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—— Abstract
Recent work in programming languages developed an approach to term rewritings based on equality
saturation (EqSat), which, instead of applying destructively the rewrite rules, maintains all equivalent
expressions in a structure called an E-graph. This paper describes two surprising connections between
EqgSat and databases, going both ways. On one hand equality saturation can be viewed as a query
evaluation problem, with great benefits. On the other hand, most sophisticated SQL query optimizers
are based on the Volcano/Cascades framework which, we explain, is a variant of EqSat.
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1 Program Optimization with E-graphs & Equality Saturation

Challenges with Rewriting. Program optimization in the compilers literature is typically
viewed from the perspective of term rewriting. Given an input term ¢ and a set of rewrite
rules R of the form expr; — expr,y, a system repeatedly chooses a rule from R to apply to the
term ¢, hopefully moving it closer and closer to a “better” program. When R is convergent
(i.e. terminating and confluent) this works great! No matter the order of rewrite application,
this process finishes (termination) and arrives at the same term (confluence).

What happens when a term rewriting system does not enjoy properties like confluence?
Counsider trying to optimize the program (a x 2)/2 to a. One promising transformation in
general is a X 2 — a < 1: replacing a multiplication with a cheaper bitshift. However, in this
particular case, applying that locally-good transformation would obscure the globally optimal
solution. In the compilers literature, this is called the phase-ordering problem: different
orderings of analyses and transformations produce different results.

E-graphs and Equality Saturation. FEquality saturation (EqSat) is technique that promises
to mitigate these above challenges with conventional term rewriting. The key idea is that
rewriting no longer destroys the old term, instead it monotonically adds an equality between
the new and old term, so applying the “incorrect” rewrite at any given time is no longer
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(a) E-graph that rep- (b) Rewrite z x 2 - & < 1. (c) Rewrite (z x y)/z — (d) Rewrite /z — 1 and
resents (a x 2)/2. z % (y/z). 1xx— .

Figure 1 Applying rewrites over an example e-graph (figures from [25]). A solid box denotes
an e-node, and a dotted box denotes an e-class. E-nodes consist of a function symbol and children
e-classes, and e-classes contain a set of equivalent e-nodes. In traditional rewriting, the step in
(b) would remove the multiplication node, preventing the application of the rewrite in (c). Since
rewriting in the e-graph is monotonic, one will not prevent the other from being applied.

as punishing. To represent this large space of programs, EqSat borrows the e-graph data
structure [14] from the automated theorem proving community, where it sits in the core of
SMT solvers like Z3 [4] and CVC [1] to reason about the equality of uninterpreted functions.
The original EqSat work [20] demonstrated the e-graph’s promise as the basis for a search-
based program optimization technique. Recently, EqSat has seen a flurry of new work
advancing the technique [25, 28, 9, 29], developing new toolchains like egg, and applying it
to new areas [17, 13, 27, 23, 22, 12].

Figure 1 shows an example e-graph and how EqSat applies rewrites to grow the space of
programs that it represents. Using the definition from [25], an e-graph is a set of e-classes
(equivalence classes) that contain equivalent e-nodes. An e-node is a function application
that points to e-classes (not e-nodes) as children; this captures a notion of congruence: if
a = b then f(a) = f(b). Rewrites over the e-graph are somewhat of a misnomer, they only
add new e-nodes and e-classes to the e-graph. Figure 1b shows a potentially “problematic”
rewrite that in the traditional setting would hinder the optimization of (a x 2)/2 to a.

The typical equality saturation workflow is as follows:

1. (Figure 1a) Insert the input program into the e-graph; say the input is stored in e-class c.

2. (Figure 1b-d) Apply rewrites to the e-graph until a fixed point or a timeout is reached;
note that a fixed point may not exist.

3. Extract from ¢ the cheapest program according to some cost function.

E-matching. Applying rewrites is typically the most expensive part of the EqSat workflow.
This complexity comes from the fact that the e-graph represents many, many programs (in
fact, potentially infinite programs in e-graphs with cycles) that could match the left-hand
side of a rewrite. The e-matching (pattern matching modulo equality) problem is the task of,
given a pattern p and an e-class ¢, find all substitutions ¢ such that po € ¢ where o maps
variables in p to e-classes in the e-graph.

E-class Analyses. Notice the rule z/z — 1 in Figure 1d is not always sound. If z is
instantiated with a term that may evaluate to 0, the left-hand side z/x is undefined and
should not be rewritten to 1. E-class analyses provides a mechanism for incorporating semantic
information during EqSat: An e-class analysis annotates each e-class with an element from
a join semi-lattice. As e-classes are merged through rewrites, semantic information about
e-classes is propagated and aggregated by taking the join (least upper bound) of individual
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(sort Node) (datatype Math
(function mk (i64) Node) (Num i64)
(relation edge (Node Node)) (Var String)
(relation path (Node Node)) (Add Math Math)

(Mul Math Math))
(rule ((edge x y))

((path x y))) ;; exprl = 2 * (x + 3)
(rule ((path x y) (edge y 2)) (define exprl (Mul (Num 2) (Add (Var "x") (Num 3))))
((path x 2))) ;; expr2 = 6 + 2 ¥ x

(define expr2 (Add (Num 6) (Mul (Num 2) (Var "x"))))
(edge (mk 1) (mk 2))

(edge (mk 2) (mk 3)) (rewrite (Add a Db) (Add b a))

(edge (mk 5) (mk 6)) (rewrite (Mul a (Add b ¢)) (Add (Mul a b) (Mul a c)))
(rewrite (Add (Num a) (Num b)) (Num (+ a b)))

(union (mk 3) (mk 5)) (rewrite (Mul (Num a) (Num b)) (Num (* a b)))

(run)

(check (edge (mk 3) (mk 6))) (run)

(check (path (mk 1) (mk 6))) (check (= exprl expr2))

(a) A path reachability program using  (b) Datalog + functions + unification allows egglog to implement
unification to combine nodes. EqSat-style verification and optimization.

Figure 2 Datalog + functions allows egglog to implement traditional Datalog programs and
Datalog over lattices. The unification feature adds new capabilities to Datalog as in (a), and also
enables EqSat-style verification and optimization (b).

e-classes’ annotated values. For example, an e-classes analysis can track the possible ranges
with interval arithmetic. If two e-classes with possible ranges [—2, 5] and [1, 7] are merged
(discovered to be equivalent), it can be concluded that the merged e-class can only have
possible range [1,5]. This semantic information can then be used to safeguard rules like
x/x — 0 with appropriate side conditions (e.g., range of x should not contain 0). There
are, however, some limitations with e-class analyses: it only allows one e-class analysis per
E-graph, and the analysis data are only propagated bottom up, but not top down, making
certain analyses like type analysis infeasible.

2 Database Techniques in EqSat

Relational E-matching. Both e-matching and database queries aim to find homomorphisms:

the former over the e-graph data structure and the latter over a database instance. As the
e-matching problem grows more complex — patterns with repeated variable use, searching
multiple correlated patterns simultaneously, the need for incremental search, etc. — the
techniques employed become more complex as well [3]. Instead of building on existing
e-matching techniques, recent work [29] encoded e-matching as conjunctive queries over a
relational database instance, then used a Worst Case Optimal Join (WCOJ) [15] to perform
e-matching. The work followed the standard flattening of terms into tables. For example, the
term y = f(f(a)) can be encoded in a binary relation, call it Ry (child, id), containing the

tuples (a,z), (x,y), where x,y are the identifiers of the nodes f(a) and f(f(a)) respectively.

To represent z = g(f(f(a)),b), add a second relation R,(childy, childs, id), containing the

tuple (y,b,2). When two e-nodes are in the same e-class, they simply share the same id.

This encoding naturally supports complex patterns, since a query optimizer can exploit the
query structure for asymptotic speedup over the traditional e-matching algorithm [29].
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egglog: Connecting EqSat to Datalog. egglog is a recent system that unifies EqSat and
Datalog. There is a simple intuition here: both EqSat and Datalog perform non-destructive,
fixpoint reasoning over some (term or relational) databases. The resulting system is beneficial
to both EqSat and Datalog. For EqSat, this brings more expressive program analyses over
e-graphs, powerful query optimization, and incrementalization via semi-naive evaluation.
Compared to Datalog, the union-find-based equational reasoning from EqSat makes tasks
like unification-based pointer analysis [18] require asympototically less space. Figure 2 shows
some egglog code in both a Datalog and EqSat style.

At the core of egglog is the concept of functional dependency (FD). egglog is based on a
“functional” database design — functions are just relations with functional dependencies. Let
f be a binary function table; under the hood it is really just a ternary relation Ry(cq, c2,c)
with FD (c¢1,¢2) — ¢. What if the FDs are violated? For example, suppose f(a,b) = ¢ and
later we learned also that f(a,b) = ¢’. In egglog there are only two cases. If ¢ and ¢ are
e-classes, then we can unify ¢ and ¢’ — from now on, ¢ and ¢ should be viewed as the same
e-class and will not be distinguishable. If ¢ and ¢ are lattice values, then we can take the join
of ¢ and ¢’ and claim f(a,b) = ¢V ¢, since the knowledge ¢V ¢’ subsumes both ¢ and ¢’. This
functional dependency repair is implemented via a congruence-closure-style algorithm [5].

3 EgSat Techniques for Databases

The database perspective has already provided immense benefits to the performance and
flexibility of EqSat; here we pose some connections in the opposite direction.

Volcano/Cascades Query Optimization. The dominant query optimization architecture
in production database systems is derived from the Volcano [7] and Cascades [8] systems.
Yongwen Xu’s Master thesis [26] describes an enhanced version of Cascades, and the optd
project® started at Carnegie Mellon University provides a modern implementation. These
query optimizers can be characterized as rewrite-based, memoized search for all queries
equivalent to the input, selecting the cheapest in a top-down manner. The rewrite-based
aspect makes the system extensible; if a new logical or physical operator is introduced,
one can just add new rewrites to enable optimization of queries with the new construct.
The memoization of the search is critical for performance, as many transformations of
(sub)queries will lead to programs that have already been explored. These characteristics are
all present in EqSat: the memo table in Cascades corresponds to the e-graph data structure,
which employs the classic union-find data structure [19] to efficiently store and maintain
the equivalence classes. Unlike Cascades, EqSat computes the congruence closure [5] of the
equivalence relation to further compress the e-graph. These similarities have already spawned
interest in using EqSat for portions of query optimization [24] or implementing the entire
process (e.g., in CubeSQL and RisingLightDB). The Volcano/Cascades system also critically
employs top-down search to enable a branch-and-bound technique, while EqSat/Datalog are
bottom-up. Yet both support top-down search, as we explain next.

Magic Set and Demand. Magic set optimization [11], demand transformation [21], and
more recent works around ADTs and functional programming in Datalog [6, 16] all aim to
provide some degree of top-down control to Datalog. Previous works employing Datalog
for query optimization [10, 2] have also found it necessary to implement top-down search

! The source code of optd is available at https://github.com/cmu-db/optd?tab=readme-ov-file.
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in a manual manner. EqSat and egglog offer an additional perspective on this problem.

EqgSat is bottom-up, but it provides an additional tool that can be used to “place demand”

on certain tuples/terms. In EqSat, the term f(a) can be considered on its own (in its own

e-class) without knowledge of its output. This is similar to labeled nulls; the e-class can

always be unified with the result at a later time.
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