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Abstract—The demand for computing power in high-
performance computing and deep learning applications is steadily
increasing, leading to a noticeable inclination toward equipping
modern exascale clusters with accelerators. In particular, dis-
tributed Deep Learning training necessitates high-performance
GPU-aware MPI operations, with reduction operations being
widely employed. Unlike data movement-based MPI runtimes,
reduction operations encompass both communication and com-
putation, making them inherently more intricate to design and
optimize for data transmission between GPU buffers. Acknowl-
edging the success of NVIDIA and AMD GPUs in HPC, Intel
has actively participated in the development of GPU products,
while also fostering their associated ecosystems in recent years.
However, existing MPI libraries supporting Intel GPUs rely
on naive staging approaches, resulting in elevated latencies
and subpar performance. In this paper, we propose a kernel-
based reduction collective MPI library designed specifically
for Intel GPUs. Our approach leverages IPC techniques to
minimize data movement overhead during communication while
harnessing highly efficient GPU kernels for the computational
aspects of reduction operations. We assess the advantages of our
designs through benchmark and application-level evaluations,
conducted on ACES and Stampede3 systems. In benchmark-
level evaluations, our Allreduce implementations demonstrate
an 13.3x performance enhancement compared to Intel MPI at
1GB with 8 GPUs. Moreover, with 32 GPUs, we achieve a 42%
performance enhancement. In application-level evaluations, our
proposed designs exhibit up to a 22% enhancement for the
Deep Learning application TensorFlow with Horovod and a 28 %
improvement for PyTorch with Horovod on 32 GPUs compared
to Intel MPI.

Index Terms—Intel GPUs, IPC, Kernel, Reduction, Allreduce

I. INTRODUCTION

The high demand for computing power and communication
throughput from scientific, big data, and deep learning (DL)
applications drives the development of a high-performance
computing (HPC) ecosystem. As accelerators, such as Graph-
ics Processing Units (GPUs), boast remarkable computational
capabilities, vendors like NVIDIA, AMD, and Intel showcase
their GPU products, influencing the TOP500 [1] ranking. For
instance, in 2023, the top-ranked Frontier system utilizes AMD
Instinct 250X GPUs, while the second-ranked Aurora system
is powered by Intel Data Center GPU Max Series. Therefore,
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these advanced dense GPU systems depend on communi-
cation runtimes for effective workload scalability. Message
Passing Interface (MPI) serves as the standard communication
paradigm in HPC systems, facilitating communication across
processes, while GPU-aware MPI libraries [2, 3] facilitate
data transmission between GPU buffers managed by different
processes.

With most MPI runtimes prioritizing data movement be-
tween processes, the primary overhead is attributed to com-
munication. However, certain MPI operations entail additional
computation, such as MPI_Scan and reduction operations
like MPI_Allreduce. For example, in reduction operations
utilizing the MAX operation, calculating the maximum value
in the buffers among all processes necessitates additional
CPU computing power and cycles. As more HPC applications
offload their computation to accelerators [4] and distributed
DL applications proliferate, the development of efficient and
productive reduction runtimes for data on GPU buffers be-
comes indispensable for GPU-aware MPI libraries. In modern
dense GPU systems, which feature multiple accelerators within
a node, high-performance interconnectivity such as NVLink
and NVSwitch for NVIDIA GPUs is crucial for achieving high
throughput communication. Moreover, with GPUs becoming
increasingly powerful in computation, developers are inspired
to leverage these cutting-edge capabilities when designing
efficient MPI reduction operations for GPUs.

A. Motivation

Following in the footsteps of NVIDIA and AMD, Intel is
actively designing and developing a range of GPU products
and their accompanying ecosystems. In 2020, Intel introduced
the Iris X¢ Max Graphics, followed by the release of the
Intel Data Center GPU Max Series tailored for HPC and
Al workloads. Additionally, it also provides Intel X® links,
enabling high-performance interconnectivity among its GPUs
within a node. On the software front, application developers
port their implementations to support GPU kernels in leading
programming models like SYCL [5], OpenMP, and Kokkos to
harness the computing power of Intel GPUs. To enhance scal-
ability, applications necessitate communication runtimes with
low latency and high throughput for GPUs. For instance, the
HPC application heFFTe [6] utilizes GPU-aware MPI point-
to-point operations or collective Alltoall(v) communication
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patterns to optimize data movement among device buffers. In
DL applications, plugins [7, 8] for TensorFlow and PyTorch
enable efficient Al workloads for intel GPUs, while distributed
frameworks [9] streamline multi-GPU training processes, em-
phasizing the communication of reduction operations such as
Allreduce and Reduce_scatter.

Despite the significant demand, particularly for the Allre-
duce operation in DL applications, there is currently no op-
timized MPI library providing efficient and high-performance
design and implementation for Intel GPUs. As the vendor,
Intel has recently developed their GPU-aware Intel MPI [10].
However, due to its closed-source nature, the optimizations
utilized are not transparent, and the performance for reduction
operations remains low. Furthermore, MPICH [11] employed
CPU staging approaches for all reduction operations, resulting
in even higher latency, particularly with large messages. There-
fore, there is significant room for enhancing the performance
of MPI reduction operations on the latest Intel GPUs to
improve throughput for both HPC and DL applications.

B. Proposed Solution

We optimize the reduction operations from two primary per-
spectives: computation and communication. We leverage GPU
inter-process communication (IPC) techniques to optimize the
communication of data movement between GPUs within a
node, and we design and implement GPU kernels for reduction
computation using the Intel one API Base Toolkits [12] with a
SYCL backend. We also employ a hybrid design to mitigate
overhead from IPC utilization and kernel launching, ensuring
good performance across all message sizes. In this paper, our
primary focus lies in optimizing the Allreduce operation, as it
introduces significant communication traffic compared to other
reduction operations and is widely utilized. We devise a basic
unified reduction kernel to support all reduction operations.
However, for the intra-node Allreduce operation, we imple-
ment an optimized kernel. This optimization is necessary as it
involves a broadcast communication step right after the regular
kernel reduction. Moreover, we adopt a two-level algorithm
to deal with the inter-node Allreduce communication. To the
best of our knowledge, our proposed design stands as
the pioneer in leveraging GPU kernels for MPI reduction
operations on Intel GPUs, surpassing the performance of
both Intel MPI and MPICH libraries.

C. Challenges

We address the following challenges to design and imple-
ment a hybrid kernel-based MPI library for the reduction based
collective communication:

« How can we best strategize and which techniques should
we adopt to develop a high-performance MPI library
specifically tailored for reduction collective operations on
Intel GPUs?

« How can we design a library to facilitate computation and
communication among GPUs within a node, capitalizing
on the high bandwidth of Intel X links?
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« How can we effectively design and implement a compre-
hensive GPU kernel for Intel GPUs using the oneAPI and
SYCL library?

e How can we further optimize the ubiquitous Allreduce
operation in intra-node and inter-node environments?

D. Contributions

This paper makes the following contributions:

o We proposed, designed, and implemented kernel-based
MPI reduction operations for Intel GPUs using SYCL
and oneAPI Toolkits (Section IIT)

e Our designs support common MPI operations/datatypes
on GPUs (Section III-C and IV-B, Figure 3 and 4)

o We designed a fundamental kernel to encompass all
reduction-based operations, including Allreduce, Reduce,
Reduce_scatter, and Reduce_scatter_block (Section III-C
and IV-E, Figure 8)

o We optimized the MPI_Allreduce operation for inter-node
and intra-node scenarios (Section III-C and III-D)

e We conducted profiling of our Allreduce design and
provided analysis for both inter-node and intra-node
execution. (Section I'V-C and Figure 5)

e Our designs offer up to 13.3 times improvement com-
pared to Intel MPI in osu_allreduce benchmark on 8
GPUs, and offer up to 42% improvement on 32 GPUs
(Section IV-D and Figure 7)

« In real application-level evaluations, our designs demon-
strate up to a 22% improvement compared to Intel MPI
in Horovod with TensorFlow and a 28% improvement in
Horovod with PyTorch (Section IV-F, Figure 9 and 10).

II. BACKGROUND
A. Intel GPUs

Intel has recently entered the discrete graphics card market
and has introduced the Max Series product family, specifically
designed for the demanding worlds of HPC and AI. This
product lineup features two powerhouses: the Intel Xeon CPU
Max Series (codenamed Sapphire Rapids HBM) and the Intel
Data Center GPU Max Series (codenamed Ponte Vecchio). The
Max Series GPU is Intel’s highest-density processor, packing
over 100 billion transistors into a 47-tile package with up to
128 X°® HPC cores and up to 128 GB of high bandwidth
memory. To enable scale-up and scale-out capabilities, the X°-
HPC micro-architecture incorporates the advanced X° Link
technology. X°¢ Link is a high-speed interconnect solution
designed specifically to connect multiple X°-HPC GPUs in
various configurations, such as 2-way, 4-way, 6-way, and even
8-way. Each X° Link is capable of up to 26.5 GB/s of
bandwidth in each direction [13].

B. Reduction Operations

Reduction procedures are critical in parallel computing
because they allow the aggregation of data across numerous
processes to produce a consolidated result. Among these
operations, MPI_Allreduce stands out as a basic collective
communication primitive, in which each process contributes its
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local data and the operation results in all processes receiving
the combined result [14]. MPI_Reduce is another collective
that offers similar functionality, but with a singular focus:
aggregating data solely at a designated “root” process. This
makes it ideal when the final result is only required by
one process. Expanding on the concept, MPI_Reduce_scatter
is a variant of reduction operations that involve distributing
resultant data among processes after performing a reduction
operation. Unlike other collective communications, reduction
operations involve computations, adding a layer of complexity
and resource consumption. As reduction operations involve
computational processing, there exists a demand for continu-
ous research efforts focused on enhancing their efficiency.

C. Inter-process Communication (IPC)

Parallel computing applications rely heavily on efficient
communication mechanisms to facilitate data exchange and
synchronization between processes. These processes operate
within distinct address spaces, preventing direct access to
device memory or events created by threads in other processes.
Similar communication issues exist within a single compute
node when dealing with multiple GPUs. To address this,
GPU Inter-Process Communication (GPU IPC) emerges as a
key technique for optimizing data movement between GPU
processes. GPU IPC enables direct data transfer between the
GPU memory spaces of distinct processes, bypassing the host
CPU entirely. This optimization relies on a process exposing
a designated portion of its GPU memory to remote processes.
This exposure is achieved by creating a memory handle, which
acts as a unique reference point for the shared memory region.
The memory handle is then transferred to the remote process,
granting it access to the shared memory. Upon receiving the
handle, the remote process can read and potentially modify
the shared data residing in the remote GPU’s memory space.

D. Kernel-based Computation

Kernel-based computing has emerged as a key paradigm
in modern computational research, providing good parallelism
and processing capacity. Traditional CPU kernels, or small
programs within the operating system that manage system
resources, are limited by the CPU’s architecture and security
features. In contrast, GPU kernels take advantage of modern
GPUs’ massive parallel processing capabilities to perform
computationally complex jobs with amazing efficiency. How-
ever, optimizing GPU kernels necessitates a distinct method-
ology that takes into account characteristics such as memory
access patterns and workload allocation across several cores.
Despite these obstacles, GPU kernels have spread throughout
the scientific, engineering, and machine learning fields, pro-
pelling advances in computational research and allowing for
the study of complicated issues on bigger scales.

III. DESIGN
A. Overview of the Designs

GPU and kernel-based computation offer high performance
for parallel computing and vectorized data processing. How-
ever, there is a notable overhead during initialization, including
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Fig. 1. Overview of the proposed intra-node designs for MPI_Allreduce.

IPC handle exchange and kernel launching, making it ineffi-
cient for small message runtimes. Therefore, we adopt a hybrid
approach to complement our strategy, aiming to achieve low
latency across all message ranges. For small messages, we
utilize CPU staging approaches to prevent the initialization
overheads associated with kernel-based designs. CPU staging
approaches use CPU-based MPI runtimes for communication
and reduction. This process requires moving data from GPU
memory to a temporary CPU buffer before the operation, and
after the CPU-based communication is completed, the data is
stored back in the device. The memory copying between the
device and host buffer is efficient for small messages, but as
the message size increases, latency grows significantly. Hence,
this is where we switch to kernel-based designs on top of IPC
techniques for large message communication.

While most GPU MPI operations primarily entail data
movement between GPUs, reduction operations encompass
both communication and computation. Hence, the overheads
from both parts escalate significantly as the message size
increases. To mitigate the communication overhead between
device buffers, we employ IPC techniques, which enable direct
data access between the GPU address spaces of different
processes via Intel X Links. On the other hand, to enhance
computation efficiency, we implement GPU kernels to handle
the heavy reduction operations. We utilize Intel oneAPI to
develop SYCL reduction kernels optimized for Intel GPUs.

B. IPC Buffers Preparation

Since each process maintains its buffer addresses, and
these addresses are inaccessible to other peer processes, it
is necessary to exchange IPC handles with peers and open
these handles to obtain the real memory locations from others.
In most point-to-point communication implementations, either
the sender or the receiver process opens the IPC handle
and executes the device-to-device memcpy from one GPU to
another. However, in collective operations, it is unbalanced to
assign all the memcpy tasks to only one process; instead, it
requires all processes to share the communication workload.
Therefore, in our implementation, we exchange the IPC han-
dles mapped to sendbuf and recvbuf of all peer processes. This
ensures that each process can access all buffers from the peer
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Fig. 2. Overview of the proposed inter-node designs for MPI_Allreduce.

processes within the same node. This all-to-all exchanging
pattern provides the necessary data access possibility and
offers higher benefits for kernel reduction in the next step. To
optimize the productivity of passing the remote buffer pointers
to the kernel function, we refactor the pointers into a 2D array.
The Step 1 section of Figure 1 shows the structure of the
2D array. The first dimension indicates the number of peer
processes, while the second dimension indicates the number
of data counts for reduction, and each process has the same
data structure to access the remote buffers.

C. Reduction Kernel Designs

We delegate the computation to the reduction kernel, with
a focus on enhancing capacity and throughput by addressing
load balance issues and optimizing memory access patterns.
Assuming there are n GPUs per node and N data counts,
each GPU is responsible for roughly N/n calculating result
elements. For instance, in Figure 1, step 2, GPU O computes
the first 2 elements in the sendbufs, while GPU 1 handles the
remaining 2 elements (marked in red and blue dotted circles).
From an implementation perspective, the kernel can access
the array header by setting the offset, allowing each work
item (similar to a thread on NVIDIA GPUs) to access and
compute the vectorized elements in the sendbufs concurrently.
This process iterates n times, traversing the data from each
peer GPU and storing the reduced data in the assigned recvbuf
afterwards. In step 2, GPU 0 calculates the first 2 elements
in sendbuf 0 and sendbuf 1, storing the results in recvbuf
0. Meanwhile, GPU 1 calculates the remaining elements in
sendbufs and stores the results in recvbuf 1.

Since computations on GPUs may occur simultaneously,
multiple kernels may access the same data (indicates on
the same GPU) concurrently, leading to potential memory
congestion. To address this issue, for each GPU z, our design
only accesses the data stored on GPU « in the first iteration.
Then, in each subsequent iteration, it accesses the sendbuf
located on GPU z + 1, and continues this progression. For
instance, in Figure 1, during step 2, GPU 1 first computes
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the data in sendbuf 1 and subsequently processes the data in
sendbuf 0 to avoid congestion with GPU 0. After computation,
the kernel stores the results in the appropriate buffer, marking
the completion of the basic reduction kernel process. For
Allreduce, there is an additional step to broadcast the results to
all GPUs. Therefore, we first store the results in the local GPU,
such as GPU 1 storing the data in recvbuf 1 instead. For the
same memory congestion reason, we also employ a strategy of
initially copying data to the  + 1 GPU, followed by iterative
transfers to the x + 2 GPU, and so forth, until completing the
broadcast process, as shown in Step 3 of Figure 1. Since all
GPUs must broadcast their data to others, this behaviour can
be considered an Allgather communication pattern.

D. Inter-node Allreduce Implementations

We implemented two inter-node Allreduce algorithms: the
single-leader 2-level Allreduce approach and the multi-leader
2-level Allreduce approach.

1) Single-leader 2-level Allreduce: To maximize efficiency,
the GPU kernel operates within the node’s scope, producing
partial reduction values. Hence, for inter-node Allreduce im-
plementation, we adopt a two-level approach for the remaining
reduction operations. The first level entails intra-node reduc-
tion, performed by the kernel. As the partial-reduced values
are not the final results, the last step of broadcasting the
results to all GPUs is unnecessary. To efficiently access this
intermediate data for the second level of Allreduce, we store
the data on local rank O, the local leader rank, rather than
on each GPU. The second level executes inter-node reduction.
With the data residing in the leader ranks of each node, only
one process per node participates in this operation. Ideally,
any Allreduce algorithm or GPU-optimized techniques can be
applied here. In our implementation, we demonstrate the naive
approach using a CPU-based leader Allreduce algorithm with
CPU staging techniques. We begin by copying the data from
the GPU buffers of local rank 0 to the CPU staging buffers,
then execute the inter-node leadership Allreduce among the
involved processes. After this step, we obtain the final results,
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but the data is only accessible in CPU buffers on the leader
processes. Therefore, we must copy the data back to the GPU
buffers on the leader ranks and broadcast the results to all other
GPUs. Another approach involves broadcasting the results
among the CPU staging buffers and then copying the data back
to each GPU individually. However, this method introduces
additional communication traffic and overhead. Figure 2(a)
illustrates an example of our designs running on 2 nodes, each
containing 2 GPUs. Note that rank 0 and rank 2 are the local
leader processes.

2) Multi-leader 2-level Allreduce: In the single-leader 2-
level approach, only one process per node handles the sec-
ondary Allreduce phases with all data, while the other pro-
cesses idle and wait, causing workload imbalance. Therefore,
in the multi-leader 2-level approach, each local rank group
handles an equal portion of the data to distribute the workload
evenly. To support this feature, the reduction kernel should
store the corresponding temporary results on each GPU instead
of consolidating them to the root (local rank 0). This allows
the secondary Allreduce functions to directly access data
from their respective GPU buffers without additional data
movement. Following this, all the local rank n processes (on
each node) form groups, and each group performs a similar
inter-node leader Allreduce among the involved processes,
but handling smaller portions of the data involved. After
the secondary multi-leader Allreduce, the reduced data is
distributed across each local rank rather than the local root
rank, so we need to distribute the final results to all processes.
This Allreduce algorithm is equivalent to the Reduce_Scatter
communication pattern followed by the Allgatherv communi-
cation pattern (where v’ accounts for uneven data distribution
among processes). Therefore, we can simply perform a local
Allgather(v) communication to dispatch the final reduction
data. Figure 2(b) illustrates an example of our multi-leader
2-level design. In this design, there are 2 inter-node Allreduce
operations, with each operation handling only half of the data
compared to the single-leader design.

IV. EVALUATION
A. Experimental Setup

Our experiments were conducted on the ACES system,
developed by Texas A&M University (TAMU), and the Stam-
pede3 system, developed by Texas Advanced Computing Cen-
ter (TACC). ACES is a composable hardware platform that
offers a mixed accelerator testbed, incorporating Intel PVC
GPUs, Intel FPGAs, NVIDIA H100 GPUs, and more. We
utilized the PVC partition, featuring a dual-socket Intel Xeon
Platinum 8468 Sapphire Rapids processor with 48 cores per
socket, totalling 96 cores per node. Additionally, the node is
equipped with 512 GB of memory and features 4 Intel Data
Center GPU Max 1100 GPUs, referred to as Intel PVC 1100.
Each PVC 1100 GPU consists of 56 X¢ Cores and 48GB
of HBM2e memory. The compute nodes are interconnected
via Mellanox NDR 400Gbps. The Stampede3 PVC partition
features a dual-socket Intel Xeon Platinum 8480 Sapphire
Rapids processor, with 48 cores per socket, totalling 96 cores
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per node. Each node is equipped with 1 TB of memory and
4 Intel Data Center GPU Max 1550 GPUs, referred to as
Intel PVC 1550. Each PVC 1550 GPU consists of 128 X*
Cores and 128 GB of HBM2e memory, spread across 2 stacks
(tiles). Therefore, at the user level, there are 8 Intel PVC 1550
GPUs visible per node. The interconnect of Stampede3 is a
100 Gb/sec Omni-Path (OPA) network with a fat tree topology.

Evaluation at the Benchmark Level: The OSU Micro-
Benchmarks (OMB) suite [15] provides evaluations at the MPI
level both point-to-point and collective MPI runtimes, and it
supports CUDA and ROCm device buffers on NVIDIA and
AMD GPUs, but it currently lacks support for Intel GPUs.
To address this limitation, we extended OMB version 7.3
to facilitate the allocation of oneAPI/SYCL device buffers
customized for Intel GPUs. If no specific specification is
provided, we default to using the osu_allreduce benchmark
with the MPI_SUM operation and MPI_FLOAT datatype.

Evaluation at the Application Level: TensorFlow and Py-
Torch are widely recognized DL frameworks, while Horovod
offers a streamlined interface for distributed learning. To
harness the capabilities of Intel GPUs, we utilized the Intel
Extension for TensorFlow [7] and PyTorch [8] packages for
XPU support. Additionally, we utilized the Intel Optimization
for Horovod [9] branch and extended it to support MPI
standard operations.

We compiled our implementation with Intel oneAPI Base
Toolkit 2024.1. To benchmark our designs, we utilized Intel
MPI 2021.12 as the baseline.

B. Operations and Datatypes

Although summation and floating-point numbers are the
most frequently utilized in Allreduce operations, our designs
offer comprehensive support for various other common use
cases as well. Figure 3 illustrates the performance of various
reduction operations on a single node, evaluated at both 1IMB
and 16MB. The legend enumerates all the supported operations
we implemented. The latencies for all 10 different operations
consistently range from 503 ps to 508 us at IMB and approxi-
mately 850 ps to 858 us at 16 MB. This evaluation proves that
our modularized design eases the implementation overhead for
GPU kernels while maintaining consistent performance.

Figure 4 illustrates the performance of various data types
in Allreduce on a single node. Figure 4(a) displays the
results of different types of integers. We present two sets
of numbers with the message size fixed at 4MB and the
message count fixed at 4M. We offer 4 types of integers:
1, 2, 4, and 8 bytes per integer. Hence, with the fixed
message size, the message counts are 4M, 2M, 1M, and
512K, respectively. In this scenario, as the message counts
decrease, the running times also decrease due to reduced
kernel computation requirements, while the communication
volume remains the same. On the other hand, if we main-
tain the same message counts, the number of computational
operations should remain constant. Therefore, the indepen-
dent variable becomes the message size for communication.
However, it’s noteworthy that MPI_INT8_T takes more time
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compared to MPI_INT16_T and MPI_INT32_T. In fact, the
performance for MPI_INT16_T and MPI_INT32_T is nearly
identical. It is because GPU cores are optimized for 16-bit
and 32-bit integers, resulting in more efficient computation
for common datatypes. Figure 4(b) displays the results of
different types of floating-points. We observe that the per-
formance of MPI_FLOAT is identical to MPI_INT32_T, and
MPI_DOUBLE performs similarly to MPI_INT64_T as well.

C. Profiling of the Proposed Designs

Due to the additional overhead introduced by kernel-based
designs, which becomes noticeable for small messages, we
conducted further profiling of MPI operations to analyze our
designs. Figure 5 illustrates the time profiling results of the
intra-node and inter-node designs for Allreduce. We conducted
profiling on ACES using 1 node for intra-node results and 2
nodes for inter-node results, respectively. Figure 5(a) illustrates
the three primary stages of the intra-node design: initialization
(marked in red), IPC handle creation, exchange, and opening
(marked in orange), and kernel launching and running (marked
in blue). The initialization phase consistently takes around 2 us
for all message sizes, remaining constant and relatively small,
making it negligible. However, a larger overhead is observed
in the IPC handle exchange phase, which consistently takes
74 ps regardless of the message size. The constancy of this
phase arises from its preparation and exchange of IPC handles
rather than actual kernel computation or data communication.
In the Kernel Running phase, we also notice a consistent
overhead of around 273 ps up to 128KB. Since we cannot

delve into the specifics of each kernel, we attribute this to the
time taken for kernel launching. This underscores the necessity
for alternative approaches to address reduction operations
involving small messages. For large messages exceeding 256
KB, the kernel time increases linearly with the message size,
indicating the involvement of actual computation. In summary,
the Kernel Running phase constitutes the majority of the
Allreduce operations. However, compared to other non-kernel-
based approaches, its runtime is notably shorter, emphasizing
the superiority of the kernel-based methods.

Figure 5(b) and 5(c) illustrate the primary stages of our 2
inter-node designs. Figure 5(b) depicts the profiling results of
the single-leader 2-level designs while Figure 5(c) illustrates
the results for the multi-leader 2-level designs. In addition to
the same phases as intra-node metrics, it includes device-to-
host (D2H) memory copying (marked in lime), the inter-node
level Allreduce for leader processes (marked in grey), host-to-
device (H2D) memory copying (marked in wheat), and IPC
broadcast or allgather (marked in brown). We observe a similar
trend as intra-node profiling results for the Initialization, IPC
Handle Exchange, and Kernel Running phases, with these
phases constituting a small portion of the inter-node design.
In the single-leader 2-level designs, most of the time is spent
in D2H and H2D memory copying and the leader-Allreduce
phase, with both phases occupying around 33% and 52% of
the total time for a 64MB message. In contrast, in the multi-
leader 2-level designs, the time consumed by both the memory
copying and the leader-Allreduce phase drops by 45% and
22% compared to single-leader designs, respectively. The other
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Fig. 7. Comparison of MPI_Allreduce between Intel MPI and proposed designs with single-leader and multi-leader 2-level Allreduce algorithms on Stampede3.

phases remain consistent, resulting in a total runtime reduction
of 32%. This is because the data copying and Allreduce
communication workloads are equally distributed across all
processes rather than being concentrated on the root rank. The
profiling results show that, in the inter-node Allreduce design,
most of the time is dedicated to inter-node communication or
phases directly related to it. However, despite these challenges,
our designs continue to outperform alternative approaches, as
demonstrated in the next section.

D. Micro-Benchmark Evaluation

We performed a performance assessment of our kernel-
based MPI reduction operations, concentrating on the Allre-
duce functionality using OMB. The evaluation spanned across
configurations involving 4, 8, and 16 GPUs on ACES, and
8, 16, and 32 GPUs on Stampede3. Figures 6 demonstrate
that our proposed designs exhibit superior or comparable
performance to Intel MPI for message sizes ranging from
IMB to 1GB on ACES. Figure 6(a) illustrates that for larger
messages on a single node, the latency of Intel MPI increases
to 150.7K ps at 512MB. In contrast, both of our approaches
maintain the lowest latency at 9500 ps, which is 15.8 times
faster compared to Intel MPI. Notably, Intel MPI hangs at
certain message sizes of 1GB, while our approaches continue
to deliver good performance. Additionally, the orange and
blue lines overlap in some regions. Figures 6(b) and 6(c)
further demonstrate that our proposed designs maintain their
advantage in multiple-node scenarios. In the 8-GPU scenario,
our designs achieve a latency of 122.4K ps with the single-
leader designs and 80.9K ps with the multi-leader designs
at 512MB, marking a 20% and a 47% improvement over
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Intel MPT’s 152.9K ps, respectively. Similarly, in the 16-GPU
environment, our designs achieve a latency of 192.6K and
121.5K ps, presenting a similar 19% and a 49% enhancement
over Intel MPI's 237.9K us, respectively.

Figures 7 demonstrate the performance of our proposed
designs on Stampede3. Figure 7(a) illustrates the latencies on
a single node. Both of our proposed designs exhibit lower
latencies around 31.8K us, compared to 392.9K ps using Intel
MPI at 1GB, which is 13.3 times faster. Figure 7(b) shows that
our single-leader designs achieve 314.4K ps and the multi-
leader designs achieve an even lower 232.5K ps at 1GB with
16 GPUs, which are 1.6 times and 2.2 times faster compared to
Intel MPI’s 503.3K ps. Similarly, Figure 7(c) demonstrates on
32 GPUs, our designs achieve latencies of 486.6K and 323.5K
us, presenting 13% and 42% enhancements over Intel MPI’s
558.8K us, respectively. Especially, in the case of medium-
sized messages around 64MB, Intel MPI achieves a low
latency of 32.2K ps, whereas our single-leader designs achieve
36.6K ps. However, our multi-leader designs significantly
improve latency to just 21.0K ps, marking a 34% enhancement
over Intel MPL

E. Extension to Other Reduction Operations

In addition to MPI_Allreduce, our designs have been
extended to encompass other reduction-based MPI op-
erations, namely MPI_Reduce, MPI_Reduce_scatter, and
MPI_Reduce_scatter_block. Figure 8(a), 8(b), and 8(c) present
the performance results on 1 node with 4 GPUs. In summary,
our designs demonstrate similar performance to the Allreduce
implementations, with latencies ranging from approximately
985 s to 995 ps for the three operations. Considering that the
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three operations are subsets of Allreduce, their latencies should
ideally be less than or similar to the Allreduce performance.
It appears that even Intel MPI lacks optimization for other
reduction-based operations, as evidenced by its latencies of
13719 ps, 20300 ps, and 22222 ps for the three operations
at 32 MB. This translates to being 13.8x, 20.4x, and 22.5x
slower compared to our designs, respectively.

F. Application-Level Evaluation

To assess the advantages of our designs in real-world
scenarios, we conducted application-level experiments using
DL applications, specifically TensorFlow with Horovod and
PyTorch with Horovod.

Figure 9 presents the performance comparison of Tensor-
Flow with Horovod for batch sizes 32, 64, and 128, using
the ResNet50 model with both Intel MPI and our proposed
designs across 4, 8, and 16 GPUs. On 4 GPUs, as shown in
Figure 9(a), our designs achieve throughputs of 1078, 1409,
and 1642 img/sec for batch sizes 32, 64, and 128, respectively.
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In contrast, Intel MPI only provides throughputs of 754, 1074,
and 1428 img/sec for the same batch sizes, indicating a 30%),
24%, and 13% decrease in performance compared to our
designs. Similar trends are evident in Figure 9(b) and 9(c).
For instance, in the 16-GPU scenario, our designs achieve a
throughput of 3336 img/sec for batch size 32, outperforming
Intel MPI’s throughput of 2597 img/sec by 22%.

Figure 10 presents the performance comparison of PyTorch
with Horovod for batch sizes 32, 64, and 128, using the
ResNet50 model with both Inte]l MPI and our proposed designs
across 4, 8, and 16 GPUs. Similar to the TensorFlow evalua-
tions, our designs consistently outperform the baseline across
various batch sizes and scales. Figure 10(a) demonstrates the
superior performance of our designs, achieving throughputs of
1216, 1390, and 1537 img/sec for batch sizes 32, 64, and 128,
respectively. In contrast, Intel MPI yields lower throughputs of
723, 1033, and 1314 img/sec for the same batch sizes, marking
a 41%, 26%, and 15% reduction in performance compared to
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our designs. In the 16-GPU case depicted in Figure 10(c), our
designs achieve 3519 img/sec for batch size 32, surpassing
Inte] MPI’s throughput of 2531 img/sec by 28%.

Reduction operations play a crucial role in DL training,
and PyTorch specifically serves as a vital backend for various
DL frameworks. The application-level evaluations demonstrate
that our design offers significant benefits for common DL
tasks, delivering high performance and low latency outcomes.

V. RELATED WORK

The rise of GPU’s popularity in modern clusters for
compute-heavy workloads necessitates the need for efficient
communication between GPUs. Several researchers are ac-
tively developing solutions to address this challenge.

Wang et al. [16] explored InfiniBand clusters and developed
an optimal NVIDIA CUDA-based design specifically suited
for this architecture, facilitating efficient GPU-to-GPU com-
munication. Additionally, in their other work, Wang et al. [17]
leveraged Remote Direct Memory Access (RDMA) technol-
ogy in RDMA-enabled clusters, enabling data transfer between
GPUs to bypass the CPU entirely and reduced communication
overhead. Jacobsen et. al [18] explored overlapping GPU
data movement and MPI communication with computation
for simulating computational fluid dynamics using MPI and
CUDA. Potluri et al. [19] introduced a hybrid design that
combines host-based pipelining techniques with GPUDirect
RDMA functionalities. This approach optimizes communica-
tion between GPUs located on different nodes within the clus-
ter, leveraging the strengths of both techniques. Subramoni et.
al [20] addressed communication inefficiencies by proposing
designs that dynamically adapt to the communication patterns
of processes at runtime. Their solution allows for seamless
transitions between eager thresholds without compromising
throughput. To evaluate existing solutions, Kawthar et al. [21]
conducted a comparative study on the point-to-point communi-
cation performance of popular GPU-aware MPI libraries like
MVAPICH2-GDR, Spectrum MPI, and Open MPI, offering
valuable insights into their relative strengths and weaknesses.
Chen et al. [22] focused on optimizing Alltoall communica-
tion, a common data exchange pattern in scientific comput-
ing, for dense GPU systems using IPC. Several researchers
have investigated methods for optimizing MPI reduction-based
collectives on modern GPU architectures. Faraji et al. [23]
[24] explored CUDA IPC designs to enhance MPI_Allreduce
performance. They expanded on their research by examining
various GPU-aware collective algorithms and proposed hybrid
designs to optimize medium and large message sizes, utilizing
a combination of host-staged and CUDA IPC copies. Chu et
al. [25] proposed novel designs for MPI reduction-based col-
lectives, utilizing CUDA kernels for reduction and GPUDirect
RDMA features for communication. Furthermore, Chu et al.
[26] employed a technique that combines host-staged copies
with GPU global memory to accelerate MPI_Allreduce for
deep learning workloads.

While research on communication strategies for CUDA-
based NVIDIA GPUs has been extensive, there is a growing
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interest in exploring strategies for alternative architectures
too. Kuznetsov et al. [27] ported classical Molecular Dy-
namics (MD) applications from CUDA to ROCm using HIP
and analyzed MD application performance on both NVIDIA
and AMD GPUs [28]. Kawthar et al. [29] further extended
their work by proposing novel communication designs specif-
ically tailored for AMD GPU clusters using the ROCm-
aware MVAPICH2-GDR library, addressing communication
challenges for both inter-node and intra-node communication.
Similarly, several studies have explored the potential of SYCL,
a programming standard for heterogeneous computing, for
accelerating various workloads on Intel GPUs. Chen et al.
[30] implemented a GPU-aware MPI library for Intel GPUs
using oneAPI and SYCL backend and they provided detailed
experiments and challenges encountered in integrating Intel
GPU-aware support at the MPI layer. Further, thorough bench-
marking and evaluations from the paper demonstrate signifi-
cant speedups in point-to-point and collective MPI operations
showcasing the adaptability and performance benefits of the
proposed implementations compared to Intel MPI. Zhai et. al
[31] designed and implemented SYCL-based GPU backend
for the Microsoft SEAL homomorphic encryption library,
demonstrating SYCL’s effectiveness for cryptographic appli-
cations. Deakin et. al [32] evaluated the performance of HPC
applications written in SYCL, comparing them to OpenCL and
other models. While ardoso da Silva et. al [33] found SYCL’s
performance not yet on par with OpenCL and OpenMP in
their specific study. Ongoing research continues to explore
SYCL’s potential for optimizing code portability across diverse
architectures. Kuncham et al. [34] compared the performance
of SYCL code to its CUDA equivalent, demonstrating the
viability of SYCL for porting existing CUDA applications.
Reguly et al. [35] evaluated the performance portability of an
application across various platforms including SYCL, high-
lighting its potential for achieving code portability.

VI. CONCLUSION

GPU-aware MPI libraries have been developed over the past
decade to meet the rigorous demands of HPC applications. In
recent years, the surge in communication requirements driven
by emerging DL training has heightened the importance of
reduction operations even further. With NVIDIA and AMD
GPUs already enjoying a competitive edge, the advancements
in GPU-aware MPI libraries have raised expectations for
comparable support and optimizations on the upcoming Intel
GPUs. The state-of-the-art MPI libraries currently depend
solely on naive CPU staging strategies for reduction opera-
tions, tasked with managing all messages, resulting in subopti-
mal performance and significantly high latencies. To tackle this
challenge, we have developed kernel-based designs tailored
for optimizing MPI reduction operations on Intel GPUs. Our
designs prioritize handling large messages, particularly for the
prevalent MPI_Allreduce operations. Within intra-node envi-
ronments, we implemented a pure kernel-based IPC solution
to manage the substantial communication and computational
demands. In inter-node scenarios, we employed a two-level
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algorithm to fully exploit the benefits of our kernel designs.
In benchmark tests, our Allreduce implementations deliver a
13.3x performance boost over Intel MPI at 1GB with 8 GPUs.
Additionally, with 32 GPUs, we realize a 42% performance
gain. In application assessments, our designs show up to a 22%
performance improvement for TensorFlow with Horovod and a
28% enhancement for PyTorch with Horovod. In the future, we
plan to explore more optimization approaches for the second
inter-node level Allreduce, aiming to enhance the efficiency
of inter-node performance for MPI reduction operations.
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