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Abstract

Current technology trend of VLSI chips includes sub-10 nm nodes
and 3D ICs. Unfortunately, due to significantly increased Joule
heating in these technologies, interconnect reliability has become a
significant casualty. In this paper, we explore how interconnect
power dissipation (of CV?/2 per logic transition) and thus heating
can be effectively constrained during a power-optimizing physical
synthesis (PS) flow that applies three different PS transformations:
cell sizing, Vth assignment and cell replication; the latter is
particularly useful for limiting interconnect heating. Other
constraints considered are timing, slew and cell fanout load. To
address this multi-constraint power-optimization problem effectively,
we consider the application of the aforementioned three transforms
simultaneously (as opposed to sequentially in some order) as well as
simultaneously across all cells of the circuit using a novel discrete
optimization technique called discretized network flow (DNF). We
applied our algorithm to ISPD-13 benchmark circuits: the ISPD-13
competition was for power optimization for cell-sizing and Vth
assignment transforms under timing, slew and cell fanout load
constraints; to these we added the interconnect heating constraint and
the cell replication transform—a much harder transform to engineer
in a simultaneous-consideration framework than the other two.
Results show the significant efficacy of our techniques.

1. Introduction

Interconnect optimization is of make-or-break significance in VLSI
designs in the sub-10nm regime. Since the density of transistors per
unit area is increased dramatically, physical interconnects density is
significantly high. Furthermore, interconnects are subjected to
increased current density due to the thinning of interconnects, as well
as increased power dissipation and thus heating due to high clock
frequencies of current chips. All these factors contribute to high
potential for electromigration in interconnects that can either cause
breaks in them or cause shorts with adjacent interconnects that are
densely packed in current technologies. Furthermore, With the slow-
down of Moore’s law of scaling transistors, the industry is adopting
3D IC technology to extend Moore’s law by stacking chips vertically,
and in this technology, Joule heating is the most serious reliability
concern for interconnects [1].

The goal of this paper is to perform leakage-power-minimizing
physical synthesis (PS) of a given circuit with the following
considerations. (1) Explicitly constrain interconnect heating to a
given upper bound. Fig. 1 illustrates the transformation of the heating
constraint into a cell load capacitance constraint (this is also
discussed in Sec. 2-B). (2) Consider three physical synthesis
transforms, gate sizing, Vth assignment and cell replication to
achieve the above. (3) For better optimization, consider all the three
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Figure 1: I>R-based cell heat-based load constraint Cmux_h(gi) for cell
g1’s j’th size-Vth option g’l
transforms simultaneously as well as apply them across all circuit
components simultaneously—it is important to note that current
state-of-the-art work such as [2-7] targeting the new ISPD-12/13
sizing problems, like earlier works, have applied PS transforms
sequentially across the circuit in either a greedy or topologically-
ordered approach. Simultaneous consideration of multiple
transforms (or design points/variables) and multiple constraints
simultaneously across the entire circuit can yield much better
solutions than considering these design points sequentially and
applying them sequentially across the circuit that most state-of-the-
art techniques and commercial tools do. This has been clearly
demonstrated in [10].

Leakage power optimization for the either cell sizing or cell sizing
combined with Vth assignment (subsequently called the cell
selection problem), which is a subset of the more general PS problem,
has been well studied over the years and various techniques have
been developed such as linear programming (LP) [11, 12], convex
programming [13, 14], Lagrangian relaxation (LR) [3-7, 15-17],
dynamic programming (DP) [18-21], and network flow [3, 22]. Some
of these techniques solve the cell selection problem in continuous
domain which is runtime-efficient and performance-effective if a
continuous range of cell sizes and Vth’s are available. However, most
silicon-verified cell libraries are by necessity discrete. Some
techniques also use simpler delay formulations that are not accurate
in current technology.

The ISPD 2012 problem [23] has addressed both issues above by
providing a cell library with discrete sizing options and an LUT-
based cell delay model. Besides the timing constraint, this contest
problem also considers the maximum load -capacitance and
maximum slew constraints for each cell input which makes the
sizing-Vth problem more complex than past techniques. Furthermore,
the ISPD 2013 [24] contest problem introduced interconnect RC-tree
structures with a more realistic delay model than Elmore.

There have been quite a few recent works that address the ISPD 2012
[23] and 2013 [24] sizing-Vth problems, that have each advanced the
state-of-the-art considerably [2-7]. The work in [21] uses the go-
with-the-winner ~ metaheuristic  to  select  non-dominated
configurations from the space of sensitivity-based functions for each
cell. In [3], initially a LR-based approach combined with the
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Lagrangian Dual Problem (LDP) is used to obtain the best
performing design that explores the space of all possible cell types
using parallelism. Subsequently, the power of a timing valid design
is reduced using a min-cost flow technique, followed by a residual-
slack utilizing method to further reduce power. In [5,6] also the
authors also use LR-LDP using parallelism and a novel Lagrangian
multiplier A update policy to obtain fast solutions. The work in [7]
represents the state-of-the-art for both ISPD 2012 and ISPD 2013
problems. Its main stage also uses an LR-LDP approach that operates
at the local level of each cell by minimizing its local power and the
lambda-delay function such that some local slack satisfaction is
achieved. In addition to basic delay cost of a cell, unlike other work,
it also considers the incremental delay change of alternative options
from the current design point of each cell due to input slew change
and its effect on cell delays in its fanout cone.

In this paper, we solve a superset of the ISPD-13 problem in two
ways: (1) as mentioned earlier, in addition to the gate max-load, gate
input slew, and delay constraints, we address the important
interconnect heating constraint—this constraint is converted to
output load constraint for each interconnect, and for each cell size-
Vth option, we take the minimum (more strict) of the ISPD-13 max-
load constraint and heating based load constraints as the new max-
load constraint; see Fig. 1. We call this new problem ISPD13+heat
(ISPD13-H) problem. (2) Besides the cell sizing-Vth combined
transform of the ISPD-13 problem, we also consider the much more
difficult transform of cell replication.

In solving the ISPD13-H problem, we observed that some circuits
needed a significant amount of extra power compared to the ISPD13
solution to meet the heating based max-load constraint. This is
necessitated by having to significantly upsize several driver cells to
compensate for the delay increase caused frequently by downsizing
their sinks to meet the heating-aware max-load constraint. In other
situations, there was also a delay violation as depicted in Fig. 2(a). In
this scenario, the delay increase due to sinks of gate g, needing to be
downsized to meet its heat-based load constraint C, (g,) (see Sec. 2-
B) is compensated (to meet corresponding path delay constraints
trough the sinks) by their own sinks needing to be upsized
significantly so that their output delays reduce. This can result in
either: (a) delay-constraint satisfaction for the concerned paths with
significant power increase; or (b) delay violation(s) in these paths
when the aforementioned delay reductions at the sink-of-sink outputs
are not enough.

The above problem(s) can be alleviated by replication of cell g4, and

the partitioning of'its sinks across the 2 replicated cells g4 1 and g1 2,

so that their nominal load intrinsically reduces. This allows easier
satisfaction of the heating-based load constraint for the replicated

cells without significant sink downsizing and corresponding

upsizings of their fanins and/or fanouts (of course, the counter-

balancing issue of the increased load on the drivers of the replicated

cells will also need to be accounted for). This is illustrated in Fig.

2(b). We call this new problem ISPD13+heat+replicate (ISPD13-HR)
problem. However, while the ISPD13 and ISPD13-H problems are

parameterized selection problems of a given topologically static

circuit design, with the parameters or variables being the cells’

sizing-Vth options, the ISPDI3-HR problem is fundamentally
different in that it is a combination of determining the non-

parameterized circuit design/topology and the sizing-Vth
parameterized problem of the resulting cells.

Besides (1) and (2) above, the further contributions of this paper are:

(3) Devising a discretized network flow (DNF) [10] based model and
algorithm for solving the ISPD13 and ISPD13-H problems in which

the sizing-Vth determination of all cells (cell selection) are

simultaneously explored unlike in prior methods. (4) Devising a
DNF-based model for solving the ISPD13-HR problem in which the
possibility of cell replication for targeted cells, and the sizing-Vth
determination of all cells are also simultaneously explored.

Delay Gate and power upsizing to
increase \ compensate for delay increase

4
o eye-ef4-EH-

e |

Hard heat-load

constraint C,,,. ™
L Delay decrease that
Down-size sinks of g; may or may not be

(a) enough

—>
&
«——  EasierC,,

due to g, repl.
and sink
partitioning

» —> (downsizing
4’ not needed)
(b)

Figure 2: Two ways to satisfy the violated C, max_h(g"l), when load,,(g1)
> Crax-n(9}) = Ch(g1) : (a) Down-size sinks of g;, which causes
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We also note that buffer insertion is an alternative to cell replication
to achieve the aforementioned purpose. However, due to a cleaner
sink cell bi-partitioning that is possible for cell replication, we pursue
this approach in this paper. For example, if gate g, has 4 sinks, then
its 2 replicated cells will have 2 sinks each. In buffer insertion to
tackle a hard load constraint, if g; drives 2 sinks and the buffer
(which will drive the other 2 sinks), its load may still be too high.
Alternatively, if g, drives 1 sink and the buffer, the latter will need
to drive 3 sinks, which may be too high a load for it. However, both
approaches have their pros and cons, and in future work we will
consider both transforms simultaneously using DNF so that a high
QoS is obtained that applies either transform or none to each cell.

The rest of the paper is organized as follows. Section 2 gives problem
definitions and general LR formulations. Section 3 and 4 provides
the main ideas and concepts of the basic DNF method as applied to
the ISPD13/ISPD13-H problems. Next, Sec. 5 discusses our
modified DNF modeling for the ISPD13-HR problem. Finally, the
experimental results and conclusions are given in Secs. 6 and 7,
respectively.

2. Problem Definitions

The problems described above can be modeled as discrete option
selection problems (OSPs), a wide subclass of DOPs, that have linear
or non-linear optimization and constraint functions. The discretized
network flow (DNF) algorithm we use is particularly suited to
solving OSP problems. An OSP problem is defined as a collection of
discrete option sets (OSs) {0S(x;)} for each design/option variable
x; of the problem. Also, given an optimization objective function
F(X) that is a function of the set X of design/option variables x;
corresponding each option set 0S(x;), and multiple constraints
H;(X) < bj (we assume < constraints here without loss of generality,
but the DNF method can be extended to > constraints), the OSP
problem is to choose exactly one option from each {0S(x;)} (i.e.,
each x; has a discrete value) in order to optimize (minimize or
maximize) F(X) while satisfying each constraint.
A) The ISPD13 Problem:
(1) Given a gate-level netlist/circuit C and a standard cell library L,
each cell g; is represented by an option-choice variable x; over the
domain 0S(g;) = {size-Vth options/values for gate-type(g;) in L}.
(2) Optimization problem:

Minimize F(x,) = Z Ip(x;) o))

vV x;

where Ip(x;) is the leakage power corresponding to the option/value
chosen for gate sizing-Vth variable x;,



subject to: upper bound constraints on i) path timing D., ii)
maximum load capacitance at each cell g;’s output for its j’th size-
Vth option gi] (we will interchangeably use notations gi’ and o; ; to
mean the same thing, the latter being mainly used in DNF graph
formulations, where they are more useful for a general description of
DNF), and iii) maximum slew S, for each cell input.

B) The ISPD13-H Problem:

The I2R based heat dissipation per second H of an interconnect at
cell g;’s output switching from 0 to 1 or 1 to 0 with a load capacitance
of C, for a supply voltage of V, a clock frequency f = Dic, and a

2
switching probability of pey(9:) . is H = pay(g:) - f . Let
Hpax be the given heat dissipation upper-bound using Joule-heating
formulations as in [1]. Since ps,, and V for a cell in a given circuit is
a constant, the heating constraint: H < H,y,,, is easily converted to a
heating-based max-load constraint (as also depicted in Fig. 1):

2H
C ( ) S max 2
nod = oo F o @
If the ISPD13 max-load constraint for option j of g; is Cmax(gi’ ),
then the new heating aware max-load constraint Cp,g_pn (gl] ) is:

Cmax—h(gi}) = min[cmax(gi])' Ch(gi)] 3)
The ISPD13-H problem is then the same as the ISPD13 one with
Cmax_h(gij ) replacing Cmax(gij ) as the maximum load capacitance
at cell g;’s output for its j’th size-Vth option gij .
C) The ISPD13-HR Problem:
(1) Given the same inputs as the ISPD13 problem plus two additional
option-choice variables x; ; and x; , for the two possible replicated
versions of gate g;.
(2) Optimization problem:

Minimize F(x;) = Z(l —r)lp(x;) + 1y (lp(xi,l) + lP(xi,z)) 4
Y x;
where 7; is a 0/1 variable indicating choice of no-
replication/replication, respectively, for gate g; of the original circuit
C, subject to the same upper bound constraints of ISPD13-H.
D) Details of the ISPD13-HR Constraint Functions:
The detailed OSP modeling of the ISPD13-HR problem is:

Minimize F(X) = A —r)lpx) + (lp(xi_l) + lp(xl-yz)) 5)
Vgates g;

where X =Ugy gates g; (X, Xi1, Xi 2,71} 5 Xi, X1, X2 belong  to

0S5(g;) = {size-Vth options/values for gate-type(g;) in L}, and r;

belongs to {0,1} (0/1 indicating choice of no-replication/replication

for gate g; of the original circuit C),

subject to:

(i) Input Slew Constraint: For each gate g; and each sink g; of g;,

the input slew at inp(gj, g;), the input pin of g; driven by g;:

Slewinp (gj: gi) = driverﬁs[g;c{ofg-{ fstew (Slewinp (90 9i)r %1

load,,(9:))} + slew(RC-tree(gi,gj)) < slew constraint S; (6)
where: (@) fsiew (Slewiny (gi, gi), xi, load,,(g:)) is an (m + 2)-
variable non-linear function that determines the slew between
inp(g;, gx) and the output of g; (the slew of the so-called timing arc
arc (g;, gx) from inp(g;, gx) and the output of g;); m is the number
of sinks of g;; (b) slew;n, (gi, gi) is a recursive equation similar to
that  above  for  slew,, (gj,gi) ;0 (o) loady,(gy)
=Y vsinks gs of g; 10adinp (Xs); load;yy, (x;) is the input capacitance
of gate g; based on the value of its size-Vth variable x;; and (d)
slew(RC-tree(g;, g;)) is the additional slew from the output of g;
to the input of g; along the corresponding RC path in the
interconnect RC-tree connecting g;’s output to the input pins of its
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Figure 3: (a) A 3-cell subcircuit C’'. (b) A directed DNF subgraph
representation G(fiuy( )) of a 3-variable function fiew (slewiny(x1), x1,
loadiny(x2) + loadinp(x3)) as a set p-MEA(G(fueiay(x1, X2, X3))) 0f 2* (generally,
K, k = # of options in the OS of each gate) star-graphs (SGs), each
connecting one 3-variable option combination from the OSs of gates g,
82, 83. An MEA-valid flow through the p-MEA that goes through exactly
1 SG is shown. (¢) Simplification of the 3-OS G(fueia( )) by partitioning
the 3-OS p-MEA into two 2-OS p-MEAs, each with 27 ares (generally m*
arcs) representing the correspondingly partitioned functions 0.5 - fieiy
(slewinp(x1), X1, loadiny(x2) + loadiny(03c)) and 0.5 fiew(slewinp(x1), X1,
loadinp(02,c) + loadiny(xs), 0i.is the currently-chosen option for gate g, and
thus a constant.
sinks; the RC-tree is a constant structure, independent of the design
variables x;’s, but the loads load,, (x,)’s at its leaves are dependent
on the x;’s of the sinks of g;.
(ii) Heating-based Output Load Constraint: For each gate g;:
loadop (x;) < min (Crrax (), Cr(9:)) ™
where Cy,q,(x;) is a variable load constraint depending on the size-
Vth option x;, i.e., if x;= the option gi] of g;, then Cpya(x;) =
Cmax_h(gi] ) (generally larger is the size of g;, larger or more
flexible is its output load constraint), and as explained earlier in Sec
2-B, C(g;) is the heating-constraint derived load constraint on g;.
(iii) Path Delay Constraint: For each output gate (a gate that drives
a primary output (PO) of the circuit or a FF input) g; driving output
pin op(g;), the formulation and the delay constraint on the worst-
case arrival time t4-(0p(g;), gi) of the signal from g; at op(g;) are
(for simplicity of exposition here, we assume that each gate drives
only one output pin; the formulations are easily extended to driving
multiple output pins):

tarr(0p (i), 9i) = _max {tarr(9i, gi)
all drivers grofg;

+ faetay (Slewiny (gis gi), %1, load o, (9:))}

+ delay(RC — tree(g;, op(g)))

< delay constraint D, (8)
where: (2) faeray (Slewinp (g, gi), xi, load,, (g;)) is an (m + 2)-
variable non-linear function that provides the delay between
inp (9i, gi) and the output of g; (the delay of arc (g;, gx)); (b)
tarr(gi gx) is the (worst-case) arrival time of the signal at
inp(gi, gx), and has a similar recursive formulation as given in Eqn.8



for the POs; and (c) delay(RC — tree(g;, op(g;))) is the additional
delay from the output of g; to op(g;), and is an Elmore-style delay
model using an effective downstream capacitance model [7, 24].

E) Lagrangian Relaxation Based Modeling:

Lagrangian relaxation (LR) is a well-known approach to solving a
constrained optimization problem (such as ISPD13-HR) in which the
new objective function includes both the optimization and constraint
functions as follows (for simplicity, we assume here that all
constraints are of the < or upper-bound type, as is the case for our
problems):

Minimize F'(X) = F(X) + Z w; X (H;(X) = b;) (9)
J

where F(X) is the original objective function, the H;(X)’s are the
constraint functions of the original problem of the type H;(X) < b;,
and the w;’s are Lagrangian multipliers (LM’s). As can be seen, in
the new objective function F'(X), violations of constraints are
penalized by higher function cost. The w;’s can be determined
adaptively based on how “critical” (or difficult to satisfy) the H;’s
based on the constraint slack b; — H;(X) after each iteration of the
Lagrangian solver (in our case, the DNF algorithm).

3. Representing a Function by a DNF Subgraph

Discretized network flow (DNF) [10] is an effective approach to
addressing discrete optimization problems (DOPs) such as OSPs
using ideas from min-cost network flow (NF) [25] augmented by
some discretization requirements that the flow needs to satisfy in
order to obtain legal solutions to DOPs. This approach is motivated
by the observations: (a) NF, while being a continuous linear
optimization technique (it solves a subclass of linear programming
problems), has a discrete flavor to it in that the structure on which it
operates is a directed graph, and (b) being a continuous solver, it
obtains solutions very time efficiently (time complexity is a low-
degree pseudo-polynomial). However, clearly, NF cannot produce
legal solutions to DOPs, and a set of discretization requirements need
to be imposed on NF in order to solve a large class of DOPs (linear
or non-linear, and convex or non-convex). We have identified two
main discretization requirements which need to be satisfied in NF in
order to solve DOPs: 1) a fixed-charge or step function cost c(e) on
some arcs e, which means that if there is any non-zero flow f
through e, then a constant cost of c(e) is incurred (similar to the
fixed-charge network flow or FCNF problem [26]), and 2) a mutually
exclusive arc (MEA) requirement on various disjoint arc sets S,
which is that a non-zero flow only pass through exactly one arc in
each such S. For solving an OSP problem, the MEA constraint is
used, for example, to ensure that only one option is chosen from each
option set of the problem. The resulting NF computation with these
discretizations is called discretized network flow (DNF) [10].

We demonstrate the use of DNF for OSPs (and particularly ISPD13-
HR), along with its iterative framework, with an illustration for the
(m + 2)-variable fyeiqy (Slewin, (g, gi), X1y load,, (g;)) in Fig. 3.
This, like all other functions in the ISPD13 problem, is library based,
where the values for some discrete combinations of the input values
are provided in a table, and for intermediate input values (not
represented in the table), the outputs are obtained via interpolation.
Fig. 3(b) gives a directed graph representation G (fzeiqy () of this
function for m = 2 for the sub-circuit of Fig. 3(a). For simplicity of
exposition, we assume here that there are two discrete values (size-
Vth options) for the 3 gates shown. In this representation, the graph
(and particularly, its arc costs) is instantiated for the value of the
input slew (determined via STA) for the current iteration of the DNF
solver; hence fgeiqy() becomes in general an (m + 1) -variable
function dependent only on the x; variables of the driver and sink
gates. For each combination q of the size-Vth option of each gate
(e.g., (01,1,02,1,03,) in Fig. 3(b)), there is a star-graph (SG), denoted
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Figure 4: (a) A 5-cell subcircuit. (b) The DNF graph for this subcircuit,
and a valid solution flow (red dashed lines) through it. (c) The more
complex DNF graph incorporating cell replication as an option for g; for
the replication-based subcircuit version, shown in Fig. 2(b), of the
subcircuit in (a), and a valid solution flow (red dashed lines).

by S(q), representing it: the SG has a center node which has arcs
from/to an option for each driver/sink; the cost of the combination
(value of fueiqy()) is represented as the cost of the arc from the
driver option to the center node (the actual value is not exactly this
but based on it—it has a normalized version of the raw delay value
so that different metric costs can be added in a meaningful way, and
additionally has an LM coefficient). The orange SG in the figure
represents the above combination.

In a min-cost flow based solver, the SG of G(f()) for a function f°
(that is a sub-function in the Lagrangian function F'(X) of Eqn. 9)
that the flow goes through, selects the corresponding combination of
values for the input variables of f (). Clearly for a valid flow-selected
solution: (a) The flow should go through exactly 1 SG for each
G(f()) for avalid selection. (b) Also, since each 0S(g;) will be part
of different G(f())’s (e.g., for fyeiay () and fyey, () for g;’s own
output as well as those of each of its drivers), all valid flows for each
such G(f()) should also select exactly one option of 0S(g;). As
mentioned earlier, these flow requirements are called MEAs for their
respective arc sets (e.g., each SG set for each G (f()) and the arc set
in each 05(g;); see Fig. 3(b)).

For a function f() with t x; variables, and assuming a uniform
number k of options in each 0S(g;), there are k¢ option
combinations, and thus k* SGs in G (f()); this set of SGs is denoted
by p-MEA(G(f ())). Since t is at most (m + 1), where m is the # of
sinks of g;, the average m is around 3, and the number of
pruned/relevant options is about 8, k! = 4% is a medium-sized
constant that is not computationally intractable.

However, for better runtime efficiency, we partition each (m + 1)-
variable f (x;, X1, ..., Xim) (g; being the driving cell and g;q, ..., Gim,
its sinks) into m 2-variable functions f(x;, x;1,{0j | for sink g; #
i1} oo (X Xim, {0) | for sink g; # gim}), where each 0j; is a
constant and is the currently flow-selected option for of g; (in the
previous DNF iteration—in the first iteration, the o;. ’s are
determined by an initial greedy heuristic). For conciseness, we
abbreviate each f (x;, X, {0jc| for sink g; # gir}), by f(x, xir).
Thus we have m G (f (x;, x;-))’s each with a p-MEA set of k? simple
arcs, as shown in Fig. 3(c); the cost of, say, arc (0;4,0;13), is
(A/m) - f(041,0i1,3,{0jc| j = i2,i3,..}) . This is a significant



decrease from k™*1 SGs, each with (m + 1) arcs, to only mk? arcs.
Interestingly, for a convex function, the DNF solver, in multiple
iterations, can reach the same (good) solution on the partitioned sub-
graphs in U {G (f (x;, x;-))} with cost = the minimum cost selection
obtained by the solver in the un-partitioned G (f (x;, X1, -, Xim))-
However, for a non-convex function, this approximation may lead to
a local minima being chosen by DNF in U {G(f(x;, x;-))} with
cost > the minimum cost selection obtained in G (f (x;, X;1, ..., Xim))-
As shown in Fig.3(b), each 0S(g;) is represented in the DNF graph
as a set of k arcs, each corresponding to one size-Vth option of g;.
Similar to each p-MEA set, each 0S(g;) also has an MEA
requirement, since exactly one option needs to be chosen for each g;.
Further, each arc in 0S(g;) has a normalized leakage power cost
corresponding to g;’s option that it represents.

Algorithm 1: DNF-Solver (Circuit C, Library L, Metric Constraints)

1 Obtain a heuristic initial solution for the problem (e.g., ISPD13-H)

2 Perform STA of C

3 Construct DNF-graph G(C)

4 Imtialize arc-costs based on current design points/options of each cell
5 Initialize LM € 1 for each constraint function and STA metrics
6

7

8

Repeat
New-solution S € DNF (G(C)) // Alg. 2
Perform STA(S)
9 Update LMs, current design options of each cell, and arc costs
10 Until (Constraints are satisfied and power improvement < 0.1% for &
consecutive iterations)
End DNF-solver

Algorithm 2: DNF G(C)

1 Repeat
2 NF (G(C)) // NF: mm-cost network flow solver
3 For each MEA set € G(C) do
4 Prune arcs e with flow(e) < 0.1 - cap(e)
* each arc in an MEA set has the same capacity that is
dictated by the amount of downstrearn MEAS in their fanout
cone that they need to feed;
for an arc e in an output MEA—w/ no fanout—cap(e) = 1 */
5 For other arcs e’, increase cosn(e”) € cost(e’) - cap(e’)iflow(e”)
7 End
8 TUntil (Flow goes through exactly 1 arc in each MEA set)
End DNF

Figure 5: The DNF Based Solver.

4. The DNF Graph and Solver

The entire DNF graph G(C) for the circuit C is constructed by
connecting the various G(f())’s according to the structure of the
circuit, and merging the common 0S(g;)’s of the G(f())’s that
contain 0S(g;). This is shown in Fig. 4(b) for the circuit in Fig. 4(a).

The DNF solver works over multiple iterations to get better solutions
in terms of constraint-satisfaction and power optimization, via
minimization of F'(X) (Eqn. 9). These are the DNF iterations
alluded to earlier. Furthermore, after each DNF iteration, if either a
constraint is under-satisfied (violated) or over-satisfied, then the LM
coefficient of that constraint function (composed of its component
atomic f() functions described above and shown in Fig. 3(b-c), e.g.,
the fge1ay()’s along a violating critical path) are either increased or
decreased, respectively. Thus the arc-costs in each p-MEA(G(f()))
is correspondingly adjusted. Along with LM update, the current-
design options 0; .’s are updated, and STA is performed to determine
the slew at each gate input. Both these changes cause the arc costs of
the partitioned PMEAs to potentially change every iteration in a way
that drives the solver towards a more accurate and better solution
(constraint-satisfying, if currently violated, and power-minimizing,
if constraints are over-satisfied).

Finally, each iteration of DNF, in which an MEA-satisfying near
min-cost flow is determined, is itself obtained by multiple iterations
of classical min-cost flow (NF). An iteration of NF will not
necessarily respect MEA requirements (NF being a continuous
solver, its flows can go through multiple arcs in each MEA set). The

MEA requirement is then met by pruning out arcs in each MEA set
that have 0 or low flow amount through them, thereby converging
through multiple NF iterations to full flow going through exactly one
arc in each MEA set (and thereby a near min-cost flow). This
provides us a valid discrete/OSP solution in the current DNF iteration.
The DNF pseudo-code is given in Fig. 5.

5. Incorporating the Cell Replication Option

As explained in Sec. 1 and depicted in Fig. 2, cell replication has the
potential to reduce power in solving the ISPD13-H problem. In some
cases, without cell replication it is not even possible to satisfy delay
constraints due to a consecutive set of sink-size reductions (that can
increase their output delays) to satisfy the strict heating-based load
constraint of a driver gate. However, cell replication is not a
straightforward option to incorporate in the DNF graph since, unlike
cell size-Vth options, it is an option that changes the basic structure
of the circuit; see Fig. 2(b). As shown in Fig, 4(c), the way we
incorporate this option in the DNF graph is for every driver-sink-set
combination (g;, S(g;) = {gi1, -, Gim}) where the driver g; is
targeted for possible replication (when its heat-based load constraint
cannot be satisfied easily), we construct the alternate subcircuit
[9:1,5(9:1)1 VU [9:2,5(g:2)], where g;1 and g;, are the two
replicated versions of g;, with sink sets $(g;1) and $(g;2), resp.,
and S(gi1) US(giz) = S(g:) and S(gi2) . The criticalities of
paths in terms of their negative slacks and total current input loads
are balanced across $(g;1) and S(g;2) (sum of the square of
differences in these 2 metrics is minimized). We then connect this
replication-based subcircuit’s DNF subgraph and the original
subcircuit’s DNF subgraph via a replication-option 2-arc MEA set
Repl(g;) = (e, €,) at their input points: e,,., is connected to the
original subcircuit, and e; to its replicated version; see Fig. 4(c).
Further, the fanout p-MEAs from the drivers of g; to this replication-
based DNF subgraph are constructed assuming they drive g; (instead
of its replications) using a copy 0S’(g;) of 0S(g;), as shown in Fig.
4(c). This also means that if the flow goes via ey, to 0S(g;), as
opposed to via e, to 0S(g;1) and 0S(g;2), then our DNF solver
ascertains that the flow selects the same option in 0S'(g;) of
0S5(g;) by mimicking the MEA arc prunings and cost-updates (see
Fig. 5) of 0S'(g;) in 08(g,)). In order to account for the “missing”
p-MEAs from these drivers to 05(g;1) and 0S(g;2), there is a
collapsing cost function CF(0S(g;1) U 0S5(g;2)) that is the cost
of arc e,, through which flow reaches the replicated subcircuit
option for g; (see Fig. 4(c)). A relatively simple version of this
function is:

CF(0S(g;1) VU 0S5(gi2)) = aweighted average K [min-cost

across all drivers gjofg;
(p-MEA(G(f (xj, x;1)))) + min-cost (p-MEA(G(f (x}, x;2))))] -
[min-cost (p-MEA(G(f (xj, x:))))] (10)

Thus the CF() cost in arc e,, is the difference between an
appropriately averaged cost across all the missing p-MEAs to the
OS’s of the 2 replicated cells g; 1 and g; », and a similar average for
all the present p-MEAs to 0S(g;) (a difference is needed for the
flow cost to the replicated subcircuit, since that flow incurs the cost
of the p-MEAs to g;, as shown in Fig. 4(c)).

To add another level of complexity to the DNF modeling of cell
replication, if any of the drivers g; of g; also has a replicated option,
then replicated cells of g; are partitioned across the replicated cells
of g;j. And the corresponding CF function cost for e, is augmented
to obtain the minimum of the two CF()’s for the non-replicated g;
and its replicated version.

6. Experimental Results

The proposed technique was implemented in C++ and the
experiments were performed on workstations with Intel(R) Core-i9
10900K @ 3.7GHz CPU with 64 GB memory.

K
across all drivers gjof g;



In order to establish the quality of our DNF solver, we first compare
in Table 1, our leakage power (LP) results for the original ISPD13
problem that has no heating constraint, to those of the state-of-the-
art technique of [7] that we abbreviate as “South Brazil” (SB+) for 8
mainly mid-size to large circuits. There are two versions of results
from SB+: one is SB-LR, which is a Lagrangian relaxation (LR)-
based gate-sizer with an internal STA timer. The other one is SB+,
which uses the design obtained by SB-LR, with a post-processing
stage for further power improvement which interacts with and uses
timing information directly from the Synopsys PrimeTime (PT) STA
[30]. Our STA (DNF-timer) uses the exact same delay and slew
models as used by the SB-LR STA and recommended by [24]: (1)
Elmore-delay for the distributed RC-tree interconnect [28] with (2)
the method of [29] to compute the effective capacitance (Cp) for the

driver node of a net, and (3) the slew-propagation formulations (Algo.

5 in [7]). Therefore, our DNF results are precisely comparable to SB-
LR. Compared to both SB-LR and SB+, it can be seen that DNF has
close (mainly) to better power results.

We also note that for circuit DES-F' (des-perf-fast), DNF has a
significantly different power performance (42-50% improvement)
w.r.t SB-LR/SB+ compared to those for other circuits. The
discrepancies of PT with various academic STAs, in spite of the latter
following the general delay/slew models of PT, (primarily since PT
has not made all parameters of their models clear) are well known [6,
7]. However, to verify that there is no prima facie incorrectness of
DNEF’s DES-F results, we determined its and the related circuit DES-
S’s (for which DNF’s power result is close to SB-LR/SB+) timing
and power results using PT. We found that PT provides the same
leakage power for the two circuits as our analyzer, and that PT’s %
timing discrepancies for them w.r.t our internal STA are almost
identical. Thus we conclude that our DES-F results don’t seem to
have any mistake. Nevertheless, in the last row of Table 1, we give
the total power results for all circuits except DES-F, and this also
shows that our results are very close to those of SB-LR/SB+. We
believe this establishes the state-of-the-art quality of the DNF solver
(comparable to the current state-of-the-art SB-LR/SB+ solvers).

Next, we discuss the two DNF techniques’ results for the heating-
based problem which have all the given metric constraints (for delay,
slew, and load) of the ISPD13 gate-sizing problem, plus, as discussed
in Sec. 1, one additional constraint—the heating-based output-load
constraint for all cells. Table 2 shows two versions of the DNF
technique for this problem: (1) no cell replication used in DNF
(problem ISPD13-H), and (2) cell-replication based DNF (problem
ISPD13-HR). As described in Sec. 2-B, we can obtain a heating-
based load constraint C,(g;) for each cell g; in a given circuit.
However, to streamline the experimentation process, and without any
loss of solving generality for DNF, we use a simple and uniform
heating-based load constraint C;_ for a circuit C as:

CL-n(0) = a* Cp_max(C) 11
where C;_max (C) is the maximum output total-sink-cell load across
all cells of C for its final design provided by DNF for the original
ISPD13 problem, and @ = 0.3 in our experiments—this value of a
hits the sweet-spot of being realistic (not making the heat-based load
cap constraint intensely hard) but also hard enough to stress the
solutions obtained without cell replication.

All the results shown in Table 2 have 0 slew and load violation. First
of all, using C;_y (C), we find that about 4.54% of cells violate this
load constraint in the final DNF-based designs for the original
ISPD13 problem. On the other hand, the DNF solutions explicitly
taking the heating-based load constraint into account (problems
ISPD13-H and ISPD13-HR) satisfy this constraint for all cells. albeit
at a significant cost for ISPD13-H: its solutions violate the delay
constraint by an average of 3%. On the other hand, ISPD13-HR
solutions have 100% delay satisfaction, underscoring the usefulness
of cell replication and its effective deployment by DNF in the face of
hard load constraints. We can also see that ISPD13-HR solutions

have better power performance than ISPD13-H solutions by more
than 4%, again underscoring the efficacy of both cell-replication and
DNF. The reason for these results is the conceptual scenarios of
circuit performance with and without cell replication described in
Secs. 1 and 5. Also, not surprisingly, leakage power consumption
increases in ISPD13-H/HR solutions compared to ISPD13 (where
there are no heat constraints) by 24.6%/19.6%. This is due to a
combination of cell replication and the required cell upsizings when
not replicating (see below).Table 2 also shows that while we start
with an average of 4.5% of cells violating the heating-based load
constraint without any specific consideration of this constraint in the
original ISPD13 problem, in the ISPD13-HR solutions only an
average of 1.5% of cells are replicated to satisfy this constraint (other
cells satisfy it by a combination of sink downsizing, if needed, and
their own upsizing and possible upsizings in the fanout cones of its
sinks to compensate for the increased delay at sink outputs).

7. Conclusions

We introduced cell replication in the physical synthesis process to
better tackle hard heating-based load constraints. To this end, we
incorporated the cell replication option in the DNF graph in a
complex and innovative structure. Our results establish:

e  The state-of-the-art quality of DNF for the original ISPD13
problem, and thus confidence in its QoS for the two
heating-constraint based problems.

e The usefulness of incorporating the cell-replication
transform in the physical synthesis process in order to
satisfy hard IR heat dissipation upper bound constraints
on interconnects (translated to corresponding upper bound
load constraint on the driver cell), and the efficacy of DNF
in judiciously deploying this transform: DNF solutions to
the heating-based problem using cell replication ISPD13-
HR satisfies all hard heating-based load constraints while
also satisfying delay and slew constraints with only 1.5%
of cells undergoing replication. Further, the solutions for
the heating-based problem that does not use cell replication
ISPD13-H, while satisfying all load constraints, have an
average of 3% delay violation, and also have 4% higher
power than ISPD13-HR solutions.

e The general ability of DNF graph modeling for
incorporating almost any design options (including those
that change the basic structure of the problem/circuit, as
does cell replication) in a streamlined manner, and the
ability of the DNF solver to efficiently process any DNF
graph modeling any problem.
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Table 1: Leakage Power (LP) results for DNF, SB-LR and SB+ [7]. All
results have 0 slew and load violations with DNF-timer. A positive
(negative) % difference indicates power increase (decrease).

LP (uW) % diff. DNF vs. others
Benchmark
DNF SB-LR SB+ SB-LR SB+
USB-F 1540.5 1545 1554 -0.29% -0.87%
USB-S 1152 1073.5 1074 7.31% 7.26%
PCI-F 88243 88071 85438 0.20% 3.28%
PCI-S 59327.5 57173 56963 3.77% 4.15%
FFT-F 203059 203927 194307 -0.43% 4.50%
FFT-S 90125.5 87270.5 86600 3.27% 4.07%
DES-F 371289 749955 648824 -50.49% | -42.78%
DES-S 334635 338912 330425 -1.26% 1.27%
TOTAL 1149372 | 1527927 | 1405183 | -24.78% | -18.20%
W:-’I;JOI-)[EA;:F 778082.5 | 777972 | 756359.5 0.01% 2.87%




Table 2: Metrics comparison for heat-based DNF technique between non-replication-cell version (ISPD13-H) and replication-cell version (ISPD13-
HR). All results have 0 slew and load violations with DNF-timer, and a = 0.3.

_ _ Max delay Viol. # (%) of R
dof | detay cell heat-| Max o/p-| % of Cells LP (uW) ax delay Viel. | g intime (x) (%) of Rep
N load | cell-load | has heat- (ps) cells
Benchmark | Comb |constr. . . . |
cells ©5) constr. | in orig. |load Viol. in |[ISPD13-|ISPD13-| % diff. |ISPD13 |ISPD13|ISPD13|ISPD13 ISPD13.HR
PS) | CL-or (£F)|DNF (fF)| orig. DNF | H HR |HRvs.-H| H | HR | -H | -HR A
USB-F 510 300 34 112 2.15% 1616.5 1575 -2.6% 0.00 0 0.006 | 0.008 12 (2.4%)
USB-S 510 450 26 87 2.74% 1199 1192 -0.6% 0.00 0 0.002 0.002 5(1.0%)
PCI-F 28K 750 47 156 4.33% 108971 | 106441 -2.3% 66.78 0 2.7 2.7 203 (0.7%)
PCI-S 28K | 1000 22 72 5.37% 76845 74136 -3.5% 30.51 0 2.7 2.7 141 (0.5%)
FFT-F 31K 1400 72 239 2.44% 246419 | 239096 -3.0% 55.34 0 39 39 291 (0.9%)
FFT-S 31K | 1800 51 169 3.28% 105387 | 104327 -1.0% 18.93 0 3.8 3.8 167 (0.5%)
DES-F 104K | 1140 92 308 4.85% 483075 | 458332 -5.1% 50.22 0 1.7 7.5 2396 (2.3%)
DES-S 104K | 1300 56 185 5.08% 409508 | 389714 -4.8% 21.76 0 7.5 8 1621 (1.6%)
TOTAL 327K | 8140 398 1328 4.54% 1433021 | 1374813 -4.1% 243.54 0 28.3 28.6 4836 (1.5%)
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