
Effective and Efficient Offloading Designs for

One-Sided Communication to SmartNICs

Ben Michalowicz1, Kaushik Kandadi Suresh1, Hari Subramoni1,

Mustafa Abduljabbar1, Dhabaleswar K. (DK) Panda1, Steve Poole2

1Department of Computer Science and Engineering, The Ohio State University, Columbus, USA

{michalowicz.2, kandadisuresh.1, subramoni.1, abduljabbar.1, panda.2}@osu.edu
2Los Alamos National Laboratory

{swpoole@lanl.gov}

Abstract—One-sided communication is one of many ap-
proaches to use for data transfer in High-Performance Com-
puting (HPC) applications. One-sided operations require less
demand on parallel programming libraries and do not require
HPC hardware to issue acknowledgments of successful data
transfer. Thanks to its inherently non-blocking nature, one-sided
communication is also useful for improving overlap between
communication and compute. As with any non-blocking commu-
nication, however, we run into the issue of message progression
getting interleaved with computation. With the advent of Smart
Network Cards (SmartNIC) such as NVIDIA’s BlueField Data
Processing Units (DPU), we can offload the communication and
message progression to these devices to improve the overlap of
communication and compute. In this paper, we propose designs
for efficient offloading of one-sided communication. We show how
our designs can be used for offloading both MPI one-sided “put”
and “get” and OpenSHMEM’s non-blocking “put” and “get”.
Using a Block Sparse Matrix-Multiplication Kernel (BSPMM),
we show that our designs achieve over 96% improvement in
runtime over pure-host execution for communication offload. We
also briefly explore initial compute offload ideas for such one-
sided kernels and show over 91% improvement in runtime here.

Index Terms—Remote Memory Access, SmartNICs, BlueField
DPU, MPI, One-Sided Communication, Matrix Multiplication
Kernels

I. INTRODUCTION

Today’s HPC clusters utilize super-dense, many-core CPUs

in tandem with high-bandwidth, low-latency network cards

such as NVIDIA’s ConnectX-7 products [17] and their

Quantum-2 switches [19]. Communication middleware such

as Message Passing Interface (MPI) and Partitioned Global

Address Space (PGAS) libraries must continually adapt their

designs to use these platforms efficiently.

Advancements in such hardware also allow for faster one-

sided “put” and “get” operations, with middleware utilizing

hardware-level features to improve end-user functionality. Re-

search along this angle has been done in the context of MPI

as well as other programming models and libraries, such as

OpenSHMEM [24], where non/blocking one-sided operations

exist and form the backbone for its communication.

However, as with non-blocking two-sided communication in

MPI, message progression has to be interleaved with computa-

tion. This prevents programs from obtaining sufficient overlap

between communication and compute, and this generally leads

to a longer execution time.

NVIDIA’s BlueField Data Processing Units (DPU) have

allowed researchers to investigate offloading two-sided com-

munication (see Section VII), but to the best of our knowledge,

one-sided communication has never been attempted. One of

the primary challenges in offloading one-sided communication

is how metadata gets exchanged; two-sided communication

can exchange network-level keys on a per-send/per-receive

basis because all processes involved must match data from

the process sending data to/receiving data from them. By

comparison, one-sided communication offload is less trivial

to implement, since matching of this sort is not required.

This leads us to ask the following question: How can we

efficiently offload one-sided operations to the DPU and achieve

better program runtime and overlap of communication and

computation?

In this work, we propose designs for efficiently offloading

one-sided communication operations — “put” and “get” — to

the DPU. We also show how these can be applied to MPI,

and through frameworks such as OSHMPI [3], we show how

these designs can be used in the context of OpenSHMEM’s

non-blocking put and get primitives. In particular, we show

results at the microbenchmark level for non-blocking “get”

as well as show how it can lead to application-level benefits

in a Block Sparse Matrix Multiplication (BSPMM) kernel —

a kernel whose get-compute-update pattern is found in the

NWChem computational chemistry software [7].

To the best of our knowledge, this is the first paper to

propose designs for offloading one-sided communication

primitives to a SmartNIC.

II. MOTIVATION

A. Why one-sided operations?

One-sided communication (1SC) gives a developer a sig-

nificant amount of flexibility in developing applications and

communication patterns. One of the earliest papers introducing

one-sided operations for the MPI-2 standard [11] showed

how one-sided communication could outperform two-sided

communication by avoiding bottlenecks such as Rendezvous-

protocol handshakes and a need for individual synchronization

[21]. One-sided communication only requires operations from

23

2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/24/$31.00 ©2024 IEEE
DOI 10.1109/HiPC62374.2024.00012

20
24

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 H

ig
h

Pe
rfo

rm
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

79
-8

-3
31

5-
09

09
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/H

IP
C6

23
74

.2
02

4.
00

01
2

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

the process performing a given put/get/fetch-and-op/etc. op-

eration; its peer is not required to do anything. This allows

developers and researchers to implement more flexible one-

sided collective algorithms and communication patterns.

B. Challenges in Offloading One-Sided Communication

At the same time, use of one-sided communication poses

some challenges. Firstly, there are more options for win-

dow/heap synchronization. MPI has a mix of passive and

active synchronization capabilities that a user chooses from

(Fences, Post-Start Complete Wait, and Locks) alongside

functions to “complete” a put or get operation. Similarly,

OpenSHMEM has analogs of these functions in the form of

shmem_wait_XXX and shmem_set/clear_lock, with

shmem_quiet being the main function used to “complete”

the non-blocking communication. Each function may have dif-

ferent requirements/dependencies, particularly in the latter [1];

some variant of these synchronization techniques is required

to prevent race conditions when many processing elements

(PE) operate on either the same window (MPI-based) or on

the same variable within the symmetric heap (OpenSHMEM-

based). Secondly, ordering is not explicitly guaranteed with

one-sided semantics, though fence operations usually solve

this with a small overhead.

Offloading one-sided communication has its challenges in

addition to those mentioned above. We present the following

questions/challenges:

1) How do we best keep track of these operations when we

do not have, for example, MPI Request structures to use

(such as with non-blocking two-sided communication)?

2) How can we effectively extend shared resources (Open-

SHMEM symmetric heap, MPI Windows, etc.) to be

detectable by proxy processes (placed on the DPU to

perform offloaded communication)?

3) With a lack of peer process acknowledgments, how do

we effectively notify the issuing process that a transfer

is complete/complete the operation when introducing a

proxy process for offloading said communication?

4) Message progression in two-sided communication exists

for non-blocking collectives. How can we efficiently

extend one-sided synchronization/progression primitives

to account for the completion of data transfers via proxy

processes?

5) With the above, how can we preserve the semantics and

standard compliance of parallel programming libraries

that utilize our designs (less trivial than with two-sided

communication)?

At a high level, the answers to these questions are deceptively

simple and require some serious consideration (see Section V

for further details).

C. Applicability of 1SC

Many applications have previously or currently used one-

sided semantics. As mentioned in Section I, NWChem’s [7]

primary communication pattern is a BSPMM kernel on a

multi-dimensional mesh, and its popularity has led others to

develop/utilize smaller kernels utilizing MPI-based Remote

Memory Access (RMA) [25]. The Graph500 ([9], [28])

also utilized one-sided communication until version 3.0, and

a variant was also designed using OpenSHMEM primitives

for Oak Ridge National Laboratory’s set of OpenSHMEM

benchmarks [20]. The OSU Microbenchmark suite [22] also

has a set of MPI-based RMA benchmarks and benchmarks

to cover OpenSHMEM one-sided communication for put, get,

and collectives.

D. How 1SC/RMA is Used in Programming Models

Both MPI and OpenSHMEM are popular programming

models whose standards are continuously in active develop-

ment. Both provide a host of functionalities for one-sided

primitive operations. Given these, we are motivated to de-

sign and implement efficient offloading schemes for one-

sided communication that can apply to both programming

models/libraries. While the use of non-blocking OpenSHMEM

primitives is not as easy to find in practice, MPI-based RMA

is non-blocking by design (simply avoid immediately calling

window synchronization/flush functions). Thanks to this, we

are also motivated to make our designs adaptable to these and

other parallel programming models.

III. CONTRIBUTIONS AND PAPER BREAKDOWN

We offer the following contributions in this paper:

1) A novel design for offloading one-sided operations to

DPUs, namely “put” and “get” operations

2) Given our abstracted interface, the ability to integrate

this into any OpenSHMEM and MPI library.

3) Demonstration of scalability and improvement over

blocking and nonblocking implementations of a

BSPMM kernel, where we achieve up to 71% improve-

ment in runtime performance

4) Up to 91% runtime benefits with naive offloading of

computation onto the DPU with the same kernel.

The rest of the paper is organized as follows:

• Section IV details the background on one-sided commu-

nication, the OpenSHMEM library, and a brief overview

of the BlueField DPU.

• Section V describes our design for offloading one-sided

operations and how they can be applied to MPI and

OpenSHMEM.

• Section VI details our experimental setup and the exper-

iments we performed for non-blocking communication

and compute offloading.

• Section VII explores related work to what this paper

proposes.

• Section VIII wraps up our paper and details future plans.

IV. BACKGROUND

A. One-Sided Communication

One-sided communication comes in many flavors of oper-

ations: “fetch-and-op”, “compare-and-swap”, “put” and “get”,

and other atomic operations beyond the paper’s scope. From a

hardware perspective, one-sided operations do not necessarily

24

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

require an acknowledgment from the peer whose data is being

updated/obtained.

B. The Message Passing Interface

In the case of MPI, one-sided communication and remote

memory access (RMA) have existed since MPI-2.0 [27] and

were massively revamped in the MPI-3.0 standard. This came

in the form of: 1) a larger API to handle more fine-grained

window and buffer manipulation (window attachment/detach-

ment, allocation/shared/shared query, etc.), and 2) extended

APIs to handle more desired operations such as hybrid get/put-

accumulates. MPI is one of the de facto standards for HPC

communication, thus our API (see Section V) accounts for its

semantics.

As mentioned in Section I, these put/get operations form the

base for “point-to-point” operations in PGAS models. Further-

more, research/development like that found in [3] allows one

to use MPI to mimic OpenSHMEM-based operations. We will

discuss how we use this framework to our advantage later in

the paper.

C. OpenSHMEM

OpenSHMEM was first standardized in 2012, though its

predecessors date as far back as 1993 [1] with vendor-specific

implementations such as Cray-SHMEM, SGI SHMEM, and

Quadrics SHMEM. At a high level, any static, global variable,

or those allocated through shmem_malloc to be placed

on a symmetric heap, can be used inside OpenSHMEM’s

API calls; while this appears simpler than windows used in

MPI, the main drawback of this is a user cannot pass any

piece of data they see fit through OpenSHMEM’s “put” or

“get” operations. Compared to MPI-based RMA operations, it

provides a simpler approach with explicitly defined operations

per datatype and more fine-grained control without the need

for explicit window allocation. Our API also accounts for its

semantics as we must keep it generic enough to fit under this

and MPI.

D. Overview of the BlueField SmartNIC

The BlueField DPUs from NVIDIA [5] are a system-on-

chip SmartNIC with a variety of features such as on-board

compression/decompression engines, DMA engines, data-path

accelerator cores, and, for our purpose, general-purpose ARM

CPU cores. Previous works (See Section VII) have utilized

various features of the BlueField DPUs to achieve performance

or further understand what they can/cannot do. In our work,

we utilized advanced network capabilities provided by the

InfiniBand Verbs API and these SmartNICs (see Section V)

to achieve our offload.

V. DESIGN AND IMPLEMENTATION

This section will summarize our design for offloading non-

blocking, one-sided “get” operations. We note the processes

placed on the host server as “host” processes and those on the

DPU as “proxy” processes. Alternatives to this in Section VII

also define these as “service” processes or “worker” processes.

The proposed designs are classified into “put”, “get”, and

“synchronize” operations. For brevity, we only show the last

two, as the “put” design is very similar to the “get.”

A. Extended Exchange of Network-Level Components

Additions to MPI_Init()/shmem_init() for Proposed Design

Process Spawn
(Host and Proxy

Processes)

Network-Level
Exchange (Lkey, Rkey,

Mkey, network-level
memory region)

Window/Symmetric
Heap Creation for Host
AND Proxy Processes

Exchange of keys and
symmetric

heap/window
addresses across
proxy processes

Fig. 1: High-Level Proposed modification from our framework

to MPI and OpenSHMEM initialization to allow for an en-

hanced exchange of windows/symmetric heap so that DPU-

based proxy processes are also made aware of the symmetric

heap.

We previously mentioned the challenge of exchanging

network-level elements such as memory keys (mkey), local

keys (lkey), and remote keys (rkey) in offloading one-sided

communication to the DPU. During the initialization of a par-

allel programming library, we extend the remote data exchange

so that all keys and addresses are shared similar to the setup

of a symmetric heap in OpenSHMEM. This is done with the

help of the GVMI firmware found on BlueField DPUs, and

the cost of key generation and exchange will ultimately be

amortized during program runtime. The authors of [26] explain

how GVMI can be used more in-depth. Figure 1 shows the

component that could be added during initialization to any

given MPI or OpenSHMEM library, where the green box for

address exchange denotes this particular enhancement at a high

level. This addresses the first, second, and third challenges

mentioned in Section II.

B. Non-Blocking Get: Data Transfer

Figure 2 shows how the design works at a high level. We

assign a proxy process for each host process that performs

a non-blocking “get” operation, and internally we will keep

track of each request. Load balancing will need to be done

as the process-per-node (PPN) count increases, regardless of

someone using a BlueField-2 or a BlueField-3 DPU. GVMI

is used here to allow proxy processes to access data needed

on the peer process and return it to the host.

The following list explains the steps in Figure 2 at a high

level:

• We first send metadata from the host process requesting

the “get” to the DPU; this involves information such

as the remote rank, number of elements requested, and

(through the datatype-specific OpenSHMEM primitive),

the datatype used. The use of OpenSHMEM’s symmetric

heap versus static/global buffers is not a concern here.

25

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

• Steps (2) and (3) follow quickly after this; a proxy process

on the DPU will issue a “get” to the remote process, and

(upon completion of the operation) will return the data

to the buffers initially passed in to the “get” function all.

ProcessHost

DPU

ProcessHost

DPU

Node1 Node2

(1)

(2)

(3)

Fig. 2: “Get” Design Part 1: Steps involved in issuing a non-

blocking “get” to the DPU

C. Non-Blocking Operation: Synchronization

Figure 3 continues where the previous figure left off and

details the high-level approach to extending synchronization

functionality to account for these offloaded operations:

• In step (4), each get operation results in an atomic

fetch-and-add operation being made to keep track of the

number of requests made.

• Once a synchronization or completion operation is called

— namely, MPI_win_sync/flush-based functions or

shmem_quiet — the requests are “flushed” and sig-

naled as completed. A FIN signal is sent to the host-

based portion of the code from the DPU-based portion

for this. This will also ensure that any has successfully

reached either the calling process’s (“get”) or the remote

process’s buffer (“put”).

This addresses the fourth challenge mentioned near the end of

Section II

ProcessHost

DPU

ProcessHost

DPU

Node1 Node2

(4)

(5)
ProcessHost

DPU

Node3

ProcessHost

DPU

Node4

Fig. 3: “Get”Design Part 2: Performing a synchronization

operation that is extended to the DPU.

D. Application to Parallel Programming Models

Thanks to the OSHMPI project, MPI-based RMA semantics

can be used to emulate OpenSHMEM put/get/atomic opera-

tions as well as collectives. Because of this, we place our

designs into an MPI library to show how both pure MPI

programs and OpenSHMEM programs can benefit from this

design. For example, an OpenSHMEM symmetric heap can

be represented as an exchange of memory regions so that

each processing element knows when another one issues an

operation into the equivalent representation of a set of MPI-

RMA Windows or the OpenSHMEM symmetric heap.

Listing 1 shows how our designs would be used inside an

MPI library. Similarly, Listing 2 shows the same, simple inte-

gration for an OpenSHMEM library. This subsection addresses

the fifth and final challenge mentioned near the end of Section

II.

1 MPI_Win_allocate(..., win, &win_buffer){

2 window = win_init(win, win_buffer);

3 win_populate(window, win_buffer);

4 proxy_exchange_win(&window, win_buffer);

5 return window;

6 }

7 MPI_Put(addr1, count1, datatype1, target_rank,

target_disp, target_count, target_datatype,

window){

8 // Other metadata setup ...

9 addr2 = buf_of (window) + disp

10 bytes = count*get_size(datatype);

11 return Offload_put(addr1, addr2, target, bytes);

12 }

13 MPI_Get(addr1, count1, datatype1, target_rank,

target_disp, target_count, target_datatype,

window){

14 // Other metadata setup ...

15 addr2 = buf_of (window) + disp

16 bytes = count*get_size(datatype);

17 return Offload_get(addr1, addr2, target, bytes);

18 }

19 MPI_win_flush_all(window){

20 return Offload_flush(window);

21 }

Listing 1: Use of One-Sided Offload in MPI. Datatypes are

passed in as a parameter with MPI. This lets us utilize internal

functions of a given MPI library to determine the equivalent

size of that type before calculating the destination address.

1 shmem_init(){

2 initiate_symm_heap();

3 proxy_exchange_symm_heap();

4 }

5 shmem_malloc(size){

6 buffer = allocate();

7 barrier(); /* All procs allocate */

8 proxy_exchange_update(buffer);

9 return buffer;

10 }

11 shmem_TYPE_put_nbi(TYPE *src, const TYPE *dst, int

count, int target){

12 bytes = count * sizeof(TYPE);

13 Offload_put(dst, src, target, bytes);

14 }

15 shmem_TYPE_get_nbi(TYPE *src, const TYPE *dst, int

count, int target){

16 bytes = count*sizeof(TYPE);

17 Offload_get(dst, src, target, bytes);

18 }

19 shmem_quiet(){

20 Offload_flush(NULL);

21 }

Listing 2: Use of One-Sided Offload in OpenSHMEM.

Because of different functions existing for different datatypes

there is a little less overhead involved before offloading

communication. We specify types here to show this distinction

from MPI. In the case of a void* type we can omit the

calculation of bytes.

VI. EXPERIMENTS

This section discusses our experimental setup and results.

Due to the nature of OpenSHMEM not being as popular of a

26

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

programming model as the Message Passing Interface, there

are not many applications that utilize OpenSHMEM, and to

the best of our knowledge, there are fewer that utilize its non-

blocking primitives.

A. System Setup

We utilize a cluster consisting of 32 “host” servers with

Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz (40 cores

across 2 sockets). 16 of these are equipped with NVIDIA

BlueField-2 DPUs with 100Gb/s InfiniBand. For simplicity, we

develop our solutions into an MPI library that runs underneath

the OSHMPI project [3]. We make most of our comparisons in

this fashion against the OSHMPI framework running over the

MVAPICH2-2.3.7 MPI library as developed by The Ohio State

University [23], followed by a few comparisons against the

reference OpenSHEM library as developed by Open Source

Software Solutions [24].

B. OSU Microbenchmarks

We utilize the OSU Microbenchmark (OMB) suite’s Open-

SHMEM benchmarks to show improved latency and overlap

for non-blocking get operations [22]. Figure 4 shows latency

and overlap, respectively, of “pure” OpenSHMEM and our

proposed design for intra-node transfers (1 Node, 2 Processes

Per Node (PPN)). Because we still need to deal with the

host server performing message progression in non-blocking

communication, offloading the operation allows for a larger

overlap in communication and compute.

We note that, while latency improves only at much higher

message sizes, our aim and focus is to be able to achieve a

high level of overlap, and we show that at larger message sizes,

we achieve up to 75% overlap in the intra-node case. Further

profiling has shown that our design offloading communication

to the DPU demonstrates a higher sensitivity to cache behavior

than standard intra-node schemes. In applications utilizing

non-blocking communication, large compute portions show-

case the benefits of offloading better than small/light portions.

Figure 5 shows similar trends for inter-node, one-sided op-

erations. Like with the intra-node results, we also show results

when using the symmetric heap versus global, static variables.

Here, we see similar behaviors in pure communication latency

and once again consistently see up to 75%-78% overlap as we

increase the message size.

In intra-node and inter-node communication, the use of

symmetric heap against static global “allocation” of buffers

plays a role in performance in the case of pure-host, where

our designs are less impacted by such behavior.

C. Ported Block Sparse Matrix Multiplication (BSPMM) Mini-

application – Communication Offload

We took the BSPMM mini-application found at [25]

and ported its code to utilize both blocking and non-

blocking OpenSHMEM “get” primitives — that is,

shmem_get/get_nbi. It follows a simplified version

of the communication pattern found in NWChem: a get-

compute-update algorithm. For a given number of work units,

we perform a remote “get” operation for two separate buffers

A and B across each process, with a local copy performed

in the event the source rank is also the target rank. This

will prevent unnecessary function calls into a given pure or

MPI-backed OpenSHMEM library. This is followed by a

DGEMM operation on each rank’s local buffer into a third

buffer C. Each process then accumulates the data into a

“global” copy of C before moving on to the next portion of

data. In our implementation of a non-blocking variation of

the kernel, the first two “get” operations are performed before

the start of the main loop via blocking operations. During the

loop, computation is done while the next two “get” operations

are performed using non-blocking primitives, which gives us

the potential for overlap. After computation, the original A

and B buffers get updated and an accumulation is done over

each PE’s local copy of C into PE 0.

The kernel “prefers” a square number of processes, and

when possible, a square number of compute nodes for its

internal mapping of divided data to each of the processing

elements. Directly going to a full-subscription process count

may not always be optimal.

1) Challenges in Porting to OpenSHMEM: Several fac-

tors had to be considered here when porting the kernel to

use non-blocking OpenSHMEM functions. These include: 1)

management of buffers through OpenSHMEM’s global heap

and/or labeling buffers as “static” with a global scope, thereby

replacing MPI windows, 2) explicit management of results

from OpenSHMEM “atomic fetch-add” operations instead of

MPI’s “fetch-and-op”, and 3) the use of locks for more fine-

grained control over the initial kernel’s use of Window-locking

mechanisms and flushing. The latter is nontrivial as using

enough locks incur a performance penalty from serializing

code that was meant to be parallelized; similarly not using

enough locks can incur data races, which also is not beneficial.

The issue of data races and efforts to combat them drastically

increases with the introduction of non-blocking primitives.

The above challenges lead to potential performance issues:

1) instead of letting an MPI library perform offset calculation

internally, we must point OpenSHMEM primitives to the right

position at the application level. This can allow user-made fine-

grained optimizations for this, but with changing offsets at the

application level, this puts more effort on the programmer; 2)

2) Communication Offload Results: Figures 6 and 7 show

how our design behaves in single-node experiments. Our initial

implementation of the non-blocking BSPMM kernel slowly

becomes less performant as communication dominates the

application runtime (get operations in particular), though our

offload design shows up to 71% runtime improvement against

it even at smaller scales. At present, we see many of the

benefits in smaller mesh sizes (8 × 8 and 16 × 16) because of

a mixture of work distribution and having sufficient compute

to dominate program runtime.

This also implies a further need to refine how the non-

blocking kernel is implemented to show further performance

improvements – proper lock usage to avoid data races becomes

27

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

(a) Intra-node, heap-based, “get”
latency

(b) Intra-node, heap-based, “get”
overlap

(c) Intra-node, static-global-based,
“get” latency

(d) Intra-node, static-global-based,
“get” overlap

Fig. 4: Intra-node latency and overlap performance when offloading one-sided “get” operations through OMB OpenSHMEM

benchmark suite

(a) Inter-node, heap-based, “get”
latency

(b) Inter-node, heap-based, “get”
overlap

(c) Inter-node, static-global-based,
“get” latency

(d) Inter-node, static-global-based,
“get” overlap

Fig. 5: Inter-node latency and overlap performance when offloading one-sided “get” operations

non-trivial when OpenSHMEM-based accumulate and the

compute portions are among the few remaining portions of

this kernel (and possibly others) that are left. These critical

require every PE to individually touch buffers located on the

symmetric heap.

Fig. 6: 1-Node, 4-PPN Communication Offload Results (MV2-

2.3.7/OSHMPI comparison)

Fig. 7: 1-Node, 16-PPN Communication Offload Results

(MV2-2.3.7/OSHMPI comparison)

Similar trends are seen at 4-node scales with Figures 8

and 9. In addition to the above reasoning, the extended

shmem_quiet to “complete” one-sided offload operations

may also generate overhead. In particular, we would like to

highlight much more massive benefits at larger problem sizes

and larger scales (8 Nodes, up to 32 PPN) as seen in Figure

10. Here, we see up to 96% improvement against the blocking

kernel implementation, and up to 76% improvement against

the nonblocking kernel implementations with our designs.

Digging further into these larger-scale runs, we also see up

to an 84% reduction in the “get” operation time within the

kernel, as shown in Figure 11. Given this, we would like to

emphasize that the majority of runtime benefits come from an

improved overlap in communication and computation as seen

from the OMB results in Section VI-B.

Fig. 8: 4-Node, 4-PPN Communication Offload Results (MV2-

2.3.7/OSHMPI comparison)

We also compare against the reference implementation of

28

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: 4-Node, 16-PPN Communication Offload Results

(MV2-2.3.7/OSHMPI comparison)

Fig. 10: 8-Node, 32-PPN Communication Offload Results

(MV2-2.3.7/OSHMPI comparison)

Fig. 11: 8-Node, 32-PPN “Get” Comparison for Commu-

nication Offload (Non-blocking Kernel, MV2-2.3.7/OSHMPI

comparison)

OpenSHMEM1. Figures 15 and 16 show our single-node

results; here, we see over 60% improvement in runtime

performance against the reference implementation when using

the non-blocking kernel port.2

To further emphasize the above point, we also present

figures for a subset of the results previously shown. Figures

12, 13, and 14, show the communication breakdown of how

our design performs compared to that of the MVAPICH2-

2.3.7/OSHMPI configuration and, where possible, the OSSS-

UCX configuration; namely, we focus on the large 40 × 40

mesh size. While local copies are minuscule, we include them

for completeness in the breakdown.

We note two things from these results. The first is that

1This is dubbed as OSSS-UCX through their GitHub repository: https://
github.com/openshmem-org/osss-ucx/

2Runtime errors have prevented us from scaling OSSS-UCX beyond 1 node
for this kernel. We are working to debug this at the application level.

we still achieve performance benefits against other parallel

programming library configurations despite spending a pro-

portionately longer time in accumulate and “get” in the 1-

node case (0% or 2% against 5-6%), 4-node case (2-3% to

over 20%), and 8-node case, though the latter shows a much

different picture when accounting for a larger PPN count and

scale than previous results.

Fig. 12: 1-Node, 16-PPN Communication Offload Break-

down of OSSS-UCX, MVAPICH2-2.3.7/OSHMPI, and our

offloaded designs when using the 40 × 40 mesh size

Fig. 13: 4-Node, 16-PPN Communication Offload Break-

down of OSSS-UCX, MVAPICH2-2.3.7/OSHMPI, and our

offloaded designs when using the 40× 40 mesh size

Fig. 14: 8-Node, 32-PPN Communication Offload Break-

down of OSSS-UCX, MVAPICH2-2.3.7/OSHMPI, and our

offloaded designs when using the 40× 40 mesh size

D. Ported BSPMM: Naive Compute Offload

We also offer the possibility of naive compute offload as an

alternative to communication offload. By using the general-

purpose CPUs on the BlueField DPUs, we can also place some

of the compute onto the DPUs and help reduce the overhead of

29

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 15: 1-Node, 4-PPN Communication Offload Results

Against the Reference Implementation of OSSS-UCX

Fig. 16: 1-Node, 16-PPN Communication Offload Results

Against the Reference Implementation of OSSS-UCX

data movement during application runtime. These results use

only the MVAPICH2/OSHMPI software stack on the blocking

kernel for brevity. While the kernel’s get-compute-update

design easily lends itself to compute offload, the following

subsections show that the improvements largely grow as we

increase the scale at which we execute it.

1) Results: Small-Scale, Small-Host-PPN: Not all scales

are meant to be offloaded. To showcase the lack of benefits in

smaller scale and small-host-PPN experiments, Figures 17, 18

and 19 detail experiments that, when we have fewer host-based

PPN than DPU-based PPN (or workers per node/WPN), show

anything from lack of benefits to performance degradations.

In cases like these, it may not be better to offload unless

a more intelligent design is made available for this kernel

or any application in mind that can adapt to smaller scales.

In conjunction/alternatively, use of the NVIDIA BlueField-3

DPUs, with improved hardware, can further alleviate some of

the bottlenecks shown in these cases.

Fig. 17: 1-Node, 4-PPN, 8-WPN Compute Offload Results

Fig. 18: 4-Node, 4-PPN, 8-WPN Compute Offload Results

Fig. 19: 8-Node, 2-PPN, 8-WPN Compute Offload Results

2) Results: Larger-scale, Larger-Host-PPN: Figures 20

and 21 showcase single-node results. Placing compute onto

the DPU, outside of performance variations with smaller mesh

sizes, allows for up to a 10% runtime improvement, though

with naively placing processes onto the DPU, we do not gain

a significant benefit unless we significantly scale up and out.

For these and other experiments, we focus solely on utilizing

all available cores on the BlueField-2 SmartNICs.

Fig. 20: 1-Node, 25-PPN Compute Offload Results

Figures 22 and 23 shows experimental results at 4 nodes

with 25 and 36 PPN. While we see up to 91.5% improvement

in total runtime with smaller mesh sizes and up to 60% with

larger meshes, there is a slowly increasing overhead from the

increasing mesh sizes. Similar trends are shown at the 8-node

scale, up to 32 PPN (256 processes total) with offload (seen in

Figures 24 and 25), where we see up to a 91% improvement

in runtime with the 32x32 mesh.

Much of the improvement comes from a reduced remote

“get” operation time; this is shown for 8 Nodes and 18/32PPN

in Figures 26, 27, 28 and 29. In the 4-node scales, we see up

30

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 21: 1-Node, 36-PPN Compute Offload Results

to a 96.6% reduction in the average “get” operation time per

iteration of the BSPMM kernel (specifically 4 nodes, 25 PPN,

32 × 32 mesh). In the 8-node experiments, we up to a 98.9%

improvement in the “get” operation time per iteration (8 nodes,

18 PPN, size 16 × 16 mesh).

Fig. 22: 4-Node, 25-PPN Compute Offload Results

Fig. 23: 4-Node, 36-PPN Compute Offload Results

Fig. 24: 8-Node, 18-PPN Compute Offload Results

3) Key Takeaways of One-Sided Offload: As we have seen,

offloading communication and compute will vary at differ-

ent scales and problem sizes. At smaller scales, offloading

Fig. 25: 8-Node, 32-PPN Compute Offload Results

Fig. 26: 4-Node, 25-PPN Compute Offload Results

Fig. 27: 4-Node, 36-PPN Compute Offload Results

Fig. 28: 8-Node, 18-PPN “Get” Comparison for Compute

Offload

communication and/or compute will either incur overhead or

simply be less beneficial than at larger scales. In this work

and in others (See Section VII), small-message offloading is

not beneficial unless additional schemes are used to saturate

31

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 29: 8-Node, 32-PPN “Get” Comparison for Compute

Offload

the network bandwidth and make the offloading a less ex-

pensive operation. At larger scales, offloading dense/complex

communication allows for our design to shine given the level

of network strain even when performing one-sided put/get

operations. Larger message sizes also prove beneficial as the

host will not need to wait for completion of/issue progress

“checks” on a given message transfer. This, coupled with

increasing scales, offloading proves to be beneficial.

E. Further Discussion on Porting

Our attempt at porting the BSPMM kernel was meant as

an aid in showcasing the efficacy of our design; our initial

attempts involved mapping MPI one-sided primitives to Open-

SHMEM’s non-blocking counterparts. Non-blocking commu-

nication requires more careful synchronization of buffer usage

than blocking communication, and this contributes, in part,

to the increased overheads shown in previous sections. Other

quasi-mappings of MPI-related functions to their OpenSH-

MEM counterparts were met with varying success; for ex-

ample, our attempts at using shmem_reduce in place of

MPI_Accumulate did not give us the desired results, thus

requiring a naive, hand-made attempt to emulate the behavior

of the latter with blocking put/get operations. However, we do

not aim to enhance the performance of accumulation primitives

in this work, and this is not the main portion of the results

shown. Further, non-trivial profiling of pure-host performance

and engineering of the kernel would allow us to show two

things: 1) that non-blocking performance will show some level

of benefit (i.e. > 5%) compared to blocking performance; 2)

that our offload designs will still scale and out-perform pure-

host, non-blocking communication.

VII. RELATED WORK

A. SmartNICs

SmartNICs such as the BlueField DPU have been gaining

traction since the BlueField-2’s release in 2020. Many re-

searchers have dedicated time to understanding and utilizing

them to the best of their abilities.

1) Offloading Non-blocking communication: BluesMPI [4]

was the one of the first to use DPUs to accelerate non-

blocking Alltoall communication in MPI. A follow-up work

[26] moved from the staging designs found in BluesMPI to

more fine-grained network primitives to handle non-blocking

communication. Graham et al [8] recently presented the first

paper to use DPUs for blocking collectives as well.

2) Benchmarks and Evaluation: [15] proposed the first

DPU-Aware benchmark suite to show how one could evalu-

ate offload efficiency through microbenchmarks designed for

DPUs. [16] and [14] showcased different performance com-

parisons between the BlueField-2 and BlueField-3 SmartNICs;

the former focused on the evaluation of the general purpose

cores and network adapters while the latter focused on the

use of the DPU’s compression/decompression engines. To the

best of our knowledge, many of the engines and capabilities of

the later BlueField SmartNICs have yet to be evaluated, thus

leading to an interesting research direction for more network-

based/network-centric computing in HPC clusters..

3) Application Usage: The authors of [12] presented how

BlueField SmartNICs can be used for performance improve-

ment of application-specific workloads, such as those found

in the MiniMD molecular dynamics application. Similarly,

the authors of [29] performed studies through the PENNANT

mini-application to also offload its workloads to the DPU.

B. One-Sided Communication

One of the earliest one-sided communication designs was

presented in [11], where they present one-sided operations

mapped directly to InfiniBand RDMA primitives. [13] utilized

more advanced InfiniBand primitives by mapping software-

level atomics to InfiniBand-level atomic operations. When

GPUs began getting leveraged by communication middleware,

an effort was made to utilize them in communication mid-

dleware for one-sided operations. The authors of [6] recently

presented an evaluation of one-sided communication on CPUs

and GPUs. They present a roofline model for one-sided

communication and compare current state-of-the-art libraries

such as NVSHMEM [18] and ROCM SHMEM [2] as well as

one-and-two-sided MPI-based communication.

Bridging the use of SmartNICs and one-sided communica-

tion, the authors of [10] designed and developed extensions

to OSSS-UCX for fine-grained access to persistent memory.

One of this project’s goals was to also extend this work to

SmartNICs such as the BlueField DPUs.

VIII. CONCLUSION AND FURTHER RESEARCH

In this paper, we have presented two things: The first is a

novel design for offloading non-blocking one-sided “put” and

“get” operations to the DPU and how they can be applied

to different parallel programming models such as MPI and

PGAS (namely OpenSHMEM). We have also shown how

these can be applied to communication patterns such as those

found in NWChem. In particular, we have shown up to a 96%

reduction in runtime for a BSPMM kernel thanks to improved

overlap of communication and compute using non-blocking

“get” operations. The second is that we have also demonstrated

how even the BlueField-2 DPU can aid a program through

computation offload by reducing the cost of data movement.

We believe these findings with this communication pattern can

32

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

be further extended to NWChem and other applications that

utilize one-sided communication.

Given the performance shown in Section VI, we also wish

to evaluate when it would be best to offload communication

or compute operations through dynamic runtime tuning and

how much should get offloaded to the DPU for the latter. [15]

investigated the notion of offload efficiency with emphasis

on larger message sizes. Their work could be applicable to

investigate simple get/put efficiency using advanced network

primitives such as those presented in this paper. With the

growing popularity and visibility of NVIDIA’s BlueField-3

SmartNICs, we also wish to perform experiments with them

to show how advancements in hardware allows for further

benefits for both communication and compute offload.

IX. ACKNOWLEDGMENTS

We would like to thank the HPC-AI Advisory Council

for allowing us to use their resources for experiments. We

acknowledge that this work is funded by the LANL/US

DoD SOW #19537, NSF Grant #2312927, and NSF Grant

#2007991.

REFERENCES

[1] “OpenSHMEM Application Programming Interface,” June 2020.
[Online]. Available: http://openshmem.org/site/sites/default/site\ files/
openshmem specification-1.5.pdf

[2] AMD, “ROCSHMEM.” [Online]. Available: https://github.com/ROCm/
ROC\ SHMEM

[3] Argonne National Laboratory, “The OSHMPI project.” [Online].
Available: https://github.com/pmodels/oshmpi

[4] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Maqbool Hashmi,
and D. K. Panda, “ BluesMPI: Efficient MPI Non-blocking Alltoall
Offloading Designs on Modern BlueField Smart NICs ,” in High Per-

formance Computing, B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief,
and P. Luszczek, Eds. Cham: Springer International Publishing, 2021,
pp. 18–37.

[5] I. Burstein, “Nvidia Data Center Processing Unit (DPU) Architecture,”
in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–20.

[6] N. Ding, M. Haseeb, T. Groves, and S. Williams, “Evaluating
the performance of one-sided communication on cpus and gpus,”
in Proceedings of the SC ’23 Workshops of The International

Conference on High Performance Computing, Network, Storage, and

Analysis, ser. SC-W ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1059–1069. [Online]. Available:
https://doi.org/10.1145/3624062.3624182

[7] Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, “NWChem: Delivering
High-Performance Computational Chemistry to Science,”
http://www.nwchem-sw.org/index.php/Main_Page.

[8] R. Graham, G. Bosilca, Y. Qin, B. Settlemyer, G. Shainer, C. Stunkel,
G. Vallee, B. Williams, G. Cisneros-Stoianowski, S. Ohlmann, and
M. Rampp, “Optimizing application performance with bluefield: Accel-
erating large-message blocking and nonblocking collective operations,”
in ISC High Performance 2024 Research Paper Proceedings (39th

International Conference), 2024, pp. 1–12.
[9] Graph500, “The Graph500 Benchmark.” [Online]. Available: https:

//github.com/graph500/graph500
[10] M. Grodowitz, P. Shamis, and S. Poole, “Openshmem i/o extensions

for fine-grained access to persistent memory storage,” in SMC2020.
SMC2020, 2020.

[11] W. Jiang, J. Liu, H.-W. Jin, D. Panda, W. Gropp, and R. Thakur, “High
performance mpi-2 one-sided communication over infiniband,” in IEEE

International Symposium on Cluster Computing and the Grid, 2004.

CCGrid 2004., 2004, pp. 531–538.
[12] S. Karamati, C. Hughes, K. S. Hemmert, R. E. Grant, W. W. Schonbein,

S. Levy, T. M. Conte, J. Young, and R. W. Vuduc, ““Smarter” NICs for
faster molecular dynamics: a case study,” in 2022 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), May 2022,
pp. 583–594.

[13] M. Li, S. Potluri, K. Hamidouche, J. Jose, and D. K. Panda, “Efficient
and truly passive mpi-3 rma using infiniband atomics,” in Proceedings

of the 20th European MPI Users’ Group Meeting, ser. EuroMPI ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
91–96. [Online]. Available: https://doi.org/10.1145/2488551.2488573

[14] Y. Li, A. Kashyap, Y. Guo, and X. Lu, “Characterizing Lossy and
Lossless Compression on Emerging BlueField DPU Architectures,” in
2023 IEEE Symposium on High-Performance Interconnects (HOTI),
2023, pp. 33–40.

[15] B. Michalowicz, K. Kandadi Suresh, H. Subramoni, D. Panda, and
S. Poole, “DPU-Bench: A Micro-Benchmark Suite to Measure Offload
Efficiency Of SmartNICs,” in Practice and Experience in Advanced

Research Computing, ser. PEARC ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 94–101. [Online].
Available: https://doi.org/10.1145/3569951.3593595

[16] B. Michalowicz, K. K. Suresh, H. Subramoni, D. K. Panda, and S. Poole,
“Battle of the BlueFields: An In-Depth Comparison of the BlueField-
2 and BlueField-3 SmartNICs,” in 2023 IEEE Symposium on High-

Performance Interconnects (HOTI), 2023, pp. 41–48.
[17] NVIDIA, “NVIDIA ConnectX-7 NDR 400 InfiniBand

Adapter Card.” [Online]. Available: https://www.nvidia.
com/content/dam/en-zz/Solutions/networking/infiniband-adapters/
infiniband-connectx7-data-sheet.pdf

[18] ——, “NVIDIA NVSHMEM Documentation.” [Online]. Available:
https://docs.nvidia.com/nvshmem/index.html

[19] NVIDIA, “Nvidia quantum-2 infiniband platform.” [Online]. Available:
https://www.nvidia.com/en-us/networking/quantum2/

[20] Oak Ridge National Laboratory, “ORNL-OpenSHMEM benchmarks.”
[Online]. Available: https://github.com/ornl-languages/osb

[21] Oracle, “Sun HPC ClusterToolstrademark 6 Software Performance
Guide.” [Online]. Available: https://docs.oracle.com/cd/E19061-01/hpc.
cluster6/819-4134-10/1-sided.html

[22] OSU Micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/.
[23] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The

mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p. 101208, 2021, case Studies in Translational Computer Science.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877750320305093

[24] S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A. Curtis,
and K. Feind, OpenSHMEM - Toward a Unified RMA Model.
Boston, MA: Springer US, 2011, pp. 1379–1391. [Online]. Available:
https://doi.org/10.1007/978-0-387-09766-4\ 490

[25] Rohit Zambre and Subhadeep Bhattacharya, “BSPMM Mini App.”
[Online]. Available: https://github.com/rzambre/bspmm

[26] K. K. Suresh, B. Michalowicz, B. Ramesh, N. Contini, J. Yao, S. Xu,
A. Shafi, H. Subramoni, and D. Panda, “ A Novel Framework for
Efficient Offloading of Communication Operations to Bluefield Smart-
NICs ,” in 2023 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2023, pp. 123–133.
[27] The MPI Forum, “MPI-2.0 Report.” [Online]. Available: https:

//www.mpi-forum.org/docs/mpi-2.0/mpi-20-html/mpi2-report.html
[28] K. Ueno and T. Suzumura, “Highly scalable graph search for the

Graph500 benchmark,” in Proceedings of the 21st International

Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 149–160. [Online]. Available: https://doi.org/10.
1145/2287076.2287104

[29] B. K. Williams, W. K. Poole, and S. W. Poole, “Investigating Scientific
Workload Acceleration using BlueField SmartNICs [Slides],” 3 2020.
[Online]. Available: https://www.osti.gov/biblio/1607904

33

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:33:32 UTC from IEEE Xplore. Restrictions apply.

