2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC) | 979-8-3315-0909-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/HIPC62374.2024.00012

2024 1IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC)

Effective and Efficient Offloading Designs for
One-Sided Communication to SmartNICs

Ben Michalowicz!, Kaushik Kandadi Suresh!, Hari Subramoni®,
Mustafa Abduljabbar!, Dhabaleswar K. (DK) Panda', Steve Poole?
! Department of Computer Science and Engineering, The Ohio State University, Columbus, USA
{michalowicz.2, kandadisuresh.1, subramoni.l, abduljabbar.1, panda.2} @osu.edu
2Los Alamos National Laboratory
{swpoole@lanl.gov}

Abstract—One-sided communication is one of many ap-
proaches to use for data transfer in High-Performance Com-
puting (HPC) applications. One-sided operations require less
demand on parallel programming libraries and do not require
HPC hardware to issue acknowledgments of successful data
transfer. Thanks to its inherently non-blocking nature, one-sided
communication is also useful for improving overlap between
communication and compute. As with any non-blocking commu-
nication, however, we run into the issue of message progression
getting interleaved with computation. With the advent of Smart
Network Cards (SmartNIC) such as NVIDIA’s BlueField Data
Processing Units (DPU), we can offload the communication and
message progression to these devices to improve the overlap of
communication and compute. In this paper, we propose designs
for efficient offloading of one-sided communication. We show how
our designs can be used for offloading both MPI one-sided “put”
and ‘“get” and OpenSHMEM’s non-blocking “put” and ‘“get”.
Using a Block Sparse Matrix-Multiplication Kernel (BSPMM),
we show that our designs achieve over 96% improvement in

between communication and compute, and this generally leads
to a longer execution time.

NVIDIA’s BlueField Data Processing Units (DPU) have
allowed researchers to investigate offloading two-sided com-
munication (see Section VII), but to the best of our knowledge,
one-sided communication has never been attempted. One of
the primary challenges in offloading one-sided communication
is how metadata gets exchanged; two-sided communication
can exchange network-level keys on a per-send/per-receive
basis because all processes involved must match data from
the process sending data to/receiving data from them. By
comparison, one-sided communication offload is less trivial
to implement, since matching of this sort is not required.

This leads us to ask the following question: How can we
efficiently offload one-sided operations to the DPU and achieve
better program runtime and overlap of communication and

runtime over pure-host execution for communication offload. We computation?

also briefly explore initial compute offload ideas for such one- In this work, we propose designs for efficiently offloading

sided kernels and show over 91% improvement in runtime here. . L. . e s
one-sided communication operations — “put” and “get” — to

Index Terms—Remote Memory Access, SmartNICs, BlueField
DPU, MPI, One-Sided Communication, Matrix Multiplication
Kernels

I. INTRODUCTION

Today’s HPC clusters utilize super-dense, many-core CPUs
in tandem with high-bandwidth, low-latency network cards
such as NVIDIA’s ConnectX-7 products [17] and their
Quantum-2 switches [19]. Communication middleware such
as Message Passing Interface (MPI) and Partitioned Global
Address Space (PGAS) libraries must continually adapt their
designs to use these platforms efficiently.

Advancements in such hardware also allow for faster one-
sided “put” and “get” operations, with middleware utilizing
hardware-level features to improve end-user functionality. Re-
search along this angle has been done in the context of MPI
as well as other programming models and libraries, such as
OpenSHMEM [24], where non/blocking one-sided operations
exist and form the backbone for its communication.

However, as with non-blocking two-sided communication in
MPI, message progression has to be interleaved with computa-
tion. This prevents programs from obtaining sufficient overlap

the DPU. We also show how these can be applied to MPI,
and through frameworks such as OSHMPI [3], we show how
these designs can be used in the context of OpenSHMEM’s
non-blocking put and get primitives. In particular, we show
results at the microbenchmark level for non-blocking “get”
as well as show how it can lead to application-level benefits
in a Block Sparse Matrix Multiplication (BSPMM) kernel —
a kernel whose get-compute-update pattern is found in the
NWChem computational chemistry software [7].

To the best of our knowledge, this is the first paper to
propose designs for offloading one-sided communication
primitives to a SmartNIC.

II. MOTIVATION
A. Why one-sided operations?

One-sided communication (1SC) gives a developer a sig-
nificant amount of flexibility in developing applications and
communication patterns. One of the earliest papers introducing
one-sided operations for the MPI-2 standard [11] showed
how one-sided communication could outperform two-sided
communication by avoiding bottlenecks such as Rendezvous-
protocol handshakes and a need for individual synchronization
[21]. One-sided communication only requires operations from

2640-0316/24/$31.00 ©2024 IEEE 23
DOI 10.1109/HiPC62374.2024.00012
Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

the process performing a given put/get/fetch-and-op/etc. op-
eration; its peer is not required to do anything. This allows
developers and researchers to implement more flexible one-
sided collective algorithms and communication patterns.

B. Challenges in Offloading One-Sided Communication

At the same time, use of one-sided communication poses
some challenges. Firstly, there are more options for win-
dow/heap synchronization. MPI has a mix of passive and
active synchronization capabilities that a user chooses from
(Fences, Post-Start Complete Wait, and Locks) alongside
functions to “complete” a put or get operation. Similarly,
OpenSHMEM has analogs of these functions in the form of
shmem_wait_XXX and shmem_set/clear_lock, with
shmem_quiet being the main function used to “complete”
the non-blocking communication. Each function may have dif-
ferent requirements/dependencies, particularly in the latter [1];
some variant of these synchronization techniques is required
to prevent race conditions when many processing elements
(PE) operate on either the same window (MPI-based) or on
the same variable within the symmetric heap (OpenSHMEM-
based). Secondly, ordering is not explicitly guaranteed with
one-sided semantics, though fence operations usually solve
this with a small overhead.

Offloading one-sided communication has its challenges in
addition to those mentioned above. We present the following
questions/challenges:

1) How do we best keep track of these operations when we
do not have, for example, MPI_Request structures to use
(such as with non-blocking two-sided communication)?
How can we effectively extend shared resources (Open-
SHMEM symmetric heap, MPI Windows, etc.) to be
detectable by proxy processes (placed on the DPU to
perform offloaded communication)?

With a lack of peer process acknowledgments, how do
we effectively notify the issuing process that a transfer
is complete/complete the operation when introducing a
proxy process for offloading said communication?
Message progression in two-sided communication exists
for non-blocking collectives. How can we efficiently
extend one-sided synchronization/progression primitives
to account for the completion of data transfers via proxy
processes?

With the above, how can we preserve the semantics and
standard compliance of parallel programming libraries
that utilize our designs (less trivial than with two-sided
communication)?

2)

3)

4)

5)

At a high level, the answers to these questions are deceptively
simple and require some serious consideration (see Section V
for further details).

C. Applicability of 1SC

Many applications have previously or currently used one-
sided semantics. As mentioned in Section I, NWChem’s [7]
primary communication pattern is a BSPMM kernel on a
multi-dimensional mesh, and its popularity has led others to

24

develop/utilize smaller kernels utilizing MPI-based Remote
Memory Access (RMA) [25]. The Graph500 ([9], [28])
also utilized one-sided communication until version 3.0, and
a variant was also designed using OpenSHMEM primitives
for Oak Ridge National Laboratory’s set of OpenSHMEM
benchmarks [20]. The OSU Microbenchmark suite [22] also
has a set of MPI-based RMA benchmarks and benchmarks
to cover OpenSHMEM one-sided communication for put, get,
and collectives.

D. How ISC/RMA is Used in Programming Models

Both MPI and OpenSHMEM are popular programming
models whose standards are continuously in active develop-
ment. Both provide a host of functionalities for one-sided
primitive operations. Given these, we are motivated to de-
sign and implement efficient offloading schemes for one-
sided communication that can apply to both programming
models/libraries. While the use of non-blocking OpenSHMEM
primitives is not as easy to find in practice, MPI-based RMA
is non-blocking by design (simply avoid immediately calling
window synchronization/flush functions). Thanks to this, we
are also motivated to make our designs adaptable to these and
other parallel programming models.

III. CONTRIBUTIONS AND PAPER BREAKDOWN

We offer the following contributions in this paper:

1) A novel design for offloading one-sided operations to
DPUs, namely “put” and “get” operations

Given our abstracted interface, the ability to integrate
this into any OpenSHMEM and MPI library.
Demonstration of scalability and improvement over
blocking and nonblocking implementations of a
BSPMM kernel, where we achieve up to 71% improve-
ment in runtime performance

Up to 91% runtime benefits with naive offloading of
computation onto the DPU with the same kernel.

2)

3)

4)

The rest of the paper is organized as follows:

o Section IV details the background on one-sided commu-
nication, the OpenSHMEM library, and a brief overview
of the BlueField DPU.

o Section V describes our design for offloading one-sided
operations and how they can be applied to MPI and
OpenSHMEM.

« Section VI details our experimental setup and the exper-
iments we performed for non-blocking communication
and compute offloading.

o Section VII explores related work to what this paper
proposes.

o Section VIII wraps up our paper and details future plans.

IV. BACKGROUND
A. One-Sided Communication

One-sided communication comes in many flavors of oper-
ations: “fetch-and-op”, “compare-and-swap”, “put” and “get”,
and other atomic operations beyond the paper’s scope. From a

hardware perspective, one-sided operations do not necessarily

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

require an acknowledgment from the peer whose data is being
updated/obtained.

B. The Message Passing Interface

In the case of MPI, one-sided communication and remote
memory access (RMA) have existed since MPI-2.0 [27] and
were massively revamped in the MPI-3.0 standard. This came
in the form of: 1) a larger API to handle more fine-grained
window and buffer manipulation (window attachment/detach-
ment, allocation/shared/shared_query, etc.), and 2) extended
APIs to handle more desired operations such as hybrid get/put-
accumulates. MPI is one of the de facto standards for HPC
communication, thus our API (see Section V) accounts for its
semantics.

As mentioned in Section I, these put/get operations form the
base for “point-to-point” operations in PGAS models. Further-
more, research/development like that found in [3] allows one
to use MPI to mimic OpenSHMEM-based operations. We will
discuss how we use this framework to our advantage later in
the paper.

C. OpenSHMEM

OpenSHMEM was first standardized in 2012, though its
predecessors date as far back as 1993 [1] with vendor-specific
implementations such as Cray-SHMEM, SGI SHMEM, and
Quadrics SHMEM. At a high level, any static, global variable,
or those allocated through shmem_malloc to be placed
on a symmetric heap, can be used inside OpenSHMEM'’s
API calls; while this appears simpler than windows used in
MPI, the main drawback of this is a user cannot pass any
piece of data they see fit through OpenSHMEM’s “put” or
“get” operations. Compared to MPI-based RMA operations, it
provides a simpler approach with explicitly defined operations
per datatype and more fine-grained control without the need
for explicit window allocation. Our API also accounts for its
semantics as we must keep it generic enough to fit under this
and MPL

D. Overview of the BlueField SmartNIC

The BlueField DPUs from NVIDIA [5] are a system-on-
chip SmartNIC with a variety of features such as on-board
compression/decompression engines, DMA engines, data-path
accelerator cores, and, for our purpose, general-purpose ARM
CPU cores. Previous works (See Section VII) have utilized
various features of the BlueField DPUs to achieve performance
or further understand what they can/cannot do. In our work,
we utilized advanced network capabilities provided by the
InfiniBand Verbs API and these SmartNICs (see Section V)
to achieve our offload.

V. DESIGN AND IMPLEMENTATION

This section will summarize our design for offloading non-
blocking, one-sided “get” operations. We note the processes
placed on the host server as “host” processes and those on the
DPU as “proxy” processes. Alternatives to this in Section VII
also define these as “service” processes or “worker” processes.

25

LIS

The proposed designs are classified into “put”, “get”, and
“synchronize” operations. For brevity, we only show the last
two, as the “put” design is very similar to the “get.”

A. Extended Exchange of Network-Level Components

Additions to MPI_Init()/shmem_init() for Proposed Design

Network-Level
Exchange (Lkey, Rkey,
Mkey, network-level
memory region)

Process Spawn
(Host and Proxy
Processes)

Exchange of keys and
symmetric
heap/window
addresses across
proxy processes

Window/Symmetric
Heap Creation for Host
AND Proxy Processes

Fig. 1: High-Level Proposed modification from our framework
to MPI and OpenSHMEM initialization to allow for an en-
hanced exchange of windows/symmetric heap so that DPU-
based proxy processes are also made aware of the symmetric
heap.

We previously mentioned the challenge of exchanging
network-level elements such as memory keys (mkey), local
keys (Ikey), and remote keys (rkey) in offloading one-sided
communication to the DPU. During the initialization of a par-
allel programming library, we extend the remote data exchange
so that all keys and addresses are shared similar to the setup
of a symmetric heap in OpenSHMEM. This is done with the
help of the GVMI firmware found on BlueField DPUs, and
the cost of key generation and exchange will ultimately be
amortized during program runtime. The authors of [26] explain
how GVMI can be used more in-depth. Figure 1 shows the
component that could be added during initialization to any
given MPI or OpenSHMEM library, where the green box for
address exchange denotes this particular enhancement at a high
level. This addresses the first, second, and third challenges
mentioned in Section II.

B. Non-Blocking Get: Data Transfer

Figure 2 shows how the design works at a high level. We
assign a proxy process for each host process that performs
a non-blocking “get” operation, and internally we will keep
track of each request. Load balancing will need to be done
as the process-per-node (PPN) count increases, regardless of
someone using a BlueField-2 or a BlueField-3 DPU. GVMI
is used here to allow proxy processes to access data needed
on the peer process and return it to the host.

The following list explains the steps in Figure 2 at a high
level:

o We first send metadata from the host process requesting
the “get” to the DPU; this involves information such
as the remote rank, number of elements requested, and
(through the datatype-specific OpenSHMEM primitive),
the datatype used. The use of OpenSHMEM'’s symmetric
heap versus static/global buffers is not a concern here.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

o Steps (2) and (3) follow quickly after this; a proxy process
on the DPU will issue a “get” to the remote process, and
(upon completion of the operation) will return the data
to the buffers initially passed in to the “get” function all.

‘*@
&

Fig. 2: “Get” Design Part 1: Steps involved in issuing a non-
blocking “get” to the DPU

C. Non-Blocking Operation: Synchronization

Figure 3 continues where the previous figure left off and
details the high-level approach to extending synchronization
functionality to account for these offloaded operations:

o In step (4), each get operation results in an atomic
fetch-and-add operation being made to keep track of the
number of requests made.

o Once a synchronization or completion operation is called
— namely, MPI_win_sync/flush-based functions or
shmem_quiet — the requests are “flushed” and sig-
naled as completed. A FIN signal is sent to the host-
based portion of the code from the DPU-based portion
for this. This will also ensure that any has successfully
reached either the calling process’s (“get”) or the remote
process’s buffer (“put”).

This addresses the fourth challenge mentioned near the end of
Section II

iz
E
),
—~ 1
=1
Fig. 3: “Get”Design Part 2: Performing a synchronization
operation that is extended to the DPU.

Node3 | [Nodea]

D. Application to Parallel Programming Models

Thanks to the OSHMPI project, MPI-based RMA semantics
can be used to emulate OpenSHMEM put/get/atomic opera-
tions as well as collectives. Because of this, we place our
designs into an MPI library to show how both pure MPI
programs and OpenSHMEM programs can benefit from this
design. For example, an OpenSHMEM symmetric heap can
be represented as an exchange of memory regions so that
each processing element knows when another one issues an
operation into the equivalent representation of a set of MPI-
RMA Windows or the OpenSHMEM symmetric heap.

26

Listing 1 shows how our designs would be used inside an
MPI library. Similarly, Listing 2 shows the same, simple inte-
gration for an OpenSHMEM library. This subsection addresses
the fifth and final challenge mentioned near the end of Section

II.

MPI_Win_allocate(..., win, &win_buffer) {
window = win_init (win, win_buffer);
win_populate (window, win_buffer);
proxy_exchange_win (&window, win_buffer);
return window;

6 }

MPI_Put (addrl, countl, datatypel, target_rank,
target_disp, target_count, target_datatype,
window) {

8 // Other metadata setup ...

9 addr2 = buf_of (window) + disp

10 bytes = countxget_size (datatype);

1 return Offload_put (addrl, addr2,

2}

13 MPI_Get (addrl, countl, datatypel, target_rank,
target_disp, target_count, target_datatype,
window) {

14 // Other metadata setup ...

15 addr2 = buf_of (window) + disp

16 bytes = countxget_size (datatype);

1 return Offload_get (addrl, addr2, target,

18}

19 MPI_win_flush_all (window) {

20 return Offload_flush (window) ;

}

Listing 1: Use of One-Sided Offload in MPI. Datatypes are
passed in as a parameter with MPI. This lets us utilize internal
functions of a given MPI library to determine the equivalent
size of that type before calculating the destination address.

target, bytes);

bytes) ;

I shmem_init () {

2 initiate_symm_heap () ;

3 proxy_exchange_symm_heap () ;
}

5 shmem_malloc (size) {

6 buffer = allocate();
7 barrier(); /+ All procs allocate */
8 proxy_exchange_update (buffer) ;

9 return buffer;

0}

11 shmem_TYPE_put_nbi (TYPE *src, const TYPE xdst, int
count, 1int target) {
bytes = count * sizeof (TYPE);
Offload_put (dst, src, target, bytes);

+}

5 shmem_TYPE_get_nbi (TYPE *src, const TYPE xdst, int

count, int target) {
6 bytes = countxsizeof (TYPE) ;
7 Offload_get (dst, src, target,
8}
9 shmem_quiet () {
2 Offload_flush (NULL) ;
21}
Listing 2: Use of One-Sided Offload in OpenSHMEM.
Because of different functions existing for different datatypes
there is a little less overhead involved before offloading
communication. We specify types here to show this distinction
from MPIL In the case of a void* type we can omit the

calculation of bytes.
VI. EXPERIMENTS

bytes) ;

This section discusses our experimental setup and results.
Due to the nature of OpenSHMEM not being as popular of a

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

programming model as the Message Passing Interface, there
are not many applications that utilize OpenSHMEM, and to
the best of our knowledge, there are fewer that utilize its non-
blocking primitives.

A. System Setup

We utilize a cluster consisting of 32 “host” servers with
Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz (40 cores
across 2 sockets). 16 of these are equipped with NVIDIA
BlueField-2 DPUs with 100Gb/s InfiniBand. For simplicity, we
develop our solutions into an MPI library that runs underneath
the OSHMPI project [3]. We make most of our comparisons in
this fashion against the OSHMPI framework running over the
MVAPICH2-2.3.7 MPI library as developed by The Ohio State
University [23], followed by a few comparisons against the
reference OpenSHEM library as developed by Open Source
Software Solutions [24].

B. OSU Microbenchmarks

We utilize the OSU Microbenchmark (OMB) suite’s Open-
SHMEM benchmarks to show improved latency and overlap
for non-blocking get operations [22]. Figure 4 shows latency
and overlap, respectively, of “pure” OpenSHMEM and our
proposed design for intra-node transfers (1 Node, 2 Processes
Per Node (PPN)). Because we still need to deal with the
host server performing message progression in non-blocking
communication, offloading the operation allows for a larger
overlap in communication and compute.

We note that, while latency improves only at much higher
message sizes, our aim and focus is to be able to achieve a
high level of overlap, and we show that at larger message sizes,
we achieve up to 75% overlap in the intra-node case. Further
profiling has shown that our design offloading communication
to the DPU demonstrates a higher sensitivity to cache behavior
than standard intra-node schemes. In applications utilizing
non-blocking communication, large compute portions show-
case the benefits of offloading better than small/light portions.

Figure 5 shows similar trends for inter-node, one-sided op-
erations. Like with the intra-node results, we also show results
when using the symmetric heap versus global, static variables.
Here, we see similar behaviors in pure communication latency
and once again consistently see up to 75%-78% overlap as we
increase the message size.

In intra-node and inter-node communication, the use of
symmetric heap against static global ‘“allocation” of buffers
plays a role in performance in the case of pure-host, where
our designs are less impacted by such behavior.

C. Ported Block Sparse Matrix Multiplication (BSPMM) Mini-
application — Communication Offload

We took the BSPMM mini-application found at [25]
and ported its code to utilize both blocking and non-
blocking OpenSHMEM “get” primitives that is,
shmem_get/get_nbi. It follows a simplified version
of the communication pattern found in NWChem: a get-
compute-update algorithm. For a given number of work units,

27

we perform a remote “get” operation for two separate buffers
A and B across each process, with a local copy performed
in the event the source rank is also the target rank. This
will prevent unnecessary function calls into a given pure or
MPI-backed OpenSHMEM library. This is followed by a
DGEMM operation on each rank’s local buffer into a third
buffer C. Each process then accumulates the data into a
“global” copy of C before moving on to the next portion of
data. In our implementation of a non-blocking variation of
the kernel, the first two “get” operations are performed before
the start of the main loop via blocking operations. During the
loop, computation is done while the next two “get” operations
are performed using non-blocking primitives, which gives us
the potential for overlap. After computation, the original A
and B buffers get updated and an accumulation is done over
each PE’s local copy of C' into PE 0.

The kernel “prefers” a square number of processes, and
when possible, a square number of compute nodes for its
internal mapping of divided data to each of the processing
elements. Directly going to a full-subscription process count
may not always be optimal.

1) Challenges in Porting to OpenSHMEM: Several fac-
tors had to be considered here when porting the kernel to
use non-blocking OpenSHMEM functions. These include: 1)
management of buffers through OpenSHMEM'’s global heap
and/or labeling buffers as “static” with a global scope, thereby
replacing MPI windows, 2) explicit management of results
from OpenSHMEM “atomic fetch-add” operations instead of
MPTI’s “fetch-and-op”, and 3) the use of locks for more fine-
grained control over the initial kernel’s use of Window-locking
mechanisms and flushing. The latter is nontrivial as using
enough locks incur a performance penalty from serializing
code that was meant to be parallelized; similarly not using
enough locks can incur data races, which also is not beneficial.
The issue of data races and efforts to combat them drastically
increases with the introduction of non-blocking primitives.

The above challenges lead to potential performance issues:
1) instead of letting an MPI library perform offset calculation
internally, we must point OpenSHMEM primitives to the right
position at the application level. This can allow user-made fine-
grained optimizations for this, but with changing offsets at the
application level, this puts more effort on the programmer; 2)

2) Communication Offload Results: Figures 6 and 7 show
how our design behaves in single-node experiments. Our initial
implementation of the non-blocking BSPMM kernel slowly
becomes less performant as communication dominates the
application runtime (get operations in particular), though our
offload design shows up to 71% runtime improvement against
it even at smaller scales. At present, we see many of the
benefits in smaller mesh sizes (8 x 8 and 16 x 16) because of
a mixture of work distribution and having sufficient compute
to dominate program runtime.

This also implies a further need to refine how the non-
blocking kernel is implemented to show further performance
improvements — proper lock usage to avoid data races becomes

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

Intra-node nonblocking get latency (heap)

Intra-node nonblocking get % overlap (heap)
120
150 100

80
100 2 60
l I I »
20
; 11 1d.dh I A4 1

16384 32768 65536 131072 262144 524288 1048576 16384 32768 65536 131072 262144 524288 1048576
Message Size

Latency (us)
«
g

9% overla

Message Size

HMV2-23.7/0SHMPI ® Offload W MV2-23.7/0SHMPI Offload

Intra-node nonblocking get latency (static global)
200

N N I aal b

16384 32768 65536 131072 262144 524288 1048576
Message Size

Intra-node Nonblocking get % overlap (static global)

16384 32768 65536 131072 262144 524288 1048576
Message Size

Latency (us)
w8 &
588

% overlap
YR g
5533

°

= MV2-23.7/0SHMPI m Offload ®MV2:2.3.7/0SHMPI = Offload

(a) Intra-node, heap-based, “get” (b) Intra-node, heap-based, “get” (c) Intra-node, static-global-based, (d) Intra-node, static-global-based,

latency overlap

“get” latency

“get” overlap

Fig. 4: Intra-node latency and overlap performance when offloading one-sided “get” operations through OMB OpenSHMEM

benchmark suite

Inter-node nonblocking get latency (heap) Inter-node nonblocking get % Overlap (heap)

200 00,

80

60

40
] NIRES §
O.-lllllll o ml_n N

16384 32768 65536 131072 262144 524288 1048576 16384 32768 65536 131072 262144 524288 1048576
Message Size Message Size

g
8 8

Latency (us)
w
g

% overlap

®MV2-2.3.7/05HMPI = Offload =MV2-2.3.7/0SHMP| m Offload

Inter-node noblocking get latency (static global)
5 Inter-node noblocking get % overlap (static global)
100

80
100 &
40

0
- laadadh IIII“"" II

16384 32768 65536 131072 262144 524288 1048576 16384 32768 65536 131072 262144 524288 1048576
Message Size Message Size

N

Latency (us)
o
g

% overlap

B MV2-2.3.7/0SHMPI ® Offload ®MV2-2.3.7/0SHMPI = Offload

(a) Inter-node, heap-based, “get” (b) Inter-node, heap-based, “get” (c) Inter-node, static-global-based, (d) Inter-node, static-global-based,

latency overlap

“get” latency

“get” overlap

Fig. 5: Inter-node latency and overlap performance when offloading one-sided “get” operations

non-trivial when OpenSHMEM-based accumulate and the
compute portions are among the few remaining portions of
this kernel (and possibly others) that are left. These critical
require every PE to individually touch buffers located on the
symmetric heap.

1-node, 4-PPN BSPMM Kernel Results

=
£ 200
g
2 100 I =
0 -
8x8

W Blocking ™ Nonblocking

TR [||

16x16 32x32
Mesh Size

40x40

= Offload

Fig. 6: 1-Node, 4-PPN Communication Offload Results (MV2-
2.3.7/0SHMPI comparison)

1-node, 16-PPN BSPMM Kernel Results

]
o 1500
%1000 II B
=l k. ol ol
0 [| = NIk L
8x8

16x16 32x32 40x40
m Blocking m® Nonblocking m Offload

Mesh Size
Fig. 7: 1-Node, 16-PPN Communication Offload Results
(MV2-2.3.7/0SHMPI comparison)

Similar trends are seen at 4-node scales with Figures 8
and 9. In addition to the above reasoning, the extended
shmem_quiet to “complete” one-sided offload operations
may also generate overhead. In particular, we would like to
highlight much more massive benefits at larger problem sizes
and larger scales (8 Nodes, up to 32 PPN) as seen in Figure
10. Here, we see up to 96% improvement against the blocking
kernel implementation, and up to 76% improvement against
the nonblocking kernel implementations with our designs.
Digging further into these larger-scale runs, we also see up
to an 84% reduction in the “get” operation time within the
kernel, as shown in Figure 11. Given this, we would like to
emphasize that the majority of runtime benefits come from an
improved overlap in communication and computation as seen
from the OMB results in Section VI-B.

4 nodes, 4 PPN BSPMM Kernel Results

2200
1650
1100 | |
;
o in BOR 1
01_1_'4:
88 16x16 3232 40x40

Mesh size
m Blocking ® Nonblocking = Offload

Fig. 8: 4-Node, 4-PPN Communication Offload Results (MV2-
2.3.7/0SHMPI comparison)

Runtime (us)

w
o
o

@
]

We also compare against the reference implementation of

28

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

4 nodes, 16 PPN BSPMM Kernel Results

10000
g 8000
QE_) 6000]
> 4000 | |
o Bllu B
> =] |
; BN | |
0 |
16x16 32x32 40x40
Mesh size

M Blocking ® Nonblocking m Offload

Fig. 9: 4-Node, 16-PPN Communication Offload Results
(MV2-2.3.7/0SHMPI comparison)

8 nodes, 32 PPN BSPMM Kernel Results

80
A8 | | I
— [] |

16x16 32x32 40x40
Mesh size

BN W W
52 Qo
o ©o o

Thousands

o
N
o

Runtime (us)

o o

m Blocking m Nonblocking Offload

Fig. 10: 8-Node, 32-PPN Communication Offload Results
(MV2-2.3.7/0SHMPI comparison)

8-node, 32 PPN "Get" Time Comparison for Communication
Offload
5000

4000

3000
2000
1000 .
) - W

16x16 32x32 40x40
Mesh Size

Average "Get" time in BSPMM Kernel
(us)

m 2.3.7-OSHMPI = Communication Offload

Fig. 11: 8-Node, 32-PPN “Get” Comparison for Commu-
nication Offload (Non-blocking Kernel, MV2-2.3.7/OSHMPI
comparison)

OpenSHMEM!. Figures 15 and 16 show our single-node
results; here, we see over 60% improvement in runtime
performance against the reference implementation when using
the non-blocking kernel port.”

To further emphasize the above point, we also present
figures for a subset of the results previously shown. Figures
12, 13, and 14, show the communication breakdown of how
our design performs compared to that of the MVAPICH2-
2.3.7/0SHMPI configuration and, where possible, the OSSS-
UCX configuration; namely, we focus on the large 40 x 40
mesh size. While local copies are minuscule, we include them
for completeness in the breakdown.

We note two things from these results. The first is that

This is dubbed as OSSS-UCX through their GitHub repository: https://
github.com/openshmem- org/osss-ucx/

2Runtime errors have prevented us from scaling OSSS-UCX beyond 1 node
for this kernel. We are working to debug this at the application level.

we still achieve performance benefits against other parallel
programming library configurations despite spending a pro-
portionately longer time in accumulate and “get” in the 1-
node case (0% or 2% against 5-6%), 4-node case (2-3% to
over 20%), and 8-node case, though the latter shows a much
different picture when accounting for a larger PPN count and
scale than previous results.

1-Node, 16-PPN, 40x40 Mesh Breakdown of Operations (Non-
blocking BSPMM kernel)
100%

80%
60%
40%

20%

2.3.7 OSHMPI 0888-UCX Offload

MPI/OpenSHMEM configuration

mGet mCompute mLocalCopy mAccumulate

Fig. 12: 1-Node, 16-PPN Communication Offload Break-
down of OSSS-UCX, MVAPICH2-2.3.7/O0SHMPI, and our
offloaded designs when using the 40 x 40 mesh size

4-Node, 16-PPN, 40x40 Mesh Breakdown of Operations (Non-
blocking BSPMM kernel)
100%

80%
80%
40%

20%

2.3.7 OSHMPI Offload
MPI/OpenSHMEM configuration

mGet mCompute mLlocal mAccumulate

Fig. 13: 4-Node, 16-PPN Communication Offload Break-
down of OSSS-UCX, MVAPICH2-2.3.7/0SHMPI, and our
offloaded designs when using the 40 x 40 mesh size

8-Node, 32-PPN, 40x40 Mesh Breakdown of Operations (Non-
blocking BSPMM kernel)
100%

80%
60%
40%

20%

0%
2.3.7 OSHMPI Offload
MPI/OpenSHMEM configuration

mGet mCompute ®™local mAccumulate

Fig. 14: 8-Node, 32-PPN Communication Offload Break-
down of OSSS-UCX, MVAPICH2-2.3.7/0SHMPI, and our
offloaded designs when using the 40 x 40 mesh size

D. Ported BSPMM: Naive Compute Offload

We also offer the possibility of naive compute offload as an
alternative to communication offload. By using the general-
purpose CPUs on the BlueField DPUs, we can also place some
of the compute onto the DPUs and help reduce the overhead of

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

1-node, 4-PPN BSPMM NB Kernel Results
400

o Il = II II

16x16 32x32
Mesh Size

Runtime (us)
N w
o o
o o

-
(=3
=]

40x40

W 0SSS-UCX m Offload

Fig. 15: 1-Node, 4-PPN Communication Offload Results
Against the Reference Implementation of OSSS-UCX

1-node, 16-PPN BSPMM NB Kernel Results
2000

9 1500
£ 1000
g
2 500 l I
o I]
16x16 32x32 40x40
Mesh Size
W 0SSS-UCX m Offload
Fig. 16: 1-Node, 16-PPN Communication Offload Results

Against the Reference Implementation of OSSS-UCX

data movement during application runtime. These results use
only the MVAPICH2/OSHMPI software stack on the blocking
kernel for brevity. While the kernel’s get-compute-update
design easily lends itself to compute offload, the following
subsections show that the improvements largely grow as we
increase the scale at which we execute it.

1) Results: Small-Scale, Small-Host-PPN: Not all scales
are meant to be offloaded. To showcase the lack of benefits in
smaller scale and small-host-PPN experiments, Figures 17, 18
and 19 detail experiments that, when we have fewer host-based
PPN than DPU-based PPN (or workers per node/WPN), show
anything from lack of benefits to performance degradations.
In cases like these, it may not be better to offload unless
a more intelligent design is made available for this kernel
or any application in mind that can adapt to smaller scales.
In conjunction/alternatively, use of the NVIDIA BlueField-3
DPUs, with improved hardware, can further alleviate some of
the bottlenecks shown in these cases.

1-node, 4-PPN, 8-WPN Compute Offload Results

300
— 250
w
= 200
£ 150
€ 100
N
0
16x16 32x32 40x40
Mesh Size
m 2.3.7-OSHMPI m Compute Offload

Fig. 17: 1-Node, 4-PPN, 8-WPN Compute Offload Results

30

4-node, 4-PPN, 8-WPN Compute Offload Results

2000
= 1500
=2
£ 1000
€
2 500 I I
0
16x16 32x32 40x40
Mesh Size
m 2.3.7-OSHMPI = Compute Offload

Fig. 18: 4-Node, 4-PPN, 8-WPN Compute Offload Results

8-node, 2-PPN, 8-WPN Compute Offload Results

2000

16x16 32x32 40x40
Mesh Size

Runtime (us)
= =
(=] (92
o (=]
o o

o
o
o

o

m 2.3.7-OSHMPI = Compute Offload

Fig. 19: 8-Node, 2-PPN, 8-WPN Compute Offload Results

2) Results: Larger-scale, Larger-Host-PPN: Figures 20
and 21 showcase single-node results. Placing compute onto
the DPU, outside of performance variations with smaller mesh
sizes, allows for up to a 10% runtime improvement, though
with naively placing processes onto the DPU, we do not gain
a significant benefit unless we significantly scale up and out.
For these and other experiments, we focus solely on utilizing
all available cores on the BlueField-2 SmartNICs.

1-node, 25 PPN Pure-Host vs Naive Compute Offload
4000

=

£ 2000 I

g

£ 1000 I II
x o .

16x16 32x32 40x40 44x44
Mesh size

m 25-Host m 25-Compute-Off

Fig. 20: 1-Node, 25-PPN Compute Offload Results

Figures 22 and 23 shows experimental results at 4 nodes
with 25 and 36 PPN. While we see up to 91.5% improvement
in total runtime with smaller mesh sizes and up to 60% with
larger meshes, there is a slowly increasing overhead from the
increasing mesh sizes. Similar trends are shown at the 8-node
scale, up to 32 PPN (256 processes total) with offload (seen in
Figures 24 and 25), where we see up to a 91% improvement
in runtime with the 32x32 mesh.

Much of the improvement comes from a reduced remote
“get” operation time; this is shown for 8 Nodes and 18/32PPN
in Figures 26, 27, 28 and 29. In the 4-node scales, we see up

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

1-node, 36-PPN Pure-Host vs Naive Compute
Offload

6000

4000
2000 I II I
0 | I |

16x16 32x32 40x40 44x44
Mesh size

Runtime (us)

W 36-Host m 36-Compute-Off

Fig. 21: 1-Node, 36-PPN Compute Offload Results

to a 96.6% reduction in the average “get” operation time per
iteration of the BSPMM kernel (specifically 4 nodes, 25 PPN,
32 x 32 mesh). In the 8-node experiments, we up to a 98.9%
improvement in the “get” operation time per iteration (8 nodes,
18 PPN, size 16 x 16 mesh).

4-node, 25-PPN Pure-Host vs Naive Compute Offload

I I Illlll

16x16 32x32 40x40 44x44
Mesh size

Runtime (us)
Thousands
B @ [o]
o o o

N
S

W 25-Host m 25-Compute-Off

Fig. 22: 4-Node, 25-PPN Compute Offload Results

4-node, 36-PPN Pure-Host vs Naive Compute Offload

.
N
=7

@
-
_ 5100
B 3 80
EF e
5 40
o
20 .
0
16x16 32x32 40x40 44x44
Mesh size

m 36-Host W 36-Compute-Off

Fig. 23: 4-Node, 36-PPN Compute Offload Results

8-node, 18 PPN Pure-Host vs Naive Compute Offload

16x16 32x32 40x40
Mesh size

B
©® o N
S & o

Thousands

IS
S

Runtime (us)
o2}
o

N
S

m 18-Host m 18-MPMD

Fig. 24: 8-Node, 18-PPN Compute Offload Results

3) Key Takeaways of One-Sided Offload: As we have seen,
offloading communication and compute will vary at differ-
ent scales and problem sizes. At smaller scales, offloading

31

8-node, 32 PPN Pure-Host vs Naive Compute Offload
300

0 I I | I I

16x16 32x32 40x40 44x44
Mesh size

Runtime (us)
Thousands
o NN
a o ua o o
o o o o o

m 32-Host = 32-MPMD

Fig. 25: 8-Node, 32-PPN Compute Offload Results

4-node, 25 PPN "Get" Time Comparison for Compute

Offload

_. 4096
[}
£
g 1024
£ 2
&
a 64
£

@
= I I I
kS 4
o
[1
g 16x16 32x32 40x40
E] Mesh Size

W 2.3.7-OSHMPI m Compute Offload

Fig. 26: 4-Node, 25-PPN Compute Offload Results

4-node, 36 PPN "Get" Time Comparison for Compute

. 4096 Offload

@

x=

© 1024

c

g

< 256

=

o

2 64

=]

E 16 I I

3 a4

o

[}

“E“ d:

g 16x16 32x32 40x40
Mesh Size

m 2.3.7-OSHMPI = Compute Offload

Fig. 27: 4-Node, 36-PPN Compute Offload Results

8-node, 18 PPN "Get" Time Comparison for Compute

Offload
_ 409
[}
g
5 1024
-4
=
256
o
2 e
£ s
£
&
¢ 1
& 16x16 32x32 40x40
g Mesh Size
<

W 2.3.7-OSHMPI m Compute Offload

Fig. 28: 8-Node, 18-PPN “Get” Comparison for Compute
Offload

communication and/or compute will either incur overhead or
simply be less beneficial than at larger scales. In this work
and in others (See Section VII), small-message offloading is
not beneficial unless additional schemes are used to saturate

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

8-node, 32 PPN "Get" Time Comparison for Compute

Offload
4096

1024

256

“ 64
=

16x16 32x32 40x40
Mesh Size
= Compute Offload

=
I

Average "Get" time in BSPMM Kernel

W 2.3.7-OSHMPI

Fig. 29: 8-Node, 32-PPN “Get” Comparison for Compute
Offload

the network bandwidth and make the offloading a less ex-
pensive operation. At larger scales, offloading dense/complex
communication allows for our design to shine given the level
of network strain even when performing one-sided put/get
operations. Larger message sizes also prove beneficial as the
host will not need to wait for completion of/issue progress
“checks” on a given message transfer. This, coupled with
increasing scales, offloading proves to be beneficial.

E. Further Discussion on Porting

Our attempt at porting the BSPMM kernel was meant as
an aid in showcasing the efficacy of our design; our initial
attempts involved mapping MPI one-sided primitives to Open-
SHMEM'’s non-blocking counterparts. Non-blocking commu-
nication requires more careful synchronization of buffer usage
than blocking communication, and this contributes, in part,
to the increased overheads shown in previous sections. Other
quasi-mappings of MPI-related functions to their OpenSH-
MEM counterparts were met with varying success; for ex-
ample, our attempts at using shmem_reduce in place of
MPI_Accumulate did not give us the desired results, thus
requiring a naive, hand-made attempt to emulate the behavior
of the latter with blocking put/get operations. However, we do
not aim to enhance the performance of accumulation primitives
in this work, and this is not the main portion of the results
shown. Further, non-trivial profiling of pure-host performance
and engineering of the kernel would allow us to show two
things: 1) that non-blocking performance will show some level
of benefit (i.e. > 5%) compared to blocking performance; 2)
that our offload designs will still scale and out-perform pure-
host, non-blocking communication.

VII. RELATED WORK
A. SmartNICs

SmartNICs such as the BlueField DPU have been gaining
traction since the BlueField-2’s release in 2020. Many re-
searchers have dedicated time to understanding and utilizing
them to the best of their abilities.

1) Offloading Non-blocking communication: BluesMPI [4]
was the one of the first to use DPUs to accelerate non-
blocking Alltoall communication in MPI. A follow-up work
[26] moved from the staging designs found in BluesMPI to

32

more fine-grained network primitives to handle non-blocking
communication. Graham et al [8] recently presented the first
paper to use DPUs for blocking collectives as well.

2) Benchmarks and Evaluation: [15] proposed the first
DPU-Aware benchmark suite to show how one could evalu-
ate offload efficiency through microbenchmarks designed for
DPUs. [16] and [14] showcased different performance com-
parisons between the BlueField-2 and BlueField-3 SmartNICs;
the former focused on the evaluation of the general purpose
cores and network adapters while the latter focused on the
use of the DPU’s compression/decompression engines. To the
best of our knowledge, many of the engines and capabilities of
the later BlueField SmartNICs have yet to be evaluated, thus
leading to an interesting research direction for more network-
based/network-centric computing in HPC clusters..

3) Application Usage: The authors of [12] presented how
BlueField SmartNICs can be used for performance improve-
ment of application-specific workloads, such as those found
in the MiniMD molecular dynamics application. Similarly,
the authors of [29] performed studies through the PENNANT
mini-application to also offload its workloads to the DPU.

B. One-Sided Communication

One of the earliest one-sided communication designs was
presented in [11], where they present one-sided operations
mapped directly to InfiniBand RDMA primitives. [13] utilized
more advanced InfiniBand primitives by mapping software-
level atomics to InfiniBand-level atomic operations. When
GPUs began getting leveraged by communication middleware,
an effort was made to utilize them in communication mid-
dleware for one-sided operations. The authors of [6] recently
presented an evaluation of one-sided communication on CPUs
and GPUs. They present a roofline model for one-sided
communication and compare current state-of-the-art libraries
such as NVSHMEM [18] and ROCM_SHMEM [2] as well as
one-and-two-sided MPI-based communication.

Bridging the use of SmartNICs and one-sided communica-
tion, the authors of [10] designed and developed extensions
to OSSS-UCX for fine-grained access to persistent memory.
One of this project’s goals was to also extend this work to
SmartNICs such as the BlueField DPUs.

VIII. CONCLUSION AND FURTHER RESEARCH

In this paper, we have presented two things: The first is a
novel design for offloading non-blocking one-sided “put” and
“get” operations to the DPU and how they can be applied
to different parallel programming models such as MPI and
PGAS (namely OpenSHMEM). We have also shown how
these can be applied to communication patterns such as those
found in NWChem. In particular, we have shown up to a 96%
reduction in runtime for a BSPMM kernel thanks to improved
overlap of communication and compute using non-blocking
“get” operations. The second is that we have also demonstrated
how even the BlueField-2 DPU can aid a program through
computation offload by reducing the cost of data movement.
We believe these findings with this communication pattern can

9

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

be

further extended to NWChem and other applications that

utilize one-sided communication.

Given the performance shown in Section VI, we also wish
to evaluate when it would be best to offload communication
or compute operations through dynamic runtime tuning and
how much should get offloaded to the DPU for the latter. [15]
investigated the notion of offload efficiency with emphasis

on

larger message sizes. Their work could be applicable to

investigate simple get/put efficiency using advanced network
primitives such as those presented in this paper. With the
growing popularity and visibility of NVIDIA’s BlueField-3
SmartNICs, we also wish to perform experiments with them
to show how advancements in hardware allows for further
benefits for both communication and compute offload.

IX. ACKNOWLEDGMENTS

We would like to thank the HPC-AI Advisory Council

for

allowing us to use their resources for experiments. We

acknowledge that this work is funded by the LANL/US
DoD SOW #19537, NSF Grant #2312927, and NSF Grant
#2007991.

1

—

(3

[t

[4

=

=
s

6

—

[7

—

[9

—

[10]

REFERENCES

“OpenSHMEM Application Programming Interface,” June 2020.
[Online]. Available: http://openshmem.org/site/sites/default/site\ _files/
openshmem_specification- 1.5.pdf

AMD, “ROCSHMEM.” [Online]. Available: https://github.com/ROCm/
ROC_SHMEM

Argonne National Laboratory, “The OSHMPI project.” [Online].
Available: https://github.com/pmodels/oshmpi

M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Magbool Hashmi,
and D. K. Panda, “ BluesMPI: Efficient MPI Non-blocking Alltoall
Offloading Designs on Modern BlueField Smart NICs ,” in High Per-
formance Computing, B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief,
and P. Luszczek, Eds. Cham: Springer International Publishing, 2021,
pp. 18-37.

I. Burstein, “Nvidia Data Center Processing Unit (DPU) Architecture,”
in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-20.

N. Ding, M. Haseeb, T. Groves, and S. Williams, “Evaluating
the performance of one-sided communication on cpus and gpus,’
in Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and
Analysis, ser. SC-W ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1059-1069. [Online]. Available:
https://doi.org/10.1145/3624062.3624182
Environmental Molecular Sciences
Northwest National Laboratory, “NWChem: Delivering
High-Performance Computational Chemistry to Science,”
http://www.nwchem-sw.org/index.php/Main_Page.

R. Graham, G. Bosilca, Y. Qin, B. Settlemyer, G. Shainer, C. Stunkel,
G. Vallee, B. Williams, G. Cisneros-Stoianowski, S. Ohlmann, and
M. Rampp, “Optimizing application performance with bluefield: Accel-
erating large-message blocking and nonblocking collective operations,”
in ISC High Performance 2024 Research Paper Proceedings (39th
International Conference), 2024, pp. 1-12.

Graph500, “The Graph500 Benchmark.” [Online]. Available: https:
/lgithub.com/graph500/graph500

M. Grodowitz, P. Shamis, and S. Poole, “Openshmem i/o extensions
for fine-grained access to persistent memory storage,” in SMC2020.
SMC2020, 2020.

Laboratory, Pacific

33

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

W. Jiang, J. Liu, H.-W. Jin, D. Panda, W. Gropp, and R. Thakur, “High
performance mpi-2 one-sided communication over infiniband,” in /JEEE
International Symposium on Cluster Computing and the Grid, 2004.
CCGrid 2004., 2004, pp. 531-538.

S. Karamati, C. Hughes, K. S. Hemmert, R. E. Grant, W. W. Schonbein,
S. Levy, T. M. Conte, J. Young, and R. W. Vuduc, ““Smarter” NICs for
faster molecular dynamics: a case study,” in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2022,
pp. 583-594.

M. Li, S. Potluri, K. Hamidouche, J. Jose, and D. K. Panda, “Efficient
and truly passive mpi-3 rma using infiniband atomics,” in Proceedings
of the 20th European MPI Users’ Group Meeting, ser. EuroMPI "13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
91-96. [Online]. Available: https://doi.org/10.1145/2488551.2488573
Y. Li, A. Kashyap, Y. Guo, and X. Lu, “Characterizing Lossy and
Lossless Compression on Emerging BlueField DPU Architectures,” in
2023 IEEE Symposium on High-Performance Interconnects (HOTI),
2023, pp. 33-40.

B. Michalowicz, K. Kandadi Suresh, H. Subramoni, D. Panda, and
S. Poole, “DPU-Bench: A Micro-Benchmark Suite to Measure Offload
Efficiency Of SmartNICs,” in Practice and Experience in Advanced
Research Computing, ser. PEARC °23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 94-101. [Online].
Available: https://doi.org/10.1145/3569951.3593595

B. Michalowicz, K. K. Suresh, H. Subramoni, D. K. Panda, and S. Poole,
“Battle of the BlueFields: An In-Depth Comparison of the BlueField-
2 and BlueField-3 SmartNICs,” in 2023 IEEE Symposium on High-
Performance Interconnects (HOTI), 2023, pp. 41-48.

NVIDIA, “NVIDIA ConnectX-7 NDR 400 InfiniBand
Adapter Card.” [Online]. Available: https://www.nvidia.
com/content/dam/en-zz/Solutions/networking/infiniband-adapters/
infiniband-connectx7-data-sheet.pdf

“NVIDIA NVSHMEM Documentation.” [Online]. Available:
https://docs.nvidia.com/nvshmem/index.html

NVIDIA, “Nvidia quantum-2 infiniband platform.” [Online]. Available:
https://www.nvidia.com/en-us/networking/quantum?2/

Oak Ridge National Laboratory, “ORNL-OpenSHMEM benchmarks.”
[Online]. Available: https://github.com/ornl-languages/osb

Oracle, “Sun HPC ClusterToolstrademark 6 Software Performance
Guide.” [Online]. Available: https://docs.oracle.com/cd/E19061-01/hpc.
cluster6/819-4134-10/1-sided.html

OSU Micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/.
D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p- 101208, 2021, case Studies in Translational Computer Science.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877750320305093

S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A. Curtis,
and K. Feind, OpenSHMEM - Toward a Unified RMA Model.
Boston, MA: Springer US, 2011, pp. 1379-1391. [Online]. Available:
https://doi.org/10.1007/978-0-387-09766-4_490

Rohit Zambre and Subhadeep Bhattacharya, “BSPMM Mini App.”
[Online]. Available: https://github.com/rzambre/bspmm

K. K. Suresh, B. Michalowicz, B. Ramesh, N. Contini, J. Yao, S. Xu,
A. Shafi, H. Subramoni, and D. Panda, “ A Novel Framework for
Efficient Offloading of Communication Operations to Bluefield Smart-
NICs ,” in 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2023, pp. 123-133.

The MPI Forum, “MPI-2.0 Report” [Online]. Available: https:
/Iwww.mpi-forum.org/docs/mpi-2.0/mpi- 20-html/mpi2-report.html

K. Ueno and T. Suzumura, “Highly scalable graph search for the
Graph500 benchmark,” in Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 149-160. [Online]. Available: https://doi.org/10.
1145/2287076.2287104

B. K. Williams, W. K. Poole, and S. W. Poole, “Investigating Scientific
Workload Acceleration using BlueField SmartNICs [Slides],” 3 2020.
[Online]. Available: https://www.osti.gov/biblio/1607904

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

