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Abstract

We construct time-evolving gravitational potential models for a Milky Way–mass galaxy from the FIRE-2 suite of
cosmological-baryonic simulations using basis function expansions. These models capture the angular variation
with spherical harmonics for the halo and azimuthal harmonics for the disk, and the radial or meridional plane
variation with splines. We fit low-order expansions (four angular/harmonic terms) to the galaxy’s potential for
each snapshot, spaced roughly 25Myr apart, over the last 4 Gyr of its evolution, then extract the forces at discrete
times and interpolate them between adjacent snapshots for forward orbit integration. Our method reconstructs the
forces felt by simulation particles with high fidelity, with 95% of both stars and dark matter, outside of self-
gravitating subhalos, exhibiting errors �4% in both the disk and the halo. Imposing symmetry on the model
systematically increases these errors, particularly for disk particles, which show greater sensitivity to imposed
symmetries. The majority of orbits recovered using the models exhibit positional errors �10% for 2–3 orbital
periods, with higher errors for orbits that spend more time near the galactic center. Approximate integrals of motion
are retrieved with high accuracy even with a larger potential sampling interval of 200Myr. After 4 Gyr of
integration, 43% and 70% of orbits have total energy and angular momentum errors within 10%, respectively.
Consequently, there is higher reliability in orbital shape parameters such as pericenters and apocenters, with errors
∼10% even after multiple orbital periods. These techniques have diverse applications, including studying satellite
disruption in cosmological contexts.

Unified Astronomy Thesaurus concepts: Dark matter (353); Milky Way evolution (1052); Galaxy dynamics (591)

1. Introduction

In the cold dark matter (CDM) paradigm, dark matter (DM)
halos grow hierarchically by accreting mass inside the cosmic
web. The structure of these DM halos in CDM has been found
to follow “universal” power-law density and potential profiles
in DM-only simulations (J. Einasto 1965; J. F. Navarro et al.
1997), with some variations in baryonic simulations (e.g.,
A. Lazar et al. 2020). These halo profiles have enabled the
study of the properties of many physical phenomena in the
Universe, such as gravitational lenses and the internal dynamics
of stars within a halo.

As the halos assemble over time, their internal structure
evolves, such as their concentration (Y. P. Jing & Y. Suto 1998;
R. H. Wechsler et al. 2002; J. Diemand et al. 2007) and shape
(C. Vera-Ciro & A. Helmi 2013; J. Prada et al. 2019; R. Emami
et al. 2021). Furthermore, the evolution of the density profile is

even more complex in simulations that include baryonic matter, as
baryonic processes such as gas cooling, star formation, and
feedback mechanisms can effectively add and redistribute the
mass in the system (A. R. Wetzel & D. Nagai 2015; A. Lazar
et al. 2020; I. B. Santistevan et al. 2024). Additionally, halos can
undergo significant satellite mergers, such as those involving the
LMC (G. Besla et al. 2007) and progenitor of the Sagittarius
stream (K. V. Johnston et al. 1995) in the Milky Way (MW),
which break symmetry and induce disequilibrium in both the halo
(E. C. Cunningham et al. 2020; M. S. Petersen & J. Peñarrubia
2020; N. Garavito-Camargo et al. 2021; E. Vasiliev et al. 2021;
E. Vasiliev 2024) and the disk (C. F. P. Laporte et al. 2018;
J. A. S. Hunt et al. 2019; E. Vasiliev et al. 2021).
Traditional orbit modeling techniques utilize static, sym-

metric halo models, which provide a simplified and computa-
tionally efficient means of analyzing orbits. Generally, they
decompose the MW into three or more components—the bulge,
the disk, and the halo—and model the contribution of each
component separately. The bulge and the halo are generally
represented by the Navarro–Frenk–White potential model
(spherical or flattened; J. F. Navarro et al. 1997), whereas the
Miyamoto–Nagai potential model is commonly assumed for the
disk (M. Miyamoto & R. Nagai 1975). The parameters of these
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potential models are then fit to the available dynamical data of the
MW (e.g., J. Bovy & H.-W. Rix 2013; P. J. McMillan
2017) and used to backward integrate the orbits of dwarf galaxies
(e.g., E. Patel et al. 2016, 2018; T. Fritz et al. 2018), globular
clusters (e.g., E. Pouliasis et al. 2017; D. Massari et al. 2019;
E. Vasiliev 2019a), or stellar streams (e.g., A. Bonaca et al. 2014;
D. Erkal et al. 2018; K. Malhan & R. A. Ibata 2019; A. H. Riley &
L. E. Strigari 2020) using commonly available galactic dynamics
tools such as galpy (J. Bovy 2015), gala (A. M. Price-Whelan
2017), and Agama (E. Vasiliev 2019b). Sometimes, these models
include mass growth of the halo (e.g., R. D’Souza & E. F. Bell
2022; M. Ishchenko et al. 2023) and specific effects of perturbing
bodies such as the LMC (e.g., H. Lux et al. 2010; F. A. Gómez
et al. 2015; D. Erkal et al. 2019; N. Shipp et al. 2021; A. B. Pace
et al. 2022; S. E. Koposov et al. 2023).

Recent studies have highlighted the limitations of static
models in recovering orbital parameters within acceptable
errors. By comparing integrated orbits with exact orbits in
MW-mass cosmological simulations (R. D’Souza & E. F. Bell
2022; I. B. Santistevan et al. 2024), and to time-evolving
potential models (J. L. Sanders et al. 2020; E. Vasiliev et al.
2021), researchers have observed significant discrepancies.
I. B. Santistevan et al. (2024) noted an error of roughly 80% for
orbit shape parameters such as minimum pericenter and
apocenter distances between recovered and true orbits of
satellite dwarf galaxies integrated in a time-static model.
Similarly, R. D’Souza & E. F. Bell (2022) found high errors in
their integration scheme, which accounted for the mass growth
of the potential but maintained a fixed shape. They quantified
that the orbital parameter errors were comparable to those
caused by a 30% uncertainty in the host mass. Additionally,
they observed that modeling a recent massive accretion event,
such as the LMC, using a combination of two spherical
parametric potentials led to substantial errors in the recovered
orbital parameters. These findings emphasize that capturing the
time-dependent evolution of the halo and its response
to massive mergers is particularly important when reconstruct-
ing the dynamics of the objects that reside in them, such as
satellite galaxies, globular clusters, stellar streams, and stars
(A. R. Wetzel et al. 2015; R. D’Souza & E. F. Bell 2021,
2022; S. Lilleengen et al. 2023; I. B. Santistevan et al. 2023;
I. B. Santistevan et al. 2024).

The evolution of the halo’s structure can be captured by using
basis function expansions (BFE) models, which can accurately
describe any arbitrary density field (e.g., M. D. Weinberg 1999;
B. Lowing et al. 2011; E. Vasiliev 2013; J. L. Sanders et al.
2020; N. Garavito-Camargo et al. 2021; E. Vasiliev et al. 2021;
A. Arora et al. 2022; M. S. Petersen et al. 2022; S. Lilleengen
et al. 2023). B. Lowing et al. (2011) showed that by applying a
Hernquist BFE (often referred to in the literature as a self-
consistent field expansion) to every snapshot, spaced roughly
25Myr, from a cosmological simulation of a DM halo and then
interpolating the coefficients of the expansion in time allows
substantial improvement in the orbital properties of a halo.
Similarly, J. L. Sanders et al. (2020) showed high-fidelity orbit
reconstruction in DM-only cosmological simulations of MW-
mass galaxies using a compact BFE representation for the time-
evolving halo potential, employing spherical harmonics for
angular variation and biorthonormal basis functions or splines
for radial variation. In this paper, we extend this methodology to
model fully zoomed baryonic-cosmological simulations of
MW-mass galaxies from the Latte suite of the FIRE-2 project

(A. R. Wetzel et al. 2016; A. Wetzel et al. 2023). Unlike
J. L. Sanders et al. (2020), where only DM was considered, our
simulations include stars and gas, necessitating adaptation of the
BFE method with an azimuthal harmonic expansion to account
for the baryonic component’s flattened shape. Additionally, we
utilize a fiducial temporal cadence with snapshots spaced at
approximately 25Myr intervals, and explore the effect of larger
sampling intervals (up to 500Myr) on the quality of recovered
orbits. We demonstrate that sufficiently high-fidelity halo orbit
reconstruction can be achieved with our fiducial cadence, even
though the potential in the inner regions can change much more
rapidly. We assess the efficacy of this modified potential model
in reconstructing orbits at a range of radii. We fit BFE to the
potential at a series of discrete snapshots. Then, we approximate
the time dependence by calculating a force/acceleration on a star
at a given point in time as a linear interpolation of the forces in
the two time-adjacent snapshots for orbit recovery.
The paper is organized as follows. In Section 2, we provide a

brief overview of the simulation (Section 2.1), potential
modeling techniques (Section 2.2), and constraints on recov-
ered particle forces in the potential model (Section 2.3). In
Section 3, we describe how we select orbits of halo stars from
the parent halo for reconstruction and integrate them in a
cosmological setting. In Section 4, we statistically quantify the
quality of reconstructed orbits based on recovered 3D positions
(Section 4.1), approximate integrals of motion and orbital
parameters such as pericenter and apocenter distances
(Section 4.2). We also evaluate the dependence of orbit quality
on the sampling interval for potential models (Section 4.4). In
Section 5, we demonstrate an application of the model by
simulating the tidal disruption of a dwarf satellite. We discuss
our findings and conclusions in Section 6.

2. Methods

In this section, we detail our approach to reconstructing halo
star orbits in a simulation of a MW-mass galaxy. We describe
the galaxy simulation used (Section 2.1), the BFE-based
potential model fits to the simulation (Section 2.2), and their
force reconstruction for a sample of DM and star particles from
the parent halo at present day (Section 2.3).

2.1. Simulations and Coordinate System

We utilize a cosmological zoomed-in baryonic simulation of
MW-mass galaxies from the Latte suite (A. R. Wetzel et al.
2016) of the Feedback In Realistic Environments (FIRE) project,
specifically m12i.13 This simulations employ the FIRE-2
physics model (P. F. Hopkins et al. 2018) and are consistent
with the ΛCDM cosmology from Planck (Planck Collaboration
et al. 2016): ΩΛ= 0.728, Ωmatter= 0.272, Ωbaryon= 0.0455,
h= 0.702, σ8= 0.807, and ns= 0.961 (A. R. Wetzel et al.
2016). m12i has a total mass of about 1.2× 1012 Me with a
total stellar mass of 7× 1010 Me at present day, initial star and
gas particle masses of mb= 7100 Me, and DM particle mass
mDM= 35,000 Me. The high particle resolution enables the
resolution of phase-space structures in the interstellar medium,
facilitating the collapse of gas into well-resolved giant
molecular clouds.
Snapshots are saved approximately every 25Myr over the

last 7 Gyr of the simulation; the most massive satellite merger

13 This simulation is publicly available (A. Wetzel et al. 2023) at http://
flathub.flatironinstitute.org/fire.

2

The Astrophysical Journal, 977:23 (21pp), 2024 December 10 Arora et al.

http://flathub.flatironinstitute.org/fire
http://flathub.flatironinstitute.org/fire


in the last 6 Gyr has a total mass ratio of 1:45 relative to the
MW (A. Arora et al. 2022; N. Garavito-Camargo et al. 2024).
J. L. Sanders et al. (2020) demonstrated that reconstructed
orbits in a DM-only simulation, with potential models sampled
over intervals of 10 and 40Myr, yielded essentially identical
results. Our sampling interval is sufficiently high to ensure
high-fidelity orbit reconstructions for halo star orbits. We also
show high fidelity can be achieved with a lower snapshot save
rate of about 100Myr. Additionally, the frequent snapshot
intervals allow for the tracking of stellar orbits.

These zoomed-in cosmological simulations are run in an
arbitrary box frame on an expanding background with a
nonzero total momentum. Initially, we recenter the simulation
onto the host-galaxy frame using the iterative shrinking spheres
method (C. Power et al. 2003) to find a center of mass (COM)
at each time step using star particles. This halo center in
comoving coordinates is defined as ( ) ( ) ( )ºx rt t a tCOM COM / ,
where a(t) is the cosmological scale factor, and ( )r tCOM is the
physical COM position.

Subsequently, we rotate all snapshots of the simulation to
align the galactic disk with the X–Y plane at the present day—
the principal axes. We define the host-centered rotation in the
principal axes as the galactocentric frame. Y. Wang et al.
(2020) and A. Arora et al. (2022) assessed the validity of this
approach, considering the constancy of the disk’s angular
momentum over the past 7 Gyr of the simulations and the
effectiveness of the potential modeling techniques in such
systems. In m12i, the disk plane rotates by about 20° over
7 Gyr up to the present day. This fixed rotation approximation
also eliminates noninertial forces associated with time-varying
rotation (see Appendix A). While mergers with massive
satellites such as the LMC (G. Besla et al. 2007) can affect
the orientation of the disk (J. Baptista et al. 2023), our choice of
m12i, which features a quiescent merger history over the last
6 Gyr with the most massive merger being with a satellite of
mass ratio 1:45, ensures that the disk’s orientation remains
stable. The models presented in this study are constructed to
represent roughly the last 4 Gyr of the halo evolution, but they
can be extended to any time frame as long as the disk remains
oriented in the same direction. However, careful consideration
in modeling the disk is required if the orientation changes
rapidly, as discussed in Appendix A.

Force reconstruction for orbit integration must consider the
acceleration of the comoving galactic center as a fictitious force
within the galactocentric frame. Incorporating the noninertial
frame of the expanding cosmological background introduces
another force. The potential ( )F r t, is modeled in the physical
coordinates r of the noninertial frame centered instantaneously
on the galaxy. However, we define our equations of motion for
the comoving positions ( )ºx r a t/ and the peculiar velocities

( )ºv xa tpec  . In these coordinates, the force acting on each
particle for a fixed orientation of the disk is computed as (see
Appendix A):

( ) ( )
( )

( )= -F - -
v

r v
ud

dt
t

a t
a t

d
dt

, . 1r
pec

pec
COM

It is useful to evaluate the relative contributions of the terms
in Equation (1). For a typical system, we have orbital velocities
hundreds of kilometers per second and a Hubble parameter

~a a 1 14, 000 Myr−1, so the second term on the right is of
order 0.01 km s−1 Myr−1. Meanwhile a typical value for F at
30 kpc is roughly 1.5 km s−1 Myr−1, and uCOM is typically

around 0.3–1 km s−1 Myr−1 (A. Arora et al. 2022), so the
contribution of the expanding background is relatively small
for an isolated MW-mass halo, although it can be an order of
magnitude larger for systems evolving in a Local Group
environment, such as the MW-M31 system.
Following the approach of J. L. Sanders et al. (2020),

A. Arora et al. (2022), and E. Vasiliev (2024), we approximate
uCOM
 using second derivatives of smooth cubic spline fits to the
halo’s COM trajectory in comoving Cartesian coordinates.

2.2. Potential Models

We employ the low-order time-evolving multipole potenital
(TEMP) model introduced in A. Arora et al. (2022), fitted using
a combination of BFE on the host density at each time step
without assuming any symmetry conditions, constructed using
AGAMA (E. Vasiliev 2019b). We fit these expansions to each
snapshot in the final 4 Gyr of halo evolution to all the particles
within 600 kpc of the galactic center. These expansions are
formulated as separable functions of 3D radial distance (r) or
the cylindrical radius and height (R and Z), and angular
dependence, represented by orthogonal functions. To model the
DM halo and hot gas (Tgas� 104.5 K), we use a spherical
harmonic expansion in spherical coordinates to model the
angular dependence (θ, f), while the radial dependence (r) in
the density is captured by evaluating the expansion coefficients
in 25 logarithimically spaced 1D radial grid nodes, interpolated
using quintic splines (E. Vasiliev 2013). The potential is
written as

( ) ( ) ( ) ( )å åq f q fF = F
= =-

r r Y, , , . 2
ℓ

ℓ

m ℓ

ℓ

ℓm ℓ
m

halo
0

max

We model the stellar bulge and flattened stellar and cold gas
(Tgas� 104.5 K) component using a Fourier harmonic expan-
sion in cylindrical coordinates (R, f, Z), where the expansion
coefficients are computed on a 2D meridional plane (R, Z) with
25 and 40 grid nodes in R and Z, respectively. The potential is
written as

( ) ( ) ( )åfF = F i f

=

R Z R Z e, , , . 3
m

m

m
m

disk
0

max

The methodology for fitting these models and computing the
expansion coefficients (Φℓm(r) and Φm(R, Z)) is detailed in
E. Vasiliev (2019b), and specifically applied to our simulations
in A. Arora et al. (2022). The BFE adequately capture
deformations in the disk (e.g., Y. Wang et al. 2020; M. S. Pet-
ersen et al. 2022) and halo (e.g., N. Garavito-Camargo et al.
2021; E. Vasiliev et al. 2021) resulting from galactic evolution
and satellite mergers. BFE has proven effective in reproducing
orbits, even in the presence of massive satellites, in both
idealized (S. Lilleengen et al. 2023; E. Vasiliev 2023) and
cosmological simulations (B. Lowing et al. 2011; J. L. Sanders
et al. 2020; A. Arora et al. 2023; T. Donlon et al. 2024).

2.3. Force Reconstruction

Figure 1 shows the position-space distribution of the DM
particles within 50 kpc of the galactic center at the present day,
where colors represent the force residual between reconstructed
and true force, defined as = -F F F 1res reconstructed true/ in each
direction. In the first row, the left column illustrates the
distribution in the Y–Z plane with the force residual in the
X-direction for each particle in the galactocentric frame and
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physical coordinates. The second and third columns depict
force residuals in the Y- and Z-directions, respectively, in the
X–Z and X–Y planes. Our force reconstruction employs a
truncated multipole model with maximum pole orders

= =ℓ m 4max max in this case. The black ellipse encloses 90%
of the stellar mass in each panel.

The second row shows histograms of the force residual
distributions in each Cartesian coordinate, highlighting the 16th
(red dashed line), 50th (blue dashed line), and 84th (red dashed
line) quantiles, as well as the mean and standard deviation from
Gaussian fits. The mean of all the distributions is close to zero,
while the standard deviation represents a ∼2% error.

Despite utilizing a low pole order of 4, the forces are
reconstructed with under 10% error for all the particles, with
over 95% of particles exhibiting less than 4% error in
reconstruction. Notably, discrepancies and higher errors
(�5%) are predominantly observed in the baryonic disk,
stemming from structures that are challenging to model with a
low-order expansion, like spiral arms. With our focus on
reproducing halo orbits in this work, we anticipate these errors
in the inner regions of the galaxy to be negligible for most of
our reconstructions. However, these errors can introduce biases
in the reconstructed orbits, particularly for stars that spend a
majority of their orbit in the inner regions (within 15 kpc of the
galactic center). Moreover, the inner regions are susceptible to
much more rapid changes in the potential compared to the halo,
which our 25Myr temporal cadence does not adequately
capture. While limitations imposed by temporal cadence are
noteworthy, we consider the bias in reconstructed forces to be a
far more critical issue. Even higher azimuthal harmonic
expansions, such as increasing to a pole order of 10, fail to
address this primary concern.

Table 1 lists the mean (μ) and standard deviation (σ) of force
residuals for DM particles within 50 kpc from the galactic
center across Cartesian directions (F F,res,X res,Y and Fres,Z),
along with the residual on the absolute force magnitude
(Fres,tot), for increasing pole orders up to 10. The μ and σ

remain consistent at the 0.01% level across increasing pole
orders, suggesting negligible improvement in the residual
distribution. Given the computational complexity of higher-
order terms in the azimuthal harmonic expansion and the lack
of significant enhancements in the particle-by-particle forces,
we adhere to maintaining ( ) =ℓ m, 4max for our TEMP model.
This decision is also supported by previous findings, as
illustrated in Figure 7 of J. L. Sanders et al. (2020), where only
minor improvement (about ∼0.1%) in orbit reconstruction is
observed for pole orders greater than 4.

2.3.1. Reconstructions under Imposed Model Symmetry

We explore the impact of imposing different symmetry
conditions on our TEMP model, with ( ) =ℓ m, 4max on the
reconstructed force for both the DM and star particles. Such
symmetry assumptions are widely used to fit parameterized
potential models to the observational data. Additionally,
imposing certain symmetries allows us to compute crucial
integrals of motion, such as actions (J. Binney & S. Trema-
ine 2008). These symmetry conditions are imposed by setting
certain coefficients in the spherical (ℓ, m) and azimuthal
harmonic (m) expansions to zero, effectively reducing the
number of terms in the model. Table 2 specifies the poles that
remain nonzero under the imposed symmetries. We explore
three different symmetries for both the halo and the disk: no
symmetry (n), axisymmetry (a), and triaxial symmetry (t),
excluding the trivial spherical symmetry for the halo.
Exploring all possible combinations of imposed symmetries

across the halo and disk results in a total of nine different
setups. We perform force reconstruction for all the DM
particles and stars within the parent halo within 50 kpc of the
galactic center at present day. The DM particles are primarily
located in the halo and stars are predominant in the disk. The
residual distributions obtained from these reconstructions serve
as a proxy for the adequacy of our halo and disk models,
demonstrating how specific symmetries impact the overall
model fidelity.

Figure 1. Force reconstruction performance at the present day. First row: relative force residual ( = -F F F 1res reconstructed true/ ) for DM particles within 50 kpc of the
galactic center at the present day for the X-direction in the Y–Z plane (left) the Y-direction in the X–Z plane (center), and the Z-direction in the X–Y plane (right). The
multipole model used to reconstruct the forces is truncated with maximum pole orders = =ℓ m 4max max . The black ellipse encloses 90% of the stellar mass in each
panel. Second row: histograms of the force residuals shown in each of the above panels. The 16th (red dashed line), 50th (blue dashed line), and 84th (red dashed line)
quantiles, as well as the mean and standard deviation obtained from Gaussian fits, are marked for reference. Overall, the forces are reconstructed with under 10% error,
with over 95% of the reconstructed forces having less than 4% error.
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The violin plots in Figure 2 show the distributions of the
residual between reconstructed and true force magnitudes for
both DM (green) and stars (orange) for the nine models. Each
model is denoted by a combination of symmetry conditions on
the halo and the disk, as indicated on the X-axis in the format
(imposed halo symmetry, imposed disk symmetry), with
reference to Table 2. The dotted lines represent the 25th and
75th quartiles of the distributions, while the dashed line
represents the 50th quartile.

Each violin plot details error distributions, where the
majority of the particles consistently exhibit errors within
10% across all models, with the best performances typically
observed in the no symmetry model setup. Specifically,
assuming no symmetry on the halo model with any symmetry
assumption on the disk, or conversely no symmetry on the disk
with any constraints on the halo model, yields satisfactory
results, with most residuals within 2% for both DM and star
forces, respectively. Imposing symmetry conditions generally
increases the σ and μ of the reconstructed forces, which vary
depending on the specific symmetry applied and the particle
type. Symmetry conditions on the halo, such as axisymmetry or
triaxiality, for DM particles continues to produce satisfactory
results, with errors generally remaining within the 5% range.
Intriguingly, ensuring accurate modeling of the disk without
imposing any symmetry constraints often leads to improved
accuracy in the reconstructed forces even within the halo
region. However, imposing symmetries on the disk leads to
higher errors in reconstructed forces, particularly exaggerating
the tails of these distributions and higher occurrence of errors
exceeding 10%. In Appendix B (see Figure 13), we present the
residual distributions of forces across each Cartesian axis,
exhibiting similar trends as observed in Figure 2.

In summary, our findings highlight that for modeling halo
orbits, strong constraints can be imposed on the disk potential
while still achieving accurate orbital reconstructions, even

under tight symmetry conditions like axisymmetry. In contrast,
for disk orbits it is imperative to accurately model the disk,
while employing simpler models for the halo could do
sufficiently well. Furthermore, symmetry assumptions could
introduce significant biases, particularly when computing
integrals of motion for disk orbits.

3. Selection of Stars and Orbit Integration

To explore a representative selection of halo orbits, we select
star particles in the simulation that meet the following criteria
for tracked halo-like orbits:

1. Not associated with any halo except the MW at the
selection time (T≈ 9 Gyr) and have orbital periods less
than 3 Gyr.

2. Formed at least 30 kpc away from the galactic center, i.e.,
not in the MW disk.

3. Have galactocentric distances never exceeding 200 kpc,
and within 100 kpc at the present day.

Out of approximately 10 million stars in the simulation,
about 3000 fulfill these criteria. These selected stars are then
integrated forward in time for approximately 4 Gyr in the
TEMP model with no imposed symmetries, described in
Section 2.2. The choice of a 4 Gyr integration period is
arbitrary in absolute terms, but it ensures that the orbits
undergo sufficient dynamical evolution, capturing between one
and 100 orbital periods.
To identify stars not associated with any subhalos, we use

the ROCKSTAR halo finder (P. S. Behroozi et al. 2012) to
identify DM subhalos and assign stars associated to each
subhalo (J. Samuel et al. 2020; A. Wetzel et al. 2023). We note
that our star selection process may include a few stars
(approximately ∼5%) showing indications of being bound to
dwarf satellites and/or stream progenitors based on their phase-
space distribution and angular momentum along the Z-axis.
This is a function of the tolerances chosen for determining the
boundedness of stars to subhalos; additionally, particles can be
energetically unbound but still associated with subhalos.
Despite this, we choose to retain these stars in our analysis,

hereby referred to as bound stars, acknowledging a similar
challenge encountered in observational data where determining
the gravitational binding of an object can be difficult. These
bound stars are highlighted in gray whenever shown, and any
reported statistics in this study exclude their contributions.
We employ a leapfrog algorithm (W. F. Van Gunsteren &

H. J. Berendsen 1988) to integrate sample orbits over the last
4 Gyr of the simulation using our time-dependent potential

Table 1
Variationin Performance with Increasing Pole Order

( )mℓ, max
Fres,X Fres,Y Fres,Z Fres,tot

μ (×10−2) σ (×10−2) μ (×10−2) σ (×10−2) μ (×10−2) σ (×10−2) μ (×10−2) σ (×10−2)

4 0.13 1.78 0.14 2.32 0.16 1.93 0.17 0.84
6 0.13 1.72 0.13 2.28 0.17 1.93 0.17 0.83
8 0.14 1.70 0.13 2.27 0.17 1.93 0.17 0.83
10 0.13 1.70 0.13 2.27 0.16 1.92 0.17 0.83

Notes. Force residual or the fractional variation from the true force distribution parameters for DM particles within 50 kpc from the galactic center at present day.
Forces are reconstructed by assuming no symmetry in the model and varying the maximum pole order. μ, σ represent the mean and standard deviation, respectively,
for each force residual or the fractional variation from the true force distribution in different Cartesian directions (as in the bottom row of Figure 1). Fres,tot denotes the
residual on the total force magnitude.

Table 2
Symmetry Types and Their Implications

Symmetry Notation Nonzero Harmonics

No symmetry n All ℓ and all m
Triaxial t Even ℓ and even m
Axisymmetric a Even ℓ and m = 0

Note. The notation is used as a shorthand to specify the symmetry condition in
Figures 2 and 13. The nonzero harmonics column lists the spherical harmonic
and azimuthal harmonic pole orders that are nonzero for the given symmetry
condition.

5

The Astrophysical Journal, 977:23 (21pp), 2024 December 10 Arora et al.



model. The integration follows Equation (1), where the terms
on the right-hand side represent the following:

1. The first term, ( )-F r t,r , represents the gravitational
force, which is calculated from the time-dependent
potential model ( )F r t, . The potential models are saved
at discrete time points, and at each integration step we
compute the force experienced by a particle using linear
interpolation between adjacent snapshots of the potential.

2. The second term, ( )
( )- va t

a t pec
 , accounts for the effect of

cosmological expansion, where a(t) is the scale factor and
( )a t is its time derivative (the Hubble parameter). We

compute this term by evaluating the time-dependent scale
factor a(t) at each integration step, applying a velocity
“kick” corresponding to the cosmological effect on
peculiar velocities.

3. The third term, - ud
dt
COM , captures the acceleration due to

the motion of the galaxy’s COM. To compute this term,
we use spline fits to the time series of the COM velocity,
uCOM, for the galaxy at each snapshot. These spline fits
provide a smooth representation of the COM motion,
allowing us to calculate the velocity change (kick)
imparted to each particle at every time step.

For each particle, the leapfrog integration carefully chooses a
time step (Δt) to resolve the pericenter of the orbit. The Δt is
computed based on the initial conditions of the orbit using the
present-day potential to estimate the pericenter, ensuring
sufficient resolution near critical points as

( )D =
´

t
v

a

tolerance
, 4p

p

where vp is the velocity at pericenter and ap is the acceleration
at pericenter, both derived from the potential. This guarantees
that the pericenter is well resolved, preventing integration
errors from accumulating in close encounters. The fixed time
step ensures that the integration errors from the leapfrog
method are small compared to the force approximation errors
introduced by the potential model. As a symplectic integrator,

the leapfrog algorithm bounds errors over time, making it well
suited for long-term orbit stability (H. Yoshida 1990; M. Preto &
S. Tremaine 1999). In contrast, force errors from the potential
model accumulate and dominate the overall inaccuracy.
Figure 3 plots the real (solid black) and reconstructed

(dashed blue) trajectory of a randomly selected star from our
sample integrated for approximately 3.8 Gyr to the present day,
in the X–Y (left) and R–Z (right) planes. Both the trajectories
start from the same point and the final positions at present day
are marked with a star. Overall, the orbit exhibits a close match,
indicating a strong agreement between the real and recon-
structed paths.

4. Accuracy of Reconstructed Orbits

In this section, we quantify the accuracy of reconstructed
orbits for the sample of ∼3000 stars described in Section 3 with
our TEMP model consisting of a spherical harmonic expansion
for the DM halo and azimuthal expansion for the galactic disk
(see Section 2.2). We quantify the spatial and temporal
dependence of relative error between true and reconstructed
positions for each star (Section 4.1). We also compare integrals
of motion such as the total energy and angular momentum
(Section 4.2), which are robust proxies for the quality of our
reconstructed orbits, and statistically quantify “failure” modes
based on a 100% error in recovering total angular momentum
for an orbit.

4.1. Relative Position Error Metric

We evaluate the TEMP model’s performance in reconstruct-
ing orbits by measuring the relative position error for each orbit
trajectory at time t as

( ) || ( ) ( ) | |
|| ( ) | |

( )D
=

-r r
r

r
r

t
t t

t
. 5reconstructed true

true

Here, ( )r ttrue and ( )r treconstructed represent the true and
reconstructed 3D positions of each particle at time t in physical
coordinates. This metric quantifies trajectory errors for each
particle, explicitly considering orbit phase. While J. L. Sanders
et al. (2020) employ a similar metric, they base it on the error

Figure 2. Variation in performance with different symmetry assumptions, force residual or the fractional variation from the true force distributions of the absolute
magnitude of force for DM particles (green) and star particles (orange) within 50 kpc of the galactic center at the present day. The forces are reconstructed using fixed
pole order ( ) =ℓ m, 4max and different symmetry conditions for the halo and the disk. The corresponding symmetry names and notation are provided in Table 2. The
horizontal dotted lines represent the 25th and 75th quartiles of the distributions, while the dashed line represents the 50th quartile.
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relative to the time-averaged radius of the orbit. This measure
tends to underestimate errors at pericenter, where a small phase
error can lead to a large position or velocity error, and
overestimate them at apocenter, where a large error in phase
maps to a much smaller position or velocity error. Our metric
directly compares reconstructed and true positions at each time
step, offering a more accurate evaluation of trajectory fidelity
throughout the orbit. We report this metric at the final time step
as Dr

r
. Additionally, we normalize times based on the orbit

period, computed using a fast Fourier transform of the
particle’s true trajectory to identify the dominant frequency.

Figure 4 shows a selection of five other randomly chosen
orbits, arranged by increasing orbital period. The trajectories
are presented in Cartesian planes across the first three columns,
with the final column illustrating the distance from the center as
a function of time. Upon visual examination, the majority of
orbits are reproduced with a reasonable level of accuracy.
However, orbits with multiple orbital periods and an average
orbital distance within 20 kpc exhibit higher errors, exceeding
10%. Additionally, deviations in other trajectories may result
from interactions with substructures that are not adequately
resolved with our low-order expansion ( ) =ℓ m, 4max . Sub-
halos on the order of a few kiloparsecs in size require a
significantly higher harmonic order (B. Lowing et al. 2011).

4.1.1. Phase-space Dependence at the Final Time Step

Figure 5 illustrates the phase-space distribution of selected
stars for integration (column 1), depicting their distributions in
the X–Z plane (row 1) and the total distance from the center and
radial velocity plane (row 2) in the live simulation (column 2)
and their reconstructed distributions (column 3) using the
TEMP model after 3.8 Gyr of orbit integration. The last column
exhibits the spatial dependence in the error metric, representing

the median value of the relative orbit error (Dr
r
) defined by

Equation (5) at the final time step for the stars in the initial
sample.
In general, the orbit reconstruction demonstrates consis-

tency, with errors typically below 15% after 3.8 Gyr of
integration, and no significant angular dependence at different
distances in the error metric. However, there is a systematic
issue with reconstruction accuracy in the inner regions of the
galaxy (within 15 kpc), likely due to the stronger influence of
the disk, which is consistent with the errors in reconstructed
forces in these regions (Figure 1). Additionally, no significant
trends are observed with radial velocity.
We also note the presence of stars from a small satellite

galaxy in our sample, approximately 40 kpc away with a radial
velocity of 100 km s−1. This satellite, while not associated
with any subhalos in the halo catalog, appears to have bound
stars in the sample. Our sample also contains stars from an
unbound stellar stream with a small bound progenitor (see
Figure 5). As the simulation progresses, the satellite undergoes
tidal disruption and phase mixing, resulting in a median orbit
error in our reconstruction of roughly order 1, attributed to the
TEMP model’s ignorance of self-gravity in the system.
However, high-fidelity orbit reconstruction is observed for
streams with errors below 5% along the stream track, except for
the bound progenitor, which again exhibits an error of order 1.
This emphasizes the critical role of self-gravity and the
stripping times of stars. Ignoring these factors results in biased
orbits.

4.1.2. Positional Errors at the Final Time Step

Figure 6 plots Dr
r

at the final time step of integration as a
function of integration time in periods passed for each orbit,
color-coded by the true average distance from the host during

Figure 3. Example of orbit reconstruction. Real (black solid curve) and reconstructed (blue dashed curve) trajectories for a randomly selected star particle extracted
from the simulation and integrated in the time-evolving multipole model from Section 2.2 for approximately 3.8 Gyr up to the present day in the X–Y (left) and R–Z
(right) planes. The trajectories exhibit a close match, indicating a strong agreement between the real and reconstructed paths; positions at present day (i.e., the final
time step of integration) are marked with a star. Figure 4 shows a sample of five other randomly selected orbits with varying orbital periods. All the trajectories are
shown in physical coordinates.
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the integration time. Also, the bound stars are shown with gray
markers and majority of them show large errors. Approxi-
mately 70% of orbits retain phase-space information after the

integration time, with D  1r
r

. Comparing exact errors, only
13% of the recovered orbits have errors less than 10% (see
Table 3 for more statistics).

Figure 4. Performance over a range of orbital periods. Randomly selected reconstructed orbits (blue dashed lines) compared with the original trajectories (black solid
lines) of stars from the simulation across Cartesian planes (first three columns from left) in physical coordinates, and in terms of the distance from the host center over
time (rightmost column). The orbits are plotted in order of increasing orbital period (listed in the top-left corner in the leftmost panel in each row). The relative position
error (see Equation (5)) at the final time step is listed in the top-right corner of the rightmost plot in each row. The method reconstructs orbits accurately across a factor
of 20 in orbital periods and 100 in galactocentric distance.
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Most of the orbits with higher relative errors (D  1r
r

) are
integrated for many dynamical times (over 10 periods) and are
situated close to the center of the host (within 15 kpc). This is
consistent with the fact that the largest fractional errors are in
the central region (see Figure 1). Additionally, these orbits
frequently cross regions with stronger gravitational gradients,
which can exacerbate the accumulation of integration errors.

Some stars on orbits with larger average galactocentric
distances (∼100 kpc) also have larger errors. There are a few
reasons for this. First, the orbit may be highly eccentric, in

which case the average distance may not accurately represent
the orbitʼs proximity to the center over time. Second, the phase
sensitivity of the error metric amplifies errors near pericenter,
leading to higher Dr

r
values, which also matters most for highly

radial orbits. Lastly, the omission of smaller-scale structures,
such as subhalos, in our model may contribute to the
discrepancies observed, as these can cause additional perturba-
tions to the star particle in the simulation not accounted for in
the TEMP model.

4.1.3. Temporal Dependence in the Error Metric

In addition to the error metric at the final time step, it is
important to compare how the metric evolves over time to test
the stability and reliability of our reconstruction approach at
different time steps. This temporal perspective allows us to

Figure 5. Preservation of phase-space distribution. Initial sample of all the selected stars (leftmost column), their distribution in the live simulation at “present day”
(second from left), and the reconstructed distribution using the TEMP model for orbit integration (third from left). Distributions are shown in the X–Z plane (top row)
and for galactocentric distance vs. radial velocity (bottom row). The rightmost column shows the median value of error metric for the initial distribution of sample stars
in each bin. Most orbits have errors below 15%, with no angular dependence in the error metric. Errors are larger for particles closer to the center, deep in the disk
potential.

Figure 6. Performance over multiple orbital periods. Relative position error at
the final time step of integration (approximately 3.8 Gyr) vs. the total
integration time in terms of the number of periods passed for each orbit. Orbits
are color-coded by the average distance from the center for each star. About
70% of orbits have a relative error below 1 at the end of the integration time.
Most orbits with D  1r

r
are integrated over �10 periods and are located close

to the center of the host. The bound stars identified from Figure 5, which are
expected to have larger error due to their unmodeled progenitor galaxy, are
shown with gray markers.

Table 3
Accuracy of Recovered Integrals of Motion

Error Fraction of Orbits Recovered with Errors

�10% �25% �50% �100%

Etot 0.43 0.61 0.75 0.87

Jtot 0.7 0.85 0.93 0.98

Dr
r

0.13 0.33 0.5 0.7

Note. Summary of the fraction of orbits for which the errors in total energy
(Etot) and total angular momentum (Jtot) are below various thresholds. Errors
are computed after roughly 4 Gyr of integration as the fractional difference
between the recovered and true values of each property, defined as (recovered –
true)/true × 100%. The table shows the fraction of orbits where this error is
below each specified threshold.
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evaluate the long-term behavior of orbits and identify any
potential sources of bias or inaccuracies that may arise over
extended periods of integration.

Figure 7 depicts the temporal evolution of relative position
error ( ( )D tr

r
) as a function of total number of periods passed for

each orbit on the left, organized into rows based on average
orbital distance from the center. The top row includes orbits
between 0 and 30 kpc, the middle row 30 and 60 kpc, and
the bottom row �60 kpc. The histograms on the right show the

( )D tr
r

for all orbits at each time step, color-coded by the
distance cuts. The error metric trajectories and distributions for
bound stars are also shown in gray.

Most of the orbital errors (approximately 90%) remain
within 10% for up to two periods across all distance cuts,
indicating the consistent performance of our method in
capturing orbital dynamics. Notably, instances where

( )D t 1r
r

predominantly occur for stars closer to the center
after 5–6 periods have passed. Additionally, about 80% of the
outer orbits (average orbital distance �30 kpc) exhibit

( )D t 0.1r
r

. Other significant errors are observed in orbits
associated with the bound satellite and stream progenitor
(marked with gray lines) identified in the sample (refer to
Figure 5).

Interestingly, a notable trend emerges wherein orbits
approaching their pericentric passage exhibit higher ( )D tr

r
,

whereas lower errors are observed at apocenter. This trend is
particularly prominent in the outermost halo (�60 kpc), where
the ( )D tr

r
trajectory predominantly displays a triangular wave

pattern. The error peaks near pericenter and valleys at
apocenter due to the smallest division factor in our metric at
pericenter, amplifying the ( )D tr

r
. Additionally, the same phase

error in the orbital plane magnifies the positional error into a
larger discrepancy at pericenter compared to apocenter.

Moreover, the faster tangential velocity at pericenter
contributes to increased velocity errors, while slower tangential

velocities at apocenter allow the phase to synchronize between
reconstruction and true trajectories. J. L. Sanders et al. (2020),
R. D’Souza & E. F. Bell (2022), and I. B. Santistevan et al.
(2023) also observed similar trends, with increased errors in
pericenter reconstruction of satellite orbits, where they
compared the true and reconstructed pericenter position
neglecting the phase error.
While higher positional errors occur at pericentric passage,

in a summary statistic this discrepancy may not be significant.
Most orbits spend more time near apocenter, so for an arbitrary
selected final time step, most stars will have lower positional
errors. However, this discrepancy would bias positional errors
if one is examining only resonant orbits that reach pericenter at
the same time.

4.1.4. Pericenter and Apocenter Comparison

I. B. Santistevan et al. (2023, 2024) used the MW-mass
galaxies from the Latte suite of baryonic-cosmological
simulations (A. Wetzel et al. 2023) and, beginning at present
day, backward integrated the COM positions and velocities of
luminous satellites orbiting the main host. They employed a
static MW-mass potential and ignored dynamical friction. They
showed that recovering the first pericentric and apocentric
distance through orbit reconstruction has a 20%–40% uncer-
tainty, with higher uncertainties in pericentric distance.
Similarly, R. D’Souza & E. F. Bell (2022) used a controlled

MW host with no massive mergers from the Elvis suite of DM-
only simulations (S. Garrison-Kimmel et al. 2014), and
backward-integrated subhalo COM positions and velocities
accounting for the mass growth of the main halo while keeping
the shape of the potential fixed. They also used a prescription
for the dynamical friction experienced by the satellites. They
reported the fraction of satellite orbits that have less than 30%
error in the pericentric and apocentric distances. They found
that 70% of the satellites were below this threshold for their
first pericentric distances, and only 55% of subsequent

Figure 7. Performance of orbit reconstruction over time at different average distances. Left: temporal evolution of relative position error as a function of number of
periods passed for each orbit, divided in rows based on the average orbital distance from the center. Distance ranges are indicated in the top-left corner of each row.
Right: distribution of relative position error for all orbits at each time step, color-coded by the distance ranges shown on the left. Most errors are within 10% for 2–3
periods across all distance cuts, while orbits with ( )D t 1r

r
predominantly occur for orbits closer to the center after 5–6 periods. Additionally, the error trajectories

oscillate with orbital phase by nearly an order of magnitude, as is most clearly visible for the longest-period orbits in the bottom-left panel: ( )D tr
r

is higher at pericenter
and lower at apocenter. Error trajectories and distributions for bound stars are marked with gray lines (left) and a gray histogram (right).
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pericentric distances less than 30% error, while 90% of first
apocenters and 75% of subsequent apocenters had similar
errors below 30%.

Motivated by these findings, we backtrack the COM
positions and velocities of luminous satellites (Må> 0 Me)
that are within the virial radius of the main halo and have a total
mass less than 1010 Me from the present day to 4 Gyr ago. We
then forward integrate to the present day in our TEMP model,
ignoring dynamical friction (similar to I. B. Santistevan et al.
2024). Many of these satellites can be much more massive
4 Gyr ago.

Figure 8 compares the reconstructed and true pericenter
distances (left column) and apocenter distances (right column)
for the first (top row) and last (bottom row) pericentric
passages, respectively. Unbound star (solid circles) and
luminous satellite (diamonds) orbits are color-coded based on
their orbital period, with gray markers indicating bound stars
within our selection sample. The inset in each panel shows the
distribution of percentage error in each reconstructed property.
At first passage, most orbits both in pericenter and apocenter
closely align with the one-to-one line, exhibiting errors within
10% (insets in top row). However, typically higher errors are

noticeable nearer to the galactic center, along with errors
originating from the satellite and stream progenitor in both
pericenter and apocenter distances (gray scatter points), as
highlighted in Figure 5, with notable discrepancies particularly
evident at pericenter and apocenter distances around 20 kpc and
80 kpc, respectively.
As the simulation progresses, pericenter distances exhibit

greater variability compared to apocenter distances by the final
passage (insets in bottom row). Nevertheless, errors for orbits
with pericenters beyond 30 kpc remain within the 10%
threshold. Similar errors in pericenter and apocenter distances
are noted in J. L. Sanders et al. (2020). Accurate reconstruction
of pericenter and apocenter distances is crucial, as they are
fundamental properties widely used in studying small-scale
structure formation and disruption within a galaxy (e.g.,
C. Barber et al. 2014; J. D. Simon 2018; N. Shipp et al. 2023).
Luminous satellite orbits follow similar trends to unbound

stars. We recover 85% and 98% of pericentric and apocentric
distances for luminous satellites to errors within 10%. These
recovery rates are overall better than static potential models that
only account for the mass growth. Subsequent pericenters are
harder to recover, but we still achieve 70% recovery of

Figure 8. Reconstruction of pericenter and apocenter distances. Reconstructed vs. true pericenter distances (left column) and apocenter distances (right column) for the
first (top row) and last (bottom row) passages, respectively. Orbits of unbound stars (solid circles) and luminous satellites (diamonds) are color-coded by their orbital
period. Most orbits exhibit errors within 10% (shaded gray region around dashed 1:1 line) at the first passage, with higher errors observed closer to the center. Notable
discrepancies in the pericenter and apocenter distances, such as those observed at 20 kpc and 80 kpc, respectively, primarily originate from the bound parts of the
stream included in the sample (gray open circles; see also Figure 5). By the final passage, pericenter distances in the inner regions have more scatter than apocenter
distances, although errors for orbits with pericenter beyond 30 kpc remain within 10%. The insets in each panel plot the distribution of percentage errors between
reconstructed and true values for unbound stars. The reconstructed satellite orbits overestimate the last pericenter due to the absence of a dynamical friction
prescription in our model.
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subsequent apocenters within 10%. The reconstructed satellite
orbits overestimate the last pericenter due to the absence of a
dynamical friction prescription in our model.

In summary, our reconstruction method demonstrates
overall success, maintaining errors below 15% after 3.8 Gyr
of integration, with approximately 70% of orbits exhibiting a
relative error below 1. However, accuracy issues arise within
the inner galaxy regions, likely due to the disk’s stronger
influence and challenges in reconstructing orbits of bound
substructures. Notably, the stable, quiescent merger history in
this simulation ensures that the potential undergoes minimal
nonadiabatic changes, contributing to the robustness of the
reconstruction process. The temporal evolution analysis
reveals that most orbital errors remain within 10% for up to
two periods across all regions, but deteriorate after 5–6
periods for orbits within 30 kpc. We notably observe higher
positional errors at pericentric passages, consistent with prior
studies. Our reconstruction method generally accurately
reproduces orbits up to the initial pericentric and apocentric
passages. However, errors in reconstructed pericenter tend to
increase for orbits with pericentric distances closer to the
galactic center, while the apocenters are generally recovered
more accurately (J. L. Sanders et al. 2020; R. D’Souza &
E. F. Bell 2022; I. B. Santistevan et al. 2024).

4.2. Reproducing Integrals of Motion

To evaluate the quality of our orbit reconstructions, we
analyze approximate integrals of motion: energy and total
angular momentum (Jtotal). While energy is not strictly
conserved due to the time-dependent potential and tends to
grow adiabatically, the total angular momentum remains
approximately conserved over time (J. Binney & S. Trema-
ine 2008; J. L. Sanders et al. 2020). The position-based error,
particularly dependent on a particle’s radial distance from the
halo center, can vary rapidly along an orbit (B. Lowing et al.
2011).

Figure 9 plots comparisons between reconstructed and true
final energy (left panel) and final total angular momentum
(Jtotal) (right panel). The top-left insets in both panels show the

distributions of initial (green), final from simulation (black),
and final from reconstruction (blue) for both energy and Jtotal.
Notably, Jtotal exhibits less scatter and tighter one-to-one
correspondence, with a correlation coefficient of almost 0.99
compared to energy, which has a correlation coefficient 0.71.
We find that 87% of orbits have final energy errors below

100%, with 75% below 50%, 61% below 25%, and 43% below
10% (see Table 3). In contrast, total angular momentum (Jtotal)
errors are lower, with 98% of orbits having errors below 100%,
93% below 50%, 85% below 25%, and 70% below 10%. This
indicates that Jtotal is more robustly conserved, reflecting the
relative stability of angular momentum in our dynamic models.
The histograms show the presence of bound substructure in the
initial energy distribution (over 200 particles in a single bin),
which affects the conservation accuracy.
Our correlation between true and reconstructed final energy

is slightly weaker compared to that reported in J. L. Sanders
et al. (2020). This disparity can be attributed to the presence of
a live baryonic disk actively forming stars, coupled with
realistic feedback models, resulting in a larger nonconservation
of energy.
We perform a Kolmogorov–Smirnov (KS) test to assess

whether the reconstructed and true distributions of final energy
and Jtotal come from the same distribution. The resulting p-
value for energy and Jtotal is 0.21 and 0.35, suggesting no
significant differences between either of the distributions.
Additionally, the correlation coefficient between true and
reconstructed angular momentum along the Z-axis is 0.995,
with a KS test p-value of 0.5, further supporting the
consistency between the reconstructed and true distributions.

4.3. Instantaneous Failure Based on Total Angular Momentum

The high fidelity of Jtotal in our orbit reconstructions
compared to reconstructed positional error (see Figure 7) and
energy (see Figure 9) motivates establishing a criterion for
instantaneous failure in orbit reconstruction. We propose
defining failure time as the moment when the instantaneous
error in Jtotal between reconstructed and true values exceeds
100%. This criterion provides a robust measure to pinpoint

Figure 9. Recovery of integrals of motion. Left: reconstructed final energy vs. true final energy. The inset in the top-left corner displays the distribution of the initial
energy (green), true final energy (black), and reconstructed final energy (blue). The dashed–dotted line indicates the energy threshold (Etot = 0 (km s–1)2) above which
particles are unbound to the main halo. Right: similar to the left panel, but for the total angular momentum (Jtotal). Jtotal exhibits less scatter and tighter correspondence
with a stronger one-to-one correlation (black dashed diagonal line) compared to the energy. Approximately 98% of orbits have final angular momentum errors below
100%, and 87% have final energy errors below 100%. Both of the panels have high correlation coefficients (�0.7) and a p-value greater than 0.5 for the Kolmogorov–
Smirnov test, suggesting no significant differences between either of the reconstructed and true distributions.
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instances where orbit recovery becomes unattainable due to the
complete loss of phase-space information (A. Arora et al.
2022).

Figure 10 illustrates failure time plotted against integration
time in number of periods for orbits that fail based on the
aforementioned criteria, with only approximately 10% of orbits
failing. Surprisingly, the distribution of failure times seems to
be independent of integration time. However, one might expect
that orbits integrated for longer periods would exhibit a higher
likelihood of failure. The top panel illustrates the distribution of
integration times for orbits that failed (red) and those that never
fail (green), with each bin scaled to represent the fraction of
stars. Remarkably, the success rate remains consistently high,
at around 90%, while the failure rate remains low, at
approximately 10%, regardless of integration time. The side
panel plots the distribution of failure times (red), integration
times for orbits that never fail (green), and all integration times
(black), revealing no discernible pattern in failure time
distribution. This observation suggests that neither longer nor
shorter integration times significantly affect the likelihood of
failure. The independence suggests failure to reconstruct a
specific orbit is not due to time dependence of the global
potential, but rather to more localized factors like subhalo
interactions altering angular momentum or orbits passing
through the baryonic disk.

Prolonged integration spanning multiple periods can be
effective in preserving angular-momentum-dependent proper-
ties, such as the shape of orbits, despite the high errors in
reconstructed positions. This underscores the robustness of

orbit reconstruction techniques in capturing essential dynamical
features over extended integration times.

4.4. Dependence on the Sampling Interval

The simulation snapshots in FIRE-2 simulations are saved
rather frequently—approximately every 25Myr—while this is
not usually the case for baryonic-cosmological simulation
suites. To evaluate the dependence of orbit quality on the
temporal cadence of the available snapshots, we reintegrate our
sample of selected stars while sampling the potential model less
frequently compared to our fiducial time interval of 25Myr for
approximately 4 Gyr (to present day). While one can integrate
each orbit for a fixed number of orbital periods, which would
decrease the overall errors, our fixed time approach is more
representative of the integration needs for a statistical ensemble
of orbits.
Figure 11 plots the fraction of stars with errors below

specific error thresholds (different colors) in recovered proper-
ties: total angular momentum (Jtot), total energy (Etot), and the
positional error metric (Dr

r
from Equation (5)) as a function of

sampling interval. An eightfold increase in the snapshot
spacing (to 200Myr) does not significantly affect the recovery
errors for Jtot and Etot. The fraction of stars with well-recovered

Figure 10. Number of periods before “failure” of orbit reconstruction. Failure
time is defined as the moment when the instantaneous error in total angular
momentum between reconstructed and true values exceeds 100%. It is plotted
against integration time (in orbital periods), exclusively for orbits that fail
(approximately 10%). The distribution of failure times (red), integration times
for orbits that never fail (green), and all the integration times (black) are
displayed on the right side. The histogram above the main panel illustrates the
fractional integration times for orbits that never failed (green) and those that
failed (red), with each bin scaled so that the total across both categories for each
bin is 1. Notably, the distribution of failure times appears to be independent of
integration time, as indicated by the nearly constant fraction of failures and
successes across integration time bins (dashed lines) in the top panel. Figure 11. Quality of orbits with lower temporal cadence. Fraction of orbits

with error below the ranges marked with colors in recovered property: total
angular momentum Jtot (top row), total energy Etot (middle row), and positional
error metric Dr

r
(bottom row) as a function of how frequently the potential is

sampled for an orbit integration of 4 Gyr. Jtot and Etot can be accurately
recovered with higher sampling intervals (less frequent snapshots), with
significant deterioration only observed at a 500 Myr sampling interval. Dr

r
is

more sensitive, showing noticeable decrease at a 100 Myr sampling interval.
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orbits only starts to decrease significantly at a sampling interval
of 500Myr, a twentyfold increase from our fiducial sampling.
The positional error metric (Dr

r
) is more sensitive to the

sampling interval. Stars show a noticeable deterioration in
positional accuracy at a sampling interval of 100Myr.

This finding is consistent with DM-only results from
J. L. Sanders et al. (2020), although we caution that it depends
strongly on the period of the orbits to be reconstructed. Our
sample population consists of halo-like orbits with relatively
long periods, while dynamical times in the disk and bulge of
our simulations can be well below our snapshot frequency; we
would expect only orbit-averaged properties to be stable in that
case. Indeed, part of the reason for higher fractional errors in
position is due to our choice of integrating over a fixed time—
which could be a factor of 100 in orbital periods for different
stars. For instance, a star in the outer halo with a period of
2 Gyr is only integrated for two periods, while a star in the
inner region with a period of 0.2 Gyr is integrated for 20
periods. Moreover, due to expected density profiles, there are
more stars with shorter periods. In fact, 60% of stars have
orbital periods �0.8 Gyr (see Figure 10).

5. Simulating Stream Formation

In this section, we demonstrate an application of the TEMP
models: forming realistic stellar streams. Stellar streams are
formed when stars in a globular cluster or a dwarf galaxy are
tidally stripped by a more massive host galaxy (e.g., A. Toomre
& J. Toomre 1972; A. Helmi & S. D. M. White 1999), making
their structure and evolution highly sensitive to the host
galaxy’s potential and mass profiles (e.g., K. V. Johnston et al.
1999; S. E. Koposov et al. 2010; D. R. Law & S. R. Majew-
ski 2010; A. Bonaca et al. 2014). Therefore, a successful
potential model of the host should accurately replicate the
observed evolution and structure of stellar streams.

We use our TEMP model to reconstruct an example stellar
stream with Må= 107 Me at present day formed by tidal
disruption of a dwarf satellite of similar mass (Må= 107 Me),
identified by N. Panithanpaisal et al. (2021) in m12i. The
progenitor dwarf galaxy and subsequently the stream form self-
consistently inside our cosmological zoom-in box m12i. This
setup includes all relevant physical processes that influence
stream formation and evolution, such as internal dynamical
evolution, galactic tidal forces, and dynamical friction, all
modeled at the resolution allowed by our particle fidelity. The
resulting stream consists of around 2000 star particles. We
begin tracking tidal disruption at the “stream formation time”
for this progenitor galaxy, defined as in N. Panithanpaisal et al.
(2021), which marks the first instance when the tidal
deformation of the progenitor—measured by its principal axis
ratio of the moment-of-inertia tensor—exceeds a threshold
value. Since the moment-of-inertia tensor represents the overall
shape of the progenitor, our disruption metric effectively
captures shape deformation. Consequently, a small fraction of
star particles (�0.5%) may already be unbound by the time we
define stream formation. However, we include them for
consistency in the analysis. For our example progenitor this
occurs 6.5 Gyr after the Big Bang, which we will call
¢ =T 0 Gyr, representing the start of orbit integration. We

assign unique stripping times (Tstrip) to each star associated
with the satellite by tracking when it crosses twice the
time-evolving virial radius of the progenitor satellite:
| | ( )- >*r r R t2sat 200 m

prog . Once a star reaches this distance, we

consider it to be unaffected by the self-gravity of its progenitor
galaxy, which is not included in the TEMP model. We then
begin orbit integration of the stripped star in the host potential
up to the present day. The duration of orbit integration differs
for each star, but does not exceed 7.2 Gyr for those stars that
are assigned as stripped at or before ¢ =T 0 Gyr. Once we have
our potential models, these integrations are computationally
inexpensive, allowing us to resimulate tidal stream formation at
high resolution in a few minutes, without the cost of rerunning
the entire simulation.
Figure 12 shows the X–Z plane (top half) and phase-space

(radial velocity versus distance from the center; bottom half)
distribution and temporal evolution (arranged in columns,
increasing time from left to right) of this dwarf satellite in both
the live simulation (first and third rows) and TEMP model
(second and fourth rows) over a period of 7.2 Gyr to the present
day. The stars are color-coded by their stripping times from the
progenitor starting from ¢ =T 0 Gyr. The simulated stream
structure (position space; top two rows) and kinematics (phase
space; bottom two rows) align closely with the real stream,
demonstrating the model’s effectiveness in modeling tidal
disruption and evolution. However, minor discrepancies in
both position space and phase space are noted after 5.8 Gyr
near the outer tails (further than 60 kpc from the center).
Similar features are noted for other streams across the Latte
suite (E. Bregou et al. 2023).

6. Summary and Discussion

In this paper, we assess the effectiveness of the time-
evolving potential (TEMP) model, fit to a zoomed baryonic-
cosmological simulation of a MW-mass galaxy from the FIRE-
2 suite (P. F. Hopkins et al. 2018; A. Wetzel et al. 2023),
introduced by A. Arora et al. (2022) in recovering particle
forces and halo star orbits for a ∼4 Gyr integration. The TEMP
model incorporates a spherical harmonic expansion for the halo
and azimuthal harmonic expansion for the disk, with a
maximum pole order of 4.
We recover individual particle forces to high accuracy

(Section 2.3), with 68% of errors within 1% and about 95% of
particles exhibiting less than 4% error in force reconstruction at
the present day (Figure 1). We observe negligible improvement
in recovered forces with increasing pole orders beyond 4, as
evident from the relatively constant means and standard
deviations of the force error distribution (Table 1). Similar
minor improvements for reconstructed orbits were noted for
pole orders beyond 4 in J. L. Sanders et al. (2020) and other
previous works, which used DM-only simulations.
The largest force errors produced by the model are localized

near the galactic center, and are due to complex small-scale
structures, such as spiral arms in the baryonic disk components.
Additionally, errors arise from interactions with a few subhalos
that are not resolved in our smooth density field, yet still
massive enough to affect orbits. These errors can bias
predictions of orbits for stars that spend the majority of their
time in the inner regions (�10–15 kpc, ∼1–1.5× radius
enclosing 90% stellar mass). However, they have minimal
impact on halo-like orbits, as these stars move very quickly
near pericenter. Consequently, the increased error in accelera-
tion during the shorter time spent in the inner region has a
negligible effect on their overall velocities.
We also imposed various symmetry conditions on the BFE-

based potential model at present day and evaluated the
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recovered forces. We show that for halo particles, imposing
even the most restrictive symmetries, such as axisymmetry, on
the disk potential still yields accurate force reconstructions. For
disk orbits, however, it is crucial to accurately model the disk,
while simpler halo models can suffice (see Figures 2 and 13).
Symmetry assumptions can introduce significant biases if
applied without regard for orbit type, particularly in computing
integrals of motion for disk orbits.

Overall, we achieve high fidelity in orbit recovery using the
TEMP model, demonstrating its effectiveness statistically (see
Figure 5). However, the fidelity in individual orbit reconstruc-
tion depends on the specific question being addressed. For
example, accurately determining individual orbits in terms of
exact positions, velocities, and times is most challenging.
Using an error metric based on recovering exact positions, we
show that 3D positions can still be recovered to within 10%
accuracy over 2–3 orbital periods (see Figure 7), though errors
are higher for orbits closer to the galactic center. Notably, 70%
of orbits have total positional errors below 100% after multiple
periods (1–20) of integration (see Figure 6), indicating that
while some errors exist, a substantial portion of the orbits can
maintain reasonably accurate positional information. Therefore,
while single orbits may not hold much meaning due to inherent

uncertainties, a statistical ensemble of orbits can still be
effectively utilized to understand the overall dynamical
behavior of the system (see Figure 12).
This method can be particularly successful for studying halo

orbits and their precise positions, such as those of the
Sagittarius dwarf satellite and its tidal stream, where the larger
spatial extent and statistical sample allow for more accurate
orbit recovery (K. V. Johnston et al. 1995; R. Ibata et al. 1996;
I.-G. Jiang & J. Binney 2000). Conversely, orbits within the
inner regions, such as those associated with the MW bar and
disk, will be highly biased.
Integrals of motion, such as total energy and angular

momentum, can be recovered with much higher accuracy.
We find that 87% of orbits have recovered energy errors below
100%, and 98% of orbits have recovered angular momentum
errors under 100% (see Figure 9). These quantities change
appreciably over time for many stars, indicating that our model
accurately predicts their variations as the galaxy evolves.
Moreover, these integrals are recovered to high fidelity even
with a larger potential sampling interval of 200Myr compared
to our fiducial snapshot spacing of 25Myr.
Additionally, orbital properties that directly depend on

energy and angular momentum, such as the shape of the

Figure 12. Recovering tidal evolution in the potential model. Tidal disruption of a dwarf satellite with Må = 107 Me identified in N. Panithanpaisal et al. (2021) in the
live simulation (first and third rows) and in the time-evolving potential model (second and fourth rows) over a period of 7.2 Gyr of evolution (arranged in columns
from left to right), color-coded by a star’s stripping times. The top two rows show the stream’s distribution in the X–Z plane at different times. The bottom two rows
present the phase-space distribution (radial velocity vs. distance from the center). Reconstructed streams demonstrate excellent recovery of the stream’s structure and
kinematics.
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orbits—including pericenter and apocenter distances—are well
reconstructed to within 10% accuracy even after multiple
passages (see Figure 9 and Table 3), with apocenter distances
being more accurate than pericenter distances. Interestingly, the
instances where total angular momentum errors exceed 100%
do not show any significant dependence on the orbital period or
the average distance from the galactic center (see Figure 10),
given that total angular momentum is approximately conserved
for adiabatic changes in the potential (J. Binney & S. Trema-
ine 2008). This implies that stream and potential modeling
techniques based on integrals of motion should be more robust
to biases induced by phase-space errors than those that compare
model predictions for positions and velocities.

The high accuracy in recovering approximate integrals of
motion also leads to exceptionally reliable modeling of orbital
planes. This reliability is crucial for studying the planes of
satellite galaxies, as dwarf galaxies in the MW appear to lie in a
plane that approximately follows the Magellanic Stream, a
phenomenon observed in other galaxies as well (D. Lynden-
-Bell 1976; M. S. Pawlowski 2018). Accurate modeling of
orbital planes enhances our understanding of these satellite
planes, which has important implications for the formation and
evolution of galaxies and their satellite systems, as well as for
DM (L. V. Sales et al. 2022; L. V. Sales & J. F. Navarro 2023;
T. Sawala et al. 2023).

For these accuracy statistics, we have focused on a
simulation that had no massive mergers (Msat� 2× 1010 Me)
during the integration time, so all of our errors can be treated as
lower bounds. However, an obvious question arises: How big
of a merger can this model accommodate before it breaks? The
success of these integration techniques largely depends on how
well the potential model can describe the deforming halo along
with the merging satellite. A. Arora et al. (2022) used a metric
to measure how well action-space coherence was preserved,
which is slightly different from, but akin to, the conservation
metrics in this paper. They found that these potential modeling
techniques could effectively describe mergers with mass ratios
of approximately 1:15 (total mass of halo to the total mass of
satellite at the time of pericentric passage), including mergers
similar to the Sagittarius/SMC-mass satellites, in m12f (note
Figure 3 in T. Donlon et al. 2024, showing tidal debris of
reconstructed orbits to high accuracy). However, the model
breaks down for highly radial, massive mergers with a mass
ratio of about 1:8 with the first pericentric passage very close to
the center of the host, as seen in m12w. Later, A. Arora et al.
(2024) and A. Dropulic et al. (2024, in preparation) showed
that stellar stream orbits can be reproduced fairly well with
errors within 10%–20% for halos with mergers of LMC-like
orbit and mass, with a mass ratio of roughly 1:10. Additionally,
A. Dropulic et al. (2024, in preparation) noted that a statistical
ensemble of integrated stellar streams is reproduced with 20%
errors in position space (twofold higher compared to this work)
after two orbital periods in m12b.

The TEMP-based orbit reconstruction methods find exten-
sive application in zoomed cosmological simulations. Founda-
tional work focused on DM-only simulations to examine
subhalo evolution and disruption (B. Lowing et al. 2011),
simulate stellar streams in a smoothed self-consistent field
potential to analyze morphological differences between smooth
and lumpy potentials (W. Ngan et al. 2015), and explore the
effects of time-dependent potentials on MW satellite orbits
(J. L. Sanders et al. 2020).

We expand the utility of these techniques to a fully baryonic-
cosmological zoomed simulation, demonstrating their broader
applicability. The models and orbit reconstruction techniques
presented here have proven effective in various applications,
including studying the time evolution of stellar streams in
action space (A. Arora et al. 2022) and position space
(E. Bregou et al. 2023; A. Dropulic et al. 2024, in preparation),
and deriving orbital parameters of disrupting satellites
(D. Horta et al. 2023), stellar streams (N. Panithanpaisal
et al. 2022; N. Shipp et al. 2023), and stars in the disk (S. Ansar
et al. 2024). Additionally, A. Arora et al. (2024) applied these
models to inject and integrate synthetic stream orbits in a halo
undergoing a merger with an LMC-mass satellite, while
T. Donlon et al. (2024) used them to increase the particle
resolution of merging dwarf galaxies. Furthermore, A. Dropulic
et al. (2024, in preparation) integrated known progenitors of
dwarf galaxy streams in the Latte suite to measure the impact of
the LMC on their orbits. These applications underscore the
versatility and robustness of time-evolving BFE-based models
in capturing complex dynamics within cosmological contexts,
providing crucial insights into the formation and evolution of
galaxies and their substructures.
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Appendix A
Noninertial Forces on a Cosmological Background

A.1. Definitions

We wish to compute the contributions to the equation of
motion that arise by transforming from the global inertial frame
of the simulation volume into a time-varying galactocentric
frame in which the potential Φ of the simulated galaxy is
modeled. This transformation can be written as a Lorentz
transformation, ( ( ) ( ))qL u t t, , where ( )u t is the instantaneous
velocity of the galaxy’s COM in the global inertial frame of the
simulation box, and ˆ ( ) ( )q q= n t t is the rotation from the
coordinates in the simulation box to the instantaneous frame
aligned with the galactic disk, written as a rotation by angle θ
around the normal unit vector n̂. The rotation matrix is related by

( ) ( )d q q q= + - +R n n ncos 1 cos sin , A1J
I

J
I I

J JK
I K

where we have used Einstein summation convention (repeated
indices are summed). All these quantities are functions of the
time t (i.e., time in the simulation box).

This transformation takes place on an expanding cosmolo-
gical background in which the galaxy is evolving. In conformal
Newtonian gauge (useful for this situation), the metric is

( ){ [ ( )] [ ( )] } ( )h h= - + F + - Fds a x d x dx1 2 1 2 , A22 2 2 2  

where η is the conformal time (related to the proper time τ by
adη= dτ), a(η) is the scale factor, and ( )F x is the galactic
potential defined in the comoving coordinates of the frame of
the simulation box. Formally Φ is also a function of time, but
for the purposes of the Lorentz transformation we can treat it as
instantaneously static; we ignore the time dependence of Φ in
what follows.

The transformation from the global inertial coordinate frame
of the simulation box to the locally orthonormal galactocentric
frame of the model can be described by an object called the
tetrad, which relates the basis vectors in the two frames:

( ) ( ) ( ) ( )=m mx e x xe e . A3A
A

The Greek indices hereafter indicate components in the
coordinate (simulation box) basis, while the capital Latin letter
indices indicate components in the orthonormal basis where the
potential is modeled and the orbit integrations are to be carried
out. The tetrad enables one to translate coordinate vector
components into orthonormal vector components; for example,

( )= m
mp e p . A4A A

The reverse transformation is described by the inverse tetrad
˜ne B, defined by

˜ ˜ ( )d d= =m
m m

n n
me e e e, , A5A

B B
A

A
A

so that, for example, ˜=m mp e pA
A. The metric itself is formed

from the tetrad:

( )h=mn m ne e . A6AB
A Bg

If the potential is weak (Φ/c2= 1), then we can factor the
metric into the tetrad:

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( )

( )
( )

( )
( )

( )h=

+ F
- F

- F
- F

me a

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, A7A

and its inverse:

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( )

( )
( )

( )
( )

( )
h

=

- F
+ F

+ F
+ F

me
a

1
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

. A8A

A.2. Equation of Motion

The equation of motion (equivalent to Newton’s second law,
=F pd dt/ ) of a particle in this system is the geodesic

equation:

( )
t

w= - m
mdp

d m
p p

1
, A9

A

B
A B

where τ is the proper time, and the Lorentz connection (also
known as spin connection or Ricci rotation coefficients) is
computed from the tetrad using a version of the first Cartan
structure equation (a fundamental equation of manifold
geometry):

( )
[ ] [ ]

[ ]

w h h

h h

= ¶ + ¶

+ ¶
m

n
n m

a
m a

a n
m n a

e e e e

e e e e . A10

B
A

B
A AC

BD C
D

AC
DF C B

F D

The brackets around the lower indices are shorthand for the
antisymmetric part:

( ) ( )[ ]¶ º ¶ - ¶n m n m m ne e e
1
2

. A11A A A

In this version of the equation of motion one sees two types of
momenta (velocities): the coordinate momentum pμ≡mvμ,
which is related to the comoving velocity in the simulation
frame by a factor of the inertial mass m, and the momentum in
the galactocentric frame, pB≡ EvB, which is instead propor-
tional to the energy E. Just like positions, the two are related by
the tetrad: ( )t= m

mp me dx dA A . The tetrad also relates the
coordinate time τ on the left-hand side of Equation (A9) and
the time t in the galactocentric frame; these are related by the
tetrad such that t= a(τ)(1−Φ)τ. For Φ/c2= 1, this reduces to
t= a(τ)τ.
By using the identities above, one can rearrange the equation

to give the equation of motion for the 3-momentum, almost
entirely in terms of quantities defined in the galactocentric
frame:

( )w= - m
mdp

dt
E v v . A12

I

B
I B

The subscripts IJKK are used to indicate spatial components of
the four-vectors (i.e., normal 3D positions and velocities) in the
orthonormal frame (i.e., one that has orthogonal unit vectors,
like global Cartesian coordinates), while ijkK indicate 3D
positions and velocities in the coordinate frame (where the unit
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vectors point along the different coordinate directions and
might not be orthogonal, since mass “bends” the coordinate
grid according to the equivalence principle). The inertia of a
particle is given by its energy E, which since our velocities are
all slow compared to c is approximately equivalent to the rest
mass m and is therefore constant in time. Pulling this factor out
on both sides of the equation above leaves us with

( )w= - m
mdv

dt
v v . A13

I

B
I B

A.3. Fields and Transformations

The terms in the equation of motion (Equation (A9)) can be
decomposed into a form similar to the equation of motion for a
particle in an electromagnetic field. This is done by separating
the components of the connection by the number of powers of v
they contain and whether they are symmetric or antisymmetric:

( ) ( )= + + W +
dv
dt

g M v N v v , A14
I

I
j

I j
KL

I K
j

K j L

where we have defined

( )
w w w

w w w

= = - = W

= = - =

g

M N

, ,

, . A15
t
I

tI
I

tJ
I

JK
I K

j
I

jI j
I

jK
I

KL
I

j
L

0
0

0
0




The object JK
I is the totally antisymmetric matrix or Levi–

Civita pseudo-tensor as found in the component definition of
the cross product:

( ) ( )´ ºA B A B . A16I
JK
I J K

This formalism is useful for our purposes since these fields
transform in particular ways under the time-varying Lorentz
transformation we need to arrive in the galactocentric frame at
each time step. This is because although the Lorentz connection
is a tensor (specifically, a one-form) under arbitrary coordinate
transformations, it is a tensor only for global Lorentz
transformations, not for time-varying or spatially varying
ones:14

¯ ( ) ( ) ( )w w w = L L - L ¶ Lm m m m
- - . A17B

A
B

A
C
A

B
D

D
C

B
C

C
A1 1

The terms that are proportional to partial derivatives of Λ are
nonzero if the boost velocity u or the rotation angle q is a
function of time or space.

In particular, since the transformation (both the velocity shift
and the rotation) varies in time but not space, Table 4 gives the

transformation rules that lead to the equation of motion in the
galactocentric frame, in the limit that u= c.
This formalism thus allows us to account for both the

transformation to the galactocentric frame varying with time
and the expanding cosmological background.

A.4. Equation of Motion in the Galactocentric Frame

We can use Equation (A10) and the definitions in
Equations (A15) to calculate the fields for our metric and
tetrad. Then we can use the table to find the equation of motion
in the frame of integration.
The fields in the simulation frame are as follows:

( )= -¶ Fg , A18I I

( )W = 0, A19I

( ) ( )d= - - FM
a
a

1 2 , A20j
I

j
I

( )=N 0. A21j
I

When transformed to the galactocentric frame, we find

( ) ( )¯
= - ¶ F - ⋅ F - ¶ug R u u2 , A22

I
J
I J I

t
I

¯ ( ) ( )
( ) ( )

q

q q
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u u u n

n n nsin 1 cos , A23
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I I
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t
I

JK
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1
2



¯ ( ) ( )d= - - FM
a
a

R1 2 , A24j
I

K
I

j
K

¯ ( ) ( )d= - FN
a
a

u1 2 . A25j
I

JK
I

j
J K 

Inserting these terms into the equation of motion gives us
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which includes the “noninertial forces”—terms from trans-
forming from the expanding cosmological box (the simulation
frame) into a local inertial frame that varies with time (the
galactocentric frame). The terms should all be evaluated in the
galactocentric frame. The last term on line 1 of the above
equation is the “force” from accelerating the reference frame,
and the first term on line 3 is the Coriolis force from rotating

Table 4
Lorentz Transformations of Gravitational Fields

Transformation of Fields under Velocity Transformation (Boost) by u(t) and Rotation by θ i ≡ θn i

Non-time-varying Terms Terms If u(t) Terms If θ(t)

¯ =gI ( )- ´ Wg uR J
I J I −∂tu

I 0
W̄ =I ( )W + ´u gR J

I J I ( )- ´ ¶u u
1
2

t
I ( )q q q- ¶ - ¶ + - ¶n n n nsin 1 cosI

t t
I

JK
I J

t
K

¯ =M k
I -R M u NJ

I
k

J
KL

I K
k

L 0 0
¯ =N k

I +R N u MJ
I

k
K

KL
I K

k
L 0 0

14 This is an extension of the idea that a vector always points in the same
direction no matter what coordinate system you use to describe its components.
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the reference frame. The other terms may be fairly small to zero
given that u/c= 1, v/c= 1, and Φ/c2= 1. Also note the
terms involving the Hubble parameter a a .

Reintroducing appropriate factors of c on both sides gives

( ) ( )
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This implies that for v= c the EOM reduces to

( )

( ) ( )[( ) ]
( )

q

q q

=-¶ F - ¶ - - ¶ ´

- ¶ ´ + - ´ ¶ ´

^

^ ^ ^

v

v v

dv
dt

u
a
a

v n

n n nsin 1 cos ,
A28

I
I

t
I I

t
I

t
I

t



where the first line is terms from acceleration and the second
from rotation of the galactocentric frame. In this work, we fix
the rotation of the galactocentric frame so the terms on the
second line vanish, leaving the terms on the first line.
Equation (1) is then obtained by identifying  Fdv dtI/ (the
force per unit mass in the galactocentric frame),-¶ F  FI

(the gravitational field in the galactocentric frame), and
¶  uu d dtt

I / (the peculiar velocity of the galactic center).
It is useful to consider the size of terms on the second line of

this equation, induced by changing the orientation of the
galactic frame in time, compared to the size of the second term
on the first line, which is induced by tracking the motion of the
galactic COM in space. It is sometimes necessary to reorient
the galactocentric frame over the course of a simulation in
order to keep the azimuthal harmonic expansion coordinates
lined up with the disk symmetry axis, in which case this
rotation induces fictitious forces and the terms on the second
line will be nonzero. Typical COM accelerations are of order

0.3 km s−1 Myr−1 (A. Arora et al. 2022). In the simulation used
in this work the disk plane rotates by about 20° over 7 Gyr up
to the present day, so ∂tθ is ∼10−4 rad Myr−1. For typical
orbital velocities of ∼100 km s−1, the first term on the second
line of Equation (A28) is thus about 0.01 km s−1 Myr−1.
However, during a merger the disk can change its orientation
far more rapidly than this, which will both necessitate rotation
of the galactocentric frame and increase the size of these terms.

Appendix B
Force Residuals under Different Symmetries across the

Cartesian Axes

Figure 13 presents violin plots showcasing the residual
distributions of reconstructed forces compared to true forces
across different Cartesian axes for DM (green) and stars
(orange) within 50 kpc of the galactic center. Each row
corresponds to a specific Cartesian axis: X (top row), Y (middle
row), and Z (bottom row). These distributions depict the impact
of various symmetry conditions imposed on the halo and the
disk, as denoted by the X-axis notation, with detailed
symmetries listed in Table 2. The dotted lines in the plots
denote the 25th and 75th quartiles, while the solid line marks
the 50th quartile.
The residual distributions across different Cartesian axes, as

depicted in Figure 13, echo the trends observed in the total
force residual distributions discussed in Figure 2 (Section 2.3).
Generally, all distributions exhibit larger standard deviations
(σ) compared to the residuals of force magnitudes. However,
models with constrained symmetries tend to display wider tails
across all axes, along with a nonzero mean (μ) along the X- and
Y-axes.
Notably, the residual distribution along the Z-axis shows a

higher degree of symmetry, with mean values close to zero and
lower standard deviations for both DM and star distributions
across all models. This could stem from disk alignment in the
X–Y plane, with the disk angular momentum aligned with the
Z-axis. Conversely, the distribution along the Y-axis exhibits a
bimodal pattern, suggesting a higher likelihood of systematic
biases introduced by symmetry assumptions. Interestingly, this
bimodal behavior is not observed in a different simulation from
the Latte suite (A. Wetzel et al. 2023; not included).

19

The Astrophysical Journal, 977:23 (21pp), 2024 December 10 Arora et al.



ORCID iDs

Arpit Arora https://orcid.org/0000-0002-8354-7356
Robyn Sanderson https://orcid.org/0000-0003-3939-3297
Nicolás Garavito-Camargo https://orcid.org/0000-0001-
7107-1744
Emily Bregou https://orcid.org/0000-0003-3792-8665
Nondh Panithanpaisal https://orcid.org/0000-0001-
5214-8822
Andrew Wetzel https://orcid.org/0000-0003-0603-8942
Emily C. Cunningham https://orcid.org/0000-0002-
6993-0826
Sarah R. Loebman https://orcid.org/0000-0003-3217-5967
Adriana Dropulic https://orcid.org/0000-0002-7352-6252
Nora Shipp https://orcid.org/0000-0003-2497-091X

References

Ansar, S., Pearson, S., Sanderson, R. E., et al. 2024, ApJ, in press
Arora, A., Garavito-Camargo, N., Sanderson, R. E., et al. 2024, APJ, 974,

286,
Arora, A., Sanderson, R. E., Panithanpaisal, N., et al. 2022, ApJ, 939, 2
Baptista, J., Sanderson, R., Huber, D., et al. 2023, ApJ, 958, 44
Barber, C., Starkenburg, E., Navarro, J. F., McConnachie, A. W., & Fattahi, A.

2014, MNRAS, 437, 959
Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2012, ApJ, 762, 109
Besla, G., Kallivayalil, N., Hernquist, L., et al. 2007, ApJ, 668, 949
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed.; Princeton, NJ:

Princeton Univ. Press)
Bonaca, A., Geha, M., Küpper, A. H., et al. 2014, ApJ, 795, 94
Bovy, J. 2015, ApJS, 216, 29
Bovy, J., & Rix, H.-W. 2013, ApJ, 779, 115
Bregou, E., Sanderson, R., Panithanpaisal, N., & Arora, A. 2023, AAS Meeting

Abstracts, 241, 402.32

Figure 13. Variation in performance with different symmetry assumptions across Cartesian axes. Violin plots illustrate the residual distributions between the
reconstructed and true forces across different Cartesian axes (first row: X-axis, second row: Y-axis, third row: Z-axis) for DM (green) and stars (orange) within 50 kpc
of the galactic center at the present day. The forces are reconstructed using the same symmetry models as in Section 2.3, with various symmetry conditions imposed on
the halo and the disk. The notation on the X-axis indicates the symmetry conditions applied on the halo and disk, respectively, following the notation from Table 2.
The short-dashed lines represent the 25th and 75th quartiles of the distributions, while the long-dashed line represents the 50th quartile.

20

The Astrophysical Journal, 977:23 (21pp), 2024 December 10 Arora et al.

https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0002-8354-7356
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0003-3939-3297
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0001-7107-1744
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0003-3792-8665
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0001-5214-8822
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0003-0603-8942
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0002-6993-0826
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0003-3217-5967
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0002-7352-6252
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://orcid.org/0000-0003-2497-091X
https://doi.org/10.48550/arXiv.2309.16811
https://doi.org/10.3847/1538-4357/ad7375
https://ui.adsabs.harvard.edu/abs/2024ApJ...974..286A/abstract
https://ui.adsabs.harvard.edu/abs/2024ApJ...974..286A/abstract
https://doi.org/10.3847/1538-4357/ac93fb
https://ui.adsabs.harvard.edu/abs/2022ApJ...939....2A/abstract
https://doi.org/10.3847/1538-4357/acea79
https://ui.adsabs.harvard.edu/abs/2023ApJ...958...44B/abstract
https://doi.org/10.1093/mnras/stt1959
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437..959B/abstract
https://doi.org/10.1088/0004-637X/762/2/109
https://ui.adsabs.harvard.edu/abs/2013ApJ...762..109B/abstract
https://doi.org/10.1086/521385
https://ui.adsabs.harvard.edu/abs/2007ApJ...668..949B/abstract
https://doi.org/10.1088/0004-637X/795/1/94
https://ui.adsabs.harvard.edu/abs/2014ApJ...795...94B/abstract
https://doi.org/10.1088/0067-0049/216/2/29
https://ui.adsabs.harvard.edu/abs/2015ApJS..216...29B/abstract
https://doi.org/10.1088/0004-637X/779/2/115
https://ui.adsabs.harvard.edu/abs/2013ApJ...779..115B/abstract
https://ui.adsabs.harvard.edu/abs/2023AAS...24140232B/abstract


Cunningham, E. C., Garavito-Camargo, N., Deason, A. J., et al. 2020, ApJ,
898, 4

Diemand, J., Kuhlen, M., & Madau, P. 2007, ApJ, 667, 859
Donlon, T., Newberg, H. J., Sanderson, R., et al. 2024, MNRAS, 531, 1422
D’Souza, R., & Bell, E. F. 2021, MNRAS, 504, 5270
D’Souza, R., & Bell, E. F. 2022, MNRAS, 512, 739
Einasto, J. 1965, TrAlm, 5, 87
Emami, R., Genel, S., Hernquist, L., et al. 2021, ApJ, 913, 36
Erkal, D., Belokurov, V., Laporte, C. F. P., et al. 2019, MNRAS, 487, 2685
Erkal, D., Li, T., Koposov, S. E., et al. 2018, MNRAS, 481, 3148
Fritz, T., Battaglia, G., Pawlowski, M., et al. 2018, A&A, 619, A103
Garavito-Camargo, N., Besla, G., Laporte, C. F. P., et al. 2021, ApJ, 919,

109
Garavito-Camargo, N., Price-Whelan, A. M., Samuel, J., et al. 2024, APJ,

975, 100,
Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., & Lee, K. 2014,

MNRAS, 438, 2578
Gómez, F. A., Besla, G., Carpintero, D. D., et al. 2015, ApJ, 802, 128
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
Helmi, A., & White, S. D. M. 1999, MNRAS, 307, 495
Hopkins, P. F., Wetzel, A., Kereš, D., et al. 2018, MNRAS, 480, 800
Horta, D., Cunningham, E. C., Sanderson, R. E., et al. 2023, ApJ, 943, 158
Hunt, J. A. S., Bub, M. W., Bovy, J., et al. 2019, MNRAS, 490, 1026
Hunter, J. D. 2007, CSE, 9, 90
Ibata, R., Wyse, R., Gilmore, G., Irwin, M., & Suntzeff, N. 1996, arXiv:astro-

ph/9612025
Ishchenko, M., Sobolenko, M., Berczik, P., et al. 2023, A&A, 673, A152
Jiang, I.-G., & Binney, J. 2000, MNRAS, 314, 468
Jing, Y. P., & Suto, Y. 1998, ApJ, 494, L5
Johnston, K. V., Spergel, D. N., Hernquist, L., et al. 1995, arXiv:astro-ph/

9502005
Johnston, K. V., Zhao, H., Spergel, D. N., & Hernquist, L. 1999, ApJ,

512, L109
Koposov, S. E., Erkal, D., Li, T. S., et al. 2023, MNRAS, 521, 4936
Koposov, S. E., Rix, H.-W., & Hogg, D. W. 2010, ApJ, 712, 260
Laporte, C. F. P., Johnston, K. V., Gómez, F. A., Garavito-Camargo, N., &

Besla, G. 2018, MNRAS, 481, 286
Law, D. R., & Majewski, S. R. 2010, ApJ, 714, 229
Lazar, A., Bullock, J. S., Boylan-Kolchin, M., et al. 2020, MNRAS, 497, 2393
Lilleengen, S., Petersen, M. S., Erkal, D., et al. 2023, MNRAS, 518, 774
Lowing, B., Jenkins, A., Eke, V., & Frenk, C. 2011, MNRAS, 416, 2697
Lux, H., Read, J. I., & Lake, G. 2010, MNRAS, 406, 2312
Lynden-Bell, D. 1976, MNRAS, 174, 695
M. Price-Whelan, A. 2017, JOSS, 2, 388
Malhan, K., & Ibata, R. A. 2019, MNRAS, 486, 2995
Massari, D., Koppelman, H. H., & Helmi, A. 2019, A&A, 630, L4
McMillan, P. J. 2017, MNRAS, 465, 76
Miyamoto, M., & Nagai, R. 1975, PASJ, 27, 533
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Ngan, W., Bozek, B., Carlberg, R. G., et al. 2015, ApJ, 803, 75
Pace, A. B., Erkal, D., & Li, T. S. 2022, ApJ, 940, 136

Panithanpaisal, N., Sanderson, R. E., Arora, A., Cunningham, E. C., &
Baptista, J. 2022, arXiv:2210.14983

Panithanpaisal, N., Sanderson, R. E., Wetzel, A., et al. 2021, ApJ, 920, 10
Patel, E., Besla, G., Mandel, K., & Sohn, S. T. 2018, ApJ, 857, 78
Patel, E., Besla, G., & Sohn, S. T. 2016, MNRAS, 464, 3825
Pawlowski, M. S. 2018, MPLA, 33, 1830004
Perez, F., & Granger, B. E. 2007, CSE, 9, 21
Petersen, M. S., & Peñarrubia, J. 2020, MNRAS: Letters, 494, L11
Petersen, M. S., Weinberg, M. D., & Katz, N. 2022, MNRAS, 510, 6201
Planck Collaboration, Ade, P., Aghanim, N., et al. 2016, A&A, 594, A13
Pouliasis, E., Di Matteo, P., & Haywood, M. 2017, A&A, 598, A66
Power, C., Navarro, J. F., Jenkins, A., et al. 2003, MNRAS, 338, 14
Prada, J., Forero-Romero, J. E., Grand, R. J. J., Pakmor, R., & Springel, V.

2019, MNRAS, 490, 4877
Preto, M., & Tremaine, S. 1999, AJ, 118, 2532
Riley, A. H., & Strigari, L. E. 2020, MNRAS, 494, 983
Sales, L. V., & Navarro, J. F. 2023, NatAs, 7, 376
Sales, L. V., Wetzel, A., & Fattahi, A. 2022, NatAs, 6, 897
Samuel, J., Wetzel, A., Tollerud, E., et al. 2020, MNRAS, 491, 1471
Sanders, J. L., Lilley, E. J., Vasiliev, E., Evans, N. W., & Erkal, D. 2020,

MNRAS, 499, 4793
Santistevan, I. B., Wetzel, A., Tollerud, E., Sanderson, R. E., & Samuel, J.

2023, MNRAS, 518, 1427
Santistevan, I. B., Wetzel, A., Tollerud, E., et al. 2024, MNRAS, 527, 8841
Sawala, T., Cautun, M., Frenk, C., et al. 2023, NatAs, 7, 481
Shipp, N., Erkal, D., Drlica-Wagner, A., et al. 2021, ApJ, 923, 149
Shipp, N., Panithanpaisal, N., Necib, L., et al. 2023, ApJ, 949, 44
Simon, J. D. 2018, ApJ, 863, 89
Toomre, A., & Toomre, J. 1972, ApJ, 178, 623
van der Velden, E. 2020, JOSS, 5, 2004
Van Gunsteren, W. F., & Berendsen, H. J. 1988, MoSim, 1, 173
Vasiliev, E. 2013, MNRAS, 434, 3174
Vasiliev, E. 2019a, MNRAS, 484, 2832
Vasiliev, E. 2019b, MNRAS, 482, 1525
Vasiliev, E. 2024, MNRAS, 527, 437
Vasiliev, E., Belokurov, V., & Erkal, D. 2021, MNRAS, 501, 2279
Vera-Ciro, C., & Helmi, A. 2013, ApJL, 773, L4
Wang, Y., Athanassoula, E., & Mao, S. 2020, A&A, 639, A38
Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A.

2002, ApJ, 568, 52
Weinberg, M. D. 1999, AJ, 117, 629
Wetzel, A., & Garrison-Kimmel, S., 2020a GizmoAnalysis: Read and Analyze

Gizmo Simulations, Astrophysics Source Code Library, ascl:2002.015
Wetzel, A., & Garrison-Kimmel, S., 2020b HaloAnalysis: Read and Analyze

Nalo Catalogs and Merger Trees, Astrophysics Source Code Library,
ascl:2002.014

Wetzel, A., Hayward, C. C., Sanderson, R. E., et al. 2023, ApJS, 265, 44
Wetzel, A. R., Deason, A. J., & Garrison-Kimmel, S. 2015, ApJ, 807, 49
Wetzel, A. R., Hopkins, P. F., Kim, J.-h., et al. 2016, ApJL, 827, L23
Wetzel, A. R., & Nagai, D. 2015, ApJ, 808, 40
Yoshida, H. 1990, PhLA, 150, 262

21

The Astrophysical Journal, 977:23 (21pp), 2024 December 10 Arora et al.

https://doi.org/10.3847/1538-4357/ab9b88
https://ui.adsabs.harvard.edu/abs/2020ApJ...898....4C/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...898....4C/abstract
https://doi.org/10.1086/520573
https://ui.adsabs.harvard.edu/abs/2007ApJ...667..859D/abstract
https://doi.org/10.1093/mnras/stae1264
https://ui.adsabs.harvard.edu/abs/2024MNRAS.531.1422D/abstract
https://doi.org/10.1093/mnras/stab1283
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.5270D/abstract
https://doi.org/10.1093/mnras/stac404
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512..739D/abstract
https://ui.adsabs.harvard.edu/abs/1965TrAlm...5...87E/abstract
https://doi.org/10.3847/1538-4357/abf147
https://ui.adsabs.harvard.edu/abs/2021ApJ...913...36E/abstract
https://doi.org/10.1093/mnras/stz1371
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.2685E/abstract
https://doi.org/10.1093/mnras/sty2518
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.3148E/abstract
https://doi.org/10.1051/0004-6361/201833343
https://ui.adsabs.harvard.edu/abs/2018A&#x00026;A...619A.103F/abstract
https://doi.org/10.3847/1538-4357/ac0b44
https://ui.adsabs.harvard.edu/abs/2021ApJ...919..109G/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...919..109G/abstract
https://doi.org/10.3847/1538-4357/ad6e7e
https://ui.adsabs.harvard.edu/abs/2024ApJ...975..100G/abstract
https://ui.adsabs.harvard.edu/abs/2024ApJ...975..100G/abstract
https://doi.org/10.1093/mnras/stt2377
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438.2578G/abstract
https://doi.org/10.1088/0004-637X/802/2/128
https://ui.adsabs.harvard.edu/abs/2015ApJ...802..128G/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.1046/j.1365-8711.1999.02616.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.307..495H/abstract
https://doi.org/10.1093/mnras/sty1690
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480..800H/abstract
https://doi.org/10.3847/1538-4357/acae87
https://ui.adsabs.harvard.edu/abs/2023ApJ...943..158H/abstract
https://doi.org/10.1093/mnras/stz2667
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.1026H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
http://arxiv.org/abs/astro-ph/9612025
http://arxiv.org/abs/astro-ph/9612025
https://doi.org/10.1051/0004-6361/202245117
https://ui.adsabs.harvard.edu/abs/2023A&#x00026;A...673A.152I/abstract
https://doi.org/10.1046/j.1365-8711.2000.03311.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.314..468J/abstract
https://doi.org/10.1086/311163
https://ui.adsabs.harvard.edu/abs/1998ApJ...494L...5J/abstract
http://arxiv.org/abs/astro-ph/9502005
http://arxiv.org/abs/astro-ph/9502005
https://doi.org/10.1086/311876
https://ui.adsabs.harvard.edu/abs/1999ApJ...512L.109J/abstract
https://ui.adsabs.harvard.edu/abs/1999ApJ...512L.109J/abstract
https://doi.org/10.1093/mnras/stad551
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.4936K/abstract
https://doi.org/10.1088/0004-637X/712/1/260
https://ui.adsabs.harvard.edu/abs/2010ApJ...712..260K/abstract
https://doi.org/10.1093/mnras/sty1574
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481..286L/abstract
https://doi.org/10.1088/0004-637X/714/1/229
https://ui.adsabs.harvard.edu/abs/2010ApJ...714..229L/abstract
https://doi.org/10.1093/mnras/staa2101
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2393L/abstract
https://doi.org/10.1093/mnras/stac3108
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518..774L/abstract
https://doi.org/10.1111/j.1365-2966.2011.19222.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.416.2697L/abstract
https://doi.org/10.1111/j.1365-2966.2010.16877.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.406.2312L/abstract
https://doi.org/10.1093/mnras/174.3.695
https://ui.adsabs.harvard.edu/abs/1976MNRAS.174..695L/abstract
https://doi.org/10.21105/joss.00388
https://ui.adsabs.harvard.edu/abs/2017JOSS....2..388P/abstract
https://doi.org/10.1093/mnras/stz1035
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.2995M/abstract
https://doi.org/10.1051/0004-6361/201936135
https://ui.adsabs.harvard.edu/abs/2019A&#x00026;A...630L...4M/abstract
https://doi.org/10.1093/mnras/stw2759
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465...76M/abstract
https://ui.adsabs.harvard.edu/abs/1975PASJ...27..533M/abstract
https://doi.org/10.1086/304888
https://ui.adsabs.harvard.edu/abs/1997ApJ...490..493N/abstract
https://doi.org/10.1088/0004-637X/803/2/75
https://ui.adsabs.harvard.edu/abs/2015ApJ...803...75N/abstract
https://doi.org/10.3847/1538-4357/ac997b
https://ui.adsabs.harvard.edu/abs/2022ApJ...940..136P/abstract
http://arxiv.org/abs/2210.14983
https://doi.org/10.3847/1538-4357/ac1109
https://ui.adsabs.harvard.edu/abs/2021ApJ...920...10P/abstract
https://doi.org/10.3847/1538-4357/aab78f
https://ui.adsabs.harvard.edu/abs/2018ApJ...857...78P/abstract
https://doi.org/10.1093/mnras/stw2616
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3825P/abstract
https://doi.org/10.1142/S0217732318300045
https://ui.adsabs.harvard.edu/abs/2018MPLA...3330004P/abstract
https://doi.org/10.1109/MCSE.2007.53
https://ui.adsabs.harvard.edu/abs/2007CSE.....9c..21P/abstract
https://doi.org/10.1093/mnrasl/slaa029
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494L..11P/abstract
https://doi.org/10.1093/mnras/stab3639
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.6201P/abstract
https://doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A&#x00026;A...594A..13P/abstract
https://doi.org/10.1051/0004-6361/201527346
https://ui.adsabs.harvard.edu/abs/2017A&#x00026;A...598A..66P/abstract
https://doi.org/10.1046/j.1365-8711.2003.05925.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.338...14P/abstract
https://doi.org/10.1093/mnras/stz2873
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4877P/abstract
https://doi.org/10.1086/301102
https://ui.adsabs.harvard.edu/abs/1999AJ....118.2532P/abstract
https://doi.org/10.1093/mnras/staa710
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494..983R/abstract
https://doi.org/10.1038/s41550-023-01924-y
https://ui.adsabs.harvard.edu/abs/2023NatAs...7..376S/abstract
https://doi.org/10.1038/s41550-022-01689-w
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..897S/abstract
https://doi.org/10.1093/mnras/stz3054
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.1471S/abstract
https://doi.org/10.1093/mnras/staa3079
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.4793S/abstract
https://doi.org/10.1093/mnras/stac3100
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.1427S/abstract
https://doi.org/10.1093/mnras/stad3757
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.8841S/abstract
https://doi.org/10.1038/s41550-022-01856-z
https://ui.adsabs.harvard.edu/abs/2023NatAs...7..481S/abstract
https://doi.org/10.3847/1538-4357/ac2e93
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..149S/abstract
https://doi.org/10.3847/1538-4357/acc582
https://ui.adsabs.harvard.edu/abs/2023ApJ...949...44S/abstract
https://doi.org/10.3847/1538-4357/aacdfb
https://ui.adsabs.harvard.edu/abs/2018ApJ...863...89S/abstract
https://doi.org/10.1086/151823
https://ui.adsabs.harvard.edu/abs/1972ApJ...178..623T/abstract
https://doi.org/10.21105/joss.02004
https://ui.adsabs.harvard.edu/abs/2020JOSS....5.2004V/abstract
https://doi.org/10.1080/08927028808080941
https://doi.org/10.1093/mnras/stt1235
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.3174V/abstract
https://doi.org/10.1093/mnras/stz171
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.2832V/abstract
https://doi.org/10.1093/mnras/sty2672
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1525V/abstract
https://doi.org/10.1093/mnras/stad2612
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527..437V/abstract
https://doi.org/10.1093/mnras/staa3673
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.2279V/abstract
https://doi.org/10.1088/2041-8205/773/1/L4
https://ui.adsabs.harvard.edu/abs/2013ApJ...773L...4V/abstract
https://doi.org/10.1051/0004-6361/202038225
https://ui.adsabs.harvard.edu/abs/2020A&#x00026;A...639A..38W/abstract
https://doi.org/10.1086/338765
https://ui.adsabs.harvard.edu/abs/2002ApJ...568...52W/abstract
https://doi.org/10.1086/300669
https://ui.adsabs.harvard.edu/abs/1999AJ....117..629W/abstract
http://www.ascl.net/2002.015
http://www.ascl.net/2002.014
https://doi.org/10.3847/1538-4365/acb99a
https://ui.adsabs.harvard.edu/abs/2023ApJS..265...44W/abstract
https://doi.org/10.1088/0004-637X/807/1/49
https://ui.adsabs.harvard.edu/abs/2015ApJ...807...49W/abstract
https://doi.org/10.3847/2041-8205/827/2/L23
https://ui.adsabs.harvard.edu/abs/2016ApJ...827L..23W/abstract
https://doi.org/10.1088/0004-637X/808/1/40
https://ui.adsabs.harvard.edu/abs/2015ApJ...808...40W/abstract
https://doi.org/10.1016/0375-9601(90)90092-3
https://ui.adsabs.harvard.edu/abs/1990PhLA..150..262Y/abstract

	1. Introduction
	2. Methods
	2.1. Simulations and Coordinate System
	2.2. Potential Models
	2.3. Force Reconstruction
	2.3.1. Reconstructions under Imposed Model Symmetry


	3. Selection of Stars and Orbit Integration
	4. Accuracy of Reconstructed Orbits
	4.1. Relative Position Error Metric
	4.1.1. Phase-space Dependence at the Final Time Step
	4.1.2. Positional Errors at the Final Time Step
	4.1.3. Temporal Dependence in the Error Metric
	4.1.4. Pericenter and Apocenter Comparison

	4.2. Reproducing Integrals of Motion
	4.3. Instantaneous Failure Based on Total Angular Momentum
	4.4. Dependence on the Sampling Interval

	5. Simulating Stream Formation
	6. Summary and Discussion
	Appendix ANoninertial Forces on a Cosmological Background
	A.1. Definitions
	A.2. Equation of Motion
	A.3. Fields and Transformations
	A.4. Equation of Motion in the Galactocentric Frame

	Appendix BForce Residuals under Different Symmetries across the Cartesian Axes
	References

