrate binding re-
quirements across different classes of primary sphere ligand en-
vironments.®

Recently, we described a facially-coordinating ligand,
BBNTACN™, containing an appended borane Lewis acid that is
capable of stabilizing a monomeric copper hydride.” When
treated with CO,, a dimeric product formed where a formate
unit acts as a bridging ligand between the Cu and appended bo-
ron of a second molecule (Fig. 1). This observed binding mode
demonstrates that the coordination geometry required for a p-
1,3-substrate, such as formate to bind cooperatively at a single
metal center, is mismatched for this system. To further clarify
binding preferences, we aimed to expand on the known sub-
strate reactivity at [(BBNTACN®")Cu(I)] to determine require-
ments for mononuclear metal/Lewis acid cooperative binding.
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Figure 1. Prior work revealed geometric mismatches for p-1,3 sub-
strates. This work biases cooperative mononuclear pi-1,2 substrate
binding.

To establish binding preferences, we sought to identify an
ideal spectroscopic handle to use in the characterization of new
(TACN®")Cu(I) complexes. We selected the "*TACN® ligand
variant, which features an inert —CH; moiety in place of the tri-
alkylborane, and targeted the synthesis of a series of halide
complexes (Cl, Br, I). Treating a THF solution of "®*TACN®"
with CuX at room temperature afforded ("®*TACN®")CuX (1-
X; X = Cl, Br, I) as white powders. The solid-state structures of
1-X revealed tetrahedral geometry (14 = 0.65) and a spacefill
rendition showcased the proximity of the halide ligands to the
tert-butyl substituents (Fig. 2). The overall steric encumbrance®
of both the "**"TACN™" ligand and the halide were estimated via



solid-angle calculations.’ For all Cu-X complexes, the "®*TAC-
N ligand shields the metal center to a similar extent (67.2-
67.4%). However, the metal-coordination-sphere shielding im-
parted by the halide (Ghaiige) is more variable and affords equiv-
alent cone-angle (ECA) values of 105.19°, 103.13°, and 93.50°,
for Br, I, and Cl, respectively, and contributes the greatest to
differences in total ligand-coordination-sphere shielding (Fig.
2).1% This M-X trend mirrors previous studies in high-valent
chromium systems.!!
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1-Br 19.6% 105.2° -26 °C 11.3 kcal/mol
1-l 18.9% 103.1° -20°C 11.6 kcal/mol

Figure 2. Solid angle and variable-temperature '"H NMR (CD2Cla,
500 MHz) analysis of 1-X. Graide = Cu coordination sphere
shielded by halide; ECA = equivalent cone angle; T. = coalescence
temperature; AG* = activation energy barrier for tert-butyl rotation.
Spacefill model of 1-I derived from X-ray crystallography.

Diamagnetic complexes 1-X display C; symmetric 'H NMR
spectra (CDCls, 25 °C, 700 MHz) with a single, broad tert-butyl
resonance where the full-width at half-max (fwhm) of this res-
onance follows the trend I > Br > CI (15.8, 10.4, and 8.3 Hz,
respectively). We hypothesized that the broad fert-butyl reso-
nances are due to hindered rotation on the NMR timescale,'? as
a result of steric hindrance with the copper-coordinated halides.
At 25 °C, each complex displays a well-defined singlet reso-
nance near 1.3 ppm assigned as freely-rotating (symmetric)
tert-butyl groups. Upon cooling, the tert-butyl resonance in
each complex further broadens to coalescence temperatures be-
tween -20 to -30 °C (Figs. S12-S20). Further cooling reveals
three new CH; resonances (6H each), consistent with hindered
rotation of the fert-butyl (Cs symmetry is maintained). The ac-
tivation energy barrier (AG!) for tert-butyl rotation was ex-
tracted from variable temperature 'H NMR spectra (CD,Cly,
500 MHz). These values range 11.1-11.6 kcal mol™, revealing
minimal dependence upon the identity of the halide.

After clarifying the solution behavior of 1-X, we examined
requirements for cooperative binding interactions with ditopic
substrates. One dibasic substrate of interest to our lab and others
is hydrazine (N,Hy4).>* ¢ 13 Notably, few structurally-character-
ized Cu(I)-N,Hs complexes have been reported: there are six
examples that feature one bound N,Hs molecule,'* and only two
that feature a single Cu site.!4*¢
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Figure 3. Flexibly appended Lewis acid accommodates p-1,1 (2-H)
and p-1,2 (3-BArF24) substrate binding modes.

To provide guidelines into the requirements needed to pro-
mote mononuclear cooperative binding with substrates at
[(BBNTACN®Y)Cu(l)], we targeted reactivity studies using
(BBNTACN™®Y)Cu-H (2-H), a precursor amenable to protona-
tion-induced ligand substitution. We previously demonstrated
that boron-stabilized metal hydrides undergo ligand exchange
with a Brensted acid concomitant with elimination of H.*
When a thawing THF solution of 2-H was treated with 1.0 equiv
[NoHs][BATF24], [(BBNTACN®Y)Cu(N,H4)]* (3-BArF24) formed
in 71% yield (Fig. 3). The '"H NMR spectrum of 3-BArF2 re-
vealed a single broad tert-butyl resonance (fwhm = 5.54 Hz;
CDCl;) consistent with rotational hindrance akin to 1-CL
Asymmetry of the N>H,4 unit was apparent from the two broad
NH; resonances (5.58 and 6.17 ppm; THF) and three prominent
infrared absorbances (KBr; 3299, 3239, 3160 cm™!). Interaction
of the trialkylborane with the substrate was supported by ''B
NMR spectroscopy, which featured a resonance at -3.96 ppm
(THF), consistent with a tetrahedral boron environment.!’ Im-
portantly, these data support that the [(BENTACN®Y)Cu(l)]
framework can accommodate both the p-1,1 and p-1,2 binding
modes depending on the identity of the substrate..

Complex 3 is alternately accessible via direct addition of
N:>H, to 2-OTH, a variant which features a non-interacting ap-
pended trialkylborane. Treating a thawing THF solution of 2-
OTf with a 1.0 equiv. N,Hs; furnished [(BBNTAC-
NBYCu(N,H4)][OTf] (3-OTf) in 86% yield (Fig. 4). Following
an XRD experiment, data refinement revealed a tetrahedral en-
vironment around Cu (ts = 0.67) with a p-1,2-N,H4 ligand
bridging the Cu and the appended trialkylborane (XB, =
321.13(8)°, B-N;H4 = 1.6521(13) A). The Cu-N,H, distance
(2.0330(8) A) is considerably shorter than the Cu-Nracy dis-
tances (ave. = 2.2017 A) by ~0.17 A. Compared to complexes
1-X, the equivalent cone angle for the N,H, ligand in 4 is
102.30°, which most closely matches that of iodide in 1-I. In
the conversion from 2-H to 3-OTf, the flexibly appended bo-
rane moves 1.15 A (with respect to copper) to accommodate the
larger substrate. These results suggest that, in contrast to for-
mate binding, the appended trialkylborane in 3-OTf interacts
with the terminal NH; of a N>H,4 ligand within the same mole-
cule, suggesting that p-1,2-substrates may be ideally suited for
cooperative interactions within the framework.

We sought to interrogate the requirement of the appended bo-
rane by employing ("®*TACN®")Cu(OTf) (1-OTf) which fea-
tures the inert butyl group. Treating a thawing THF solution of
1-OTf with a solution of 1.0 equiv. of NoH,4 afforded the termi-
nal NoHs complex [("B“TACN®Y)Cu(N,H4)][OTf] (4) in 77%
yield (Fig. 4a). The 'H NMR spectrum of 4 revealed two broad
NH; resonances at 3.61 and 4.78 ppm (CD,Cl,), consistent with
asymmetric binding of the N>H, moiety. The solid-state struc-
ture of 4 contains two molecules in the unit cell where NoHyis
terminally bound to a single copper (14 = 0.69; Fig. 4c). Com-
pared to 3-OTf, the Cu—N,H, distance in 4 (ave. = 1.986 A) is
shorter by ~0.05 A. Although terminally bound, the N,H, ligand
engages in weak intermolecular hydrogen-bonding interactions
with an adjacent molecule of 4 (N Haye = 2.3 A, NN = 3.1
A),' highlighting its preference for secondary binding interac-
tions.

We investigated the hydrazine adducts in 3-OTf and 4 com-
putationally to compare the thermodynamics of hydrazine bind-
ing in each case. We employed density functional theory (DFT)



methods (B3LYP-D3/SVP (PCM = THF)). The binding of hy-
drazine to form a Cu-N;H4 complex is more favorable by ~6
kcal/mol when the appended borane is present (3-OTf) com-
pared to when it is not (4), see SI. In addition to thermodynamic
stabilization imparted by the appended Lewis acids, we exam-
ined the extent to which the Brensted acidity of N,Hj is per-
turbed via Lewis acidic interactions, using DFT (Fig. 4b).
Brensted acidity can serve as a general proxy for substrate acti-
vation and, with hydrazine, may provide insight into acidifica-
tion during PCET steps during N>-to-NHs reduction. Com-
plexes 3 and 4 were compared to a metal-free surrogate 9-pro-
pyl-9-borabicyclo[3.3.1]nonane (9-Pr-9-BBN), in analogy to a
previous study with Zn-bound N,H,.>
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Figure 4. A) synthesis of 3-OTf and 4. B) Calculated pKa values.
C) Molecular structures of 3-OTf and 4 displayed with 50% prob-
ability ellipsoids. H-atoms not attached to N2Ha and outer sphere
triflate anions omitted for clarity.

For the hydrazine adduct of 9-Pr-9-BBN, the proximal N-H
protons are acidified by 33 pK, units compared to unbound
N,H4, while the distal protons are less influenced by Lewis acid
binding (~15 pK, units). A similar, though less pronounced, ef-
fect is observed for binding of N,Hj in 4, with the proximal and
distal N-H protons displaying pK, values that are 27 and 14 units
lower than free NoH,, respectively. Importantly, the dual inter-
actions in 3 lead to Cu-N-H and B-N-H pK, values that are con-
siderably lower than those observed in the limiting cases (39
and 42 pK, units lower than free N>H4, respectively), indicating
that Cu(I) and the trialkylborane provide additive effects that
acidify N,Hy to a greater extent.>® We sought to experimentally
confirm this acidification in 3-OTf via deprotonation of the
bound N,H,. Unfortunately, addition of 1 equiv. base'® to a
thawing THF solution of 3-OTf resulted in an intractable mix-
ture (see SI for details). While no stable Cu-containing product
was obtained, we found that when KN(SiMes), was employed
as the base, HN(SiMe;), was observed in the crude '"H NMR
spectrum, consistent with proton transfer, albeit without afford-
ing a stable metal-containing product.
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Figure 5. A) additive stabilization of hydrazine disallows substrate
release. B) halting metal/Lewis acid cooperativity enables facile
hydrazine release. Molecular structure of 5 (50% probability ellip-
soids). H-atoms not connected to N2Ha are omitted and 9-BBN sub-
stituents displayed in wireframe.

Although irreversible binding of substrates (or reactive inter-
mediates) is often the focus of reports detailing secondary
sphere interactions, a requirement of any system to undergo
turnover is the ability to undergo release; a product can some-
times feature a higher affinity for secondary sphere acidic
groups than the substrate.!® Given the ability of [(BBNTAC-
N®BY)Cu(I)] to stabilize both u-1,2 and p-1,1 substrates, we hy-
pothesized this flexibility may facilitate substrate release. When
3-OTf was treated with one equivalent of triphenylborane—a



more potent Lewis acid than a trialkylborane—no reaction oc-
curred (Fig. 5A). The acceptor number of BPhs is 69 while that
of'an alkyl-BBN is 25, suggesting transfer between boranes, ab-
sent cooperativity with the metal, should be feasible.> 2° This
result highlights the additive effect of both the trialkylborane
and copper(I) for sequestering hydrazine in analogy to the pK,
analysis. To enable hydrazine release, we first treated 3-OTf
with a competitive Lewis base, iodide, which cleaved the Cu-
N;H, interaction and formed (BENTACN®")Cul(N,H.) (5; Fig.
5B). X-ray diffraction confirmed the newly formed Cu-I bond
(2.47402(16) A) and that the borane operates independent of the
metal to bind N;Hy (N-B = 1.6462(17) A) with the terminal NH,
lone-pair unquenched.?! By first disrupting the cooperativity
between copper and boron in forming 5, hydrazine release is
facile: triphenylborane readily abstracts hydrazine to generate
Ph;B-N,H; and (BBNTACN™®¥)Cul (2-1).

This study demonstrates that metal/Lewis acid cooperativity
imparts additive effects for geometrically matched substrates
both in terms of activation (pK,) and substitutional stability.
Both concepts can be employed for new avenues of substrate
activation/functionalization and product exchange/extrusion to
overcome catalyst inhibition encountered in catalytic processes.
Current efforts are focused on extending these concepts to re-
dox reactions using these and related substrates.
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EXAMINING METAL/LEWIS ACID COOPERATIVE EFFECTS:
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TOC Synopsis

Additive effects of metal/Lewis acid cooperativity are investigated in a Cu(I)-N2H4 complex featuring an appended trialkylborane. The
cooperative stabilization of hydrazine by copper and the borane affords increased binding strength and activation (Brensted acidity). In
addition, hydrazine exchange with a competitive Lewis acid is only observed when the cooperative metal/Lewis acid interaction is first

disrupted.



