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Abstract
Modeling and predicting social interactions within shared physical
spaces is key to understanding human spatio-temporal behavior.
Such models are essential for optimizing the spatial design of the
built environment, achieving human-centric objectives, and im-
proving the objectives of physical processes, such as improving
the energy efficiency of buildings. This paper presents a modular
Bayesian Network (BN) approach for predicting the probability of
both pairwise and group social interactions of humans in dynamic
environments, using sensor data to enable near real-time updates.
The proposed modular structure integrates distinct components,
each consisting of specific sets of nodes and edges that represent
individual, interpersonal, contextual, and physical factors, allowing
for flexible customization and expansion of the model. By incorpo-
rating observed and latent variables, the BN approach dynamically
adapts as new data becomes available, making it well-suited for sim-
ulations in dynamic environments. Through an illustrative example
involving four individuals in a room, we demonstrate the system’s
ability to infer interaction probabilities in scenarios where partial
information is received and propagated through the network, up-
dating beliefs about unobserved variables, such as the probability of
interaction. Our results highlight the BN’s potential for modeling
and predicting social interactions in physical spaces. This work
contributes to helping bridge the fields of social network analysis,
agent-based modeling, and cyber-physical-social systems.

CCS Concepts
• Applied computing→ Sociology; • Computing methodolo-
gies → Modeling and simulation; Model development and
analysis.
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1 Introduction
Spatial behavior includes the actions and movements of individuals
or groups within a physical environment, leading to shifts in their
location or situation within that space [19]. Models that capture
this behavior over time, also referred to as spatio-temporal behavior
models, are valuable across a variety of domains as they simulate
how individuals interact with one another and their physical envi-
ronment. For example, optimizing office layouts based on occupant
movement patterns can improve workplace satisfaction and reduce
energy consumption by aligning occupant activities with energy-
intensive building systems [25]. Other applications include but are
not limited to the design and operation of cyber-physical-social (or
“cyber-physical-human”) infrastructure systems [6, 7], optimizing
energy use [8], enhancing architecture and interior design [24], im-
proving emergency response strategies [26], managing healthcare
systems [5], and urban planning [13].

One of the key factors influencing spatio-temporal behavior
is the structure and strength of social ties [1, 9, 27]. Direct mea-
surement of social ties, such as through surveys or self-reported
data, can offer insights into these relationships but is often asso-
ciated with several limitations [21]. These methods are typically
time-consuming, costly to administer, and subject to biases such as
social desirability, recall errors, or the influence of self-perception.
Additionally, they tend to capture static snapshots of social ties,
which do not accurately capture the evolving nature of relationships
[4, 10, 14, 16].

Using indirect methods to infer social ties can overcome these
limitations. Social ties influence how people interact with others and
how they navigate and occupy shared spaces. Stronger social ties
often result in more frequent interactions, creating specific spatial
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patterns. For example, in work environments or social gatherings,
individuals with strong connections tend to cluster, forming denser
interaction zones. In contrast, weaker ties result in greater physical
distance and less frequent interaction, shaping different spatial
dynamics. Therefore, social interactions can be measured as an
indirect indicator of social ties [11, 25].

Recent advancements in sensor technology enable the near real-
time capture of spatio-temporal behavior and social interactions,
providing an indirect, less biased, and dynamic approach to in-
ferring social ties. This rich sensor data can be used to estimate
quantities of interest such as the frequency, duration, and proximity
of interactions, as well as the nature of these engagements—whether
positive, negative, or neutral—serving as indirect indicators of the
underlying social ties [17]. Despite its advantages, this approach
presents challenges. Privacy concerns remain a critical issue, as
continuous tracking of social interactions may raise ethical con-
siderations. Interpreting raw sensor data to detect activities and
interactions while preserving privacy requires advanced computa-
tional techniques and the use of more privicy-preserving sensing
devices such as depth-based sensors [18, 20]. In addition, sensor
coverage may be limited in certain environments, resulting in in-
complete or uncertain data. Despite these limitations, the use of
in-situ sensing provides a more efficient, timely, scalable, and a less
biased tool for studying social networks in dynamic contexts.

Collected sensor data serves as a key input for computational
models designed to predict social interactions. A well-established
area of research, known as link prediction, refers to the process of
forecasting potential connections between nodes in a network based
on existing structural patterns and known interactions. Advances
in the aforementioned sensing technologies stand to support radical
advancements in the area of link prediction, such as for extracting
social networks from spatio-temporal data. In this paper we ex-
plore the potential of probabilistic graphical models for predicting
interaction probabilities between individuals from spatio-temporal
behavior data in a modular and interpretable way.

While previous Bayesian Network (BN)-based link prediction
models, such as those proposed by Kumar et al. (2020) [15] and
Xiao et al. (2018) [28], have been successful in predicting binary
links between users, they primarily focus on pairwise interactions
in digital environments. This emphasis on pairwise connections is
rooted in their application within social networks, where predicting
links between individual pairs typically suffices. However, in the
context of spatio-temporal behavior, which is deeply intertwined
with physical space, the nature of interactions is more complex and
influenced by factors absent in digital settings. Interactions can
occur both at the pairwise and group levels, making it essential
for predictions to extend beyond individual connections to include
group dynamics. This broader scope is critical for understanding
behaviors in shared physical spaces.

We propose a modular BN approach to infer the probability of
social interactions in dynamic physical environments, utilizing sen-
sor data and near real-time updates. This data may include activity
recognition, individual locations (e.g., from various presence detec-
tion technologies), and other observed interactions. This method
enables the continuous adjustment of predicted interaction proba-
bilities and supports the exploration of various “what-if” scenarios
through simulation. The model is designed to estimate interaction

probabilities between individuals—even in situations where there
is only partial information—by calculating posterior probabilities
based on observed interaction data.

The structure of the remainder of this paper is as follows: Section
2 outlines the methodology behind the proposed modular BN ap-
proach, including the network design, sensor data parameterization,
and the inference process for near real-time interaction probabilities
under uncertain conditions. In Section 3, we present an illustrative
example, detailing the creation of the synthetic dataset used in our
experiments, as well as the BN’s structure and parameterization.
Section 3.3 discusses the results, offering insights from preliminary
“what-if” scenarios, interaction predictions, and the system’s ca-
pacity to manage partial information and group dynamics. Finally,
Section 4 concludes by addressing the limitations of the current
approach and proposing future research directions.

2 Methodology
BNs are probabilistic models that represent dependencies between
random variables through directed acyclic graphs. Nodes in a BN
represent random variables while the edges capture the causal re-
lationships between them. Each node in the network is associated
with a conditional probability table (CPT), which quantifies the
strength of the causal relationships between the node and its par-
ent nodes. BNs ensure that variables are arranged in a hierarchical
manner without any feedback loops, thus allowing for efficient com-
putation of joint probability distributions by factoring them into
smaller, conditional probabilities. BN’s major strength lies in its abil-
ity to perform near real-time updates as new evidence—potentially
uncertain—becomes available, and to infer latent variables [12].

In this section, we present our modular BN approach for pre-
dicting social interactions in dynamic physical spaces, using in-situ
sensor data. The methodology is divided into several stages: the def-
inition of network modules, data collection and parameterization,
and the process of inferring interaction probabilities.

2.1 Modular BN Structure
The proposed BN framework is designed to predict interaction
probabilities by incorporating both individual and interpersonal
factors within shared physical environments. The network is modu-
lar, composed of five core modules: Physical Space, Global Features,
Individual Features, Interpersonal Features, and Interaction. Each
module is designed to capture specific elements influencing the
probability of interaction. Each module can represent a complex
model comprising multiple nodes and edges, which are selected
based on factors influencing interactions, such as available sen-
sor data, the specific social or environmental variables included,
and the level of granularity desired by the modeler. These inter-
connected components form a flexible framework that can predict
social interactions in dynamic environments and adapt to various
contexts and complexities.
• Physical Space module: This module comprises the characteris-
tics of the physical environment where interactions occur, such
as locations, layout, and the presence of obstacles. As the module
with no parent, it serves as a foundation for other modules by
providing a spatial context for the entire system. For instance,
if temperature variations across different locations are relevant,
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additional nodes can be introduced to represent temperature at
specific locations. To account for the spatial dependencies of
temperature, one can model this using a random field approach,
similar to the work by Bensi et al. [2], where a BN was employed
to model the random field of earthquake intensity. This allows for
capturing the physical dependencies of environmental variables
in a structured manner.

• Global features module: This module accounts for factors that
apply universally across the environment, such as time and social
norms. These features are common for all individuals and they
influence how interactions manifest in the given space.

• Individual features module: Each person in the environment is
modeled with an associated Individual Features module, cap-
turing unique attributes such as personal preferences, current
activity, physical location, and behavioral traits. This module
is dependent on both the Physical Space and Global Features
modules to account for their influence on individual features.
For example, the location of each individual is affected by the
Physical Space module.

• Interpersonal features module: This module models the degree
of similarity or compatibility between pairs of individuals, which
is an influential factor in predicting the likelihood of interaction.
For each pair of individuals, the interpersonal features module
takes as input the individual features of all involved individuals
in an interaction. Interpersonal features are computed based on
shared or complementary characteristics, such as interests, line
of sight, activities, and spatial proximity.

• Interaction module: For each combination of individuals, the In-
teraction module computes the probability of interaction, based
on inputs from the interpersonal features module. Various nodes
within this module can represent different aspects of interac-
tions, such as probability of the interaction occurring, duration
of interaction, and interaction type. This module allows for near
real-time predictions of both pairwise and group-level interac-
tions, dynamically updating probabilities as new sensor data
becomes available.
This modular design supports flexibility and scalability, allowing

for easy incorporation of additional nodes or variables as the social
network expands.

2.2 Data Collection and Parameterization
Sensor data plays an important role in parameterization of the BN.
Using various sensors such as RGB cameras and depth sensors, data
capturing the movements and interactions of individuals within the

Figure 1: Social network of three individuals 𝑖, 𝑗 , and 𝑘 , with
pairwise connections representing social ties.

shared space can be systematically collected while preserving pri-
vacy [18, 20]. The dataset should capture key information, including
the time, location and/or proximity of individuals, the activities
they are engaged in, and the nature and type of social interactions,
among other relevant observable metrics.

This data is processed and fed into the network, where it is used
to estimate the CPTs for each node. In cases where data is incom-
plete or uncertain (e.g., due to sensor occlusion or noise), the BN
framework’s ability to handle partial information becomes advan-
tageous. The breakdown of the joint probability distribution into
smaller conditional probability tables allows for the node CPTs,
whose values and those of their parent nodes are recorded, to be
populated independently of missing data in other parts of the net-
work. This ensures that the model can still benefit from incomplete
data [12].

2.3 Inference and Near Real-time Updates
The BN framework is capable of inferring interaction probabilities
in near real-time. During each simulation episode, or near real-
time situation in the real world, the system updates the posterior
probabilities of interactions between individuals based on simulated
or observed data. This enables the model to adapt dynamically as
the environment or individual behaviors change. The interaction
probabilities are inferred through the following steps:
(1) Initial probabilities: Before any interactions occur, the BN uses

the prior distributions defined by the sensor data and the net-
work structure to estimate the likelihood of interactions.

(2) Data integration: As interactions are observed (through sensors
or simulation), the network uses Bayes theorem to calculate the
posterior probabilities by updating priors with new evidence.
This allows the system to continuously refine its estimates of
future interactions in real time. For example, the sensors might
observe the location of individuals and or the activity they
are engaged in and predict the probability of interactions be-
tween those individuals. In addition to pairwise interactions,
the model is capable of handling group dynamics by predicting

Figure 2: Proposed modular BN for predicting likelihood of
social interactions between individuals 𝑖, 𝑗 , and 𝑘 .
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Figure 3: Features directly connected to the interaction node.

the likelihood of multi-person interactions and thus capturing
the collective behaviors that emerge in shared physical spaces.

2.3.1 Handling Computational Complexity. The model’s ability to
provide near real-time inference is essential in dynamic environ-
ments, where individual movements, physical space, social norms,
and interactions constantly evolve. The time complexity of updat-
ing a node in a BN is directly related to the size of its CPT, which
grows exponentially with the number of parent nodes. Specifically,
if a node has 𝑛 parent nodes each having 𝑚 state, the size of its
CPT is 𝑂 (𝑚𝑛), meaning that for timely updates, it is essential to
limit the maximum number of parent nodes for each node in the
network.

One effective approach to controlling the number of parent nodes
is by introducing intermediate nodes, a role played by the inter-
personal features module. While it is possible to link all influential
factors, including the characteristics of each individual involved
in the interaction, directly to the interaction node, this approach
would lead to an excessive number of parent nodes, particularly
in group interactions involving multiple individuals. By adding an
interpersonal features module to compare pairs of individuals, we
can significantly reduce the number of parent nodes.

For example, in Figure 3, using a Naive Bayes approach, all six
features (three from each individual 𝑖 and 𝑗 , shown as 𝐹𝑖 and 𝐹 𝑗 )
are directly connected to the interaction node, 𝐼𝑖, 𝑗 , resulting in
six parent nodes. However, in Figure 4, intermediate interpersonal
nodes, 𝐴𝑖, 𝑗 , are introduced to compare each corresponding pair of
features. After incorporating these pairwise intermediate nodes, a
similar strategy can be extended to model group interactions. This
method introduces intermediate nodes that compare two pairwise
interpersonal nodes, ultimately producing a single interpersonal
node that models interactions within a group of three individuals,
and so forth. Doing so, reduces the size of the CPTs, and thus both
computational time and memory usage [3].

Additionally, most root nodes in higher-level modules, such as
physical space and global features (e.g., current time or physical lay-
out), are easily observed with certainty. These root nodes have fixed
values during inference, as they represent background data rather
than query or observation nodes. When a root node is observed
with certainty, it no longer contributes to the network’s uncer-
tainty and acts as a deterministic value. This allows for pruning,
where these nodes are effectively removed, and their observed val-
ues are propagated to child nodes, further reducing computational
complexity [12].

2.3.2 Handling Noisy Sensor Readings. One of the key challenges
in modeling social interactions in physical space is dealing with

Figure 4: Intermediate similarity nodes to reduce the number
of parent nodes for the interaction node.

uncertain sensor data (i.e., observations). This uncertainty may
arise from individuals being occluded by others or by objects. In
such cases, observations are not certain, but rather represent like-
lihood findings, associated with a likelihood ratio. Unlike certain
observations, likelihood evidence is specified without a prior. When
propagating likelihood evidence, the network considers the existing
beliefs about the variable before the evidence is introduced. As a
result, the belief in the variable can be updated with additional
evidence from other variables. For instance, information about the
location of other individuals can influence the probability distribu-
tion of another person’s location if it was with uncertainty, which
in turn affects the likelihood of interactions. To incorporate likeli-
hood observations in a BN, a virtual node is introduced as a child
of the observed node. This virtual node serves as a placeholder
for the observation, while its parent represents the real value. The
virtual node’s CPT encodes the likelihood of the observed value
given values of its parent. The observation is then entered as if it
were a certain observation for the virtual node [22].

3 Illustrative Example
To demonstrate our approach, we use a simple yet representative
example involving a conference room where four PhD students
from the Civil and Environmental Engineering (CEE) department
at Carnegie Mellon University (Pittsburgh, PA) interact with each
other during lunch time.

The physical layer consists of the layout of the conference room,
shown in Figure 5, which includes a single entrance/exit, a central
desk, six chairs, and a couch for casual seating. This setting pro-
vides a manageable space for observing and simulating interactions
among the students. The social layer involves four PhD students,
each affiliated with a different subgroup within the CEE department:
Mechanics, Chemistry, and Materials (MCM), Sustainable Energy
and Transportation Systems (SETS), Climate-resilient Environmen-
tal Systems and Technologies (CREST), and Intelligent Engineered
Systems and Society (IESS). These subgroups represent distinct
research focuses, which influence the students’ communication
and work styles. Each student’s characteristics, represented as 𝑆𝑖
(student 𝑖 in Figure 6), are outlined in Table 1. These include their
subgroup affiliation, personality type (extrovert/introvert), com-
munication style, work style, interaction preferences, and seating
preferences (chair or couch).
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Table 2 presents the group dynamics, including the primary top-
ics discussed during interactions (whether work related or personal),
the nature of the discussions (whether driven by friendship or pro-
fessional collaboration), and the strength of friendships between
student pairs. These dynamics provide insight into the factors that
influence both individual and group behaviors within the confer-
ence room.

The features presented in the tables are not directly utilized as
known variables for training the BN parameters. Instead, they serve
as prompts for generating the synthetic dataset using GPT-4 [23],
as explained in the following section.

3.1 Creating Synthetic Dataset
In the absence of a real-world dataset that captures all the rele-
vant features for this illustrative example, we generated a synthetic
dataset that mimics realistic behaviors, interactions, and environ-
mental factors. Using GPT-4, a large language model, we generated
descriptive interaction scenarios based on the students’ character-
istics and environment. The interactions between the four students
were simulated over 30 consecutive days during lunch times. From
these scenarios, a dataset was created, containing details such as
time of day, location of each student, whether an interaction oc-
curred, the type of interaction (e.g., positive, negative, or neutral),
the students involved, and their activities at the time. This synthetic
dataset can be easily replaced with real-world data when available.

The synthetic dataset captures essential interaction parame-
ters, including the time of interactions, the spatial arrangement
within the room (e.g., desk, chair, couch), and interaction outcomes
(whether social or work-related). By leveraging this dataset, we can
show scenarios for demonstrating the framework’s ability to model
and predict human interactions.

3.2 BN Structure
The BN structure for this illustrative example is shown in Figure 7.
For clarity, nodes within each module (i.e., global features, physical
context, individual features, interpersonal features, and interaction
modules) are grouped together using distinct boxes in the figure,
as described in the methodology section. Here, we have selected
a subset of representative nodes for each module to illustrate the
functionality of the network.

The global features module includes a time node, denoted as 𝑇 ,
which represents the time of day. For this example, we discretized
each one-hour period into four 15-minute intervals, defining the
states of the time variable. The node 𝑇 influences other temporal
aspects of the network, such as activity and location. In the physical
context module, we introduce a constraint node 𝐶 , which is a child
of the location nodes of all students. This node enforces the rule that

Figure 5: Layout of the conference room.

Figure 6: Social network of the four PhD students.

Figure 7: Bayesian network of the illustrative example.

only one student can occupy any given cell in the environment. The
node 𝐶 has two states: valid and invalid. If more than one student
is located in the same cell, the probability of 𝐶 being in the invalid
state is 1, and otherwise 0. To ensure valid inferences, we impose the
condition 𝐶 (valid) = 1 as evidence in all scenarios. The individual
features module includes three nodes per student. 𝐺𝑖 represents
the subgroup affiliation of student 𝑖 within the CEE department. It
can take one of four possible states (MCM, IESS, SETS, or CREST).
𝐿𝑖 denotes the location of student 𝑖 , with as many states as there
are grid cells in the room. The node 𝐿𝑖 is dependent on time 𝑇 , as
the distribution of student locations changes throughout the day.
𝐴𝑐𝑖 corresponds to the activity of student 𝑖 . It can take one of the
following values: Studying, Moving, Eating,Waiting, Leaving, and
Eating and Studying. The activity node 𝐴𝑐𝑖 depends on both the
time of day and the student’s location.

The interpersonal features module captures the relationships
between pairs of students. Three key nodes in this module are𝑀𝐺

𝑖,𝑗
,

𝑀𝐴𝑐
𝑖,𝑗

, and𝐷𝑖, 𝑗 .𝑀𝐺
𝑖,𝑗

compares the subgroups of students 𝑖 and 𝑗 , with
states same or different, indicating whether their affiliations within
the CEE department match. 𝑀𝐴𝑐

𝑖,𝑗
evaluates the compatibility of

283



BUILDSYS ’24, November 7–8, 2024, Hangzhou, China Maral Doctorarastoo, Cheyu Lin, Katherine Flanigan, and Mario Bergés

Table 1: Characteristics of the Four Students

Student Affiliation Personality Type Communication Style Work Style Seating Preference

S1 SETS Extrovert Direct, Formal Collaborative Chair
S2 IESS Introvert Indirect, Reserved Independent Couch
S3 CREST Extrovert Casual, Open Flexible Chair
S4 IESS Introvert Formal, Structured Collaborative Couch

Table 2: Group Dynamics

Student Pairs Primary Interaction Topic Interaction Type Friendship Strength

S1–S2 Work-related Collaborative, Formal Moderate
S1–S3 Social, Casual Friendly, Open Strong
S1–S4 Work-related Formal, Structured Weak
S2–S3 Work-related Collaborative, Reserved Moderate
S2–S4 Social, Casual Friendly, Relaxed Strong
S3–S4 Work-related Formal, Structured Moderate

the activities of students 𝑖 and 𝑗 , assessing the likelihood that their
activities will result in an interaction. This node has three states: low,
moderate, and high. For example, if one student is studying while
the other is eating, the compatibility is likely to be low; however,
if both are eating, the compatibility may be considered high. 𝐷𝑖, 𝑗

measures the physical distance between students 𝑖 and 𝑗 , with the
students’ locations as parent nodes.

For simplicity, the interaction module focuses on a single inter-
action occurrence node 𝐼𝑖, 𝑗 , which is a combination of interaction
occurrence and type. This node has four states: No Interaction, Posi-
tive Interaction, Negative Interaction, and Neutral Interaction. The
interaction node depends on the three nodes from the interper-
sonal features module:𝑀𝐺

𝑖,𝑗
,𝑀𝐴𝑐

𝑖,𝑗
, and 𝐷𝑖, 𝑗 , representing subgroup

similarity, activity compatibility, and distance between students,
respectively. For interactions involving three or more students,
the same structure used for pairwise interactions is extended. For
example, when modeling interaction between three students, the
interpersonal nodes from the pairwise modules are used as par-
ents for the corresponding interpersonal nodes in the three-student
module. Similarly, interactions involving four students incorporate
interpersonal nodes from all combinations of three students as
parents. The distance node in these multi-student interpersonal fea-
tures modules represents the largest distance among the students,
essentially capturing the diameter of the group interaction space.

3.3 Results and Discussion
The results are generated through a hypothetical scenario, where
observations are introduced incrementally in multiple stages, and
the network is updated at each stage using Bayesian updating as
shown in Figure 8.

3.3.1 Stage 0: Initial Prior Inference. The scenario begins by per-
forming a marginal inference over the interaction nodes in the BN,
resulting in prior interaction probabilities. These priors reflect the
baseline likelihood of interactions between each pair of students,

as well as potential group interactions, before any evidence is in-
troduced. At this point, the priors are driven solely by the structure
of the BN and the conditional dependencies encoded in the CPTs.
For instance, the inferred prior probability of interaction between
𝑆1 and 𝑆2 is 0.441, while the prior for a group interaction between
𝑆1, 𝑆2, and 𝑆3 is 0.154.

3.3.2 Stage 1: Observing Locations of 𝑆1 and 𝑆2. The first observa-
tion is provided in the form of evidence on the location nodes 𝐿1 and
𝐿2, indicating that 𝑆1 and 𝑆2 are in close proximity. This evidence
conditions the BN on the observed values for 𝐿1 and 𝐿2, causing
the network to perform an updated belief propagation across the
interaction nodes. As a result, the posterior probability of interac-
tion between 𝑆1 and 𝑆2 increases from 0.441 to 0.833, reflecting the
stronger likelihood of interaction due to their proximity.

3.3.3 Stage 2: Observing 𝑆3’s Location. Next, the location node 𝐿3
is updated with evidence placing 𝑆3 near 𝑆1 and 𝑆2. The BN per-
forms belief updating, recalculating the posterior distributions for
the relevant interaction nodes. The probabilities for pairwise inter-
actions between 𝑆1 and 𝑆3 and between 𝑆2 and 𝑆3 increase from
0.863 to 0.971 and from 0.629 to 0.758, respectively. Additionally,
the posterior for group interaction between 𝑆1, 𝑆2, and 𝑆3 rises
significantly, increasing from 0.334 to 0.593, as proximity now fa-
vors a group dynamic. This demonstrates how the BN captures
multi-agent dependencies through joint probability distributions.

3.3.4 Stage 3: Observing Activity for 𝑆1, 𝑆2, and 𝑆3. Subsequent
evidence pertains to the activity nodes 𝐴𝑐1, 𝐴𝑐2, and 𝐴𝑐3, repre-
senting the activities of 𝑆1, 𝑆2, and 𝑆3. Evidence is set such that 𝑆1
is engaged in Studying, while 𝑆2 and 𝑆3 are Eating. The conditional
dependencies encoded in the CPTs of the activity and interaction
nodes lead to a recalibration of interaction probabilities. Specifically,
the posterior probability of group interaction among 𝑆1, 𝑆2, and 𝑆3
decreases from 0.593 to 0.036, as 𝑆1’s activity is not conducive to
group interaction. Also, the pairwise interaction probabilities be-
tween 𝑆1–𝑆2 and 𝑆1–𝑆3 drop from 0.889 to 0.167 and from 0.971 to
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0.28, respectively, due to 𝑆1’s solitary activity. In contrast, the prob-
ability of interaction between 𝑆2 and 𝑆3 increases from 0.758 to 0.98,
reflecting their shared social activity, which is highly compatible
with interaction.

3.3.5 Stage 4: Observing Interaction Between 𝑆2 and 𝑆4. In this stage,
evidence is provided directly on the interaction between 𝑆2 and 𝑆4,
indicating the occurrence of an interaction. However, the sensor is
unable to classify the interaction as positive, negative, or neutral.
To incorporate this partial observation into the network, a child
node 𝐼𝑜

𝑖,𝑗
is added to the interaction node 𝐼𝑖, 𝑗 , representing a binary

distinction between Interaction and No Interaction. The CPT of 𝐼𝑜
𝑖,𝑗

is
deterministic, assigning a probability of 1 to the No Interaction state
when 𝐼𝑖, 𝑗 is in theNo Interaction state, and 0 otherwise. The evidence
is then enforced by setting the child node 𝐼𝑜

𝑖,𝑗
to the Interaction

state, effectively conditioning the BN on the observed interaction.
This leads to belief updating across the network, particularly for
the interaction and location nodes. Given that interaction implies
physical proximity, the posterior distribution for the location node
𝐿4 shifts accordingly, indicating that 𝑆4 is now likely to be in close
proximity to 𝑆2. This update reflects the constraints imposed by
the observed interaction, refining the BN’s estimates of the spatial
configuration and interaction dynamics. Additionally, this update
introduces indirect effects, shifting probabilities for other nodes;
for example, the probability of 𝑆2 and 𝑆4 having the same affiliation
increases from 0.717 to 0.742 due to subgroup similarity being
positively correlated with interactions.

Figure 8: Probability of interaction across different stages for
pairwise, trio, and four-student groups.

This scenario illustrates the flexibility of BN in dynamically
updating interaction probabilities based on incremental evidence,
utilizing belief propagation.

4 Conclusion
The modular BN approach proposed in this paper demonstrates its
potential to model and predict social interactions in dynamic physi-
cal spaces, both by enabling near real-time updates through sensor
data and supporting simulations in “what-if” scenarios. Through
an illustrative case study, we highlight the model’s flexibility in
managing variable dependencies, partial information, and updating
beliefs about unobserved variables.

Future research directions include incorporating real-world datasets
for parameterizing and validating the model’s predictions. Second,
extending the model to include a temporal dimension by upgrading
it to a dynamic BN will allow for the incorporation of memory
and interaction history, enabling the model to capture not only
the effect of social ties on interaction, but also the formation of
new social ties over time through repeated interactions. Improv-
ing the model’s scalability to handle larger populations and more
complex social networks will also be a priority. This will require
the development of efficient algorithms to manage computational
complexity, particularly in near real-time scenarios involving multi-
agent group interactions. This includes testing the model in larger
and more complex environments, such as urban areas or multi-floor
buildings, where factors like crowd density and environmental con-
ditions come into play. Finally, future research should also focus
on addressing ethical considerations related to privacy during data
collection and data security, especially regarding the inferences
made through the BN framework. By addressing these challenges,
the BN model has the potential to improve the understanding of
human interactions within the built environment, helping to bridge
the social science and human spatial behavior modeling fields.
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