
Design and Implementation of Kernel-based MPI

Reduction Operations for Intel GPUs

Chen-Chun Chen

The Ohio State University

Columbus, Ohio, USA

chen.10252@osu.edu

Goutham Kalikrishna Reddy Kuncham

The Ohio State University

Columbus, Ohio, USA

kuncham.2@osu.edu

Hari Subramoni

The Ohio State University

Columbus, Ohio, USA

subramoni.1@osu.edu

Dhabaleswar K. Panda

The Ohio State University

Columbus, Ohio, USA

panda@cse.ohio-state.edu

Abstract—The demand for computing power in high-
performance computing and deep learning applications is steadily
increasing, leading to a noticeable inclination toward equipping
modern exascale clusters with accelerators. In particular, dis-
tributed Deep Learning training necessitates high-performance
GPU-aware MPI operations, with reduction operations being
widely employed. Unlike data movement-based MPI runtimes,
reduction operations encompass both communication and com-
putation, making them inherently more intricate to design and
optimize for data transmission between GPU buffers. Acknowl-
edging the success of NVIDIA and AMD GPUs in HPC, Intel
has actively participated in the development of GPU products,
while also fostering their associated ecosystems in recent years.
However, existing MPI libraries supporting Intel GPUs rely
on naive staging approaches, resulting in elevated latencies
and subpar performance. In this paper, we propose a kernel-
based reduction collective MPI library designed specifically
for Intel GPUs. Our approach leverages IPC techniques to
minimize data movement overhead during communication while
harnessing highly efficient GPU kernels for the computational
aspects of reduction operations. We assess the advantages of our
designs through benchmark and application-level evaluations,
conducted on ACES and Stampede3 systems. In benchmark-
level evaluations, our Allreduce implementations demonstrate
an 13.3x performance enhancement compared to Intel MPI at
1GB with 8 GPUs. Moreover, with 32 GPUs, we achieve a 42%
performance enhancement. In application-level evaluations, our
proposed designs exhibit up to a 22% enhancement for the
Deep Learning application TensorFlow with Horovod and a 28%
improvement for PyTorch with Horovod on 32 GPUs compared
to Intel MPI.

Index Terms—Intel GPUs, IPC, Kernel, Reduction, Allreduce

I. INTRODUCTION

The high demand for computing power and communication

throughput from scientific, big data, and deep learning (DL)

applications drives the development of a high-performance

computing (HPC) ecosystem. As accelerators, such as Graph-

ics Processing Units (GPUs), boast remarkable computational

capabilities, vendors like NVIDIA, AMD, and Intel showcase

their GPU products, influencing the TOP500 [1] ranking. For

instance, in 2023, the top-ranked Frontier system utilizes AMD

Instinct 250X GPUs, while the second-ranked Aurora system

is powered by Intel Data Center GPU Max Series. Therefore,

This research is supported in part by NSF grants #1818253, #1854828,
#2018627, #2311830, #2312927, and XRAC grant #NCR-130002. We would
also like to thank the Texas Advanced Computing Center and Texas A&M
University for providing access to the HPC systems used in this research.

these advanced dense GPU systems depend on communi-

cation runtimes for effective workload scalability. Message

Passing Interface (MPI) serves as the standard communication

paradigm in HPC systems, facilitating communication across

processes, while GPU-aware MPI libraries [2, 3] facilitate

data transmission between GPU buffers managed by different

processes.

With most MPI runtimes prioritizing data movement be-

tween processes, the primary overhead is attributed to com-

munication. However, certain MPI operations entail additional

computation, such as MPI Scan and reduction operations

like MPI Allreduce. For example, in reduction operations

utilizing the MAX operation, calculating the maximum value

in the buffers among all processes necessitates additional

CPU computing power and cycles. As more HPC applications

offload their computation to accelerators [4] and distributed

DL applications proliferate, the development of efficient and

productive reduction runtimes for data on GPU buffers be-

comes indispensable for GPU-aware MPI libraries. In modern

dense GPU systems, which feature multiple accelerators within

a node, high-performance interconnectivity such as NVLink

and NVSwitch for NVIDIA GPUs is crucial for achieving high

throughput communication. Moreover, with GPUs becoming

increasingly powerful in computation, developers are inspired

to leverage these cutting-edge capabilities when designing

efficient MPI reduction operations for GPUs.

A. Motivation

Following in the footsteps of NVIDIA and AMD, Intel is

actively designing and developing a range of GPU products

and their accompanying ecosystems. In 2020, Intel introduced

the Iris Xe Max Graphics, followed by the release of the

Intel Data Center GPU Max Series tailored for HPC and

AI workloads. Additionally, it also provides Intel Xe links,

enabling high-performance interconnectivity among its GPUs

within a node. On the software front, application developers

port their implementations to support GPU kernels in leading

programming models like SYCL [5], OpenMP, and Kokkos to

harness the computing power of Intel GPUs. To enhance scal-

ability, applications necessitate communication runtimes with

low latency and high throughput for GPUs. For instance, the

HPC application heFFTe [6] utilizes GPU-aware MPI point-

to-point operations or collective Alltoall(v) communication

122

2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/24/$31.00 ©2024 IEEE
DOI 10.1109/HiPC62374.2024.00022

20
24

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 H

ig
h

Pe
rfo

rm
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

79
-8

-3
31

5-
09

09
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/H

IP
C6

23
74

.2
02

4.
00

02
2

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

patterns to optimize data movement among device buffers. In

DL applications, plugins [7, 8] for TensorFlow and PyTorch

enable efficient AI workloads for intel GPUs, while distributed

frameworks [9] streamline multi-GPU training processes, em-

phasizing the communication of reduction operations such as

Allreduce and Reduce scatter.

Despite the significant demand, particularly for the Allre-

duce operation in DL applications, there is currently no op-

timized MPI library providing efficient and high-performance

design and implementation for Intel GPUs. As the vendor,

Intel has recently developed their GPU-aware Intel MPI [10].

However, due to its closed-source nature, the optimizations

utilized are not transparent, and the performance for reduction

operations remains low. Furthermore, MPICH [11] employed

CPU staging approaches for all reduction operations, resulting

in even higher latency, particularly with large messages. There-

fore, there is significant room for enhancing the performance

of MPI reduction operations on the latest Intel GPUs to

improve throughput for both HPC and DL applications.

B. Proposed Solution

We optimize the reduction operations from two primary per-

spectives: computation and communication. We leverage GPU

inter-process communication (IPC) techniques to optimize the

communication of data movement between GPUs within a

node, and we design and implement GPU kernels for reduction

computation using the Intel oneAPI Base Toolkits [12] with a

SYCL backend. We also employ a hybrid design to mitigate

overhead from IPC utilization and kernel launching, ensuring

good performance across all message sizes. In this paper, our

primary focus lies in optimizing the Allreduce operation, as it

introduces significant communication traffic compared to other

reduction operations and is widely utilized. We devise a basic

unified reduction kernel to support all reduction operations.

However, for the intra-node Allreduce operation, we imple-

ment an optimized kernel. This optimization is necessary as it

involves a broadcast communication step right after the regular

kernel reduction. Moreover, we adopt a two-level algorithm

to deal with the inter-node Allreduce communication. To the

best of our knowledge, our proposed design stands as

the pioneer in leveraging GPU kernels for MPI reduction

operations on Intel GPUs, surpassing the performance of

both Intel MPI and MPICH libraries.

C. Challenges

We address the following challenges to design and imple-

ment a hybrid kernel-based MPI library for the reduction based

collective communication:

• How can we best strategize and which techniques should

we adopt to develop a high-performance MPI library

specifically tailored for reduction collective operations on

Intel GPUs?

• How can we design a library to facilitate computation and

communication among GPUs within a node, capitalizing

on the high bandwidth of Intel Xe links?

• How can we effectively design and implement a compre-

hensive GPU kernel for Intel GPUs using the oneAPI and

SYCL library?

• How can we further optimize the ubiquitous Allreduce

operation in intra-node and inter-node environments?

D. Contributions

This paper makes the following contributions:

• We proposed, designed, and implemented kernel-based

MPI reduction operations for Intel GPUs using SYCL

and oneAPI Toolkits (Section III)

• Our designs support common MPI operations/datatypes

on GPUs (Section III-C and IV-B, Figure 3 and 4)

• We designed a fundamental kernel to encompass all

reduction-based operations, including Allreduce, Reduce,

Reduce scatter, and Reduce scatter block (Section III-C

and IV-E, Figure 8)

• We optimized the MPI Allreduce operation for inter-node

and intra-node scenarios (Section III-C and III-D)

• We conducted profiling of our Allreduce design and

provided analysis for both inter-node and intra-node

execution. (Section IV-C and Figure 5)

• Our designs offer up to 13.3 times improvement com-

pared to Intel MPI in osu allreduce benchmark on 8

GPUs, and offer up to 42% improvement on 32 GPUs

(Section IV-D and Figure 7)

• In real application-level evaluations, our designs demon-

strate up to a 22% improvement compared to Intel MPI

in Horovod with TensorFlow and a 28% improvement in

Horovod with PyTorch (Section IV-F, Figure 9 and 10).

II. BACKGROUND

A. Intel GPUs

Intel has recently entered the discrete graphics card market

and has introduced the Max Series product family, specifically

designed for the demanding worlds of HPC and AI. This

product lineup features two powerhouses: the Intel Xeon CPU

Max Series (codenamed Sapphire Rapids HBM) and the Intel

Data Center GPU Max Series (codenamed Ponte Vecchio). The

Max Series GPU is Intel’s highest-density processor, packing

over 100 billion transistors into a 47-tile package with up to

128 Xe HPC cores and up to 128 GB of high bandwidth

memory. To enable scale-up and scale-out capabilities, the Xe-

HPC micro-architecture incorporates the advanced Xe Link

technology. Xe Link is a high-speed interconnect solution

designed specifically to connect multiple Xe-HPC GPUs in

various configurations, such as 2-way, 4-way, 6-way, and even

8-way. Each Xe Link is capable of up to 26.5 GB/s of

bandwidth in each direction [13].

B. Reduction Operations

Reduction procedures are critical in parallel computing

because they allow the aggregation of data across numerous

processes to produce a consolidated result. Among these

operations, MPI Allreduce stands out as a basic collective

communication primitive, in which each process contributes its

123

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

local data and the operation results in all processes receiving

the combined result [14]. MPI Reduce is another collective

that offers similar functionality, but with a singular focus:

aggregating data solely at a designated ”root” process. This

makes it ideal when the final result is only required by

one process. Expanding on the concept, MPI Reduce scatter

is a variant of reduction operations that involve distributing

resultant data among processes after performing a reduction

operation. Unlike other collective communications, reduction

operations involve computations, adding a layer of complexity

and resource consumption. As reduction operations involve

computational processing, there exists a demand for continu-

ous research efforts focused on enhancing their efficiency.

C. Inter-process Communication (IPC)

Parallel computing applications rely heavily on efficient

communication mechanisms to facilitate data exchange and

synchronization between processes. These processes operate

within distinct address spaces, preventing direct access to

device memory or events created by threads in other processes.

Similar communication issues exist within a single compute

node when dealing with multiple GPUs. To address this,

GPU Inter-Process Communication (GPU IPC) emerges as a

key technique for optimizing data movement between GPU

processes. GPU IPC enables direct data transfer between the

GPU memory spaces of distinct processes, bypassing the host

CPU entirely. This optimization relies on a process exposing

a designated portion of its GPU memory to remote processes.

This exposure is achieved by creating a memory handle, which

acts as a unique reference point for the shared memory region.

The memory handle is then transferred to the remote process,

granting it access to the shared memory. Upon receiving the

handle, the remote process can read and potentially modify

the shared data residing in the remote GPU’s memory space.

D. Kernel-based Computation

Kernel-based computing has emerged as a key paradigm

in modern computational research, providing good parallelism

and processing capacity. Traditional CPU kernels, or small

programs within the operating system that manage system

resources, are limited by the CPU’s architecture and security

features. In contrast, GPU kernels take advantage of modern

GPUs’ massive parallel processing capabilities to perform

computationally complex jobs with amazing efficiency. How-

ever, optimizing GPU kernels necessitates a distinct method-

ology that takes into account characteristics such as memory

access patterns and workload allocation across several cores.

Despite these obstacles, GPU kernels have spread throughout

the scientific, engineering, and machine learning fields, pro-

pelling advances in computational research and allowing for

the study of complicated issues on bigger scales.

III. DESIGN

A. Overview of the Designs

GPU and kernel-based computation offer high performance

for parallel computing and vectorized data processing. How-

ever, there is a notable overhead during initialization, including

Fig. 1. Overview of the proposed intra-node designs for MPI Allreduce.

IPC handle exchange and kernel launching, making it ineffi-

cient for small message runtimes. Therefore, we adopt a hybrid

approach to complement our strategy, aiming to achieve low

latency across all message ranges. For small messages, we

utilize CPU staging approaches to prevent the initialization

overheads associated with kernel-based designs. CPU staging

approaches use CPU-based MPI runtimes for communication

and reduction. This process requires moving data from GPU

memory to a temporary CPU buffer before the operation, and

after the CPU-based communication is completed, the data is

stored back in the device. The memory copying between the

device and host buffer is efficient for small messages, but as

the message size increases, latency grows significantly. Hence,

this is where we switch to kernel-based designs on top of IPC

techniques for large message communication.

While most GPU MPI operations primarily entail data

movement between GPUs, reduction operations encompass

both communication and computation. Hence, the overheads

from both parts escalate significantly as the message size

increases. To mitigate the communication overhead between

device buffers, we employ IPC techniques, which enable direct

data access between the GPU address spaces of different

processes via Intel Xe Links. On the other hand, to enhance

computation efficiency, we implement GPU kernels to handle

the heavy reduction operations. We utilize Intel oneAPI to

develop SYCL reduction kernels optimized for Intel GPUs.

B. IPC Buffers Preparation

Since each process maintains its buffer addresses, and

these addresses are inaccessible to other peer processes, it

is necessary to exchange IPC handles with peers and open

these handles to obtain the real memory locations from others.

In most point-to-point communication implementations, either

the sender or the receiver process opens the IPC handle

and executes the device-to-device memcpy from one GPU to

another. However, in collective operations, it is unbalanced to

assign all the memcpy tasks to only one process; instead, it

requires all processes to share the communication workload.

Therefore, in our implementation, we exchange the IPC han-

dles mapped to sendbuf and recvbuf of all peer processes. This

ensures that each process can access all buffers from the peer

124

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

(a) Single-leader 2-level Inter-node Designs
(b) Multi-leader 2-level Inter-node Designs

Fig. 2. Overview of the proposed inter-node designs for MPI Allreduce.

processes within the same node. This all-to-all exchanging

pattern provides the necessary data access possibility and

offers higher benefits for kernel reduction in the next step. To

optimize the productivity of passing the remote buffer pointers

to the kernel function, we refactor the pointers into a 2D array.

The Step 1 section of Figure 1 shows the structure of the

2D array. The first dimension indicates the number of peer

processes, while the second dimension indicates the number

of data counts for reduction, and each process has the same

data structure to access the remote buffers.

C. Reduction Kernel Designs

We delegate the computation to the reduction kernel, with

a focus on enhancing capacity and throughput by addressing

load balance issues and optimizing memory access patterns.

Assuming there are n GPUs per node and N data counts,

each GPU is responsible for roughly N/n calculating result

elements. For instance, in Figure 1, step 2, GPU 0 computes

the first 2 elements in the sendbufs, while GPU 1 handles the

remaining 2 elements (marked in red and blue dotted circles).

From an implementation perspective, the kernel can access

the array header by setting the offset, allowing each work

item (similar to a thread on NVIDIA GPUs) to access and

compute the vectorized elements in the sendbufs concurrently.

This process iterates n times, traversing the data from each

peer GPU and storing the reduced data in the assigned recvbuf

afterwards. In step 2, GPU 0 calculates the first 2 elements

in sendbuf 0 and sendbuf 1, storing the results in recvbuf

0. Meanwhile, GPU 1 calculates the remaining elements in

sendbufs and stores the results in recvbuf 1.

Since computations on GPUs may occur simultaneously,

multiple kernels may access the same data (indicates on

the same GPU) concurrently, leading to potential memory

congestion. To address this issue, for each GPU x, our design

only accesses the data stored on GPU x in the first iteration.

Then, in each subsequent iteration, it accesses the sendbuf

located on GPU x + 1, and continues this progression. For

instance, in Figure 1, during step 2, GPU 1 first computes

the data in sendbuf 1 and subsequently processes the data in

sendbuf 0 to avoid congestion with GPU 0. After computation,

the kernel stores the results in the appropriate buffer, marking

the completion of the basic reduction kernel process. For

Allreduce, there is an additional step to broadcast the results to

all GPUs. Therefore, we first store the results in the local GPU,

such as GPU 1 storing the data in recvbuf 1 instead. For the

same memory congestion reason, we also employ a strategy of

initially copying data to the x+1 GPU, followed by iterative

transfers to the x+2 GPU, and so forth, until completing the

broadcast process, as shown in Step 3 of Figure 1. Since all

GPUs must broadcast their data to others, this behaviour can

be considered an Allgather communication pattern.

D. Inter-node Allreduce Implementations

We implemented two inter-node Allreduce algorithms: the

single-leader 2-level Allreduce approach and the multi-leader

2-level Allreduce approach.

1) Single-leader 2-level Allreduce: To maximize efficiency,

the GPU kernel operates within the node’s scope, producing

partial reduction values. Hence, for inter-node Allreduce im-

plementation, we adopt a two-level approach for the remaining

reduction operations. The first level entails intra-node reduc-

tion, performed by the kernel. As the partial-reduced values

are not the final results, the last step of broadcasting the

results to all GPUs is unnecessary. To efficiently access this

intermediate data for the second level of Allreduce, we store

the data on local rank 0, the local leader rank, rather than

on each GPU. The second level executes inter-node reduction.

With the data residing in the leader ranks of each node, only

one process per node participates in this operation. Ideally,

any Allreduce algorithm or GPU-optimized techniques can be

applied here. In our implementation, we demonstrate the naive

approach using a CPU-based leader Allreduce algorithm with

CPU staging techniques. We begin by copying the data from

the GPU buffers of local rank 0 to the CPU staging buffers,

then execute the inter-node leadership Allreduce among the

involved processes. After this step, we obtain the final results,

125

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

but the data is only accessible in CPU buffers on the leader

processes. Therefore, we must copy the data back to the GPU

buffers on the leader ranks and broadcast the results to all other

GPUs. Another approach involves broadcasting the results

among the CPU staging buffers and then copying the data back

to each GPU individually. However, this method introduces

additional communication traffic and overhead. Figure 2(a)

illustrates an example of our designs running on 2 nodes, each

containing 2 GPUs. Note that rank 0 and rank 2 are the local

leader processes.

2) Multi-leader 2-level Allreduce: In the single-leader 2-

level approach, only one process per node handles the sec-

ondary Allreduce phases with all data, while the other pro-

cesses idle and wait, causing workload imbalance. Therefore,

in the multi-leader 2-level approach, each local rank group

handles an equal portion of the data to distribute the workload

evenly. To support this feature, the reduction kernel should

store the corresponding temporary results on each GPU instead

of consolidating them to the root (local rank 0). This allows

the secondary Allreduce functions to directly access data

from their respective GPU buffers without additional data

movement. Following this, all the local rank n processes (on

each node) form groups, and each group performs a similar

inter-node leader Allreduce among the involved processes,

but handling smaller portions of the data involved. After

the secondary multi-leader Allreduce, the reduced data is

distributed across each local rank rather than the local root

rank, so we need to distribute the final results to all processes.

This Allreduce algorithm is equivalent to the Reduce Scatter

communication pattern followed by the Allgatherv communi-

cation pattern (where ”v” accounts for uneven data distribution

among processes). Therefore, we can simply perform a local

Allgather(v) communication to dispatch the final reduction

data. Figure 2(b) illustrates an example of our multi-leader

2-level design. In this design, there are 2 inter-node Allreduce

operations, with each operation handling only half of the data

compared to the single-leader design.

IV. EVALUATION

A. Experimental Setup

Our experiments were conducted on the ACES system,

developed by Texas A&M University (TAMU), and the Stam-

pede3 system, developed by Texas Advanced Computing Cen-

ter (TACC). ACES is a composable hardware platform that

offers a mixed accelerator testbed, incorporating Intel PVC

GPUs, Intel FPGAs, NVIDIA H100 GPUs, and more. We

utilized the PVC partition, featuring a dual-socket Intel Xeon

Platinum 8468 Sapphire Rapids processor with 48 cores per

socket, totalling 96 cores per node. Additionally, the node is

equipped with 512 GB of memory and features 4 Intel Data

Center GPU Max 1100 GPUs, referred to as Intel PVC 1100.

Each PVC 1100 GPU consists of 56 Xe Cores and 48GB

of HBM2e memory. The compute nodes are interconnected

via Mellanox NDR 400Gbps. The Stampede3 PVC partition

features a dual-socket Intel Xeon Platinum 8480 Sapphire

Rapids processor, with 48 cores per socket, totalling 96 cores

per node. Each node is equipped with 1 TB of memory and

4 Intel Data Center GPU Max 1550 GPUs, referred to as

Intel PVC 1550. Each PVC 1550 GPU consists of 128 Xe

Cores and 128 GB of HBM2e memory, spread across 2 stacks

(tiles). Therefore, at the user level, there are 8 Intel PVC 1550

GPUs visible per node. The interconnect of Stampede3 is a

100 Gb/sec Omni-Path (OPA) network with a fat tree topology.

Evaluation at the Benchmark Level: The OSU Micro-

Benchmarks (OMB) suite [15] provides evaluations at the MPI

level both point-to-point and collective MPI runtimes, and it

supports CUDA and ROCm device buffers on NVIDIA and

AMD GPUs, but it currently lacks support for Intel GPUs.

To address this limitation, we extended OMB version 7.3

to facilitate the allocation of oneAPI/SYCL device buffers

customized for Intel GPUs. If no specific specification is

provided, we default to using the osu allreduce benchmark

with the MPI SUM operation and MPI FLOAT datatype.

Evaluation at the Application Level: TensorFlow and Py-

Torch are widely recognized DL frameworks, while Horovod

offers a streamlined interface for distributed learning. To

harness the capabilities of Intel GPUs, we utilized the Intel

Extension for TensorFlow [7] and PyTorch [8] packages for

XPU support. Additionally, we utilized the Intel Optimization

for Horovod [9] branch and extended it to support MPI

standard operations.

We compiled our implementation with Intel oneAPI Base

Toolkit 2024.1. To benchmark our designs, we utilized Intel

MPI 2021.12 as the baseline.

B. Operations and Datatypes

Although summation and floating-point numbers are the

most frequently utilized in Allreduce operations, our designs

offer comprehensive support for various other common use

cases as well. Figure 3 illustrates the performance of various

reduction operations on a single node, evaluated at both 1MB

and 16MB. The legend enumerates all the supported operations

we implemented. The latencies for all 10 different operations

consistently range from 503 µs to 508 µs at 1MB and approxi-

mately 850 µs to 858 µs at 16 MB. This evaluation proves that

our modularized design eases the implementation overhead for

GPU kernels while maintaining consistent performance.

Figure 4 illustrates the performance of various data types

in Allreduce on a single node. Figure 4(a) displays the

results of different types of integers. We present two sets

of numbers with the message size fixed at 4MB and the

message count fixed at 4M. We offer 4 types of integers:

1, 2, 4, and 8 bytes per integer. Hence, with the fixed

message size, the message counts are 4M, 2M, 1M, and

512K, respectively. In this scenario, as the message counts

decrease, the running times also decrease due to reduced

kernel computation requirements, while the communication

volume remains the same. On the other hand, if we main-

tain the same message counts, the number of computational

operations should remain constant. Therefore, the indepen-

dent variable becomes the message size for communication.

However, it’s noteworthy that MPI INT8 T takes more time

126

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

1M 16M
Message Size (Bytes)

0

200

400

600

800

1000

La
te
nc
y
(µ
s)

SUM
MAX
MIN
PROD
LAND

BAND
LOR
BOR
LXOR
BXOR

(a) Reduction Operations

Fig. 3. Comparison of Allreduce performance
for different reduction operations on 1 node, 4
GPUs.

Message Size 4MB Message Count 4M0

200

400

600

800

1000

1200

La
te
nc
y
(µ
s)

MPI_INT8_T
MPI_INT16_T

MPI_INT32_T
MPI_INT64_T

(a) Integers

Message Size 4MB Message Count 4M0

200

400

600

800

1000

1200

La
te

nc
y

(µ
s)

MPI_FLOAT MPI_DOUBLE

(b) Floating-points

Fig. 4. Comparison of Allreduce performance for different datatypes on 1 node, 4 GPUs.
MPI INT8 T, MPI INT16 T, MPI INT32 T, and MPI INT64 T correspond to 8-bit, 16-bit,
32-bit, and 64-bit integers, while MPI FLOAT and MPI DOUBLE represent single-precision
and double-precision floating-point numbers.

1K 4K 16K 64K 256K 1M 4M 16M
Message Size (Bytes)

0

200

400

600

800

1000

1200

La
te
nc

y
(µ
s)

Initialization
IPC Handle Exchange
Kernel Running

(a) Intra-node Designs

8M 16M 32M 64M
Message Size (Bytes)

0K

5K

10K

15K

20K
La

te
nc

y
(µ

s)
Initialization
IPC Handle Exchange
Reduce Kernel
Device-to-host
Leader Allreduce
Host-to-device
Bcast

(b) Inter-node Single-leader 2-level Designs

8M 16M 32M 64M
Message Size (Bytes)

0K

5K

10K

15K

20K

La
te

nc
y

(µ
s)

Initialization
IPC Handle Exchange
Reduce_scatter Kernel
Device-to-host
Leader Allreduce
Host-to-device
Allgatherv Kernel

(c) Inter-node Multi-leader 2-level Designs

Fig. 5. Time profiling results of the intra-node and inter-node (single-leader and multi-leader 2-level) designs on ACES with 4 GPUs per node.

compared to MPI INT16 T and MPI INT32 T. In fact, the

performance for MPI INT16 T and MPI INT32 T is nearly

identical. It is because GPU cores are optimized for 16-bit

and 32-bit integers, resulting in more efficient computation

for common datatypes. Figure 4(b) displays the results of

different types of floating-points. We observe that the per-

formance of MPI FLOAT is identical to MPI INT32 T, and

MPI DOUBLE performs similarly to MPI INT64 T as well.

C. Profiling of the Proposed Designs

Due to the additional overhead introduced by kernel-based

designs, which becomes noticeable for small messages, we

conducted further profiling of MPI operations to analyze our

designs. Figure 5 illustrates the time profiling results of the

intra-node and inter-node designs for Allreduce. We conducted

profiling on ACES using 1 node for intra-node results and 2

nodes for inter-node results, respectively. Figure 5(a) illustrates

the three primary stages of the intra-node design: initialization

(marked in red), IPC handle creation, exchange, and opening

(marked in orange), and kernel launching and running (marked

in blue). The initialization phase consistently takes around 2 µs

for all message sizes, remaining constant and relatively small,

making it negligible. However, a larger overhead is observed

in the IPC handle exchange phase, which consistently takes

74 µs regardless of the message size. The constancy of this

phase arises from its preparation and exchange of IPC handles

rather than actual kernel computation or data communication.

In the Kernel Running phase, we also notice a consistent

overhead of around 273 µs up to 128KB. Since we cannot

delve into the specifics of each kernel, we attribute this to the

time taken for kernel launching. This underscores the necessity

for alternative approaches to address reduction operations

involving small messages. For large messages exceeding 256

KB, the kernel time increases linearly with the message size,

indicating the involvement of actual computation. In summary,

the Kernel Running phase constitutes the majority of the

Allreduce operations. However, compared to other non-kernel-

based approaches, its runtime is notably shorter, emphasizing

the superiority of the kernel-based methods.

Figure 5(b) and 5(c) illustrate the primary stages of our 2

inter-node designs. Figure 5(b) depicts the profiling results of

the single-leader 2-level designs while Figure 5(c) illustrates

the results for the multi-leader 2-level designs. In addition to

the same phases as intra-node metrics, it includes device-to-

host (D2H) memory copying (marked in lime), the inter-node

level Allreduce for leader processes (marked in grey), host-to-

device (H2D) memory copying (marked in wheat), and IPC

broadcast or allgather (marked in brown). We observe a similar

trend as intra-node profiling results for the Initialization, IPC

Handle Exchange, and Kernel Running phases, with these

phases constituting a small portion of the inter-node design.

In the single-leader 2-level designs, most of the time is spent

in D2H and H2D memory copying and the leader-Allreduce

phase, with both phases occupying around 33% and 52% of

the total time for a 64MB message. In contrast, in the multi-

leader 2-level designs, the time consumed by both the memory

copying and the leader-Allreduce phase drops by 45% and

22% compared to single-leader designs, respectively. The other

127

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

1M 4M 16M 64M 256M 1G
Message Size (Bytes)

0K

25K

50K

75K

100K

125K

150K
La

te
nc

y
(u

s)
Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(a) 4 GPUs

1M 4M 16M 64M 256M 1G
Message Size (Bytes)

0K

50K

100K

150K

200K

250K

La
te
nc
y
(u
s)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(b) 8 GPUs

1M 4M 16M 64M 256M 1G
Message Size (Bytes)

0K

100K

200K

300K

La
te

nc
y

(u
s)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(c) 16 GPUs

Fig. 6. Comparison of MPI Allreduce between Intel MPI and proposed designs with single-leader and multi-leader 2-level Allreduce algorithms on ACES.

1M 4M 16M 64M 256M 1G
Message Size (Bytes)

0K

100K

200K

300K

400K

La
te

nc
y

(u
s)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(a) 8 GPUs

1M 4M 16M 64M 256M 1G
Message Size (Bytes)

0K

100K

200K

300K

400K

500K

La
te

nc
y

(u
s)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(b) 16 GPUs

1M 4M 16M 64M 256M 1G
Message Size (Bytes)

0K

100K

200K

300K

400K

500K

La
te

nc
y

(u
s)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(c) 32 GPUs

Fig. 7. Comparison of MPI Allreduce between Intel MPI and proposed designs with single-leader and multi-leader 2-level Allreduce algorithms on Stampede3.

phases remain consistent, resulting in a total runtime reduction

of 32%. This is because the data copying and Allreduce

communication workloads are equally distributed across all

processes rather than being concentrated on the root rank. The

profiling results show that, in the inter-node Allreduce design,

most of the time is dedicated to inter-node communication or

phases directly related to it. However, despite these challenges,

our designs continue to outperform alternative approaches, as

demonstrated in the next section.

D. Micro-Benchmark Evaluation

We performed a performance assessment of our kernel-

based MPI reduction operations, concentrating on the Allre-

duce functionality using OMB. The evaluation spanned across

configurations involving 4, 8, and 16 GPUs on ACES, and

8, 16, and 32 GPUs on Stampede3. Figures 6 demonstrate

that our proposed designs exhibit superior or comparable

performance to Intel MPI for message sizes ranging from

1MB to 1GB on ACES. Figure 6(a) illustrates that for larger

messages on a single node, the latency of Intel MPI increases

to 150.7K µs at 512MB. In contrast, both of our approaches

maintain the lowest latency at 9500 µs, which is 15.8 times

faster compared to Intel MPI. Notably, Intel MPI hangs at

certain message sizes of 1GB, while our approaches continue

to deliver good performance. Additionally, the orange and

blue lines overlap in some regions. Figures 6(b) and 6(c)

further demonstrate that our proposed designs maintain their

advantage in multiple-node scenarios. In the 8-GPU scenario,

our designs achieve a latency of 122.4K µs with the single-

leader designs and 80.9K µs with the multi-leader designs

at 512MB, marking a 20% and a 47% improvement over

Intel MPI’s 152.9K µs, respectively. Similarly, in the 16-GPU

environment, our designs achieve a latency of 192.6K and

121.5K µs, presenting a similar 19% and a 49% enhancement

over Intel MPI’s 237.9K µs, respectively.

Figures 7 demonstrate the performance of our proposed

designs on Stampede3. Figure 7(a) illustrates the latencies on

a single node. Both of our proposed designs exhibit lower

latencies around 31.8K µs, compared to 392.9K µs using Intel

MPI at 1GB, which is 13.3 times faster. Figure 7(b) shows that

our single-leader designs achieve 314.4K µs and the multi-

leader designs achieve an even lower 232.5K µs at 1GB with

16 GPUs, which are 1.6 times and 2.2 times faster compared to

Intel MPI’s 503.3K µs. Similarly, Figure 7(c) demonstrates on

32 GPUs, our designs achieve latencies of 486.6K and 323.5K

µs, presenting 13% and 42% enhancements over Intel MPI’s

558.8K µs, respectively. Especially, in the case of medium-

sized messages around 64MB, Intel MPI achieves a low

latency of 32.2K µs, whereas our single-leader designs achieve

36.6K µs. However, our multi-leader designs significantly

improve latency to just 21.0K µs, marking a 34% enhancement

over Intel MPI.

E. Extension to Other Reduction Operations

In addition to MPI Allreduce, our designs have been

extended to encompass other reduction-based MPI op-

erations, namely MPI Reduce, MPI Reduce scatter, and

MPI Reduce scatter block. Figure 8(a), 8(b), and 8(c) present

the performance results on 1 node with 4 GPUs. In summary,

our designs demonstrate similar performance to the Allreduce

implementations, with latencies ranging from approximately

985 µs to 995 µs for the three operations. Considering that the

128

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

256K 512K 1M 2M 4M 8M 16M 32M
Message Size (Bytes)

0K

2K

4K

6K

8K

10K

12K

14K
La

te
nc

y
(µ

s)
Intel MPI 2024.1
Proposed Designs

(a) MPI Reduce

256K 512K 1M 2M 4M 8M 16M 32M
Message Size (Bytes)

0K

5K

10K

15K

20K

La
te

nc
y

(µ
s)

Intel MPI 2024.1
Proposed Designs

(b) MPI Reduce scatter

256K 512K 1M 2M 4M 8M 16M 32M
Message Size (Bytes)

0K

5K

10K

15K

20K

La
te

nc
y

(µ
s)

Intel MPI 2024.1
Proposed Designs

(c) MPI Reduce scatter block

Fig. 8. Extension to other reduction operations. Performance comparison with 1 node, 4 GPUs on ACES.

32 64 128
Batch Size

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (i

m
ag

e/
se

c)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(a) 4 GPUs

32 64 128
Batch Size

0

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (i

m
ag

e/
se

c)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(b) 8 GPUs

32 64 128
Batch Size

0

1000

2000

3000

4000

5000

6000

7000

Th
ro
ug
hp
ut
 (i
m
ag
e/
se
c)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(c) 16 GPUs

Fig. 9. Comparison of application-level (TensorFlow with Horovod) performance on ACES. (Higher is better)

32 64 128
Batch Size

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (i

m
ag

e/
se

c)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(a) 4 GPUs

32 64 128
Batch Size

0

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (i

m
ag

e/
se

c)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(b) 8 GPUs

32 64 128
Batch Size

0

1000

2000

3000

4000

5000

6000

7000

Th
ro
ug
hp
ut
 (i
m
ag
e/
se
c)

Intel MPI 2024.1
Proposed (Single-leader 2lvl)
Proposed (Multi-leader 2lvl)

(c) 16 GPUs

Fig. 10. Comparison of application-level (PyTorch with Horovod) performance on ACES. (Higher is better)

three operations are subsets of Allreduce, their latencies should

ideally be less than or similar to the Allreduce performance.

It appears that even Intel MPI lacks optimization for other

reduction-based operations, as evidenced by its latencies of

13719 µs, 20300 µs, and 22222 µs for the three operations

at 32 MB. This translates to being 13.8x, 20.4x, and 22.5x

slower compared to our designs, respectively.

F. Application-Level Evaluation

To assess the advantages of our designs in real-world

scenarios, we conducted application-level experiments using

DL applications, specifically TensorFlow with Horovod and

PyTorch with Horovod.

Figure 9 presents the performance comparison of Tensor-

Flow with Horovod for batch sizes 32, 64, and 128, using

the ResNet50 model with both Intel MPI and our proposed

designs across 4, 8, and 16 GPUs. On 4 GPUs, as shown in

Figure 9(a), our designs achieve throughputs of 1078, 1409,

and 1642 img/sec for batch sizes 32, 64, and 128, respectively.

In contrast, Intel MPI only provides throughputs of 754, 1074,

and 1428 img/sec for the same batch sizes, indicating a 30%,

24%, and 13% decrease in performance compared to our

designs. Similar trends are evident in Figure 9(b) and 9(c).

For instance, in the 16-GPU scenario, our designs achieve a

throughput of 3336 img/sec for batch size 32, outperforming

Intel MPI’s throughput of 2597 img/sec by 22%.

Figure 10 presents the performance comparison of PyTorch

with Horovod for batch sizes 32, 64, and 128, using the

ResNet50 model with both Intel MPI and our proposed designs

across 4, 8, and 16 GPUs. Similar to the TensorFlow evalua-

tions, our designs consistently outperform the baseline across

various batch sizes and scales. Figure 10(a) demonstrates the

superior performance of our designs, achieving throughputs of

1216, 1390, and 1537 img/sec for batch sizes 32, 64, and 128,

respectively. In contrast, Intel MPI yields lower throughputs of

723, 1033, and 1314 img/sec for the same batch sizes, marking

a 41%, 26%, and 15% reduction in performance compared to

129

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

our designs. In the 16-GPU case depicted in Figure 10(c), our

designs achieve 3519 img/sec for batch size 32, surpassing

Intel MPI’s throughput of 2531 img/sec by 28%.

Reduction operations play a crucial role in DL training,

and PyTorch specifically serves as a vital backend for various

DL frameworks. The application-level evaluations demonstrate

that our design offers significant benefits for common DL

tasks, delivering high performance and low latency outcomes.

V. RELATED WORK

The rise of GPU’s popularity in modern clusters for

compute-heavy workloads necessitates the need for efficient

communication between GPUs. Several researchers are ac-

tively developing solutions to address this challenge.

Wang et al. [16] explored InfiniBand clusters and developed

an optimal NVIDIA CUDA-based design specifically suited

for this architecture, facilitating efficient GPU-to-GPU com-

munication. Additionally, in their other work, Wang et al. [17]

leveraged Remote Direct Memory Access (RDMA) technol-

ogy in RDMA-enabled clusters, enabling data transfer between

GPUs to bypass the CPU entirely and reduced communication

overhead. Jacobsen et. al [18] explored overlapping GPU

data movement and MPI communication with computation

for simulating computational fluid dynamics using MPI and

CUDA. Potluri et al. [19] introduced a hybrid design that

combines host-based pipelining techniques with GPUDirect

RDMA functionalities. This approach optimizes communica-

tion between GPUs located on different nodes within the clus-

ter, leveraging the strengths of both techniques. Subramoni et.

al [20] addressed communication inefficiencies by proposing

designs that dynamically adapt to the communication patterns

of processes at runtime. Their solution allows for seamless

transitions between eager thresholds without compromising

throughput. To evaluate existing solutions, Kawthar et al. [21]

conducted a comparative study on the point-to-point communi-

cation performance of popular GPU-aware MPI libraries like

MVAPICH2-GDR, Spectrum MPI, and Open MPI, offering

valuable insights into their relative strengths and weaknesses.

Chen et al. [22] focused on optimizing Alltoall communica-

tion, a common data exchange pattern in scientific comput-

ing, for dense GPU systems using IPC. Several researchers

have investigated methods for optimizing MPI reduction-based

collectives on modern GPU architectures. Faraji et al. [23]

[24] explored CUDA IPC designs to enhance MPI Allreduce

performance. They expanded on their research by examining

various GPU-aware collective algorithms and proposed hybrid

designs to optimize medium and large message sizes, utilizing

a combination of host-staged and CUDA IPC copies. Chu et

al. [25] proposed novel designs for MPI reduction-based col-

lectives, utilizing CUDA kernels for reduction and GPUDirect

RDMA features for communication. Furthermore, Chu et al.

[26] employed a technique that combines host-staged copies

with GPU global memory to accelerate MPI Allreduce for

deep learning workloads.

While research on communication strategies for CUDA-

based NVIDIA GPUs has been extensive, there is a growing

interest in exploring strategies for alternative architectures

too. Kuznetsov et al. [27] ported classical Molecular Dy-

namics (MD) applications from CUDA to ROCm using HIP

and analyzed MD application performance on both NVIDIA

and AMD GPUs [28]. Kawthar et al. [29] further extended

their work by proposing novel communication designs specif-

ically tailored for AMD GPU clusters using the ROCm-

aware MVAPICH2-GDR library, addressing communication

challenges for both inter-node and intra-node communication.

Similarly, several studies have explored the potential of SYCL,

a programming standard for heterogeneous computing, for

accelerating various workloads on Intel GPUs. Chen et al.

[30] implemented a GPU-aware MPI library for Intel GPUs

using oneAPI and SYCL backend and they provided detailed

experiments and challenges encountered in integrating Intel

GPU-aware support at the MPI layer. Further, thorough bench-

marking and evaluations from the paper demonstrate signifi-

cant speedups in point-to-point and collective MPI operations

showcasing the adaptability and performance benefits of the

proposed implementations compared to Intel MPI. Zhai et. al

[31] designed and implemented SYCL-based GPU backend

for the Microsoft SEAL homomorphic encryption library,

demonstrating SYCL’s effectiveness for cryptographic appli-

cations. Deakin et. al [32] evaluated the performance of HPC

applications written in SYCL, comparing them to OpenCL and

other models. While ardoso da Silva et. al [33] found SYCL’s

performance not yet on par with OpenCL and OpenMP in

their specific study. Ongoing research continues to explore

SYCL’s potential for optimizing code portability across diverse

architectures. Kuncham et al. [34] compared the performance

of SYCL code to its CUDA equivalent, demonstrating the

viability of SYCL for porting existing CUDA applications.

Reguly et al. [35] evaluated the performance portability of an

application across various platforms including SYCL, high-

lighting its potential for achieving code portability.

VI. CONCLUSION

GPU-aware MPI libraries have been developed over the past

decade to meet the rigorous demands of HPC applications. In

recent years, the surge in communication requirements driven

by emerging DL training has heightened the importance of

reduction operations even further. With NVIDIA and AMD

GPUs already enjoying a competitive edge, the advancements

in GPU-aware MPI libraries have raised expectations for

comparable support and optimizations on the upcoming Intel

GPUs. The state-of-the-art MPI libraries currently depend

solely on naive CPU staging strategies for reduction opera-

tions, tasked with managing all messages, resulting in subopti-

mal performance and significantly high latencies. To tackle this

challenge, we have developed kernel-based designs tailored

for optimizing MPI reduction operations on Intel GPUs. Our

designs prioritize handling large messages, particularly for the

prevalent MPI Allreduce operations. Within intra-node envi-

ronments, we implemented a pure kernel-based IPC solution

to manage the substantial communication and computational

demands. In inter-node scenarios, we employed a two-level

130

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

algorithm to fully exploit the benefits of our kernel designs.

In benchmark tests, our Allreduce implementations deliver a

13.3x performance boost over Intel MPI at 1GB with 8 GPUs.

Additionally, with 32 GPUs, we realize a 42% performance

gain. In application assessments, our designs show up to a 22%

performance improvement for TensorFlow with Horovod and a

28% enhancement for PyTorch with Horovod. In the future, we

plan to explore more optimization approaches for the second

inter-node level Allreduce, aiming to enhance the efficiency

of inter-node performance for MPI reduction operations.

REFERENCES

[1] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP 500
Supercomputer Sites,” http://www.top500.org, 1993.

[2] The Open MPI Development Team, “Open MPI : Open Source High
Performance Computing,” http://www.open-mpi.org, 2004, [Online; ac-
cessed October 31, 2024].

[3] MVAPICH2: MPI over InfiniBand, 10GigE/iWARP and RoCE,
https://mvapich.cse.ohio-state.edu/, 2001, [Online; accessed October 31,
2024].

[4] S. Khuvis, K. Tomko, S. R. Brozell, C.-C. Chen, H. Subramoni,
and D. K. Panda, “Optimizing amber for device-to-device gpu
communication,” in Practice and Experience in Advanced Research

Computing, ser. PEARC ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 200–205. [Online]. Available:
https://doi.org/10.1145/3569951.3597553

[5] Khronos, “SYCL 2020 Specification Revision 5,” https://registry.
khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html, 2022.

[6] A. Ayala, S. Tomov, A. Haidar, and J. Dongarra, “heffte: Highly
efficient fft for exascale,” in Computational Science – ICCS 2020, V. V.
Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A.
Sloot, S. Brissos, and J. Teixeira, Eds. Cham: Springer International
Publishing, 2020, pp. 262–275.

[7] Intel, “Intel extension for tensorflow,” https://github.com/intel/
intel-extension-for-tensorflow, 2024.

[8] Intel, “Intel Extension for PyTorch,” https://intel.github.io/
intel-extension-for-pytorch, 2024.

[9] Intel, “Intel optimization for horovod,” https://github.com/intel/
intel-optimization-for-horovod, 2024.

[10] Intel Coporation, “Intel MPI Library,” http://software.intel.com/en-
us/intel-mpi-library/.

[11] MPICH2: High Performance portable MPI implementation,
http://www.mcs.anl.gov/research/projects/mpich2.

[12] Intel, “Intel oneAPI,” https://www.oneapi.io/, 2022.

[13] Intel, “Intel data center gpu max series overview,” https:
//www.intel.com/content/www/us/en/developer/articles/technical/
intel-data-center-gpu-max-series-overview.html.

[14] Message Passing Interface Forum, MPI: A Message-Passing Interface

Standard Version 4.1, Nov. 2023. [Online]. Available: https://www.
mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf

[15] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda, “OMB-
GPU: A Micro-benchmark Suite for Evaluating MPI Libraries on GPU
Clusters,” in Proceedings of the 19th European Conference on Recent

Advances in the Message Passing Interface (EuroMPI), 2012, pp. 110–
120.

[16] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda,
“Mvapich2-gpu: Optimized gpu to gpu communication for infiniband
clusters,” Comput. Sci., p. 257–266, 2011.

[17] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda, “GPU-
Aware MPI on RDMA-Enabled Clusters: Design, Implementation and
Evaluation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595–2605, Oct 2014.

[18] D. Jacobsen, J. Thibault, and I. Senocak, “An mpi-cuda implementation
for massively parallel incompressible flow computations on multi-gpu
clusters,” Inanc Senocak, vol. 16, 2010.

[19] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient Inter-node MPI Communication Using GPUDirect RDMA
for InfiniBand Clusters With NVIDIA GPUs,” in Parallel Processing

(ICPP), 2013 42nd International Conference on. IEEE, 2013, pp. 80–
89.

[20] H. Subramoni, S. Chakraborty, and D. K. Panda, “Designing Dynamic
and Adaptive MPI Point-to-Point Communication Protocols for Efficient
Overlap of Computation and Communication,” in High Performance

Computing, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds.
Cham: Springer International Publishing, 2017, pp. 334–354.

[21] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Per-
formance Evaluation of MPI Libraries on GPU-enabled OpenPOWER
Architectures: Early Experiences,” in International Workshop on Open-

POWER for HPC (IWOPH 19) at the 2019 ISC High Performance

Conference, 2018.
[22] C.-C. Chen, K. S. Khorassani, Q. G. Anthony, A. Shafi, H. Subramoni,

and D. K. Panda, “Highly efficient alltoall and alltoallv communication
algorithms for gpu systems,” in 2022 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2022, pp. 24–
33.

[23] I. Faraji and A. Afsahi, “Design considerations for gpu-aware collective
communications in mpi,” Concurrency and Computation: Practice and

Experience, vol. 30, no. 17, p. e4667, 2018, e4667 cpe.4667. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4667

[24] Faraji, Iman and Afsahi, Ahmad, “Gpu-aware intranode mpi allreduce,”
in Proceedings of the 21st European MPI Users’ Group Meeting,
ser. EuroMPI/ASIA ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 45–50. [Online]. Available: https:
//doi.org/10.1145/2642769.2642773

[25] C.-H. Chu, K. Hamidouche, A. Venkatesh, A. A. Awan, and
D. K. D. Panda, “Cuda kernel based collective reduction operations
on large-scale gpu clusters,” in Proceedings of the 16th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing, ser.
CCGRID ’16. IEEE Press, 2016, p. 726–735. [Online]. Available:
https://doi.org/10.1109/CCGrid.2016.111

[26] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni, and
D. K. D. K. Panda, “Nv-group: link-efficient reduction for distributed
deep learning on modern dense gpu systems,” in Proceedings of the

34th ACM International Conference on Supercomputing, ser. ICS ’20.
New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3392717.3392771

[27] E. Kuznetsov and V. Stegailov, “Porting cuda-based molecular dynamics
algorithms to amd rocm platform using hip framework: Performance
analysis,” in Supercomputing, V. Voevodin and S. Sobolev, Eds. Cham:
Springer International Publishing, 2019, pp. 121–130.

[28] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “Gpu-
accelerated molecular dynamics: State-of-art software performance and
porting from nvidia cuda to amd hip,” The International Journal of High

Performance Computing Applications, vol. 35, no. 4, pp. 312–324, 2021.
[29] K. Shafie Khorassani, J. Hashmi, C.-H. Chu, C.-C. Chen, H. Subramoni,

and D. K. Panda, “Designing a ROCm-Aware MPI Library for AMD
GPUs: Early Experiences,” in High Performance Computing: 36th Inter-

national Conference, ISC High Performance 2021, Virtual Event, June

24 – July 2, 2021, Proceedings. Springer-Verlag, 2021, p. 118–136.
[30] C.-C. Chen, K. S. Khorassani, G. K. R. Kuncham, R. Vaidya, M. Ab-

duljabbar, A. Shafi, H. Subramoni, and D. K. Panda, “Implementing and
optimizing a gpu-aware mpi library for intel gpus: Early experiences,” in
2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and

Internet Computing (CCGrid), 2023, pp. 131–140.
[31] Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and

A. Lyashevsky, “Accelerating encrypted computing on intel gpus,” in
2022 IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS). IEEE, 2022, pp. 705–716.
[32] T. Deakin and S. McIntosh-Smith, “Evaluating the performance of hpc-

style sycl applications,” in Proceedings of the International Workshop

on OpenCL, 2020, pp. 1–11.
[33] H. C. Da Silva, F. Pisani, and E. Borin, “A comparative study of sycl,

opencl, and openmp,” in 2016 International Symposium on Computer Ar-

chitecture and High Performance Computing Workshops (SBAC-PADW).
IEEE, 2016, pp. 61–66.

[34] G. K. R. Kuncham, R. Vaidya, and M. Barve, “Performance study of
gpu applications using sycl and cuda on tesla v100 gpu,” in 2021 IEEE

High Performance Extreme Computing Conference (HPEC). IEEE,
2021, pp. 1–7.

[35] I. Z. Reguly, “Performance portability of multi-material kernels,” in
2019 IEEE/ACM International Workshop on Performance, Portability

and Productivity in HPC (P3HPC), 2019, pp. 26–35.

131

Authorized licensed use limited to: The Ohio State University. Downloaded on August 04,2025 at 21:36:56 UTC from IEEE Xplore. Restrictions apply.

