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Abstract

Open-star clusters are the essential building blocks of the Galactic disk; “strong chemical tagging”—the premise
that all star clusters can be reconstructed given chemistry information alone—is a driving force behind many
current and upcoming large Galactic spectroscopic surveys. In this work, we characterize the abundance patterns
for nine elements (C, N, O, Ne, Mg, Si, S, Ca, and Fe) in open clusters (OCs) in three galaxies (m12i, m12f, and
m12m) from the Latte suite of FIRE-2 simulations, to investigate the feasibility of strong chemical tagging in these
simulations. We select young massive (�104.6Me) OCs formed in the last ∼100Myr and calculate the intra- and
intercluster abundance scatter for these clusters. We compare these results with analogous calculations drawn from
observations of OCs in the Milky Way. We find the intracluster scatter of the observations and simulations to be
comparable. While the abundance scatter within each cluster is minimal (0.020 dex), the mean abundance
patterns of different clusters are not unique. We also calculate the chemical difference in intra- and intercluster star
pairs and find it, in general, to be so small that it is difficult to distinguish between stars drawn from the same OC or
from different OCs. Despite tracing three distinct nucleosynthetic families (core-collapse supernovae, white dwarf
supernovae, and stellar winds), we conclude that these elemental abundances do not provide enough discriminating
information to use strong chemical tagging for reliable OC membership.

Unified Astronomy Thesaurus concepts: Open star clusters (1160); Galactic abundances (2002); Magnetohy-
drodynamical simulations (1966); Galaxy disks (589); Stellar abundances (1577); OB associations (1140)

1. Introduction

Uncovering the history of the Milky Way (MW) stellar disk
is a fundamental goal of Galactic astronomy and is tied to the
smallest-scale structures where star formation occurs, open
clusters (OCs). OCs are groups of stars that are born together
and remain gravitationally bound for a period of time;
C. J. Lada & E. A. Lada (2003) define an OC as a group of
young stars that survive tidal disruption for a period as long as
100Myr. In numerical simulations, OCs are usually defined as
groups of co-forming stars that share a common origin (e.g.,
C. L. Dobbs et al. 2017; M. Y. Grudić et al. 2023).

OCs are often leveraged to study the dynamical and
chemical history of the Galactic disk, as these bright structures
are relatively straightforward to observe and characterize (e.g.,
P. M. Frinchaboy & S. R. Majewski 2008; N. Myers et al. 2022
and references therein). OCs are considered the building
blocks of the Galactic disk because a significant fraction of star
formation occurs within them and the majority are thought
to dissolve quickly (C. J. Lada & E. A. Lada 2003; J. Bland-
-Hawthorn et al. 2010; J. M. D. Kruijssen et al. 2011;
M. R. Krumholz et al. 2019). One of the important objectives

of near-field astronomy is to reconstruct the structures that have
dispersed due to dynamical processes in the disk, specifically,
reassembling structures like OCs using present-day stellar
observables.
One stellar observable of particular interest is elemental

abundance. This is because stars that belong to a particular OC
are thought to form from a common well-mixed molecular
cloud with a similar underlying chemistry (F. H. Shu et al.
1987; M. R. Meyer et al. 2000; S. F. Portegies Zwart et al.
2010; Y. Feng & M. R. Krumholz 2014). Based on this
assumption, stars that were born within a given OC are
believed to have a similar chemical “fingerprint” that would
enable OC reconstruction based on chemistry alone (e.g.,
K. Freeman & J. Bland-Hawthorn 2002; G. M. De Silva et al.
2007, 2009; J. Bland-Hawthorn et al. 2010; J. Bovy 2016;
C. Manea et al. 2022). This is the premise behind strong
chemical tagging (K. Freeman & J. Bland-Hawthorn 2002),
which relies on the accurate measurement of multiple elements
in stars to reconstruct cluster membership (e.g., S. R. Majewski
et al. 2012; J. Bovy 2016; D. W. Hogg et al. 2016; S. L. Martell
et al. 2016; L. Spina et al. 2022b).
The feasibility of strong chemical tagging is a key

motivation for several current and upcoming spectroscopic
surveys (e.g., GALAH, APOGEE, and WEAVE; G. Dalton
et al. 2012; G. M. De Silva et al. 2015; J. A. Kollmeier et al.
2017; S. R. Majewski et al. 2017; S. Buder et al. 2019). For
strong chemical tagging to work, the member stars within an
OC should be nearly chemically homogeneous, i.e., they
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should have small intracluster dispersion. In addition, each
cluster should have a unique chemical signature, so that it can
be well distinguished from the stars that belong to other OCs,
i.e., there should be significant intercluster dispersion
(D. L. Lambert & A. B. S. Reddy 2016).

Whether there is typically a small level of intracluster
dispersion (i.e., the level of similarity in the element
abundances of member stars) in OCs is still a matter of debate
(S. Blanco-Cuaresma et al. 2015; N. Price-Jones &
J. Bovy 2019). However, in the limit of small samples, the
chemistry of stars that belong to a particular OC has often been
shown to share a similar signature when compared with the
chemistry of stars that belong to different clusters (e.g.,
G. M. De Silva et al. 2006; E. Pancino et al. 2010; S. R.
Majewski et al. 2012; A. W. Mitschang et al. 2013;
D. W. Hogg et al. 2016; S. L. Martell et al. 2016). This
indicates that stars that belong to an OC could have a
measurable signature that is distinct from other OCs, in the
limit that measurement uncertainties in stellar abundances are
smaller than the level of the intrinsic element abundance
scatter, so that the amplitude of homogeneity in OCs can be
uniquely assessed (M. Ness et al. 2015, 2018).

Large surveys have extended studies of OCs to more
substantial samples and determined the intrinsic scatter to be
<0.03 dex within clusters for up to 15 element abundances
(S. Bertran de Lis et al. 2016; J. Bovy 2016; M. Ness et al. 2018;
V. J. Poovelil et al. 2020). Interestingly, S. Blanco-
Cuaresma et al. (2015) find distinct chemical signatures for stars
in different evolutionary stages that belong to the same OC. In
fact, theoretical expectations lead to a prediction that intracluster
scatter is nonzero when processes like nonthermal equilibrium,
atomic diffusion, mixing, the influence of binarity, and planetary
engulfment are included in stellar abundance calculations. These
predictions have been born out both observationally and in
theoretical models (A. Dotter et al. 2017; F. Liu et al. 2019).

Besides debates about intracluster homogeneity, there are
also several discussions in the literature about the level of
intercluster homogeneity throughout the MW. For example,
there is an expectation that the intercluster homogeneity could
be a function of galactocentric radius (L. Spina et al. 2022a). In
fact, a negative radial gradient in the MW's disk has been found
in observations (e.g., C. Boeche et al. 2013; F. Anders et al.
2014; J. Donor et al. 2020; N. Myers et al. 2022; L. Magrini
et al. 2023), while radial and azimuthal variations have
been detected in several nearby galaxies as well (e.g.,
L. Sánchez-Menguiano et al. 2016; M. Mollá et al. 2019;
K. Kreckel et al. 2020; Z. Li et al. 2023), which could be taken
as an indication for the uniqueness of abundances in star
clusters found at particular galactocentric locations. However,
S. Blanco-Cuaresma et al. (2015) find significant overlap of
multiple chemical abundances in their sample of 31 OCs within
the MW. Moreover, Y.-S. Ting et al. (2015) show that
overdensities in chemical space do not guarantee that such
overdensities arise due to a single set of stars from a common
birth cloud, thus suggesting an overlap in the intercluster
metallicity distribution.

A differing perspective has been found by D. L. Lambert &
A. B. S. Reddy (2016), who show significant intercluster
variation in the chemical composition of heavy elements (La,
Ce, Nd, and Sm) for red giants in a sample of 28 OCs, where all
the clusters had nearly solar metallicity. Moreover, C. Manea
et al. (2024) find that neutron-capture elements carry a more

discerning signature than the lighter elements that have been
traditionally considered in the current generation of spectro-
scopic surveys. However, in the limit of elemental abundances
available in APOGEE (S. R. Majewski et al. 2016), M. Ness
et al. (2018) find that field stars have similar chemistry as the
members of OCs, suggesting an overlap of birth cluster
signatures with field stars. Furthermore, in a different study,
M. K. Ness et al. (2019) find that, at a fixed [Fe/H], chemistry
is a deterministic property of age that does not necessarily
change with the birth location.
Perhaps the most critical consideration in assessing the

viability of chemical tagging is not simply how chemically
homogeneous OCs are themselves, but how homogeneous stars
within a cluster are relative to random field stars. The
contamination rate using 20 abundances in M. Ness et al.
(2018) was found to be around 1% at [Fe/H]= 0. That is,
while the intracluster dispersion is small, on the order
of < 0.03 dex, around 1% of random field stars at solar
[Fe/H] are as chemically similar as stars within the same
cluster. This is very prohibitive for any chemical-tagging
pursuit. However, what remains critically unclear is the
theoretical expectation for inter- and intracluster homogeneity
from simulations. In this work, we test this expectation using
galaxy simulations that resolve OCs in a cosmological context.
Previous simulation studies have shown that turbulent

mixing plays an important role in homogenizing molecular
clouds and reducing stellar abundance scatter (C. F. McKee &
J. C. Tan 2002). This can be particularly significant during
cloud assembly, potentially explaining the observed chemical
homogeneity of stars that originate from the same molecular
cloud (Y. Feng & M. R. Krumholz 2014). Extending this work,
L. Armillotta et al. (2018) zoom in on the collapse of one giant
molecular cloud extracted from a galaxy simulation and study
the formation of individual stars down to a spatial resolution of
≈10−3 pc. They find that the star formation process defines a
natural size scale of ∼1 pc for chemically homogeneous star
clusters, suggesting stars within ∼1 pc of each other share
similar chemical properties. However, these simulations
assume metals are well coupled with gas, overlooking the
potential effects of metals in the form of dust grains. Taking a
different approach to identify co-natal stars, H. Kamdar et al.
(2019) evolve four billion stars over 5 Gyr in a realistic
potential with various galactic structures. They find that
combining chemical and phase-space information enhances
the identification of co-natal populations, suggesting that
comoving pairs of stars with velocity separation <2 km s−1

and metallicity separation <0.05 dex are likely to be co-natal.
Nevertheless, these simulations lack direct N-body effects on
clusters and individual stars, as well as essential feedback
processes.
In this paper, we examine chemical abundance trends in OCs

identified in high-resolution cosmological hydrodynamic
galaxy simulations generated with the Feedback in Realistic
Environments (FIRE-2; P. F. Hopkins et al. 2018) model.
These simulations have an adaptive spatial resolution, which
enables modeling a large dynamic range (from megaparsecs
down to parsecs), and include many relevant star-cluster-scale
feedback processes. In this work, we utilize three MW-mass
galaxies from the Latte suite (A. R. Wetzel et al. 2016;
A. Wetzel et al. 2023) of FIRE-2 simulations, to assess the
viability of strong chemical tagging via intercluster and
intracluster chemical homogeneity analysis. Importantly, this
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study is possible now because FIRE-2 implements physically
motivated processes (e.g., subgrid turbulent metal diffusion,
stellar feedback, and chemical enrichment from core-collapse
supernovae, white dwarf supernovae, and stellar winds) and has
high enough resolution in Latte (up to ∼1 pc) to distinguish
individual star-forming regions.

Previously in FIRE-2, M. A. Bellardini et al. (2021) showed
that their MW-mass galaxies have azimuthal scatter in gas at
z= 0 similar to that observed in nearby galaxies of similar
mass. M. A. Bellardini et al. (2022) investigated abundance
trends in all young stars across the Latte disks, considering the
evolution over time. They found that azimuthal variation
dominates at z 0.8, whereas radial gradients dominate at late
times. Subsequently, A. Carrillo et al. (2023) explored
distributions in mono-age populations in one Latte disk,
m12i, as a function of [Fe/H], [X/Fe], birth, and present-day
locations and found some evidence for inside-out radial growth
for stars with ages <7 Gyr. A. Carrillo et al. (2023) also
examined the age–[X/Fe] relation across the disk and
found that the qualitative trends agree with observations
(apart from C, O, and Ca) with small intrinsic scatter
(0.01< σ< 0.04 dex). Additionally, A. Carrillo et al. (2023)
found σ to be metallicity-dependent, with σ≈ 0.025 dex at
[Fe/H]=−0.25 dex versus σ≈ 0.015 dex [Fe/H]= 0 dex. A
similar metallicity dependence is seen in the GALAH survey
for the elements in common (S. Sharma et al. 2022; A. Carrillo
et al. 2023). Moreover, like M. A. Bellardini et al. (2022),
A. Carrillo et al. (2023) found that σ is higher in the inner
galaxy, where stars are older and formed in less chemically
homogeneous environments.

Building on the work of M. A. Bellardini et al. (2022),
R. L. Graf et al. (2024) recently showed that the radial
metallicity gradient as a function of stellar age in the Latte
disks follows a similar trend as in the MW, albeit with
shallower gradients in FIRE. Additionally, R. L. Graf et al.
(2024) showed that at the present day, the radial metallicity
gradient is steepest for the youngest stellar populations, which
is again qualitatively consistent with the MW, despite weaker
trends in FIRE. Finally, both M. A. Bellardini et al. (2022)
and R. L. Graf et al. (2024) considered the azimuthal scatter of
[Fe/H] in stars in Latte and found it to be similar to the MW
(relative to F. Anders et al. 2014).

While the FIRE studies discussed above focus on all stars in
simulated galactic disks, our focus in this study is on chemical
trends in OCs specifically. Along these lines, M. Y. Grudić
et al. (2023) mapped giant molecular clouds formed self-
consistently in a Latte simulation onto a cluster population
according to a giant-molecular-cloud-scale cluster formation
model calibrated to higher-resolution simulations. This
approach enabled them to explore the galaxy’s star clusters
as a function of mass, metallicity, space, and time.
M. Y. Grudić et al. (2023) concluded that massive clusters
do not form with metallicities differing from other stars
forming within the galaxy.

In this work, we take a different approach: we directly
identify young massive OCs in the Latte simulations at the
present day to measure their chemical homogeneity in the full
galactic context. As of yet, a robust comparison between the
chemical homogeneity of observed OCs and OCs formed in
cosmological MW-mass galaxy simulations does not exist, and
we aim to characterize the precision requirements for
metallicity measurements to ensure that star cluster

reconstruction could be conducted using chemistry alone. In
the long term, we hope to identify clusters, let these disperse
into the field, and try to reconstruct them using chemistry
alone. However, the reassembly of clusters once mixed into the
field, where there is a wide range of chemistry and dynamics at
play even for a mono-age population, makes reconstruction a
very difficult endeavor at this time. Thus, in this work, we take
an intermediary step toward the reconstruction goal and check
to see if the chemistry of each cluster is realistic and
sufficiently distinct from one another even before dispersing
into the field. This essential premise is a necessary condition
for strong chemical tagging to be viable. In this study, we
leverage OCs identified within the last ∼100Myr of the
simulations and select OCs younger than 3Myr, which allows
us to study truly co-forming populations often still embedded
in their natal environments. We calculate the intra- and
intercluster metallicity dispersion for our OC population and
compare it to results from spectroscopic OC observations.
Finally, we calculate a chemical difference metric between
intracluster and intercluster pairs of stars and discuss the
viability of chemical tagging using such chemical differences.
This paper is structured as follows. In Section 2, we discuss

our data and methodology. Specifically, in Section 2.1 we
introduce the simulations; in Section 2.2, we discuss how we
identify OCs in these simulations; and in Section 2.3, we
introduce the chemical difference metric we use to characterize
the similarity of elemental abundances. In Section 3, we present
our results, and finally, in Section 4, we present our discussion
in the context of the observational literature and our
conclusions.

2. Data and Methodology

2.1. Simulations

We use the Latte suite of FIRE-2 cosmological MW-mass
galaxy simulations (A. R. Wetzel et al. 2016; A. Wetzel et al.
2023) to study the properties of OCs. As mentioned earlier,
FIRE stands for Feedback in Realistic Environments; the code
is able to simulate the interplay between the Interstellar
Medium (ISM) and the stellar feedback processes in a
cosmological environment (P. F. Hopkins 2015; P. F. Hopkins
et al. 2018). As detailed in P. F. Hopkins (2015), these
simulations use the Lagrangian meshless finite-mass hydro-
dynamics method implemented in Gizmo. Gizmo solves the
fluid equations using a moving particle distribution that is
automatically adaptive to resolution.
FIRE-2 uses a physically motivated metallicity-dependent

radiative-transfer heating and cooling approach for gas that
includes free–free, photoionization, and recombination pro-
cesses, Compton scattering, photoelectric heating, and colli-
sional dust effects, as well as molecular, metal-line, and fine-
structure processes. The implementation of FIRE we use in this
work additionally includes magnetohydrodynamics, where the
equations of ideal magnetohydrodynamics are solved explicitly
(P. F. Hopkins et al. 2020).
We use versions of these simulations that we resimulated

over the final 110Myr, specifically to store finer snapshot time
spacing (1Myr) than in the original simulations (≈22Myr).
This enables us to track OCs in detail in phase space across
time. While these resimulations are not publicly available,
snapshots of the original simulations are publicly available
(A. Wetzel et al. 2023).
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FIRE-2 tracks 11 elements (H, He, C, N, O, Ne, Mg, Si, S,
Ca, and Fe) across a temperature range of 10 to 1010 K. These
simulations incorporate a spatially uniform, redshift-dependent
UV background, as described by C.-A. Faucher-Giguère et al.
(2009). As typically done by observers, metallicity and
elemental abundances are scaled to solar values; in these
simulations, we use values for the Sun from M. Asplund et al.
(2009).

Star formation proceeds according to the following recipe in
these simulations: each star particle is generated from a self-
gravitating gas cell that is Jeans-unstable, cold (T< 104 K),
dense (n> 1000 cm−3), and molecular (following M. R. Krum-
holz & N. Y. Gnedin 2011); when star formation criteria are
met, there is a one-to-one conversion of a gas cell into a star
particle. That is, a star particle acquires its mass and elemental
makeup from the gas cell it originates from and depicts a
simple stellar population characterized by a Kroupa initial mass
function (P. Kroupa 2001). Each star particle is individually
evolved assuming a standard stellar population model (STAR-
BURST99 v7.0; C. Leitherer et al. 1999) and produces time-
resolved stellar feedback from both core-collapse and white
dwarf supernovae. The rates of core-collapse supernovae are
based on STARBURST99 (C. Leitherer et al. 1999) and the
rates of white dwarf supernovae are from F. Mannucci et al.
(2006). FIRE-2 also incorporates stellar feedback due to
continuous mass loss, radiation pressure, photoionization, and
photoelectric heating. The nucleosynthetic yields we use are
based on K. Iwamoto et al. (1999) for white dwarf supernovae
and K. Nomoto et al. (2006) for core-collapse supernovae.
Stellar wind yields are sourced primarily from O, B, and AGB
stars; we use a model for this assembled by R. P. C. Wiersma
et al. (2009) that incorporates expectations from L. B. van den
Hoek & M. A. T. Groenewegen (1997), P. Marigo (2001), and
R. G. Izzard et al. (2004). Further details of this can be found in
Appendix A of A. Carrillo et al. (2023) and in P. F. Hopkins
et al. (2018).

FIRE-2 incorporates subgrid diffusion and the mixing of
elemental abundances in gas, which occurs through unresolved
turbulent eddies (K.-Y. Su et al. 2017; I. Escala et al. 2018;
P. F. Hopkins et al. 2018). Our model assumes that subgrid
mixing is primarily influenced by the largest unresolved eddies,
which effectively smooth out abundance variations among gas
elements. I. Escala et al. (2018) demonstrate that incorporating
this subgrid model is essential for accurately replicating the
observed distributions of stellar metallicities in galaxies.
M. A. Bellardini et al. (2021) show that while the details of
this diffusion model do not significantly affect the radial or
vertical gradients in FIRE-2 MW-mass galaxies, they do affect
the azimuthal scatter. M. A. Bellardini et al. (2021) also show
that these galaxies have azimuthal scatter in gas at z= 0 similar
to that observed in nearby galaxies of similar mass.

The Latte suite contains several MW-like galaxies; in this
work, we analyze three Latte simulations (m12f, m12i, and
m12m). The galaxies we analyze represent some of the most
massive MW-like isolate disks in the Latte suite and span a
range of assembly histories. Key differences among these
simulations are that m12i has a massive disk with a late-
forming MW-mass halo, m12f has an LMC-like satellite
merger with the MW-like disk 3 Gyr prior to the present day,
and m12m has a strong bar at high redshift and an earlier-
forming halo (see R. E. Sanderson et al. 2020). A full
description of the criteria used to generate these galaxies and

their properties at the present day can be found at A. Wetzel
et al. (2023) and references therein. A brief description of the
relevant details for this work follows. Each galaxy simulation
assumes a flat ΛCDM cosmology with parameters consistent
with the Planck Collaboration et al. (2020): h= 0.68–0.71,
ΩΛ= 0.69–0.734, Ωm= 0.266–0.31, Ωb= 0.0455–0.048, σ8=
0.801–0.82, and ns= 0.961–0.97.8

In this work, “MW-like” refers to the total mass of each
galaxy at the present day. The Latte galaxies were selected to
have halo masses roughly the same as the MW's:
M200= 1–2× 1012Me, where M200 refers to the total mass
within the radius containing 200 times the mean matter density
of the Universe. These simulations contain three types of
material: dark matter, stars, and gas. The resolution of each
dark matter particle is 3.5× 104Me and the initial mass
resolution of baryonic material is 7070Me. As noted earlier,
each star particle should be thought of as a single stellar
population. Because of this, as a star particle ages, it loses a
portion of its stellar mass. Thus, at z= 0, a typical star particle
has a mass of ∼5000Me. In the Latte galaxies, star and dark
matter particles have a fixed gravitational force softening length
of 4 and 40 pc (Plummer equivalent), respectively. Gas cells
have adaptive gas smoothing: in regions where there is a high
density of gas cells, the gravitational force softening length can
resolve down to a minimum of 1 pc.
Given their spatial and mass resolution, the Latte simulations

can resolve massive star clusters with multiple star particles
that represent portions of each OC. And, as mentioned earlier,
with a temporal resolution for snapshots of 1 Myr for these
resimulations, they can track in detail how star particles in OCs
evolve in phase space over time. See Section 2.2 for more
details on OC selection and characteristics.

2.2. Star Cluster Identification

We identify OCs in our simulations using the friends-of-
friends algorithm (M. J. Geller & J. P. Huchra 1983). It works
by identifying members within a fixed distance known as the
linking length; in this work, we adopt a linking length of 4 pc,
which corresponds to our softening length. To ensure that the
OCs are identified before the onset of core-collapse supernovae,
we select OCs from star particles that are less than 3Myr old
over the last 110Myr of these simulations. We require a
minimum of five star particles for a cluster to be identified, and
thus with our fiducial mass resolution (7070 Me), we resolve
clusters down to a cluster mass of 104.6 Me.
With these selection criteria, the OCs we identify have a

characteristically small velocity dispersion (σ1D ∼4 km s−1), a
small size (Rhalf ∼3 pc), and a small spread in age (σage
∼0.25Myr). We do not require that the natal giant molecular
cloud be bound for our OCs to form inside them; despite this,
roughly half of the clusters that we identify are born bound
( ( ) KE PElog 2 010 ) and the global population follows a
Gaussian distribution of boundedness peaked at 0. While the
size and boundedness of the population that we identify may be
better described as OCs and associations, for the purposes of
this study, which aims to characterize the spread in metallicity
inside and between small clustered star-forming environments

8 Where h is the dimensionless equivalent of the Hubble Parameter H0, ΩΛ is
the cosmological constant or vacuum density at the present time, Ωm is the total
matter (dark plus baryonic) density today, Ωb is the baryonic matter density, σ8
is the rms fluctuation of the density perturbations at 8 h−1 Mpc scale, and ns is
the scalar spectral index.
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across a full galactic disk, we find it sufficient not to distinguish
between OCs and associations. We also note that the age
selection criteria that we adopt do not significantly impact any
of these properties (D. Masoumi 2024). Because of this, we feel
that the OC populations that we identify sufficiently resemble
OCs within a full simulated cosmological MW-like galaxy
environment to proceed with the elemental abundance study we
present here; a more detailed study that focuses on the impact
of the selection criteria we use on the resultant properties of the
OCs we identify can be found in D. Masoumi (2024). Note we
identify star clusters similarly in all three MW-like analog
simulations mentioned in Section 2.1.

In this work, we identify a total of 361, 404, and 46 unique
OCs in m12i, m12f, and m12m, respectively, using the criteria
discussed above. We analyze the OCs from each galaxy
simulation as a single data set. In Figure 1, we show a
histogram of the number of clusters identified throughout the
final 110Myr of the simulations. These three simulations
(m12i, m12f, and m12m) represent a varying rate of star cluster
formation over the 110Myr epoch; m12m has a relatively
consistent albeit low number of clusters formed over this period
of time, while m12i forms roughly a quarter of all the clusters
over just a 3 Myr span, and finally m12f has a fluctuating rate
of cluster formation that oscillates on a ∼30 Myr timescale. We
note that the low rate of m12m’s cluster formation reflects the
overall depressed star formation rate (SFR) of the entire galaxy
at the present day.

The cluster-mass distribution of these simulations is shown
in Figure 2. We note that m12f and m12m have similar slopes
for the cluster-mass function. However, m12i has a shallower
slope and contains a few high-mass outliers that form during a
period of vigorous star formation in the plane of the disk. It is
worth noting that the SFRs at the present day of these galaxies
are ∼10Me yr−1, while the MW’s current SFR has been
estimated to be 2.0± 0.7 1Me yr−1 (D. Elia et al. 2022), and
thus these simulations produce more high-mass clusters more

frequently than the MW does. These OCs are best thought of as
Young Massive Clusters (YMCs; see Table 1 from S. F. Porte-
gies Zwart et al. 2010) and will be discussed further in
D. Masoumi et al. (2024, in preparation). While the lowest-
mass OC that we resolve is 3.89× 104Me, which is very
massive when compared with observations (e.g., T. Cantat-G-
audin 2022; T. Cantat-Gaudin & L. Casamiquela 2024;
E. L. Hunt & S. Reffert 2024), there are multiple YMCs in
the MW that fall in our resolvable mass limit (e.g., RSGC1,
RSGC2, RSGC3, and Wd1; as described in S. F. Portegies
Zwart et al. 2010, Table 2). We anticipate that the subsequent
versions of these simulations will generate OCs to a lower mass
limit. However, for the time being, the OCs in this paper are the
highest-resolution sample generated in a cosmological context
in an MW-like setting to date and offer the first opportunity to
explore previously inaccessible connections between OC
properties and the Galactic environment.
In Figure 3, we show a top-down view of m12i, m12f, and

m12m near the present day (13.693 Gyr). Here, we show gas in
the background, which has been binned in 200 pc x 200 pc
squares and colored by the mean value of [Fe/H] in each
volume. Plotted on top of the average [Fe/H] distribution for
gas are contours of the density distribution of stars that are less
than 50Myr old. These contours highlight where there is active
star formation corresponding to the spiral structure. The circles
overlaid on top indicate the mean [Fe/H] of the OCs and
associations (linking length �18 pc) that were identified at this
moment in time; while we have included larger associations
here for visualization purposes, in this paper we only include
OCs found using a linking length of 4 pc for analysis. We note
that Figure 3 shows that the average [Fe/H] of OCs and
associations generally reflects the gas metallicity distribution
across the disk.
We note that the top-down perspective on the galactic disks

shown in Figure 3 highlights the overall radial metallicity
gradient in all three galaxies; while each galaxy has a different
normalization and slope of the radial metallicity gradient,
overall it is clear that a negative radial gradient is present in the
global disk for gas at the present day (see M. A. Bellardini et al.
2021 for further discussion). While here we have shown the

Figure 1. Number of young (<3 Myr) massive OCs identified in the last
∼100 Myr of the simulations. OC selection has been run at a 3 Myr interval to
avoid double counting. m12i is indicated by the dashed lines colored in indigo,
m12f is indicated by the dashed–dotted lines colored in red, and m12m is
indicated by the solid blue lines. A varying rate of star cluster formation is
observed in all three simulations, with m12m having the lowest number of
clusters produced throughout the 100 Myr period. This reflects a globally
suppressed SFR for m12m at the present day. See Section 2.2 for further
discussion.

Figure 2. Mass distribution of the OCs from all three simulations. m12i is
indicated by the dashed lines colored in indigo, m12f is indicated by the
dashed–dotted lines colored in red, and m12m is indicated by the solid blue
lines. The slope of the cluster-mass function is similar for all three simulations,
with m12i having a shallower slope with a few high-mass outliers.
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distribution of [Fe/H], we will be using a total of nine
elemental abundances (Fe, C, N, O, Mg, Si, S, Ca, and Ne)
throughout the remainder of this work. We note that these
elements are highly correlated with each other in our
simulations. We show this correlation in Appendix A in
Figures 10 and 12. Such a strong correlation is also seen in the
MW (E. J. Griffith et al. 2024); in fact, M. K. Ness et al. (2022)
show that, using a linear regression fit to Fe and Mg alone, one
can predict eight supernova elements within 5% accuracy.
Despite such strong correlations, we elect to use all elements at
our disposal in this work.

In Figure 4, we show normalized histograms of the mean
[Fe/H] (upper panel) and standard deviation of [Fe/H] (lower
panel) for OCs in all three simulations. The upper panel shows
the presence of scatter in the mean [Fe/H]. While m12f has a
large range of OC mean [Fe/H], m12i and m12m have a
narrower range of values. Each of these populations peaks at a
different value of [Fe/H]; however, there is some overlap
between these samples. The standard deviation histogram for
each galaxy shown in the bottom panel of Figure 4 illustrates
that there are very few OCs that have a large standard deviation

of [Fe/H]; moreover, the peak of each distribution is at a small
value. Given these essential properties—there is scatter in the
average [Fe/H] in OCs in the simulations and there is a small
spread in [Fe/H] in each OC—in this work, we are able to test
the feasibility of uniquely identifying stars from the same OC
using their elemental abundances alone.

2.3. Chemical Difference Metric

The goal of this investigation is to understand the similarity
of stellar abundances for stars within a given OC; to simplify
this, we define a simple chemical difference metric using a
pseudo-Cartesian measurement of distance in abundance space.
A similar approach is used in M. Ness et al. (2018), which was
adapted from A. W. Mitschang et al. (2013). The metric is
defined as
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where n and ¢n are two stars being compared, with star n
containing the abundance xni and star ¢n containing the
abundance ¢xn i for all elements 1 to I. Simply put, this metric
evaluates the squared chemical difference between any two
stars, summed over all available elements, and provides a
single number that accesses the chemical similarity for each
pair of stars. In this work, we initially evaluate the chemical
difference metric summed over eight element abundances
([Mg/Fe], [Ca/Fe], [S/Fe], [Si/Fe], [Ne/Fe], [O/Fe], [N/Fe],
and [C/Fe]), without any errors being considered.
After this initial assessment, we further consider the

chemical difference metric with APOGEE errors added to our
simulated OCs (drawn from the Chemical Abundances and
Mapping Survey; N. Myers et al. 2022). The difference metric
with added errors is defined as
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where σni refers to the error measurement for xni and s ¢n i
represents the error measurement for ¢xn i. Note that we omit Ne
(neon) from the above list of elements in this analysis, as it is a
relatively rare element that is not measured in the APO-
GEE OCs.

Figure 3. Snapshots from three Latte simulations of m12i, m12f, and m12m. Background: mean [Fe/H] for gas in the disk of each simulation. The corresponding
values are shown by the color bar on the left. Contours: density of stars < 50 Myr old that highlight the spiral arms. Circles: mean [Fe/H] of OCs and associations
identified at 13.693 Gyr. Note that the mean [Fe/H] of the clustered star formation reflects the global metallicity distribution of the gas in the disk.

Figure 4. Distribution of mean [Fe/H] (upper panel) and dispersion of [Fe/H]
in the cluster sample of all three simulations (lower panel). m12i is indicated by
the dashed lines colored in indigo, m12f is indicated by the dashed–dotted lines
colored in red, and m12m is indicated by the solid blue lines. m12f has a larger
range of mean and scatter in [Fe/H].
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3. Results

3.1. The Relationship Between [Fe/H] and Birth Radius
for OCs

In this section, we consider the radial metallicity gradient:
the average [Fe/H] as a function of galactocentric radius,
which is often thought to be a unique indicator of where stars
are born (e.g., I. Minchev et al. 2018). Here, we measure the
radial metallicity gradient using OCs, as has often been done in
the literature (K. A. Janes 1979; P. Sestito et al. 2008; L. Spina
et al. 2022a; L. Magrini et al. 2023). Our goal is to assess how
truly unique the mean [Fe/H] is for the OCs in our simulations.
We note that the dispersion in each cluster does not change
substantially across the disk.

In Figure 5, we show the mean [Fe/H] versus the birth
radius (Rbirth) for all OCs identified over the final 110Myr in
m12i (top panel), m12f (middle panel), and m12m (bottom
panel). Note that the range of values indicated on the y-axes are
slightly different for each galaxy, which is very important when
comparing the slopes between each system. Each blue dot
indicates the mean [Fe/H] value of an individual OC. We
calculate a running median using a bin size of 0.5 kpc (shown
in a black solid line) and indicate the ±1σ confidence region
around the median values, shaded in gray. In addition to this,

we indicate in each figure the global average [Fe/H] (solid blue
horizontal line) of all our OCs and also the average dispersion
of [Fe/H] (shaded blue region) inside a typical OC. We later
subsample OCs drawn from this blue-shaded region to perform
a chemical-difference-metric test (see Section 3.3).
We find a very different trend in the metallicity gradient in

the three galaxies we assess. For m12i (top panel), there is a
steep gradient within Rbirth< 6 kpc (with a slope of
∼−0.02 dex kpc−1) and a small scatter about the median trend
line (with scatter < 0.01 dex). This combination of a steep
slope and small scatter means that, within this region, [Fe/H]
strongly constrains the birth location. However, at
Rbirth> 6 kpc, the slope of the radial metallicity gradient
substantially flattens out and the scatter significantly increases
(> 0.02 dex). Moreover, outside of 10 kpc, there is an inversion
in the slope of the metallicity gradient. Taken together, there is
no longer a one-to-one mapping of [Fe/H] and birth radius
outside 6 kpc and [Fe/H] should not be taken as a reliable
indicator of the birth location.
However, when we consider m12f (middle panel), the

predictive power of [Fe/H] as a unique indicator of birth
location extends to a significantly larger region (out to 10 kpc).
Within this radial range, there is a small scatter around the
median trend line (<0.02 dex). Moreover, like m12i, within the
inner region of m12f, the slope has a constant negative value of
−0.04 dex kpc−1. It is noteworthy that, for m12f, outside of
10 kpc, the scatter increases significantly, doubling to
∼0.04 dex in the the outer regions of the disk. And, like
m12i, at the largest Galactocentric birth radii, there is a subtle
upturn in the median trend line. Thus, again, at large
Galactocentric radii, [Fe/H] no longer has strong predictive
power as an indicator of birth location.
Finally, m12m (lower panel), has a significantly smaller number

of clusters than the other two systems, and these clusters are all
found at Galactocentric radii < 9 kpc. While the slope of the radial
metallicity gradient for m12m is negative, it is substantially
shallower (<−0.008 dex kpc−1) than m12i and m12f. Moreover,
while the typical scatter about the median trend line is similar to the
inner region of m12i (∼0.01 dex), in combination with the
relatively shallow gradient, there is limited discerning power for
[Fe/H] to indicate birth location in this system.
Overall, all three systems appear to have a negative gradient at

small radii that generally flattens at larger radii, consistent with the
analysis of these galaxies in M. A. Bellardini et al. (2022). Such a
gradient and flattening in the average metallicity of OCs as a
function of radius has often been modeled in the MW using a two-
component fit (e.g., J. Donor et al. 2020; N. Myers et al. 2022;
L. Spina et al. 2022a). The presence of such a transition in the
gradient is an indicator that the variation in abundances is different
for different regions of our Galactic disk.
Note that in Section 3.3, we will discuss the shaded blue

region in Figure 5 and further consider the additional power of
individual abundances to draw connections to the birth
location. This can be done by selecting OCs that fall within
±1σ of a fixed [Fe/H] value. As we mentioned earlier, σ is set
by the typical dispersion within an OC, while the fixed [Fe/H]
value is set by the average [Fe/H] of all the OCs
discussed here.
In Figure 6, we show the metallicity distribution function for a

subset of OCs found within the fixed [Fe/H] range discussed
above. These histograms were generated using a Gaussian kernel-
smoothing technique. Each curve is color-coded by where the

Figure 5. Scatter plot of the mean [Fe/H] vs. birth radius of OCs from three
simulations: m12i (top panel), m12f (middle panel), and m12m (bottom panel).
The blue dots indicate the mean [Fe/H] of each cluster and the solid black
curve represents the median trend for data in 0.5 kpc radial bins. The gray
shaded area represents the ±1σ range within 0.5 kpc bins. The blue horizontal
line represents the average of all OCs in the sample, and the blue horizontal
shaded region represents the typical ±1σ scatter of [Fe/H] within any given
cluster. It can be seen that the metallicity distribution varies differently in the
inner disk than the outer, and many clusters have a similar mean [Fe/H],
despite being found at varying locations across the disk.
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OCs formed in the disk. The density shown on the y-axis is
calculated such that the area under the curve is 1, using a bin
width of 0.001. The black dashed line along the center replicates
the horizontal line in Figure 5, which represents the global mean
[Fe/H] for all clusters in a given simulation, and the gray-shaded
region inside the black dotted lines indicate the 1σ dispersion from
the typical standard deviation inside each OC.

The clusters shown in Figure 6 represent a subset of all
clusters shown in the blue-shaded region of Figure 5 and probe

a large range of Rbirth across the disk. The short vertical line on
each curve indicates the mean value of [Fe/H] for that OC.
Here, we can see that while these clusters have similar mean
[Fe/H] (all fall within the gray-shaded region), their individual
metallicity distribution function can vary in shape. While these
clusters form at a very large range in radii, their metallicity
distribution function does not map uniquely onto their
formation location. Notably, the mean [Fe/H] of a young OC
does not always map strictly onto the formation location, nor
does the dispersion of [Fe/H] inside a given OC. This
reinforces the idea that the mean metallicity may not be
enough to uniquely determine the formation locations of OCs.

3.2. Inter- and Intracluster Metallicity Dispersion

The intracluster dispersion provides a measure of the
chemical homogeneity of member stars within a given cluster
for a given element. If such a measurement is small, it indicates
a similarity in the elemental abundance of member stars inside
a cluster. Here, we define the intracluster dispersion as the
weighted mean of the dispersion inside each cluster across all
OCs for each simulation. Here, the weight is proportional to the
number of star particles in each cluster.
Similarly, intercluster dispersion can provide a measure of the

scatter in the mean elemental abundance between different
clusters. A large value of intercluster dispersion indicates a
significant difference in the mean elemental abundance (e.g.,
[ ]¯Fe H ) between OCs. One might expect the intercluster
dispersion to be higher than the intracluster dispersion, especially
when comparing clusters across a large range of radii. In this limit,
one might expect strong chemical tagging to be feasible. With a
larger dispersion between clusters and a smaller dispersion inside
a cluster, it would be easier to identify stars that belong to the
same. However, as we saw in Section 3.1, regions of the disk can
have a weak radial metallicity gradient. Because of this, it is
valuable to quantify the comparative significance of the intra-
versus intercluster dispersion to test the feasibility of strong
chemical tagging. We will further discuss the comparative
significance of these dispersions utilizing a chemical difference
metric in the next section.
In Figure 7, we show the intra- and intercluster dispersion for

all OCs in each simulation for each of the nine elements that we
trace (Fe, C, N, O, Mg, Si, S, Ca, and Ne). M12i, m12f, and
m12m are shown in the top, middle, and bottom panels,
respectively; within each panel, the lower curve in blue indicates
the weighted average intracluster dispersion per element, hereafter
represented by the symbol ¯ [ ]s X H . The vertical indigo lines
corresponding to each element indicate the ±1σ scatter of the
intracluster dispersion in all clusters. Since this is a dispersion of
the dispersion, it was calculated by first converting these standard
deviations into variances. For n standard deviations, σ1, σ2,K,σn,
the variance of the sample standard deviations can be calculated as

( )s s=Var .i i
2

We then calculate the average of these variances as
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i

n

i
1

Finally, the standard deviation of the standard deviation is

( ) ( )s =sStandard Deviation Mean Var .

Figure 6. The [Fe/H] distribution for a subset of OCs from the subsample
highlighted in blue from Figure 5 for each simulation. Each smoothed
histogram represents the metallicity distribution for a single OC and was
generated using Gaussian kernel smoothing. The shaded region indicates the
±1σ from the overall mean of the distribution of all clusters from that
simulation. Despite their locations in the disk, it is possible to find OCs that
have similar abundance distributions at different R.
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The typical measurements of the intrinsic dispersion from
observations for these elements fall under the shaded gray
region (drawn from M. Ness et al. 2018). The upper red curve

indicates the measurement of intercluster dispersion (hereafter
represented by the symbol [ ]¯s X H ). This has been calculated as
the weighted standard deviation of the mean elemental
abundance, [ ]¯X H , in each cluster.
As indicated by these measurements, the average intracluster

dispersion inside each FIRE OC is quite small and generally
less than 0.020 dex; these measurements are comparable to the
intrinsic dispersion calculated by several observational studies,
which find that OCs have intrinsic dispersion <0.03 dex (e.g.,
S. Bertran de Lis et al. 2016; J. Bovy 2016; M. Ness et al.
2018; V. J. Poovelil et al. 2020). This is also consistent with
previous studies of m12i, which have considered the global
dispersion for stars in the disk at the present day. As mentioned
in Section 1, A. Carrillo et al. (2023) investigated the intrinsic
dispersion at fixed metallicity for all disk stars in m12i and
found it to be ≈0.025 dex at [Fe/H]= –0.25 dex and
≈0.015 dex at [Fe/H]= 0 dex. The dispersion of the intraclus-
ter dispersion shown by the vertical indigo splines spanning
±1σ of the intracluster dispersion tells us the width of the
distribution of the intrinsic scatters. These measurements are
also very small, which is an indication that our simulated
clusters have some element scatter that is nonzero, which is
similar for all clusters.
Similarly, as indicated by the upper red curves, the

intercluster dispersion measurements for all three simulations
m12i, m12f, and m12m are larger than the intracluster
dispersion, as expected. We measure mean intercluster
dispersions of ≈0.03 dex for m12i, ≈0.09 dex for m12f, and
≈0.02 dex for m12m. We further test if we can use individual
element abundances to discriminate between clusters. To do
this, we examine pairs of stars within and between clusters to
measure their chemical similarity. A requirement of recon-
structing the formation conditions of stars using only their
individual abundances is that the chemical distance between
stars within a cluster (intracluster pairs) is smaller than that of
stars between clusters (intercluster pairs). A minimum require-
ment for a pair of stars to be from the same cluster is that they
have the same [Fe/H]. We therefore now work only in a
narrow [Fe/H] bin near the overall mean [Fe/H] of the OCs in
each simulation.

3.3. Intra- and Intercluster Chemical Difference Metric

In this section, we discuss the chemical difference metric to
see if we can distinguish between two stars that are formed in
one OC and two stars randomly drawn from different OCs. We
employ the chemical difference metric described in Section 2.3,
which calculates the squared chemical difference between two
stars for each element and is summed over all elemental
abundances. Such a metric allows us to consider how
chemically similar two stars are via one number, which is
small (approaching zero) when two stars are similar.
We take the same sample of OCs highlighted in blue from

Figure 5 that is within ±1σ of the galaxy-wide mean [Fe/H].
We use this sample to calculate the chemical difference
between member stars, to explore if we can discern the
difference within and between clusters. We first draw all
possible pairs of stars from within an OC and calculate the
chemical difference for each pair. This procedure is iteratively
repeated for each OC in our sample, and the results are
presented in the blue histogram in Figure 8. To maintain a
comparative framework, we apply the same metric for an
equivalent number of random pairs, but this time, each star is

Figure 7. For each of the simulations in each panel: blue—the intracluster
dispersion indicated as the mean dispersion per element; and indigo—the
dispersion around the average dispersion. The indigo splines indicate the ±1σ
around it. The gray shaded region highlights the typical measurements of such
dispersion from observations, with the gray horizontal line indicating the upper
limit. Dashed red—intercluster dispersion. m12f has larger dispersion in both
inter- and intracluster abundances, most probably due to an LMC-like merger
resulting in a more mixed disk compared to other simulations that do not
incorporate such a merger.
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drawn from a different randomly selected OC. This distribution
is shown in the red histogram in Figure 8. We form 17,747
intra- and intercluster pairs in m12i, 1,685 pairs in m12f, and
374 in m12m.

In Figure 8, the blue histogram consists of the difference
metric for the pairs of stars drawn from the same OC. The
majority of the pair’s chemical differences fall within the
smallest bins of the histogram for all three simulations. If two
stars are measured with such a small chemical difference, one
would naively assume they come from the same OC. However,
these smallest-chemical-difference-metric bins are also sig-
nificantly populated by stars from intercluster pairs, as
indicated by the red histograms. In m12i, ≈86/73% of the
total intra-/intercluster pairs have a difference metric of
<0.0002. Similarly, in m12f, ≈66/43% of the total intra-/
intercluster pairs have a difference metric of <0.0002. Finally,
in m12m, ≈84/65% of the total intra-/intercluster pairs have a
difference metric of <0.0002. Because of this, if we observe
two stars with a chemical difference of <0.0002, it would be
extremely difficult to know if these two stars came from the
same OC or were drawn from two different OCs.9 That is, for
the majority of pairs, it would be difficult to distinguish
between stars that fall within the same OCs or different OCs
using the vector of abundances for these elements alone. Given
that the typical uncertainties in the abundance measurements
are ≈0.03 dex (M. Ness et al. 2018), it is unlikely that strong
chemical tagging is feasible. To further illustrate the impact of
the uncertainties on the observed chemical differences, we
calculate the chemical difference metrics for intra- and
intercluster pairs after adding the APOGEE errors, which we
discuss in Section 3.4.

To better quantify the degree of inherent similarity between
the two distributions shown in Figure 8, we perform a two-
sample Kolmogorov–Smirnov (K-S) test. Essentially, such a
K-S test quantifies the likelihood that the observed data sets
were drawn from the same underlying distribution and
generates the probability that the observed differences between
the two in-hand data sets are due to chance selection. There are
two metrics reported from a K-S test: the K-S statistic and the
p-value; both metrics need to be considered together to fully
understand the significance of the differences between the
observed data sets. The K-S statistic measures the maximum
discrepancy between the cumulative distributions of two data
sets. The p-value indicates the probability of observing such a
discrepancy by random chance alone if the null hypothesis is
true; in a two-sample K-S test, the null hypothesis is that the
two observed data sets were drawn from the same underlying
distribution. Values of the K-S statistic and the p-value range
between 0 and 1. A high value of the K-S statistic (>0.6) and a
small p-value (<0.0510) suggest that the observed samples are

very different and are very likely to be drawn from two
different underlying distributions, whereas a low value of the
K-S statistic (<0.4) and a small p-value (<0.05) suggest that
while the observed samples are similar, it is still very likely that
they are drawn from two different underlying distributions.
We obtain a K-S statistic of 0.19 for m12i, which indicates a

small maximum difference between the Probability Density
Function (PDFs) of the calculated chemical difference metric
for the inter- and intracluster pairs. However, the p-value is
quite small (∼0.00 for m12i), thus indicating that it is unlikely
that these two samples are drawn from the same global
distribution. In other words, while there are some similar
aspects to both data sets (the maximum discrepancy in the
global PDF is small), they are not in fact drawn from the same
parent distribution. This can be seen visually by inspecting the
red and blue lines in the top panel of Figure 8; while both
distributions are strongly peaked at the lowest values of the
chemical difference metric, at larger values, the shape of the
intercluster distribution (shown in red) is different from the
shape of the intracluster distribution (shown in blue). The K-S
statistic is 0.25 for m12f; this is slightly higher than m12i’s K-S
statistic, but still a critically low value, indicating that there is
similarity in the two observed m12f data sets. However, again,
the p-value is very low (∼0.00 for m12f), which indicates that

Figure 8. Histograms of the chemical difference metric for pairs of stars within
OCs indicated by blue histograms (intracluster pairs) and between OCs
indicated by the dashed red histograms (intercluster pairs) for each simulation
m12i (top), m12f (middle), and m12m (bottom) in each panel. These clusters
were selected to fall within ±1σ from the overall mean distribution of [Fe/H]
in each simulation. The bin with the smallest chemical difference metric
obtained for both inter- and intracluster pairs is abundantly populated,
indicating that such a difference is pretty small to uniquely identify the
chemistry of individual clusters.

9 We choose <0.0002 as a selection criterion here, as it is close to the mean
chemical difference in all three simulations (see Table 3 for relevant statistics
for the chemical difference metric for each simulation). In Appendix B, we
explore the impact of changing the statistic we use and of the number of
elements we leverage to discern between intra- and intercluster pairs. Table 1
shows that regardless of the statistic we use for subdividing our sample for the
smallest-chemical-difference-metric values, we always see significant contam-
ination with intercluster pairs. We note that using fewer elements to calculate
the chemical difference metric marginally decreases the ability to discern
between the intra- and intercluster pairs at small values of the chemical
difference metric.
10 What is considered a “small” p-value is based on the chosen level of
significance. In this work, we choose the level of significance to be 5%, thus we
can trust the K-S statistic if the p-value is < 0.05.
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it is highly unlikely that both data sets are drawn from the same
underlying distribution. Finally, m12m has the largest K-S
statistic (∼0.37) of all three simulations; however, it still falls
below the 0.4 threshold, thus we can say that the maximum
differences in m12m’s distributions are quite slight. Despite
this, yet again, the p-value is vanishingly small (∼0.00 for
m12m), indicating that it is extremely unlikely that these
samples were drawn from the same parent distribution.

Overall, we conclude while the intra- and intercluster
chemical-difference-metric data sets were drawn from two
different global distributions, there is little power with this set
of elements in using small values of the chemical difference
metric to select stars that definitively came from one OC. That
is, the contamination rate of intercluster pairs at the smallest
chemical difference metric is far too significant to trust OC
reconstruction.

3.4. Intra- and Intercluster Chemical Difference Metric with
APOGEE Errors in Simulated OCs

In order to test how the incorporation of errors in abundance
measurements affects our chemical-difference-metric calcula-
tions, in this section, we add errors drawn from an observa-
tional cluster catalog to our simulated OCs. The errors we use
come from the Open Cluster Chemical Abundances and
Mapping Survey (OCCAM VI; N. Myers et al. 2022), which
was derived from APOGEE DR17 (Abdurro’uf et al. 2022). To
add errors to the simulation, we first generate a normal
distribution for each element for each star; the mean of the
distribution is set to the true value from the simulation. We set
the standard deviation of the distribution by calculating the
mean error for each element from the OCCAM cluster catalog.
We then draw from this distribution a single value to represent
the chemical abundance with error included, which is assigned
to each star. This process is repeated for all elements and
all stars. In this analysis, we use the seven elements ([C/Fe],
[N/Fe], [O/Fe], [Mg/Fe], [Si/Fe], [S/Fe], and [Ca/Fe]) in
common with the OCCAM sample. We use the same sample of
clusters discussed in Section 3.3 for our analysis here.

In Figure 9, each panel shows the histograms for the
chemical difference metric from the intra- and intercluster star
pairs with APOGEE errors included; we show each distribution
with a blue solid and red dashed line, respectively. Again, the
top, middle, and bottom panels correspond to m12i, m12f, and
m12m, respectively. With errors included, the shape and the
extent of the distribution shown in Figure 9 changes
substantially. The distribution now peaks closer to the degree
of freedom that is equal to the number of elements used to
calculate the chemical difference metric. That is, each element
contributes equally to the error-included chemical difference
metric. Unlike the histograms of the metrics with no error in
abundance measurements, which peaked at the smallest
chemical difference, the histograms now peak at ≈7. All three
panels from different simulations show a similar trend with the
addition of errors, and most of the bins until the metric value of
15 for each simulation are almost equally populated by both
intra- and intercluster pairs. Considering a limit of 7, which is
closer to the mean of the chemical difference metrics for both
intra- and intercluster pairs, ≈55/56% of the total intra-/
intercluster pairs have the difference metric of < 7 in m12i.
Similarly, for m12f, ≈55/54% of the total intra-/intercluster
pairs have a difference metric of less than 7. For m12m, the
percentages of pairs with the difference metric of <7 are

≈52/56% for intra-/intercluster pairs, respectively. Also, the
maximum PDF obtained for either the intra- or intercluster
pairs is slightly below ≈0.13 at the mean difference metric,
thus indicating there is no prospect of identifying if the star
pairs are coming from the same cluster or different clusters.
This analysis clearly shows that, with errors, there is not
enough chemical difference between the stars to identify them
uniquely.

4. Discussion and Conclusions

In this paper, we have characterized the degree of scatter in
abundance distributions in young OCs identified in three
galaxies from the Latte suite of FIRE-2 simulations (m12i,
m12f, and m12m). Using a range of elements (C, N, O, Ne,
Mg, Si, S, Ca, and Fe) that are generated from three distinct
nucleosynthetic families (core-collapse supernovae, white
dwarf supernovae, and stellar winds), we have shown that the
abundance dispersion in FIRE OCs is comparable to the
observations from M. Ness et al. (2018).
In this section, we compare our results with other

observational studies that have measured the level of chemical
homogeneity present in individual OCs using spectroscopic
analysis. Dispersions measured from observations are influ-
enced by two factors: intrinsic scatter—the true difference in

Figure 9. Histograms of the chemical difference metric for pairs of stars with
mock APOGEE errors in OCs (blue) and between OCs (dashed red) for each
simulation. These clusters were selected to fall within the mean ±1σ of the
typical intracluster dispersion from the overall mean distribution of [Fe/H] in
each simulation. Most of the bins are abundantly populated with the chemical
difference metrics obtained from both inter- and intracluster pairs, indicating
that such a difference is pretty small to uniquely identify the chemistry of
individual clusters.
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elemental abundance between stars within an OC—and
observational noise, which originates from measurement
uncertainties. Most observational studies consider an OC to
be chemically homogeneous if the metallicity dispersion inside
a cluster is less than or equal to the typical measurement
uncertainties. While measurement uncertainties vary between
studies (e.g., 0.03 dex versus 0.008–0.036 dex, from F. Liu
et al. 2016 and M. Ness et al. 2018, respectively), typically the
measurement uncertainty is � 0.03 dex (Y.-S. Ting et al. 2012;
J. Bovy 2016).

Simulations do not suffer from observational uncertainties,
and the typical intrinsic dispersion inside a simulated Latte OC
is < 0.02 dex. This is broadly consistent with the intrinsic
dispersion measured for these elements from observational
studies. In Latte, such homogeneity is a consequence of two
dominant factors: (1) at the present day, the gas within
individual GMCs is very well mixed (see Figure 7 of
M. A. Bellardini et al. 2021); and (2) the star formation within
an individual OC is typically short-lived (σage< 1Myr;
D. Masoumi, et al. 2024, in preparation), which limits internal
enrichment.

Note that some level of inhomogeneity is expected in
observations driven by, among other things, atomic diffusion,
mixing processes, and planet engulfment (S. Blanco-Cuaresma
et al. 2015; C. Bertelli Motta et al. 2018; L. Spina et al. 2021).
Such processes are expected to have an impact on the
metallicity of evolved populations and are not resolved in
Latte OCs, as star particles have a fixed abundance throughout
their lifetime. In observational studies, dispersion measure-
ments that make use of both main-sequence and giant stars
within an OC are expected to have an increased metallicity
dispersion; as a result, some studies consider dwarf and giant
stars separately (S. Blanco-Cuaresma et al. 2015; L. Casamiq-
uela et al. 2020). Moreover, different types of elements (e.g.,
light versus heavy elements) are expected to have a different
amount of scatter (G. M. De Silva et al. 2009; C. Manea et al.
2024). While the current generation of Latte simulations do not
track heavy elements, such an improvement is anticipated in
upcoming generations of FIRE.

With this somewhat complicated observational context in
mind, we now present results from the literature. Note that, as
far as possible, we try to include both the stellar populations
and the elements studied in each work. In one of the earliest
works on chemical homogeneity, G. M. De Silva et al. (2006)
calculated chemical scatter below their measurement uncer-
tainties for dwarf stars in the Hyades OC. In a follow-up study,
G. M. De Silva et al. (2007) analyzed abundances of the light
elements in 12 red giant stars in the OC Collinder 261 and
estimated the intrinsic scatter to be <0.05 dex across these
elements.

In line with G. M. De Silva et al. (2006, 2007), many other
groups have found that OCs are chemically homogeneous from
spectroscopic analysis (e.g., E. Pancino et al. 2010; Y.-S. Ting
et al. 2012; A. Bragaglia et al. 2014; K. Cunha et al. 2015).
J. Bovy (2016) used APOGEE spectra for 49 giants in M67,
NGC 6819, and NGC 2420 and showed that the scatter is
<0.03 dex for 15 elemental abundances (C, N, O, Na, Mg, Al,
Si, S, K, Ca, Ti, V, Mn, Fe, and Ni). Among these elements, C
and Fe had strong limits (< 0.02 dex at 95% confidence);
however, for Na, S, K, Ti, and V, the scatter was <0.05 dex.
V. J. Poovelil et al. (2020) also calculated the abundance scatter
in APOGEE red giants in 10 OCs for eight elements—Mg, Al,

Si, Ca, Fe, Si, Mn, and Ni—and found that the dispersions for
these clusters were within the limits indicated by J. Bovy
(2016), of <0.03 dex for most of the elements, with only Mg,
Al, and Si having larger scatter, which could be consistent with
dredge-up effects that preferentially impact light elements.
Recently, A. Sinha et al. (2024) studied 26 OCs across 20
elements and showed that we can place 3σ upper limits on OC
homogeneity within 0.02 dex or less for most of the elements.
Our typical intrinsic scatter measurements of <0.02 are in line
with these results.
However, some studies have found measurable chemical

inhomogeneity larger than the measurement uncertainties in
OCs (e.g., S. Blanco-Cuaresma et al. 2015; F. Liu et al. 2016;
C. Bertelli Motta et al. 2018; L. Casamiquela et al. 2020). For
example, F. Liu et al. (2016) studied the abundances of 19
elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, and Ba) in 16 solar-type stars in the Hyades
cluster, with abundance errors ranging from a low of 0.008 dex
for Si to a high of 0.036 dex for S. For most elements, the
abundance dispersion they measured was significantly larger
than the measurement errors, by a factor of ≈1.5–2. They
concluded that Hyades is chemically inhomogeneous at the
�0.02 dex level, which contrasts with the conclusions for
Hyades drawn from G. M. De Silva et al. (2006) and G. M. De
Silva et al. (2007). F. Liu et al. (2016) suggest the pollution of
metal-poor gas in portions of the protocluster cloud combined
with supernova ejection in other regions with incomplete
mixing as the root cause of such dispersion.
Overall, we find that different observational studies have

differing criteria for determining if an OC is chemically
homogeneous. This conclusion can be impacted by the stellar
sample used (containing evolved, main-sequence, or a
combination of the two populations), the elements considered
(light and/or heavy elements), and the measurement errors
(which are instrument-resolution- and line-fitting-methodol-
ogy-dependent). Dwarf stars and heavy elements show the
greatest discriminating power for the measurement of homo-
geneity. Most studies agree that the typical level of intracluster
scatter inside MW OCs is � 0.03 dex for most elements; OCs
with scatter less than this per element relative to H are
considered chemically homogeneous. In our simulations, the
intrinsic OC intracluster scatter in [X/H] for C, N, O, Ne, Mg,
Si, S, Ca, and Fe is � 0.02 dex; these Latte OCs would be
considered chemically homogeneous by most observational
studies.
While there is abundant research supporting small intraclus-

ter dispersion in OCs, the assumption of large intercluster
dispersion, which is crucial for strong chemical tagging to
work, has only recently been explored (e.g., S. Blanco-Cuare-
sma et al. 2015; D. L. Lambert & A. B. S. Reddy 2016). One of
the earliest studies to consider intercluster dispersion was
G. M. De Silva et al. (2009). Using 10 elements from 24 OCs,
they showed varying levels of dispersion for each element. In
particular, they found an intercluster scatter of �0.20 dex in
heavy elements like Mn and Ba, which they concluded is an
indication of abundance variation between clusters.
In the time since, there have been several significant studies

that investigate chemical abundances in large spectroscopic
samples of OCs surveyed in a homogeneous manner. These
include the Bologna Open Clusters Chemical Evolution project
(A. Bragaglia & M. Tosi 2006), the WIYN Open Cluster Study
(R. D. Mathieu 2000; H. R. Jacobson et al. 2011), Gaia ESO
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OC papers such as L. Magrini et al. (2014), and APOGEE
studies such as the OCCAM survey (N. Myers et al. 2022).
While these studies provide tremendous insights into radial
trends in the MW, unfortunately, as of yet, they do not
explicitly consider intercluster trends.

Subsequent to G. M. De Silva et al. (2009), A. W. Mitschang
et al. (2013) used 30 distinct OCs from the literature and measured
both the inter- and intracluster dispersion. They found a typical
intercluster dispersion of ∼0.120 dex and considerably smaller
intracluster scatter of ∼0.045 dex (i.e., the intercluster dispersion
is ∼three times greater than the intracluster dispersion). There-
after, the first study (to our knowledge) that considered intercluster
scatter is S. Blanco-Cuaresma et al. (2015). In this work, they
compiled stellar spectra from 31 old and intermediate-age OCs to
determine 17 abundance species and showed that stars at different
evolutionary stages have distinct chemical patterns. Upon
separating stars into dwarfs and giants, they found only a few
OCs show distinct chemical signatures, with the majority of them
possessing a high degree of overlap. They also analyzed five OCs
(IC4651, M67, NGC 2447, NGC 2632, and NGC 3680) with stars
in various evolutionary stages and found that the differences in
abundances for [Fe/H] and [X/Fe] were less than 0.05 dex for
almost every element considered, except for Na, which can be
enhanced in giants. Such enhancement likely occurs as a result of
mixing from the first dredge-up in giant stars.

On the other hand, D. L. Lambert & A. B. S. Reddy (2016)
studied intercluster abundance differences for 23 elements in
70 red giants from 28 OCs. Their analysis was comparable in
scope and accuracy to that reported by S. Blanco-Cuaresma
et al. (2015), except that their selection included several
additional heavy elements—La, Ce, Nd, Sm, and Eu—that are
produced by neutron-capture processes. Using a set of 20
clusters, they calculated the scatter in light elements, which
was 0.16 dex for Na and Al, 0.12 dex for Mg and Si, and
0.11 dex for Ca (see Table 1 from D. L. Lambert &
A. B. S. Reddy 2016). They observed intercluster scatter up
to 0.5 dex for heavy elements like La and Ce, with uncertainty
<0.07–0.08 dex. D. L. Lambert & A. B. S. Reddy (2016) point
out that while the intercluster scatter for heavy elements is
large, many clusters are individually chemically homogeneous
in heavy elements with unique chemical patterns. They suggest
that combining measurements of one or more light elements
like Mg, Al, Si, Cu, and Zn with heavy elements like La,
Ce, Nd, Sm, and Eu in future chemical-tagging studies might
produce insightful results (D. L. Lambert & A. B. S.
Reddy 2016).

Overall, at present, there is limited discussion of intercluster
scatter in the literature and differing perspectives are offered in
the two most recent works. S. Blanco-Cuaresma et al. (2015)
have found a high degree of overlap (small intercluster scatter)
in the chemical signatures of light elements across OCs;
however, they do not directly quantify the intercluster scatter in
their analysis. On the other hand, D. L. Lambert &
A. B. S. Reddy (2016) have found a significant intercluster
scatter in heavy neutron-capture elements (up to 0.5 dex) and a
smaller scatter in lighter elements (on average ≈0.13 dex). As
previously mentioned, at this time, we only track light elements
in our simulations. In this limit, the OC intercluster scatter we
measure for [X/H] for C, N, O, Ne, Mg, Si, S, Ca, and Fe is
two to five times larger than the intracluster dispersion in
individual OCs. Specifically, when averaged across all nine
elements, the inter- versus intracluster dispersion is for m12i:

0.03 versus 0.01; for m12f: 0.09 versus 0.02; and for m12m:
0.02 versus 0.01. We find that when the intercluster scatter is
considered by element, only C and N have a slightly higher
scatter than the average (albeit it at a very small level; see
Figure 7). This is consistent with the result presented by
A. W. Mitschang et al. (2013), which showed that the
intercluster dispersion is ∼three times greater than the
intracluster dispersion. D. L. Lambert & A. B. S. Reddy
(2016) have shown intercluster dispersion to be >10 times
larger than the intracluster dispersion for heavy elements like
La, Ce, Nd, and Sm (e.g., 0.4 dex of the intracluster scatter
versus 0.03 dex of the intercluster scatter for La). However, if
we assume that the individual OCs from D. L. Lambert &
A. B. S. Reddy (2016) are homogeneous at the ≈0.03 dex
level, then the ratio of the inter- to intracluster scatter for light
elements is ∼4, which is in line with our results.
As one might expect, the intercluster scatter that we report

for OCs is less than what has been seen for all young stars in
the Latte disks. For example, M. A. Bellardini et al. (2022)
selected young stars (< 500Myr old) at the present day from
11 of the Latte galaxies at a range of radii and showed that at
small radii, the scatter across the entire annulus is
0.03–0.04 dex. Moreover, at the present day, the typical
variation across the fiducial solar cylinder (R= 8 kpc) in [Fe/
H] is ≈0.05 dex (see the top panel of Figure 9 of M. A. Bella-
rdini et al. 2022; R. L. Graf et al. 2024). However, at this
annulus, the intercluster scatter for OCs in [Fe/H] is only
0.02 dex.
In addition to intra- and intercluster scatter, we have

calculated a chemical difference metric similar to the one first
introduced by A. W. Mitschang et al. (2013). Such a metric
helps to determine if one can distinguish pairs of stars formed
in the same OC from pairs formed across different respective
OCs. We calculated the percentage of pairs that have small
chemical-difference-metric values (less than the mean chemical
difference for the entire sample) in the hope that this population
would be predominantly populated by intracluster pairs.
However, for m12f, 43% of the intercluster and 66% of the
intracluster pairs had similar indistinguishably small chemical
difference values. Moreover, in the other two galaxies, the rate
of chemical difference overlap was even greater: 65% versus
84% for m12m and 73% versus 86% for m12i in inter- versus
intracluster pairs. We find it noteworthy that a significant
fraction of the smallest-chemical-difference values belong to
intercluster pairs, which one would typically assume to be
populated by only intracluster pairs.
A. W. Mitschang et al. (2013) used the chemical difference

metric to compare 30 distinct OCs from across the literature.
Their abundance measurements ranged from five to 23
elements per cluster across 291 stars. They found a distinct
peak in the distribution of the chemical difference metric for
both the intra- and the intercluster distributions. In their
analysis, the two distributions had a critical crossing point at a
chemical metric value of ∼0.07—at this value, both the intra-
and intercluster star pairs showed identical chemical difference
distributions and thus the metric had no constraining power for
strong chemical tagging. In our simulated OCs, such a crossing
point occurs at a very small chemical difference value
(∼0.0001); this crossing point is near the median of both
skewed Gaussian distributions and is very well sampled by
both intra- and intercluster pairs. Notably, the chemical
difference metric has no constraining power to determine the
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origin at this location. In our extended analysis of the chemical
difference metric, we add APOGEE errors to the abundance
measurements of our OCs. We find that the error-added
chemical metric distributions for intra- and intercluster pairs
overlap significantly at almost all measured values, further
reinforcing that there is little prospect of discerning intra- and
intercluster pairing using the chemical difference metric from
light elements alone.

In a slightly different scenario, leveraging 600 intracluster pairs
and 1,018,581 field pairs with similar ( )log g and Teff values,
M. Ness et al. (2018) utilized 20 element abundances to calculate
the chemical difference metric. The chemical difference distribu-
tions for intracluster and field star pairs were visibly distinct but
not totally disjoint, with 0.3% of field stars having similar
chemical differences as the median difference in intracluster pairs.
When stars of a fixed solar metallicity ([Fe/H]= 0± 0.02) were
considered, the percentage of field star pairs with overlapping
intracluster chemical difference values increased to ∼1.0%.
M. Ness et al. (2018) refer to these field stars as solar
“doppelgangers.” They conclude that such a significantly
populated doppelganger population implies that strong chemical
tagging in a strict sense would not work with this data set. While
we are intrigued by this result, we leave a similar calculation
utilizing our OC sample and Latte field stars to future work.

In conclusion, the OCs in FIRE show realistic intracluster
homogeneity (typical OC elemental dispersion 0.02 dex) and
comparable intercluster dispersion to observations (two to five
times larger than intracluster dispersion). However, when using
a chemical difference metric to distinguish between intra- and
intercluster pairs, we do not find significantly large chemical
differences to distinguish the OC origin for the majority of
stars. This is likely due to limited and/or redundant informa-
tion encoded in the light elements we track (C, N, O, Ne, Mg,
Si, S, Ca, and Fe); with the addition of heavy elements, the
chemical difference metric may produce more reliable results
for chemical tagging in the future. However, as informed by
our simulated OC sample (drawn from three realistic MW-mass
cosmological galaxy simulations with varied merger histories
and environments), in the limits of light elements only, we are
dubious that strong chemical tagging can reconstruct individual
OCs reliably to a high level of confidence.
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Appendix A
Correlation Between Different Elements

In this appendix, we consider the scatter and correlation
between elemental abundances for all stars in all OCs found in
m12i and presented in this paper. A discussion of how yields
are implemented in FIRE-2 can be found in Appendix A of
A. Carrillo et al. (2023) and in P. F. Hopkins et al. (2018).
In Figure 10, we consider [X/H] versus [Fe/H] for X= C,

N, O, Mg, Si, and Ca. We find that each of these elements is
highly correlated with [Fe/H], as indicated by the Pearson
correlation coefficient (>0.99 in all cases). This can be seen by
comparing the trend in the data in each panel to the diagonal
red dotted one-to-one line. Not only is there limited scatter in
elemental abundance at any value of [Fe/H] (as shown in
Figure 11, which presents [X/Fe] versus [Fe/H], to highlight
the limited scatter at any value of [Fe/H]), but the data in
Figure 10 also follow a simple linearly increasing trend in all
panels, with a slope that is nearly identical to the one-to-one
line. While there are some slight departures from a single linear
distribution (e.g., at [Fe/H]∼0.15, a transition to a shallower
slope for [Mg/H] and a transition to a steeper slope for [C/H]
and [N/H]), to first order, all the elements we consider in this
paper carry largely the same chemical signature as [Fe/H].
That is, modulo a normative offset, given a value of [Fe/H] for
any star in any of our OCs in m12i, [X/H] can be predicted
with high confidence for C, N, O, Mg, Si, and Ca.
To further reiterate this point, in Figure 12 we explore the

relationships of individual elements with one another by plotting
[X/H] versus [Y/H] for X,Y=C, N, O, Si, Mg, and Ca. Here,
we color-code each star by its [Fe/H] value to reflect the trend
shown in Figure 10. Again, we see that these elements are highly
correlated with one another when considering a Pearson
correlation coefficient or inspecting the trends relative to the
one-to-one line. Of all the elements, [Mg/H] is the least correlated
with [C/H], with a Pearson correlation coefficient of 0.989.
Indeed, there is a slight scatter in [Mg/H] for small values of
[C/H] and a modest transition in slope at high values of [C/H].
To this end, in our subsequent chemical-difference-metric analysis
presented in Appendix B, we utilize Mg and C as maximally
independent elements. However, it bears repeating that all of the
elements presented here carry very similar discriminating power.
Note that while this analysis indicates that chemical information is
redundant in our simulations, something similar has been found in
the MW. For example, E. J. Griffith et al. (2024) and M. K. Ness
et al. (2022) have shown that if Fe and Mg are measured alone,
then eight other supernova elements can be predicted to within 5%
of their true values using a simple linear regression (see Figure 1
of M. K. Ness et al. 2022 for an analogous figure to Figure 12, but
for the MW).
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Figure 10. From left to right, top to bottom: [X/H] vs. [Fe/H] for C, N, O, Mg, Si, and Ca for stars from OCs presented in this paper in m12i. Elements are highly
correlated with [Fe/H], as indicated by the Pearson correlation coefficient, which is labeled on each plot (>0.99 for all elements considered). The dotted diagonal red
line is the one-to-one line. Note that the slope of the [X/H] vs. [Fe/H] is similar to the one-to-one line and there is limited scatter in [X/H] at any value of [Fe/H].
This indicates that all the elements considered carry similar discriminating power as [Fe/H].
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Figure 11. From left to right, top to bottom: [X/Fe] vs. [Fe/H] for C, N, O, Mg, Si, and Ca for stars from OCs presented in this paper in m12i. Elements have a very
tight scatter for a given value of [Fe/H], as indicated by the small range in [X/Fe] shown on the y-axes. The scatter is more substantial at lower values of [Fe/H];
however, the scatter decreases substantially at [Fe/H]�0.19 dex.
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Appendix B
Chemical Difference Metric Using Only Three Elements

Here, we consider how the chemical difference metric is
impacted by the number of elements used or the types of
elements chosen to compute the metric. We have shown our
analysis using all elements (C, N, O, Mg, Si, S, Ca, and Ne) in
Section 3.3. However, as shown by Figures 10, 11, and 12, the
elements are highly correlated with each other in our
simulations. Thus, here we discuss the distribution of chemical
differences in two other cases: calculated using only the
elements Mg, C, and N, as well as calculated using only the
elements Mg, C, and O. We have selected these elements as the

maximally uncorrelated elements presented in Appendix A. We
compare these results alongside the case where we use all
elements to compute the metric.
We show histograms of the chemical difference metric in

Figure 13 for pairs of stars within OCs, indicated by blue
histograms (intracluster pairs), and between OCs, indicated by
the dashed red histograms (intercluster pairs), for each
simulation: m12i (top panel), m12f (middle panel), and
m12m (bottom panel). These chemical difference distributions
are computed similarly to those presented in Figure 8, which
was generated by selecting OCs that fall within ±1σ of the
overall mean distribution of [Fe/H] in each simulation, then

Figure 12. Correlation between [X/H] vs. [Y/H] for C, N, O, Mg, and Ca, color-coded by [Fe/H] (shown in the color bar). Elements are highly correlated with one
another, as indicated by the Pearson correlation coefficient (�0.989 for all elements considered). The dotted diagonal red line is the one-to-one line. Note that the slope
of the [X/H] vs. [Y/H] is similar to the one-to-one line and there is limited scatter in [X/H] at any value of [Y/H]. This indicates that all the elements considered carry
similar discriminating power.
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applying the formula presented in Section 2.3 to relevant pairs
drawn for the selected OCs. The first column on the left shows
the distribution of the chemical difference metric when all
elements are used. The middle column and right column are for
the cases where only three elements are used: Mg, C, and N and
Mg, C, and O. We note that decreasing the number of elements
increases both the number of intracluster pairs and intercluster

pairs that populate the smallest-chemical-difference-metric bin.
There is slightly more contamination from intercluster pairs
when fewer elements are used to calculate the chemical
difference metric. While broadly all of the distributions
presented here look very similar, the maximum differences
between the inter- and intracluster global distributions are
found when all elements are used to calculate the metric.

Figure 13. Histograms of the chemical difference metric for pairs of stars within OCs, indicated by blue histograms (intracluster pairs), and between OCs, indicated by
the dashed red histograms (intercluster pairs), for each simulation: m12i (top), m12f (middle), and m12m (bottom). The chemical difference distributions shown in
each column are computed using the method presented Section 2.3, but leverage different elements to compute the chemical difference metric. The left panel is a
reproduction of Figure 8, which was generated using all relevant elements in our simulations (C, N, O, Mg, Si, S, Ca, and Ne). The middle column shows the chemical
difference distribution calculated using three elements (Mg, C, and N). The right column shows the chemical difference distribution calculated using a different subset
of three elements (Mg, C, and O). We note that decreasing the number of elements increases both the number of intracluster pairs and intercluster pairs that populate
the smallest-chemical-difference-metric bin. There is slightly more contamination from intercluster pairs when fewer elements are used to calculate the chemical
difference metric. While broadly all of the distributions presented here look very similar, the maximum differences between the inter- and intracluster global
distributions are found when all elements are used to calculate the metric.
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In Table 1, we show the percentage of pairs that have a
chemical difference metric smaller than the mean, median, or
a fixed value when different elements are used to calculate
the chemical difference metric. While there is a slight
increase or decrease in the percentage of pairs falling below a
chosen limit, the chemical difference overlap—that is, the
relative amount of intercluster contamination—does not
change significantly; there is always significant contamina-
tion at small values of the chemical difference metric. In
Table 2, we present the purity (the percentage of intracluster
pairs relative to the total pairs) of each sample for each

metric. Each population is significantly impure—the con-
tamination rate is typically 40%–50%. We conclude that no
matter what metric we use or subset of elements we consider,
we always have significant contamination of intercluster
pairs.
We note that the mean and median of the chemical difference

distribution decreases very slightly when few elements are
considered, and it decreases significantly when the mean and
median of the metrics are computed when combining the intra-
and intercluster distributions into one global distribution; we
present this for completeness in Table 3.

Table 1
Chemical-difference-metric Analysis Using All Elements vs. a Subset of Elements (Mg, C, and N and Mg, C, and O)

Simulation Selection of Intracluster Intracluster Intracluster Intercluster Intercluster Intercluster
Chemical Difference Metric All Elements Mg, C, and N Mg, C, and O All Elements Mg, C, and N Mg, C, and O

(%) (%) (%) (%) (%) (%)

m12i < Intra Mean 76.23 74.94 75.94 59.61 58.82 59.07
< Intra Median 50.00 50.00 50.00 31.60 33.23 32.16

< Intra+Inter Mean 81.68 81.64 82.21 66.63 66.39 66.85
< Intra+Inter Median 59.54 58.55 59.24 40.46 41.45 40.76
< 0.00010 (Fixed) 70.47 81.66 86.79 52.36 66.41 72.92
< 0.00020 (Fixed) 86.18 92.95 95.57 73.20 82.13 87.21

m12f < Intra Mean 83.20 79.47 84.33 70.39 65.76 71.57
< Intra Median 49.97 49.97 49.97 27.77 28.66 28.25

< Intra+Inter Mean 86.94 83.98 88.07 79.11 74.24 80.71
< Intra+Inter Median 62.08 60.42 61.36 37.92 39.58 38.64
< 0.00010 (Fixed) 47.54 61.66 72.28 25.34 40.77 50.92
< 0.00020 (Fixed) 65.93 76.74 85.40 43.03 61.01 73.47

m12m < Intra Mean 83.16 81.55 82.62 62.03 67.65 66.04
< Intra Median 50.00 50.00 50.00 17.65 19.79 16.58

< Intra+Inter Mean 85.83 83.16 84.76 72.19 72.19 72.46
< Intra+Inter Median 67.11 63.64 65.24 32.89 36.36 34.76
< 0.00010 (Fixed) 70.59 79.14 82.62 38.77 61.50 67.11
< 0.00020 (Fixed) 83.69 86.63 89.04 64.71 79.68 83.16

Table 2
Purity Percentage of Intracluster Pairs

Simulation Statistic All Elements Purity Mg, C, and N Purity Mg, C, and O Purity
(%) (%) (%)

m12i < Intra Mean 56.13 56.05 56.23
< Intra Median 61.29 60.09 60.91

< Intra+Inter Mean 55.09 55.12 55.16
< Intra+Inter Median 59.54 58.55 59.24
< 0.00010 (Fixed) 57.36 55.14 54.36
< 0.00020 (Fixed) 54.08 53.12 53.21

m12f < Intra Mean 54.14 54.56 54.94
< Intra Median 64.69 64.52 64.15

< Intra+Inter Mean 54.13 53.34 53.57
< Intra+Inter Median 62.08 60.42 61.36
< 0.00010 (Fixed) 47.54 61.66 72.28
< 0.00020 (Fixed) 65.93 76.74 85.40

m12m < Intra Mean 59.64 60.04 60.31
< Intra Median 55.23 54.91 54.84

< Intra+Inter Mean 56.03 55.47 55.23
< Intra+Inter Median 67.11 63.64 65.24
< 0.00010 (Fixed) 57.34 55.65 55.12
< 0.00020 (Fixed) 54.39 53.76 53.92
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m12m Intra Mean 0.00012 0.00012 0.00010
Intra Median 0.00002 0.00002 0.00002

Intra
+Inter Mean

0.00024 0.00014 0.00012

Intra+Inter
Median

0.00009 0.00005 0.00004

20

The Astrophysical Journal, 977:70 (21pp), 2024 December 10 Bhattarai et al.

https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0002-7707-1996
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0001-5082-6693
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0007-3431-4269
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://orcid.org/0009-0008-0081-764X
https://doi.org/10.3847/1538-4365/ac4414
https://ui.adsabs.harvard.edu/abs/2022ApJS..259...35A/abstract
https://doi.org/10.1051/0004-6361/201323038
https://ui.adsabs.harvard.edu/abs/2014A&A...564A.115A/abstract
https://doi.org/10.1093/mnras/sty2625
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.5000A/abstract
https://doi.org/10.1146/annurev.astro.46.060407.145222
https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..481A/abstract
https://doi.org/10.1093/mnras/stac1637
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.4270B/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.4270B/abstract
https://doi.org/10.1093/mnras/stab1606
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4586B/abstract
https://doi.org/10.1093/mnras/sty1011
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478..425B/abstract
https://doi.org/10.1051/0004-6361/201527827
https://ui.adsabs.harvard.edu/abs/2016A&A...590A..74B/abstract
https://ui.adsabs.harvard.edu/abs/2016A&A...590A..74B/abstract
https://doi.org/10.1051/0004-6361/201425232
https://ui.adsabs.harvard.edu/abs/2015A&A...577A..47B/abstract
https://doi.org/10.1088/0004-637X/713/1/166
https://ui.adsabs.harvard.edu/abs/2010ApJ...713..166B/abstract
https://doi.org/10.1051/0004-6361/201322085
https://ui.adsabs.harvard.edu/abs/2013A&A...559A..59B/abstract
https://doi.org/10.3847/0004-637X/817/1/49
https://ui.adsabs.harvard.edu/abs/2016ApJ...817...49B/abstract
https://doi.org/10.1088/0004-637X/796/1/68
https://ui.adsabs.harvard.edu/abs/2014ApJ...796...68B/abstract
https://doi.org/10.1086/499537
https://ui.adsabs.harvard.edu/abs/2006AJ....131.1544B/abstract
https://doi.org/10.1051/0004-6361/201833218
https://ui.adsabs.harvard.edu/abs/2019A&A...624A..19B/abstract
https://doi.org/10.3390/universe8020111
https://ui.adsabs.harvard.edu/abs/2022Univ....8..111C/abstract
https://doi.org/10.1016/j.newar.2024.101696
https://doi.org/10.3847/1538-4357/aca1c7
https://ui.adsabs.harvard.edu/abs/2023ApJ...942...35C/abstract
https://doi.org/10.1051/0004-6361/201936978
https://ui.adsabs.harvard.edu/abs/2020A&A...635A...8C/abstract
https://doi.org/10.1088/2041-8205/798/2/L41
https://ui.adsabs.harvard.edu/abs/2015ApJ...798L..41C/abstract
https://doi.org/10.1117/12.925950
https://ui.adsabs.harvard.edu/abs/2012SPIE.8446E..0PD/abstract
https://doi.org/10.1086/511182
https://ui.adsabs.harvard.edu/abs/2007AJ....133.1161D/abstract
https://ui.adsabs.harvard.edu/abs/2009IAUS..254..133D/abstract
https://doi.org/10.1093/mnras/stv327
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449.2604D/abstract
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449.2604D/abstract
https://doi.org/10.1086/497968
https://ui.adsabs.harvard.edu/abs/2006AJ....131..455D/abstract
https://doi.org/10.1093/mnras/stw2200
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3580D/abstract
https://doi.org/10.3847/1538-3881/ab77bc
https://ui.adsabs.harvard.edu/abs/2020AJ....159..199D/abstract
https://doi.org/10.3847/1538-4357/aa6d10
https://ui.adsabs.harvard.edu/abs/2017ApJ...840...99D/abstract
https://doi.org/10.3847/1538-4357/aca27d
https://ui.adsabs.harvard.edu/abs/2022ApJ...941..162E/abstract
https://doi.org/10.1093/mnras/stx2858
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.2194E/abstract
https://doi.org/10.1088/0004-637X/703/2/1416
https://ui.adsabs.harvard.edu/abs/2009ApJ...703.1416F/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...703.1416F/abstract
https://doi.org/10.1038/nature13662
https://ui.adsabs.harvard.edu/abs/2014Natur.513..523F/abstract
https://doi.org/10.1146/annurev.astro.40.060401.093840
https://ui.adsabs.harvard.edu/abs/2002ARA&A..40..487F/abstract
https://doi.org/10.1088/0004-6256/136/1/118
https://ui.adsabs.harvard.edu/abs/2008AJ....136..118F/abstract
https://doi.org/10.1086/190859
https://ui.adsabs.harvard.edu/abs/1983ApJS...52...61G/abstract
http://arxiv.org/abs/2402.15614
https://doi.org/10.3847/1538-3881/ad19c7
https://ui.adsabs.harvard.edu/abs/2024AJ....167...98G/abstract
https://doi.org/10.1093/mnras/stac3573
https://ui.adsabs.harvard.edu/abs/2023MNRAS.519.1366G/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.3847/1538-4357/833/2/262
https://ui.adsabs.harvard.edu/abs/2016ApJ...833..262H/abstract
https://doi.org/10.1093/mnras/stv195
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450...53H/abstract
https://doi.org/10.1093/mnras/stz3321
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.3465H/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.3465H/abstract
https://doi.org/10.1093/mnras/sty1690
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480..800H/abstract
https://doi.org/10.1051/0004-6361/202348662
https://ui.adsabs.harvard.edu/abs/2024A&A...686A..42H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1086/313278
https://ui.adsabs.harvard.edu/abs/1999ApJS..125..439I/abstract
https://doi.org/10.1111/j.1365-2966.2004.07446.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.350..407I/abstract
https://ui.adsabs.harvard.edu/abs/2004MNRAS.350..407I/abstract
https://doi.org/10.1088/0004-6256/142/2/59
https://ui.adsabs.harvard.edu/abs/2011AJ....142...59J/abstract
https://doi.org/10.1086/190568
https://ui.adsabs.harvard.edu/abs/1979ApJS...39..135J/abstract
https://doi.org/10.3847/1538-4357/ab44be
https://ui.adsabs.harvard.edu/abs/2019ApJ...884..173K/abstract
http://arxiv.org/abs/1711.03234
https://doi.org/10.1093/mnras/staa2743
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499..193K/abstract
https://doi.org/10.1046/j.1365-8711.2001.04022.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..231K/abstract
https://doi.org/10.1111/j.1365-2966.2011.18467.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.414.1339K/abstract
https://doi.org/10.1088/0004-637X/729/1/36
https://ui.adsabs.harvard.edu/abs/2011ApJ...729...36K/abstract
https://doi.org/10.1146/annurev-astro-091918-104430
https://ui.adsabs.harvard.edu/abs/2019ARA&A..57..227K/abstract
https://ui.adsabs.harvard.edu/abs/2019ARA&A..57..227K/abstract
https://doi.org/10.1146/annurev.astro.41.011802.094844
https://ui.adsabs.harvard.edu/abs/2003ARA&A..41...57L/abstract
https://doi.org/10.3847/0004-637X/831/2/202
https://ui.adsabs.harvard.edu/abs/2016ApJ...831..202L/abstract
https://doi.org/10.1086/313233
https://ui.adsabs.harvard.edu/abs/1999ApJS..123....3L/abstract
https://doi.org/10.1093/mnras/stac3028
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518..286L/abstract
https://doi.org/10.1051/0004-6361/201935306
https://ui.adsabs.harvard.edu/abs/2019A&A...627A.117L/abstract
https://doi.org/10.1093/mnras/stw247
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.3934L/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.3934L/abstract
https://doi.org/10.1051/0004-6361/201322977
https://ui.adsabs.harvard.edu/abs/2014A&A...563A..44M/abstract
https://doi.org/10.1051/0004-6361/202244957
https://ui.adsabs.harvard.edu/abs/2023A&A...669A.119M/abstract
https://doi.org/10.1002/asna.201612387
https://ui.adsabs.harvard.edu/abs/2016AN....337..863M/abstract
https://doi.org/10.1088/2041-8205/747/2/L37
https://ui.adsabs.harvard.edu/abs/2012ApJ...747L..37M/abstract
https://doi.org/10.3847/1538-3881/aa784d
https://ui.adsabs.harvard.edu/abs/2017AJ....154...94M/abstract
https://doi.org/10.1093/mnras/stac236
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2829M/abstract
https://doi.org/10.3847/1538-4357/ad58d9
https://ui.adsabs.harvard.edu/abs/2024ApJ...972...69M/abstract
https://doi.org/10.1111/j.1365-2966.2006.10501.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.370..773M/abstract
https://doi.org/10.1051/0004-6361:20000247
https://ui.adsabs.harvard.edu/abs/2001A&A...370..194M/abstract
https://doi.org/10.3847/0004-637X/825/2/146
https://ui.adsabs.harvard.edu/abs/2016ApJ...825..146M/abstract
https://ui.adsabs.harvard.edu/abs/2000ASPC..198..517M/abstract
https://doi.org/10.1038/416059a
https://ui.adsabs.harvard.edu/abs/2002Natur.416...59M/abstract
https://ui.adsabs.harvard.edu/abs/2000prpl.conf..121M/abstract
https://doi.org/10.1093/mnras/sty2033
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.1645M/abstract
https://doi.org/10.1093/mnras/sts194
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.2321M/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.2321M/abstract
https://doi.org/10.1093/mnras/stz2537
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490..665M/abstract
https://doi.org/10.3847/1538-3881/ac7ce5
https://ui.adsabs.harvard.edu/abs/2022AJ....164...85M/abstract
https://doi.org/10.1088/0004-637X/808/1/16
https://ui.adsabs.harvard.edu/abs/2015ApJ...808...16N/abstract
https://ui.adsabs.harvard.edu/abs/2015ApJ...808...16N/abstract
https://doi.org/10.3847/1538-4357/aa9d8e
https://ui.adsabs.harvard.edu/abs/2018ApJ...853..198N/abstract
https://doi.org/10.3847/1538-4357/ab3e3c
https://ui.adsabs.harvard.edu/abs/2019ApJ...883..177N/abstract
https://doi.org/10.3847/1538-4357/ac4754
https://ui.adsabs.harvard.edu/abs/2022ApJ...926..144N/abstract
https://doi.org/10.1016/j.nuclphysa.2006.05.008
https://ui.adsabs.harvard.edu/abs/2006NuPhA.777..424N/abstract
https://doi.org/10.1051/0004-6361/200912965
https://ui.adsabs.harvard.edu/abs/2010A&A...511A..56P/abstract
https://doi.org/10.1109/MCSE.2007.53
https://ui.adsabs.harvard.edu/abs/2007CSE.....9c..21P/abstract
https://doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract


Poovelil, V. J., Zasowski, G., Hasselquist, S., et al. 2020, ApJ, 903, 55
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A,

48, 431
Price-Jones, N., & Bovy, J. 2019, MNRAS, 487, 871
Sánchez-Menguiano, L., Sánchez, S. F., Pérez, I., et al. 2016, A&A, 587, A70
Sanderson, R. E., Wetzel, A., Loebman, S., et al. 2020, ApJS, 246, 6
Sestito, P., Bragaglia, A., Randich, S., et al. 2008, A&A, 488, 943
Sharma, S., Hayden, M. R., Bland-Hawthorn, J., et al. 2022, MNRAS,

510, 734
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Sinha, A., Zasowski, G., Frinchaboy, P., et al. 2024, ApJ, 975, 89
Spina, L., Magrini, L., & Cunha, K. 2022a, Univ, 8, 87
Spina, L., Magrini, L., Sacco, G. G., et al. 2022b, A&A, 668, A16
Spina, L., Sharma, P., Meléndez, J., et al. 2021, NatAs, 5, 1163
Su, K.-Y., Hopkins, P. F., Hayward, C. C., et al. 2017, MNRAS, 471, 144

Ting, Y.-S., Conroy, C., & Goodman, A. 2015, ApJ, 807, 104
Ting, Y.-S., De Silva, G. M., Freeman, K. C., & Parker, S.-J. 2012, MNRAS,

427, 882
van den Hoek, L. B., & Groenewegen, M. A. T. 1997, A&AS, 123,

305
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Wetzel, A., & Garrison-Kimmel, S., 2020a HaloAnalysis: Read and Analyze

Halo Catalogs and Merger Trees, Astrophysics Source Code Library,
ascl:2002.014

Wetzel, A., & Garrison-Kimmel, S., 2020b GizmoAnalysis: Read and Analyze
Gizmo Simulations, Astrophysics Source Code Library, ascl:2002.015

Wetzel, A., Hayward, C. C., Sanderson, R. E., et al. 2023, ApJS, 265, 44
Wetzel, A. R., Hopkins, P. F., Kim, J.-h., et al. 2016, ApJL, 827, L23
Wiersma, R. P. C., Schaye, J., Theuns, T., Dalla Vecchia, C., & Tornatore, L.

2009, MNRAS, 399, 574

21

The Astrophysical Journal, 977:70 (21pp), 2024 December 10 Bhattarai et al.

https://doi.org/10.3847/1538-4357/abb93e
https://ui.adsabs.harvard.edu/abs/2020ApJ...903...55P/abstract
https://doi.org/10.1146/annurev-astro-081309-130834
https://ui.adsabs.harvard.edu/abs/2010ARA&A..48..431P/abstract
https://ui.adsabs.harvard.edu/abs/2010ARA&A..48..431P/abstract
https://doi.org/10.1093/mnras/stz1260
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487..871P/abstract
https://doi.org/10.1051/0004-6361/201527450
https://ui.adsabs.harvard.edu/abs/2016A&A...587A..70S/abstract
https://doi.org/10.3847/1538-4365/ab5b9d
https://ui.adsabs.harvard.edu/abs/2020ApJS..246....6S/abstract
https://doi.org/10.1051/0004-6361:200809650
https://ui.adsabs.harvard.edu/abs/2008A&A...488..943S/abstract
https://doi.org/10.1093/mnras/stab3341
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510..734S/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510..734S/abstract
https://doi.org/10.1146/annurev.aa.25.090187.000323
https://ui.adsabs.harvard.edu/abs/1987ARA&A..25...23S/abstract
https://doi.org/10.3847/1538-4357/ad78e1
https://ui.adsabs.harvard.edu/abs/2024ApJ...975...89S/abstract
https://doi.org/10.3390/universe8020087
https://ui.adsabs.harvard.edu/abs/2022Univ....8...87S/abstract
https://doi.org/10.1051/0004-6361/202243316
https://ui.adsabs.harvard.edu/abs/2022A&A...668A..16S/abstract
https://doi.org/10.1038/s41550-021-01451-8
https://ui.adsabs.harvard.edu/abs/2021NatAs...5.1163S/abstract
https://doi.org/10.1093/mnras/stx1463
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471..144S/abstract
https://doi.org/10.1088/0004-637X/807/1/104
https://ui.adsabs.harvard.edu/abs/2015ApJ...807..104T/abstract
https://doi.org/10.1111/j.1365-2966.2012.22028.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427..882T/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427..882T/abstract
https://doi.org/10.1051/aas:1997162
https://ui.adsabs.harvard.edu/abs/1997A&AS..123..305V/abstract
https://ui.adsabs.harvard.edu/abs/1997A&AS..123..305V/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
http://www.ascl.net/2002.014
http://www.ascl.net/2002.015
https://doi.org/10.3847/1538-4365/acb99a
https://ui.adsabs.harvard.edu/abs/2023ApJS..265...44W/abstract
https://doi.org/10.3847/2041-8205/827/2/L23
https://ui.adsabs.harvard.edu/abs/2016ApJ...827L..23W/abstract
https://doi.org/10.1111/j.1365-2966.2009.15331.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.399..574W/abstract

	1. Introduction
	2. Data and Methodology
	2.1. Simulations
	2.2. Star Cluster Identification
	2.3. Chemical Difference Metric

	3. Results
	3.1. The Relationship Between [Fe/H] and Birth Radius for OCs
	3.2. Inter- and Intracluster Metallicity Dispersion
	3.3. Intra- and Intercluster Chemical Difference Metric
	3.4. Intra- and Intercluster Chemical Difference Metric with APOGEE Errors in Simulated OCs

	4. Discussion and Conclusions
	Appendix ACorrelation Between Different Elements
	Appendix BChemical Difference Metric Using Only Three Elements
	References

