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Abstract
Cyber-physical-social infrastructure systems (CPSIS) are an ex-
tension of cyber-physical systems (CPS). In addition to sensing,
measuring, interpreting, and optimizing physical attributes of the
built environment to improve infrastructure performance, CPSIS
also takes into account human-centered—or social—objectives often
overlooked by CPS. Although this paradigm shift aims to incorpo-
rate the social system supported by infrastructure into CPS, there
is still a gap in measuring social objectives in line with the guiding
principle of CPSIS. Specifically, the integration of sensing technolo-
gies and computation for assessing these social objectives remains
largely unaddressed. As a salient example, sociometric tests used
ubiquitously to capture the social structure and sociability embed-
ded within a group of individuals still relies on subjects manually
answering questionnaires to derive social connectivity. This data
collection scheme is, among other things, subject to attribution bias,
inefficient, and laborious. Here, reliance on manually-sourced data
to inform sociometric tests falls short in leveraging the sensing and
automation capabilities inherent in CPSIS. To overcome these chal-
lenges, we propose a human activity recognition (HAR) dataset and
framework that can help to automate the procedure of sociometric
assessment. The design of the dataset takes into account the limita-
tions that hinders the development of the automated sociometric
examination in state-of-the-art HAR techniques. The framework
adopts a multidisciplinary approach, drawing upon HAR, kinesics,
and sociology to efficiently distill the interpersonal relationships
within social systems and provide a qualitative and quantitative
interpretation of sociability for modeling and optimization in the
context of CPSIS.

CCS Concepts
• Human-centered computing → Social network analysis;
Social networks.
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1 Introduction
Cyber-physical-social infrastructure systems (CPSIS) have recently
evolved as an extension of traditional cyber-physical systems (CPS).
While CPS focuses on optimizing infrastructure performance (e.g.,
efficiency and safety) through sensing, computation, and control,
CPSIS also considers how the social system interacts with and ben-
efits from the built environment [3]. Specifically, CPSIS introduces
a paradigm that integrates human-centered, or “social,” objectives
into CPS, measuring, interpreting, and optimizing factors like so-
ciability and productivity for those using the infrastructure, as
illustrated in Figure 1. A human-centered framework like CPSIS
offers significant advantages for applications such as autonomous
vehicles, smart homes, elder care management, and many more.

However, despite its potential across various sectors, a significant
gap remains in how to measure and interpret these social objectives
in CPSIS [2]. While physical attributes can be continuously sensed
and optimized through various technologies, social objectives—such
as sociability, cohesion, and productivity—are often less tangible
and harder to quantify. Addressing these social aspects of CPSIS
requires a more sophisticated approach to measuring and modeling
human interactions within the system. Specifically, there is a need
to integrate social science methodologies, like sociometric assess-
ments, with sensing technologies to fully capture and respond to
the social dynamics within human environments.

Sociability, a key social objective, offers a valuable pathway to
understanding group interactions [4]. It refers to the attractions and
repulsions within a group of individuals, providing both qualitative
and quantitative insights into social dynamics [20]. To systemat-
ically analyze and measure sociability, Moreno (1941) developed
a sociometric test to uncover the underlying social structure and
sociability within groups [20]. Individuals in groups are asked to
select others based on specific criteria, such as friendship or collab-
oration. These tests reveal patterns of attraction, repulsion, social
capital, and isolation within groups, helping to map the flow of
social interactions. However, sociometric tests have traditionally
relied on self-reported data and interviews, which are subject to
attribution bias [11] and inefficiency [26]. This reliance on manual
data collection hampers their potential in CPSIS, where automated,
continuous sensing of both physical and social systems is crucial
for near real-time optimization.
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Figure 1: CPSIS aims to interpret the reciprocative influence
physical and social systems have on each other at the behav-
ioral level. It is distinct from interaction on physiological
levels—where the CPS interacts with bio-signals—and also
distinct from interaction on population levels—where the fo-
cus in on large-scale interactions between netowrked human
populations and CPS.

The benefits of automating sociometric tests within CPSIS appli-
cations are far-reaching. For example, in education, understanding
peer dynamics through sociometric assessments can inform the de-
sign of collaborative learning environments, optimizing classroom
layouts and peer groupings to enhance both academic performance
and social integration [19]. In team-based workspaces, automated
sociometric analysis can be used to monitor and enhance team
productivity by identifying patterns of collaboration and social co-
hesion, helping managers foster more effective group dynamics [9].
In public open spaces, tracking sociability through automated meth-
ods can offer insights into how different designs or spatial arrange-
ments affect social interaction, leading to better urban planning
that promotes community engagement [7]. Additionally, sociomet-
ric assessments have the potential to significantly enhance social
cohesion in communities. For instance, urban planners could use
these insights to design infrastructure that strengthens community
ties by facilitating social interactions in public spaces [7]. Like-
wise, in elder care settings, automated sociometric tests could help
identify individuals at risk of social isolation, enabling interven-
tions to maintain social engagement and prevent cognitive decline
[5]. By systematically measuring sociability rooted in sociometric
analysis, CPSIS can improve both the design and functionality of
infrastructure, promoting the well-being of its users.

The current reliance on manually administered sociometric tests,
however, falls short in fully leveraging the sensing and automation
capabilities of CPSIS. These tests require respondents to reflect on
their preferences and relationships, a process prone to attribution
bias, as individuals often misjudge the rationale behind their deci-
sions [27]. Additionally, repeated assessments are time-consuming,
limiting the practicality of sociometric tests in iterative contexts,
such as education or work environments [26]. To overcome these

challenges, we propose an approach that automates sociometric as-
sessments by using nonverbal communication and human activity
recognition (HAR) to extract social preferences and relationships
more accurately and efficiently.

There are many channels to express positive, negative, and neu-
tral emotions, including verbal, nonverbal, visual, and written com-
munications [10]. Nonverbal communication, particularly kinesics—
the study of body language—plays a crucial role in human interac-
tion, revealing subconscious cues about the nature of relationships
[25]. Kinesics allows for exploration of the disposition embedded
in the bodily movements of human interactions—whether the inter-
action is positive, negative, or neutral. Coupled with HAR, which
studies the spatial and temporal coordination of human body move-
ments, we propose the automated extraction of these social cues,
providing real-time sociometric data. This approach not only by-
passes the attribution bias inherent in self-reported data [22] but
also allows for continuous and unobtrusive monitoring of social
dynamics, making it ideal for not only CPSIS applications, but also
other sociological and psychological examinations. A key contribu-
tion of this work lies in the creation of a new dataset, DUET, which
supports dyadic HAR and is grounded in a sociability taxonomy.
The novel adaptation of the sociability taxonomy connects HAR,
kinesics, psychology, and sociology, creating a multidisciplinary
bridge. This integration stands to enhance the performance of HAR
in inferring dyadic interactions, which is essential for automating
sociometric assessments and supporting various sociological and
psychological studies within CPSIS and other relevant fields.

The remainder of the paper is organized as follows. First, in Sec-
tion 2 we discuss in more depth the process of manually-sourced
sociometric examination in order to better understand the advan-
tages and disadvantages of this current state-of-the-art process. The
identified limitations are used to justify the proposed methodology
for automated sociometric analysis. Next, Section 3 delineates the
prerequisites for the automation of sociometric analysis, identifies
limitations of state-of-the-art technologies and HAR algorithms
for dyadic interaction classification needed to support sociometric
tests, and presents a new dataset well-suited to overcome these
challenges. The procedure for an automated sociometric test that
builds upon dyadic HAR is laid out in Section 4. Lastly, Section 5
presents key conclusions of this work and discusses a roadmap for
future development.

2 Sociometric Analysis and its Role in CPSIS
Sociometric testing is a well-established method for measuring
sociability and understanding the social dynamics within a group
of individuals [20]. It provides both qualitative and quantitative
insights into social structure, revealing relationships of attraction,
repulsion, and isolation. However, the traditional methodology
behind sociometric testing and its limitations present challenges
when integrated into modern infrastructure systems like CPSIS,
which rely on near real-time data and automation. In this section, we
describe the sociometric test methodology and explore its inherent
limitations.
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Figure 2: A simple example of a sociogram demonstrates that
(1) Subject 1 has the most social wealth and (2) there are two
fractions within the group.

2.1 Sociometric Analysis Methodology
Sociometric tests are designed to map the social structure of a group
by capturing the social choices individuals make when responding
to specific questions. These tests typically involve asking partici-
pants to reflect on their preferences for others within a group in
hypothetical scenarios. For example, a question might ask, “Who
would you like to go on a two-day trip with the most?” Based on
the responses, a sociogram is created, which visually represents the
social relationships and sociability within the group.

Sociograms provide valuable insights into social structures. For
instance, they can reveal which individuals are central to the group’s
social dynamics (those with high social capital), those who are more
isolated, and any subgroups or cliques that may exist. The practi-
cal applications of sociometric testing span various fields. Moreno
(1941) famously used sociometric testing in penitentiaries to un-
derstand inmate relationships and to assign roles based on social
capital. In education, sociometric tests are used to identify social
dynamics within classrooms, allowing educators to adjust seat-
ing arrangements or groupings to foster better collaboration and
social integration [19]. Sociometric tests are also employed in psy-
chodrama group therapy, where they help assess the effectiveness
of sessions by mapping changes in social relationships before and
after therapy [6].

A simple example sociogram inferred from the question “who
would you like to spend time with the most” is shown in Figure 2.
In this example, there are seven subjects labeled with blue numbers
(𝑁 ), and arrows indicate each respondent’s preference for the ques-
tion asked. For instance, the arrow from Subject 5 to Subject 1 shows
that Subject 5 prefers to spend time with Subject 1. A bidirectional
arrow means that both subjects have chosen each other. The orange
numbers (𝑀) represent the number of votes each subject receives,
also referred to as their social wealth or social capital. From this
sociogram, we can draw three conclusions: (1) Subject 1 has the
highest social capital in the group, (2) the group is divided into two
subgroups, and (3) Subjects 3, 5, and 7 have no social capital, which
may discourage them from participating in social activities.

These qualitative and quantitative insights derived from so-
ciograms stand to provide valuable information in CPSIS appli-
cations. They could serve as a value input and help reduce uncer-
tainty in data-driven agent-based models, allowing for adjustment
of physical and environmental features in infrastructure systems to
improve social interactions and overall sociability. For example, in
an educational setting, the results of routinely updated sociometric
tests could be used to dynamically modify the layout of classrooms
to foster better peer engagement or support learners with special
needs. Similarly, in team-based workspaces, sociometric feedback
can be used to design office spaces that promote more effective
collaboration by identifying individuals who may benefit from be-
ing placed together or apart. The versatility of sociometric testing
offers great potential for improving human-centered infrastructure
systems.

2.2 Sociometric Analysis Limitations
Despite the widespread use and benefits of sociometric tests de-
scribed in Section 2.1, this traditional methodology presents several
challenges, particularly in the context of modern, automated sys-
tems like CPSIS. One of the primary limitations is attribution bias,
which affects the accuracy of the data collected. When individuals
are asked to make choices regarding their social preferences, they
may consciously or unconsciously misrepresent their true feelings.
This bias occurs when respondents overanalyze the rationale be-
hind their choices or feel pressured to respond in socially acceptable
ways [27]. As a result, the data collected may not accurately reflect
genuine social dynamics, reducing the reliability of sociometric
tests in providing faithful insights into group interactions.

In addition to attribution bias, the traditional sociometric test
is inefficient. Each time the test is administered, participants are
required to reflect on their social preferences and respond to a series
of questions. This process can be time-consuming and laborious,
particularly in settings that require iterative assessments, such as
education or workplace environments. Although efforts have been
made to expedite the process, such as through the development
of web applications for administering sociometric tests [26], these
methods still require active participation and are limited by human
response time.

These limitations hinder the potential of sociometric testing
within CPSIS, where real-time data collection and automation are
critical for optimizing infrastructure systems. Manually adminis-
tered sociometric tests do not align with the continuous sensing
and data-driven nature of CPSIS, where human preferences and so-
cial dynamics should be captured automatically to allow for timely
interventions and adjustments.

To address these limitations, we propose a privacy-preserving
approach that automates the sociometric assessment process by
leveraging HAR and kinesics, the study of body language. Nonver-
bal communication, such as bodymovements and facial expressions,
provides genuine, subconscious cues about social relationships that
can bypass the attribution bias inherent in self-reported data [22].
By analyzing these cues, we can automatically infer social prefer-
ences and map social structures without requiring participants to
manually respond to questions. This automated approach not only
eliminates the inefficiency of traditional sociometric tests but also
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Figure 3: Taxonomy comprising five communication functions.

Table 1: A comparison of existing depth and 3D skeleton-based dyadic datasets demonstrates that the DUET dataset has the
highest sample-class ratio, more locations than existing datasets, and is the only one that supports contextualization.

Dataset Depth Joints #Videos #Classes
#Videos/
#Classes

#Loca-
tions

Contextu-
alization Year

UT Interaction [23] No No 160 6 26.7 2 No 2010
SBU Kinect [29] Yes Yes 300 8 37.5 1 No 2012
K3HI [8] Yes No 320 6 53.3 1 No 2013
JPL Interaction [24] No No 399 7 57 5 No 2013
G3Di [1] Yes Yes 168 14 12 1 No 2015
M2I [17] Yes Yes 1,760 9 195.6 1 No 2015
ShakeFive 2 [28] No Yes 153 8 19.1 1 No 2016
NTU RGB+D 120 [16] Yes Yes 24,828 26 954.9 - No 2019
Air Act2Act [12] Yes Yes 500 10 500 2 No 2020

DUET (our dataset) [14] Yes Yes 14,400 12 1,200 3 Yes 2024

provides nearl real-time insights into social dynamics, making it
ideal for integration into CPSIS.

3 HAR for Sociometry
Sociometry distills the social structure embedded within a group
by directly assessing the interpersonal attractions and repulsions
within all subject pairs, emphasizing the need for accurate recogni-
tion of two-person (dyadic) interactions for automating sociometric
evaluations. However, current progress in dyadic HAR remains in-
adequate to fully automate sociometry, which relies on the indirect
inference of these attractions and repulsions.

3.1 State-of-the-art Dyadic HAR
HAR is a branch of artificial intelligence that has achieved sig-
nificant success in various fields, largely due to factors such as
the availability of publicly available datasets that aid in refining
data-driven deep learning algorithms. However, while numerous
datasets exist, most focus on single-person—or monadic—activities,
or single-person human-infrastructure interaction [18]. This dispro-
portionate focus on monadic HAR overlooks the greater complexity
involved in the spatial and temporal coordination of dyadic inter-
actions. Lin et al. [15] demonstrated that monadic algorithms that
have outstanding benchmarking records for single-person activities
do not perform nearly as well for dyadic interactions, highlighting
the disparity between monadic and dyadic activities. To address

this gap—improving the performance of dyadic HAR such that it
can support sociometric analysis—there is a need for more datasets
specifically designed for dyadic interactions to improve HAR in
these contexts.

In addition to increasing the number, quality, and diversity of
dyadic datasets for more accurate recognition of bodily movements,
automating sociometric assessment requires interpreting dyadic
interactions at a higher level of abstraction. Specifically, it must
account for the disposition of human interactions—whether they
are positive, negative, or neutral—conveyed through the nonverbal
communication. Nonverbal communication, particularly kinesics
(the study of body language) reveals subconscious inclinations
expressed in bodily movements, enabling us to explore the nature
of these interactions. By combining kinesics with HAR, we can
lay the foundation for automatically extracting subjects’ social
preferences and generating generating near real-time sociometric
data. However, most existing dyadic datasets—such as those listed
in Table 1—are insufficient for analyzing kinesics. Some of these
datasets focus on healthcare activities, while others merely track
bodily movements in specific contexts. To more accurately identify
human activities and interpret their dispositions in dyadic settings, a
dyadic HAR dataset that supports the analysis of social embeddings
of human interactions is needed.
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Figure 4: Sample frames of 12 interactions from DUET. The 12 interactions provided are, from left to right: waving in, thumbs
up, waving, pointing, showing measurements, nodding, drawing circles in the air, holding palms out, twirling or scratching
hair, laughing, arm crossing, and hugging. The modalities are organized in the order of, from top row to bottom row, depth and
3D skeleton joints.

3.2 Privacy Concerns of Data-Driven
Sociometry

In human-centered applications like CPSIS, preserving user privacy
is paramount, as it helps build trust between stakeholders and
users. Modalities commonly used for HAR are RGB, depth (which
is used to extract 3D skeleton joints from subjects), and infrared
(IR) (Table 1). These modalities each have their own strengths and
weaknesses. RGB data captures detailed information in the frame
ranging from interactions to locations to characteristic features
of subjects, but this richness of detail compromises user privacy.
IR data, while less descriptive than RGB, is useful for capturing
subjects in low-light conditions and for identifying basic shapes
and movements without revealing detailed personal characteristics,
offering a middle ground between information value and privacy
protection. 3D skeleton joints, on the other hand, represent subjects
as nodes and edges in 3D space, stripping away identifying features
indicative of the subjects. This sparse representation prioritizes
user privacy. Sensors that generate less detailed information than
depth sensors, such as passive infrared sensors, typically do not
provide enough data to accurately identify and classify the social
meaning of interactions [13]. This trade-off between information
richness and privacy, as shown in Figure 4, illustrates that the more
information is captured, the less privacy is preserved.

To address privacy concerns while supporting future research
efforts, our dataset utilizes the high-quality Azure Kinect v2, which
offers depth and 3D skeleton joint modalities. Our primary focus
for sociometric analysis—and what we discuss in this paper—is
on depth-based skeleton data. This modality provides an ideal bal-
ance between capturing meaningful interaction data and preserving
user privacy, which is essential in social settings. The 3D skeleton
joints represent subjects in an abstract form, devoid of identifiable
characteristics, making it crucial for sociometric analysis in privacy-
sensitive environments such as CPSIS. By focusing on depth and
skeleton-based sensing, we ensure that individual identities are
protected while still allowing for accurate analysis of social inter-
actions. This approach allows researchers to conduct sociometric
assessments and other analyses in privacy-critical contexts without
compromising data quality, while still enabling future exploration
of multimodal techniques as needed.

3.3 Dyadic User EngagemenT (DUET)
To advance the development of dyadic HAR and, by extension, the
automation of sociometric assessments, we created a dyadic HAR
dataset—Dyadic User EngagemenT (DUET) [14]. DUET includes 12
dyadic activities, as shown in Figure 3, which are adapted from a
psychological classification system that organizes human interac-
tions into five core communication functions. This integration of
psychological taxonomy allows for the contextualization of human
activities, revealing the social semantics embedded in bodily move-
ments and adding an additional layer of information to HAR tasks.
Contextualization has not only proven effective in enhancing the
performance of HAR tasks [21], but also provides a solid founda-
tion for systematically and efficiently classifying the disposition
of interactions. The five categories—emblems, illustrators, affect
displays, regulators, and adaptors—are closely tied to sociometric
assessment as they capture essential nonverbal cues that reveal the
nature of interpersonal interactions. Below, we describe how each
category contributes to sociometric assessments.

• Emblems: Emblems are gestures with direct verbal transla-
tions, often culturally specific (e.g., a thumbs-up). In socio-
metric assessment, emblems can help assess clear, intentional
communication signals between individuals, indicating pref-
erences, agreements, or dislikes. These overt gestures are
critical for identifying explicit social dynamics and relation-
ships within groups.

• Illustrators: Illustrators are gestures used to clarify or em-
phasize verbal communication. In the context of sociometric
assessment, illustrators can reveal the level of engagement
and emphasis individuals place on their interactions. The
frequency or intensity of illustrators may signal how much
importance a person places on a relationship, thus offering
insight into social cohesion or dominance within a group.

• Affect displays: Affect displays are nonverbal expressions
of emotions, such as smiling or frowning. These are key to
assessing emotional connections, as they provide subcon-
scious signals about attraction, repulsion, or neutrality in
social relationships. Understanding affect displays allows
sociometric assessments to gauge emotional dynamics and
social bonds within a group.

• Regulators: Regulators are nonverbal cues that govern the
flow of conversation, such as nodding to indicate listening or
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Figure 5: The proposed structure of the automated sociometric examination.

signaling a desire to speak. These cues are crucial for socio-
metric assessments because they reveal interaction patterns,
such as who leads conversations, who defers to others, and
how individuals influence group dynamics. This is partic-
ularly important for understanding group hierarchies and
social influence.

• Adaptors: Adaptors are gestures typically related to self-
comfort or emotional regulation, such as scratching one’s
head or fidgeting. These can provide insight into an individ-
ual’s emotional state during interactions and may indicate
stress, discomfort, or a lack of confidence in specific social
contexts. Adaptors can help sociometric assessments by iden-
tifying underlying social tensions or insecurities that affect
group cohesion.

3.4 Data Collection
DUET is collected at three locations representative of the potential
venues for CPSIS at Carnegie Mellon University (Pittsburgh, PA),
including a confined indoor space, an open indoor space, and an
open outdoor space. At each location, 20 consenting volunteers
participated in the data collection process, and were randomly
assigned in pairs to perform interactions. In total, 15 males and
eight females participated in the experiment. Their ages range from
23 to 42 years old with a mean of 27 years old and standard deviation
of 4.01 years. The subject heights span from 165.1cm to 185.4cm
with a mean of 172.7cm and standard deviation of 8.46cm. Their
weights range from 55kg to 93kg with a mean of 69kg and standard
deviation of 10.1kg. With the help from these subjects across three
locations, the DUET dataset comprises 14,400 samples across 12
activity classes, yielding the highest sample-class ratio known to
date.

4 Automated Sociometric Analysis
The automation of sociometry builds on the research and technolo-
gies discussed in Section 3. The first step in automating sociometric
assessments is to employ HAR to identify all human interactions
within the group, particularly focusing on dyadic interactions. HAR
is used to capture the spatial and temporal coordination of body
movements, which are essential for understanding the interper-
sonal relationships that define the social structure of a group. By
leveraging HAR as the foundational tool, we can bypass the time-
consuming and biased nature of manually-administered sociometric

tests, allowing for efficient and objective tracking of human inter-
actions.

Once HAR has captured the necessary interactions, we leverage
the established taxonomy of emblems, illustrators, affect displays,
regulators, and adaptors to classify the interactions. Each of these
nonverbal behaviors is tied to either positive, neutral, or negative
dispositions, providing a deeper understanding of the nature of the
social exchanges. For example, positive emblems and affect displays
often indicate supportive interactions, while neutral adaptors or
illustrators may reflect more routine or passive exchanges. Regu-
lators can signal dominance or cooperation, allowing us to infer
whether the interaction was collaborative or potentially conflictual.

Using this taxonomy, HAR identifies and categorizes interactions,
assigning dispositions to each. Once the interactions are classified
as positive, neutral, or negative, points are allocated accordingly:
one point for positive interactions, zero for neutral, and negative
one for negative interactions. The sum of these points for each
subject pair is calculated, representing their social preferences and
interaction tendencies. This quantified data is then tabulated to cre-
ate a comprehensive overview of the social dynamics in the group.
As shown in Figure 5, this table captures the cumulative interaction
scores between each pair, allowing the generation of a sociogram
that visually maps the relationships and social structures embed-
ded within the group. For the question used to derive the sample
sociogram in Figure 2, for instance, Subject 1 prefers to spend time
with Subject 2 since Subject 2 scores the highest among all subjects
in the first row of the table in Figure 5. The synergistic use of HAR,
kinesics, and sociology allows us to remove the attribution bias and
time inefficiency intrinsic in manually-sourced sociometric tests.

The use of HAR to classify nonverbal cues not only enhances
the accuracy of the sociometric analysis but also provides near real-
time insights into the evolving dynamics within the group. This
approach eliminates the need for self-reported data, thereby reduc-
ing attribution bias and inefficiencies. The automated sociometric
framework thus aligns seamlessly with the principles of CPSIS,
integrating sensing technologies to deliver continuous, real-time
assessments of social interactions. By focusing on the automated
recognition and classification of emblems, illustrators, affect dis-
plays, regulators, and adaptors, the system offers a robust tool for
understanding and optimizing social dynamics in privacy-sensitive
environments.
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5 Discussion and Conclusion
In this work, we present an automated sociometric approach that
extracts the embedded social structure and sociability within groups
of individuals. The proposed framework is interdisciplinary, inte-
grating HAR, kinesics, psychology, and sociology to address the at-
tribution bias and time inefficiencies common in manually-sourced
sociometric assessments. This approach aligns with the sensing
capabilities of CPSIS and creates a strong connection between the
sensing and modeling components within CPSIS.

Another key contribution of this work is the dataset, Dyadic User
EngagemenT (DUET), presented. DUET incoporates a psychological
taxonomy that identifies five fundamental human communication
functions. In addition to improving the performance of HAR tasks,
this novel integration provides a strong foundation for disposition
classification, which is essential for automating sociometric tests.
Additionally, the dataset includes multiple modalities (e.g., depth,
3D skeleton joints) that not only support the exploration of in-
dividual modalities but also aim to meet the privacy-preserving
requirements of CPSIS by combining less detailed modalities to
enhance their informational value.

Future developments based on this work can be broadly cate-
gorized into three areas: verification of the proposed framework,
automatic disposition classification, and the automation of other
social objectives. The first area requires comprehensive experi-
mentation, incorporating both manually-sourced and automated
sociometric evaluations, to validate the framework and quantify
the discrepancy between the two approaches. Once the reliabil-
ity of the approach is empirically confirmed, the process stands
to be streamlined and generalized through disposition classifica-
tion. Specifically, artificial intelligence can be used to explore the
underlying patterns in human interaction data and classify their
corresponding dispositions. This research will not only be applied
to the DUET dataset but also extended to other interactions. The
expansion of the disposition classification will improve the universi-
tality and practicality of this framework. Expanding the disposition
classification will enhance the framework’s universality and prac-
tical applicability. Additionally, this framework paves the way for
extracting other social objectives, such as satisfaction and cohesion,
and for automating a wider range of sociological and psychological
assessments.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant Number 2425121.

References
[1] Victoria Bloom, Vasileios Argyriou, and Dimitrios Makris. 2016. Hierarchical

transfer learning for online recognition of compound actions. Comput Vis Image
Underst 144 (2016), 62–72.

[2] Maral Doctorarastoo, Katherine Flanigan, Mario Bergés, and Christopher Mc-
Comb. 2023. Exploring the potentials and challenges of cyber-physical-social
infrastructure systems for achieving human-centered objectives. In Proceedings
of the 10th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. November 15-16 2023, Istanbul, Turkey, ACM Inc.,
New York, NY, 385–389. https://doi.org/10.1145/3600100.3626340

[3] Maral Doctorarastoo, Katherine Flanigan, Mario Bergés, and Christopher Mc-
Comb. 2023. Modeling human behavior in cyber-physical-social infrastructure
systems. In Proceedings of the 10th ACM International Conference on Systems
for Energy-Efficient Buildings, Cities, and Transportation. November 15-16 2023,

Istanbul, Turkey, ACM Inc., New York, NY, 370–376. https://doi.org/10.1145/
3600100.3626338

[4] Maral Doctorarastoo, Cheyu Lin, Katherine Flanigan, and Mario Bergés. 2024. A
Bayesian network approach for predicting social interactions in shared spatial
environments. In Proceedings of the 11th ACM International Conference on Systems
for Energy-Efficient Buildings, Cities, and Transportation. November 7-8, 2024,
Hangzhou, China, ACM Inc., New York, NY. https://doi.org/10.1145/3671127.
3699530

[5] Janet Everly, Jamie Plummer, Matthew Lohman, and Jean Neils-Strunjas. 2023. A
tutorial for speech-language pathologists: Physical activity and social engage-
ment to prevent or slow cognitive decline in older adults. American Journal of
Speech-Language Pathology 32, 1 (2023), 83–95.

[6] Scott Giacomucci. 2021. Social Work, Sociometry, and Psychodrama: Experiential
Approaches for Group Therapists, Community Leaders, and SocialWorkers. Springer,
New York, NY.

[7] Simon Gurnsey. 2018. Developing community through collective projects and
activities: The benefits of using sociometry. Australian and Aotearoa New Zealand
Psychodrama Association Journal 27 (2018), 63–75.

[8] Tao Hu, Xinyan Zhu, Wei Guo, and Kehua Su. 2013. Efficient interaction recogni-
tion through positive action representation. Math. Probl. Eng. 2013, 1 (2013).

[9] Diana Jones. 2001. Sociometry in team and organisation development. British
Journal of Psychodrama and Sociodrama 16, 1 (2001), 10.

[10] Ray T Kest. 2006. Principles of leadership: Leadership management. Futurics 30
(2006), 52–71.

[11] Taemie Kim, Erin McFee, Daniel Olguin Olguin, Ben Waber, and Alex Sandy
Pentland. 2012. Sociometric badges: Using sensor technology to capture new
forms of collaboration. Journal of Organizational Behavior 33, 3 (2012), 412–427.

[12] Woo-Ri Ko, Minsu Jang, Jaeyeon Lee, and Jaehong Kim. 2021. AIR-Act2Act:
Human–human interaction dataset for teaching non-verbal social behaviors to
robots. Int. J. Rob. Res. 40, 4-5 (2021), 691–697.

[13] Cheyu Lin and Katherine Flanigan. 2023. Human trajectory estimation using
analog privacy-preserving urban sensing technologies. In Proc. SPIE 12486, Sensors
and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems.
April 18 2023, Long Beach, California, USA, 1248604.

[14] Cheyu Lin and Katherine Flanigan. 2024. DUET Repository. https://huggingface.
co/datasets/saluslab/DUET.

[15] Cheyu Lin, John Martins, and Katherine A Flanigan. 2024. Read the room:
Inferring social context through dyadic interaction recognition in cyber-physical-
social infrastructure systems. In ASCE International Conference on Computing in
Civil Engineering 2024 (i3ce2024). July 28-31 2024, Pittsburgh, PA., ASCE.

[16] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C
Kot. 2019. Ntu rgb+ d 120: A large-scale benchmark for 3d human activity
understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence
42, 10 (2019), 2684–2701.

[17] Tingting Liu, Zengzhao Chen, Hai Liu, Zhaoli Zhang, and Yingying Chen. 2018.
Multi-modal hand gesture designing in multi-screen touchable teaching system
for human-computer interaction. In Proceedings of the 2nd International Confer-
ence on Advances in Image Processing (ICAIP ’18). ACM Inc., New York, NY, USA,
198–202.

[18] John Martins, Katherine Flanigan, and Christopher McComb. 2023. Skeleton-
based human action recognition in a thermal comfort context. In Proceedings of
the 10th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. November 15-16 2023, Istanbul, Turkey, ACM Inc.,
New York, NY, 377–384. https://doi.org/10.1145/3600100.3626339

[19] Luis Miguel Mazón, Datzania Villao, Teresa Guarda, Linda Núñez, María Muñoz,
Manuel Serrano, and Divar Castro. 2018. Sociometry: A University Tool to
Facilitate the Cohesion of Academic Groups. In Developments and Advances in
Defense and Security. April 18-20 2018, Salinas, Ecuador, Springer, New York, NY,
351–359.

[20] Jacob Levy Moreno. 1941. Foundations of sociometry: An introduction. Sociome-
try 4, 1 (1941), 15–35.

[21] Friedrich Niemann, Stefan Lüdtke, Christian Bartelt, and Michael Ten Hompel.
2021. Context-aware human activity recognition in industrial processes. Sensors
Technology and Machine Learning for Human Activity Recognition 22, 1 (2021),
134.

[22] Allan Pease. 1994. Body language. Camel Publishing Company, Kenmore, Wash-
ington.

[23] Michael S Ryoo, Chia-Chih Chen, JK Aggarwal, and Amit Roy-Chowdhury. 2010.
An overview of contest on semantic description of human activities (sdha) 2010.
In Recognizing Patterns in Signals, Speech, Images and Videos (ICPR 2010). August
23-26 2010, Istanbul, Turkey, Spirnger, New York, NY, 270–285.

[24] Michael S Ryoo and Larry Matthies. 2013. First-person activity recognition:
What are they doing to me?. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. June 23-28, Portland, Oregon, IEEE, New York,
NY, 2730–2737.

[25] Navya N Sharan, Alexander Toet, Tina Mioch, Omar Niamut, and Jan BF van
Erp. 2021. The relative importance of social cues in immersive mediated com-
munication. In Human Interaction, Emerging Technologies and Future Systems V:

277

https://doi.org/10.1145/3600100.3626340
https://doi.org/10.1145/3600100.3626338
https://doi.org/10.1145/3600100.3626338
https://doi.org/10.1145/3671127.3699530
https://doi.org/10.1145/3671127.3699530
https://huggingface.co/datasets/saluslab/DUET
https://huggingface.co/datasets/saluslab/DUET
https://doi.org/10.1145/3600100.3626339


BUILDSYS ’24, November 7–8, 2024, Hangzhou, China Cheyu Lin, Maral Doctorarastoo, and Katherine Flanigan

Proceedings of the 5th International Virtual Conference on Human Interaction and
Emerging Technologies, IHIET 2021. August 27-29 2021, France, Springer, New
York, NY, 491–498.

[26] Chutima Suraseth and Prakob Koraneekij. 2022. Development of a sociometric
web application to study the relationship among secondary school learners.
Heliyon 8, 8 (2022).

[27] Philip E Tetlock and Ariel Levi. 1982. Attribution bias: On the inconclusiveness
of the cognition-motivation debate. Journal of Experimental Social Psychology 18,
1 (1982), 68–88.

[28] Coert VanGemeren, Ronald Poppe, and Remco CVeltkamp. 2016. Spatio-temporal
detection of fine-grained dyadic human interactions. In Human Behavior Under-
standing: 7th International Workshop, HBU 2016. October, 16, 2016, Amsterdam,
The Netherlands, Springer, New York, NY, 116–133.

[29] Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L Berg, and Dim-
itris Samaras. 2012. Two-person interaction detection using body-pose features
and multiple instance learning. In 2012 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops. June 16-21 2012, Providence,
RI, IEEE, New York, NY, 28–35.

278


	Abstract
	1 Introduction
	2 Sociometric Analysis and its Role in CPSIS
	2.1 Sociometric Analysis Methodology
	2.2 Sociometric Analysis Limitations

	3 HAR for Sociometry
	3.1 State-of-the-art Dyadic HAR
	3.2 Privacy Concerns of Data-Driven Sociometry
	3.3 Dyadic User EngagemenT (DUET)
	3.4 Data Collection

	4 Automated Sociometric Analysis
	5 Discussion and Conclusion
	Acknowledgments
	References

