
Limiting Interconnect Heating in Power-Driven Physical Synthesis
Xiuyan Zhang

 Department of ECE

University of Illinois at Chicago

 xzhang87@uic.edu

Shantanu Dutt
 Department of ECE

 University of Illinois at Chicago

 dutt@uic.edu

Abstract

Current technology trend of VLSI chips includes sub-10 nm nodes

and 3D ICs. Unfortunately, due to significantly increased Joule

heating in these technologies, interconnect reliability has become a

significant casualty. In this paper, we explore how interconnect

power dissipation (of 𝐶𝑉2/2 per logic transition) and thus heating

can be effectively constrained during a power-optimizing physical

synthesis (PS) flow that applies three different PS transformations:

cell sizing, Vth assignment and cell replication; the latter is

particularly useful for limiting interconnect heating. Other

constraints considered are timing, slew and cell fanout load. To

address this multi-constraint power-optimization problem effectively,

we consider the application of the aforementioned three transforms

simultaneously (as opposed to sequentially in some order) as well as

simultaneously across all cells of the circuit using a novel discrete

optimization technique called discretized network flow (DNF). We

applied our algorithm to ISPD-13 benchmark circuits: the ISPD-13

competition was for power optimization for cell-sizing and Vth

assignment transforms under timing, slew and cell fanout load

constraints; to these we added the interconnect heating constraint and

the cell replication transform—a much harder transform to engineer

in a simultaneous-consideration framework than the other two.

Results show the significant efficacy of our techniques.

1. Introduction

Interconnect optimization is of make-or-break significance in VLSI

designs in the sub-10nm regime. Since the density of transistors per

unit area is increased dramatically, physical interconnects density is

significantly high. Furthermore, interconnects are subjected to

increased current density due to the thinning of interconnects, as well

as increased power dissipation and thus heating due to high clock

frequencies of current chips. All these factors contribute to high

potential for electromigration in interconnects that can either cause

breaks in them or cause shorts with adjacent interconnects that are

densely packed in current technologies. Furthermore, With the slow-

down of Moore’s law of scaling transistors, the industry is adopting

3D IC technology to extend Moore’s law by stacking chips vertically,

and in this technology, Joule heating is the most serious reliability

concern for interconnects [1].

The goal of this paper is to perform leakage-power-minimizing

physical synthesis (PS) of a given circuit with the following

considerations. (1) Explicitly constrain interconnect heating to a

given upper bound. Fig. 1 illustrates the transformation of the heating

constraint into a cell load capacitance constraint (this is also

discussed in Sec. 2-B). (2) Consider three physical synthesis

transforms, gate sizing, Vth assignment and cell replication to

achieve the above. (3) For better optimization, consider all the three

Figure 1: 𝑰𝟐𝑹-based cell heat-based load constraint 𝑪𝒎𝒂𝒙−𝒉(𝒈𝟏

𝒋
) for cell

𝒈𝟏’s j’th size-Vth option 𝒈𝟏
𝒋
.

transforms simultaneously as well as apply them across all circuit

components simultaneously—it is important to note that current

state-of-the-art work such as [2-7] targeting the new ISPD-12/13

sizing problems, like earlier works, have applied PS transforms

sequentially across the circuit in either a greedy or topologically-

ordered approach. Simultaneous consideration of multiple

transforms (or design points/variables) and multiple constraints

simultaneously across the entire circuit can yield much better

solutions than considering these design points sequentially and

applying them sequentially across the circuit that most state-of-the-

art techniques and commercial tools do. This has been clearly

demonstrated in [10].

Leakage power optimization for the either cell sizing or cell sizing

combined with Vth assignment (subsequently called the cell

selection problem), which is a subset of the more general PS problem,

has been well studied over the years and various techniques have

been developed such as linear programming (LP) [11, 12], convex

programming [13, 14], Lagrangian relaxation (LR) [3-7, 15-17],

dynamic programming (DP) [18-21], and network flow [3, 22]. Some

of these techniques solve the cell selection problem in continuous

domain which is runtime-efficient and performance-effective if a

continuous range of cell sizes and Vth’s are available. However, most

silicon-verified cell libraries are by necessity discrete. Some

techniques also use simpler delay formulations that are not accurate

in current technology.

The ISPD 2012 problem [23] has addressed both issues above by

providing a cell library with discrete sizing options and an LUT-

based cell delay model. Besides the timing constraint, this contest

problem also considers the maximum load capacitance and

maximum slew constraints for each cell input which makes the

sizing-Vth problem more complex than past techniques. Furthermore,

the ISPD 2013 [24] contest problem introduced interconnect RC-tree

structures with a more realistic delay model than Elmore.

There have been quite a few recent works that address the ISPD 2012

[23] and 2013 [24] sizing-Vth problems, that have each advanced the

state-of-the-art considerably [2-7]. The work in [21] uses the go-

with-the-winner metaheuristic to select non-dominated

configurations from the space of sensitivity-based functions for each

cell. In [3], initially a LR-based approach combined with the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

SLIP '22, November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9536-6/22/11…$15.00

https://doi.org/10.1145/3557988.3569712

mailto:Permissions@acm.org
https://doi.org/10.1145/3557988.3569712

Lagrangian Dual Problem (LDP) is used to obtain the best

performing design that explores the space of all possible cell types

using parallelism. Subsequently, the power of a timing valid design

is reduced using a min-cost flow technique, followed by a residual-

slack utilizing method to further reduce power. In [5,6] also the

authors also use LR-LDP using parallelism and a novel Lagrangian

multiplier λ update policy to obtain fast solutions. The work in [7]

represents the state-of-the-art for both ISPD 2012 and ISPD 2013

problems. Its main stage also uses an LR-LDP approach that operates

at the local level of each cell by minimizing its local power and the

lambda-delay function such that some local slack satisfaction is

achieved. In addition to basic delay cost of a cell, unlike other work,

it also considers the incremental delay change of alternative options

from the current design point of each cell due to input slew change

and its effect on cell delays in its fanout cone.

In this paper, we solve a superset of the ISPD-13 problem in two

ways: (1) as mentioned earlier, in addition to the gate max-load, gate

input slew, and delay constraints, we address the important

interconnect heating constraint—this constraint is converted to

output load constraint for each interconnect, and for each cell size-

Vth option, we take the minimum (more strict) of the ISPD-13 max-

load constraint and heating based load constraints as the new max-

load constraint; see Fig. 1. We call this new problem ISPD13+heat

(ISPD13-H) problem. (2) Besides the cell sizing-Vth combined

transform of the ISPD-13 problem, we also consider the much more

difficult transform of cell replication.

In solving the ISPD13-H problem, we observed that some circuits

needed a significant amount of extra power compared to the ISPD13

solution to meet the heating based max-load constraint. This is

necessitated by having to significantly upsize several driver cells to

compensate for the delay increase caused frequently by downsizing

their sinks to meet the heating-aware max-load constraint. In other

situations, there was also a delay violation as depicted in Fig. 2(a). In

this scenario, the delay increase due to sinks of gate 𝑔1 needing to be

downsized to meet its heat-based load constraint 𝐶ℎ(𝑔1) (see Sec. 2-

B) is compensated (to meet corresponding path delay constraints

trough the sinks) by their own sinks needing to be upsized

significantly so that their output delays reduce. This can result in

either: (a) delay-constraint satisfaction for the concerned paths with

significant power increase; or (b) delay violation(s) in these paths

when the aforementioned delay reductions at the sink-of-sink outputs

are not enough.

The above problem(s) can be alleviated by replication of cell 𝒈𝟏, and

the partitioning of its sinks across the 2 replicated cells 𝒈𝟏,𝟏 and 𝒈𝟏,𝟐,

so that their nominal load intrinsically reduces. This allows easier

satisfaction of the heating-based load constraint for the replicated

cells without significant sink downsizing and corresponding

upsizings of their fanins and/or fanouts (of course, the counter-

balancing issue of the increased load on the drivers of the replicated

cells will also need to be accounted for). This is illustrated in Fig.

2(b). We call this new problem ISPD13+heat+replicate (ISPD13-HR)

problem. However, while the ISPD13 and ISPD13-H problems are

parameterized selection problems of a given topologically static

circuit design, with the parameters or variables being the cells’

sizing-Vth options, the ISPD13-HR problem is fundamentally

different in that it is a combination of determining the non-

parameterized circuit design/topology and the sizing-Vth

parameterized problem of the resulting cells.

Besides (1) and (2) above, the further contributions of this paper are:

(3) Devising a discretized network flow (DNF) [10] based model and

algorithm for solving the ISPD13 and ISPD13-H problems in which

the sizing-Vth determination of all cells (cell selection) are

simultaneously explored unlike in prior methods. (4) Devising a

DNF-based model for solving the ISPD13-HR problem in which the

possibility of cell replication for targeted cells, and the sizing-Vth

determination of all cells are also simultaneously explored.

Figure 2: Two ways to satisfy the violated 𝑪𝒎𝒂𝒙−𝒉(𝒈𝟏

𝒋
), when 𝒍𝒐𝒂𝒅𝒐𝒑(𝒈𝟏)

> 𝑪𝒎𝒂𝒙−𝒉(𝒈𝟏
𝒋

) = 𝑪𝒉(𝒈𝟏) : (a) Down-size sinks of 𝒈𝟏 , which causes

negative power/delay effects. (b) Replicate 𝒈𝟏 with no or little
delay/power increase in the fanout cones of 𝒈𝟏,𝟏 and 𝒈𝟏,𝟐.

We also note that buffer insertion is an alternative to cell replication

to achieve the aforementioned purpose. However, due to a cleaner

sink cell bi-partitioning that is possible for cell replication, we pursue

this approach in this paper. For example, if gate 𝑔1 has 4 sinks, then

its 2 replicated cells will have 2 sinks each. In buffer insertion to

tackle a hard load constraint, if 𝑔1 drives 2 sinks and the buffer

(which will drive the other 2 sinks), its load may still be too high.

Alternatively, if 𝑔1 drives 1 sink and the buffer, the latter will need

to drive 3 sinks, which may be too high a load for it. However, both

approaches have their pros and cons, and in future work we will

consider both transforms simultaneously using DNF so that a high

QoS is obtained that applies either transform or none to each cell.

The rest of the paper is organized as follows. Section 2 gives problem

definitions and general LR formulations. Section 3 and 4 provides

the main ideas and concepts of the basic DNF method as applied to

the ISPD13/ISPD13-H problems. Next, Sec. 5 discusses our

modified DNF modeling for the ISPD13-HR problem. Finally, the

experimental results and conclusions are given in Secs. 6 and 7,

respectively.

2. Problem Definitions

The problems described above can be modeled as discrete option

selection problems (OSPs), a wide subclass of DOPs, that have linear

or non-linear optimization and constraint functions. The discretized

network flow (DNF) algorithm we use is particularly suited to

solving OSP problems. An OSP problem is defined as a collection of

discrete option sets (OSs) {𝑂𝑆(𝑥𝑖)} for each design/option variable

𝑥𝑖 of the problem. Also, given an optimization objective function

𝐹(𝑋) that is a function of the set 𝑋 of design/option variables 𝑥𝑖

corresponding each option set 𝑂𝑆(𝑥𝑖) , and multiple constraints

𝐻𝑗(𝑋) ≤ 𝑏𝑗 (we assume ≤ constraints here without loss of generality,

but the DNF method can be extended to ≥ constraints), the OSP

problem is to choose exactly one option from each {𝑂𝑆(𝑥𝑖)} (i.e.,

each 𝑥𝑖 has a discrete value) in order to optimize (minimize or

maximize) 𝐹(𝑋) while satisfying each constraint.

A) The ISPD13 Problem:

(1) Given a gate-level netlist/circuit 𝐶 and a standard cell library 𝐿,

each cell 𝑔𝑖 is represented by an option-choice variable 𝑥𝑖 over the

domain 𝑂𝑆(𝑔𝑖) = {size-Vth options/values for gate-type(𝑔𝑖) in 𝐿}.

(2) Optimization problem:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐹(𝑥𝑖) = ∑ 𝑙𝑝(𝑥𝑖)

∀ 𝑥𝑖

 (1)

where 𝑙𝑝(𝑥𝑖) is the leakage power corresponding to the option/value

chosen for gate sizing-Vth variable 𝑥𝑖,

subject to: upper bound constraints on i) path timing 𝐷𝑐 , ii)

maximum load capacitance at each cell 𝑔𝑖’s output for its 𝑗’th size-

Vth option 𝑔𝑖
𝑗
 (we will interchangeably use notations 𝑔𝑖

𝑗
 and 𝑜𝑖,𝑗 to

mean the same thing, the latter being mainly used in DNF graph

formulations, where they are more useful for a general description of

DNF), and iii) maximum slew 𝑆𝑐 for each cell input.

B) The ISPD13-H Problem:

The 𝐼2𝑅 based heat dissipation per second 𝐻 of an interconnect at

cell 𝑔𝑖’s output switching from 0 to 1 or 1 to 0 with a load capacitance

of 𝐶 , for a supply voltage of 𝑉 , a clock frequency 𝑓 =
1

𝐷𝑐
, and a

switching probability of 𝜌𝑠𝑤(𝑔𝑖) , is 𝐻 = 𝜌𝑠𝑤(𝑔𝑖) ∙ 𝑓 ∙
𝐶𝑉2

2
. Let

𝐻𝑚𝑎𝑥 be the given heat dissipation upper-bound using Joule-heating

formulations as in [1]. Since 𝜌𝑠𝑤 and 𝑉 for a cell in a given circuit is

a constant, the heating constraint: 𝐻 ≤ 𝐻𝑚𝑎𝑥 is easily converted to a

heating-based max-load constraint (as also depicted in Fig. 1):

𝐶ℎ(𝑔𝑖) ≤
2𝐻𝑚𝑎𝑥

𝜌𝑠𝑤(𝑔𝑖) ∙ 𝑓 ∙ 𝐶𝑉2 (2)

If the ISPD13 max-load constraint for option 𝑗 of 𝑔𝑖 is 𝐶𝑚𝑎𝑥(𝑔𝑖
𝑗
),

then the new heating aware max-load constraint 𝐶𝑚𝑎𝑥−ℎ(𝑔𝑖
𝑗
) is:

𝐶𝑚𝑎𝑥−ℎ(𝑔𝑖
𝑗
) = min[𝐶𝑚𝑎𝑥(𝑔𝑖

𝑗
), 𝐶ℎ(𝑔𝑖)] (3)

The ISPD13-H problem is then the same as the ISPD13 one with

𝐶𝑚𝑎𝑥−ℎ(𝑔𝑖
𝑗
) replacing 𝐶𝑚𝑎𝑥(𝑔𝑖

𝑗
) as the maximum load capacitance

at cell 𝑔𝑖’s output for its 𝑗’th size-Vth option 𝑔𝑖
𝑗
.

C) The ISPD13-HR Problem:

(1) Given the same inputs as the ISPD13 problem plus two additional

option-choice variables 𝑥𝑖,1 and 𝑥𝑖,2 for the two possible replicated

versions of gate 𝑔𝑖.

(2) Optimization problem:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐹(𝑥𝑖) = ∑(1 − 𝑟𝑖)𝑙𝑝(𝑥𝑖) + 𝑟𝑖

∀ 𝑥𝑖

(𝑙𝑝(𝑥𝑖,1) + 𝑙𝑝(𝑥𝑖,2)) (4)

where 𝑟𝑖 is a 0/1 variable indicating choice of no-

replication/replication, respectively, for gate 𝑔𝑖 of the original circuit

𝐶, subject to the same upper bound constraints of ISPD13-H.

D) Details of the ISPD13-HR Constraint Functions:

The detailed OSP modeling of the ISPD13-HR problem is:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐹(𝑋) = ∑ (1 − 𝑟𝑖)𝑙𝑝(𝑥𝑖) + 𝑟𝑖

∀𝑔𝑎𝑡𝑒𝑠 𝑔𝑖

(𝑙𝑝(𝑥𝑖,1) + 𝑙𝑝(𝑥𝑖,2)) (5)

where 𝑋 =∪𝑎𝑙𝑙 𝑔𝑎𝑡𝑒𝑠 𝑔𝑖
{𝑥𝑖 , 𝑥𝑖,1, 𝑥𝑖,2, 𝑟𝑖} , 𝑥𝑖 , 𝑥𝑖,1, 𝑥𝑖,2 belong to

𝑂𝑆(𝑔𝑖) = {size-Vth options/values for gate-type(𝑔𝑖) in 𝐿}, and 𝑟𝑖

belongs to {0,1} (0/1 indicating choice of no-replication/replication

for gate 𝑔𝑖 of the original circuit 𝐶),

subject to:

(i) Input Slew Constraint: For each gate 𝑔𝑖 and each sink 𝑔𝑗 of 𝑔𝑖,

the input slew at inp(𝑔𝑗 , 𝑔𝑖), the input pin of 𝑔𝑗 driven by 𝑔𝑖:

𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑗 , 𝑔𝑖) = 𝑚𝑎𝑥
𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑔𝑘𝑜𝑓𝑔𝑖

{ 𝑓𝑠𝑙𝑒𝑤(𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑖 , 𝑔𝑘), 𝑥𝑖 ,

𝑙𝑜𝑎𝑑𝑜𝑝(𝑔𝑖))} + 𝑠𝑙𝑒𝑤(𝑅𝐶-𝑡𝑟𝑒𝑒(𝑔𝑖 , 𝑔𝑗)) ≤ 𝑠𝑙𝑒𝑤 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑆𝑐 (6)

where: (a) 𝑓𝑠𝑙𝑒𝑤(𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑖 , 𝑔𝑘), 𝑥𝑖 , 𝑙𝑜𝑎𝑑𝑜𝑝(𝑔𝑖)) is an (𝑚 + 2) -

variable non-linear function that determines the slew between

inp(𝑔𝑖 , 𝑔𝑘) and the output of 𝑔𝑖 (the slew of the so-called timing arc

arc (𝑔𝑖 , 𝑔𝑘) from inp(𝑔𝑖 , 𝑔𝑘) and the output of 𝑔𝑖); 𝑚 is the number

of sinks of 𝑔𝑖; (b) 𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑖 , 𝑔𝑘) is a recursive equation similar to

that above for 𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑗 , 𝑔𝑖) ; (c) 𝑙𝑜𝑎𝑑𝑜𝑝(𝑔𝑖)

=∑ 𝑙𝑜𝑎𝑑𝑖𝑛𝑝(𝑥𝑠)∀𝑠𝑖𝑛𝑘𝑠 𝑔𝑠 𝑜𝑓 𝑔𝑖 ; 𝑙𝑜𝑎𝑑𝑖𝑛𝑝(𝑥𝑖) is the input capacitance

of gate 𝑔𝑖 based on the value of its size-Vth variable 𝑥𝑖 ; and (d)

𝑠𝑙𝑒𝑤(𝑅𝐶-𝑡𝑟𝑒𝑒(𝑔𝑖 , 𝑔𝑗)) is the additional slew from the output of 𝑔𝑖

to the input of 𝑔𝑗 along the corresponding RC path in the

interconnect RC-tree connecting 𝑔𝑖’s output to the input pins of its

Figure 3: (a) A 3-cell subcircuit 𝑪′ . (b) A directed DNF subgraph
representation G(fdelay()) of a 3-variable function fdelay(slewinp(x1), x1,
loadinp(x2) + loadinp(x3)) as a set p-MEA(G(fdelay(x1, x2, x3))) of 23 (generally,
k3, k = # of options in the OS of each gate) star-graphs (SGs), each
connecting one 3-variable option combination from the OSs of gates g1,
g2, g3. An MEA-valid flow through the p-MEA that goes through exactly
1 SG is shown. (c) Simplification of the 3-OS G(fdelay()) by partitioning
the 3-OS p-MEA into two 2-OS p-MEAs, each with 22 arcs (generally m2
arcs) representing the correspondingly partitioned functions 0.5 ∙ fdelay
(slewinp(x1), x1, loadinp(x2) + loadinp(o3,c)) and 0.5 ∙ fdelay(slewinp(x1), x1,
loadinp(o2,c) + loadinp(x3), oi,c is the currently-chosen option for gate gi, and
thus a constant.

sinks; the RC-tree is a constant structure, independent of the design

variables 𝑥𝑖’s, but the loads 𝑙𝑜𝑎𝑑𝑖𝑛𝑝(𝑥𝑠)’s at its leaves are dependent

on the 𝑥𝑠’s of the sinks of 𝑔𝑖.

(ii) Heating-based Output Load Constraint: For each gate 𝑔𝑖:

𝑙𝑜𝑎𝑑𝑜𝑝(𝑥𝑖) ≤ min (𝐶𝑚𝑎𝑥(𝑥𝑖), 𝐶ℎ(𝑔𝑖)) (7)

where 𝐶𝑚𝑎𝑥(𝑥𝑖) is a variable load constraint depending on the size-

Vth option 𝑥𝑖 , i.e., if 𝑥𝑖 = the option 𝑔𝑖
𝑗

of 𝑔𝑖 , then 𝐶𝑚𝑎𝑥(𝑥𝑖) =

𝐶𝑚𝑎𝑥−ℎ(𝑔𝑖
𝑗
) (generally larger is the size of 𝑔𝑖 , larger or more

flexible is its output load constraint), and as explained earlier in Sec

2-B, 𝐶ℎ(𝑔𝑖) is the heating-constraint derived load constraint on 𝑔𝑖.

(iii) Path Delay Constraint: For each output gate (a gate that drives

a primary output (PO) of the circuit or a FF input) 𝑔𝑖 driving output

pin op(𝑔𝑖), the formulation and the delay constraint on the worst-

case arrival time 𝑡𝑎𝑟𝑟(𝑜𝑝(𝑔𝑖), 𝑔𝑖) of the signal from 𝑔𝑖 at op(𝑔𝑖) are

(for simplicity of exposition here, we assume that each gate drives

only one output pin; the formulations are easily extended to driving

multiple output pins):

𝑡𝑎𝑟𝑟(𝑜𝑝(𝑔𝑖), 𝑔𝑖) = max
𝑎𝑙𝑙 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑔𝑘𝑜𝑓𝑔𝑖

{ 𝑡𝑎𝑟𝑟(𝑔𝑖 , 𝑔𝑘)

+ 𝑓𝑑𝑒𝑙𝑎𝑦(𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑖 , 𝑔𝑘), 𝑥𝑖 , 𝑙𝑜𝑎𝑑𝑜𝑝(𝑔𝑖))}

+ 𝑑𝑒𝑙𝑎𝑦(𝑅𝐶 − 𝑡𝑟𝑒𝑒(𝑔𝑖 , 𝑜𝑝(𝑔𝑖)))

≤ 𝑑𝑒𝑙𝑎𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝐷𝑐 (8)

where: (a) 𝑓𝑑𝑒𝑙𝑎𝑦(𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑖 , 𝑔𝑘), 𝑥𝑖 , 𝑙𝑜𝑎𝑑𝑜𝑝(𝑔𝑖)) is an (𝑚 + 2) -

variable non-linear function that provides the delay between

inp (𝑔𝑖 , 𝑔𝑘) and the output of 𝑔𝑖 (the delay of arc (𝑔𝑖 , 𝑔𝑘)); (b)

𝑡𝑎𝑟𝑟(𝑔𝑖 , 𝑔𝑘) is the (worst-case) arrival time of the signal at

inp(𝑔𝑖 , 𝑔𝑘), and has a similar recursive formulation as given in Eqn.8

for the POs; and (c) 𝑑𝑒𝑙𝑎𝑦(𝑅𝐶 − 𝑡𝑟𝑒𝑒(𝑔𝑖 , 𝑜𝑝(𝑔𝑖))) is the additional

delay from the output of 𝑔𝑖 to op(𝑔𝑖), and is an Elmore-style delay

model using an effective downstream capacitance model [7, 24].

E) Lagrangian Relaxation Based Modeling:

Lagrangian relaxation (LR) is a well-known approach to solving a

constrained optimization problem (such as ISPD13-HR) in which the

new objective function includes both the optimization and constraint

functions as follows (for simplicity, we assume here that all

constraints are of the ≤ or upper-bound type, as is the case for our

problems):

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝐹′(𝑋) = 𝐹(𝑋) + ∑ 𝑤𝑗 ×

𝑗

(𝐻𝑗(𝑋) − 𝑏𝑗) (9)

where 𝐹(𝑋) is the original objective function, the 𝐻𝑗(𝑋)’s are the

constraint functions of the original problem of the type 𝐻𝑗(𝑋) ≤ 𝑏𝑗 ,

and the 𝑤𝑗’s are Lagrangian multipliers (LM’s). As can be seen, in

the new objective function 𝐹′(𝑋) , violations of constraints are

penalized by higher function cost. The 𝑤𝑗 ’s can be determined

adaptively based on how “critical” (or difficult to satisfy) the 𝐻𝑗’s

based on the constraint slack 𝑏𝑗 − 𝐻𝑗(𝑋) after each iteration of the

Lagrangian solver (in our case, the DNF algorithm).

3. Representing a Function by a DNF Subgraph

Discretized network flow (DNF) [10] is an effective approach to

addressing discrete optimization problems (DOPs) such as OSPs

using ideas from min-cost network flow (NF) [25] augmented by

some discretization requirements that the flow needs to satisfy in

order to obtain legal solutions to DOPs. This approach is motivated

by the observations: (a) NF, while being a continuous linear

optimization technique (it solves a subclass of linear programming

problems), has a discrete flavor to it in that the structure on which it

operates is a directed graph, and (b) being a continuous solver, it

obtains solutions very time efficiently (time complexity is a low-

degree pseudo-polynomial). However, clearly, NF cannot produce

legal solutions to DOPs, and a set of discretization requirements need

to be imposed on NF in order to solve a large class of DOPs (linear

or non-linear, and convex or non-convex). We have identified two

main discretization requirements which need to be satisfied in NF in

order to solve DOPs: 1) a fixed-charge or step function cost 𝑐(𝑒) on

some arcs 𝑒 , which means that if there is any non-zero flow 𝑓

through 𝑒, then a constant cost of 𝑐(𝑒) is incurred (similar to the

fixed-charge network flow or FCNF problem [26]), and 2) a mutually

exclusive arc (MEA) requirement on various disjoint arc sets 𝑆 ,

which is that a non-zero flow only pass through exactly one arc in

each such 𝑆. For solving an OSP problem, the MEA constraint is

used, for example, to ensure that only one option is chosen from each

option set of the problem. The resulting NF computation with these

discretizations is called discretized network flow (DNF) [10].

We demonstrate the use of DNF for OSPs (and particularly ISPD13-

HR), along with its iterative framework, with an illustration for the
(𝑚 + 2)-variable 𝑓𝑑𝑒𝑙𝑎𝑦(𝑠𝑙𝑒𝑤𝑖𝑛𝑝(𝑔𝑖 , 𝑔𝑘), 𝑥𝑖 , 𝑙𝑜𝑎𝑑𝑜𝑝(𝑔𝑖)) in Fig. 3.

This, like all other functions in the ISPD13 problem, is library based,

where the values for some discrete combinations of the input values

are provided in a table, and for intermediate input values (not

represented in the table), the outputs are obtained via interpolation.

Fig. 3(b) gives a directed graph representation 𝐺(𝑓𝑑𝑒𝑙𝑎𝑦()) of this

function for 𝑚 = 2 for the sub-circuit of Fig. 3(a). For simplicity of

exposition, we assume here that there are two discrete values (size-

Vth options) for the 3 gates shown. In this representation, the graph

(and particularly, its arc costs) is instantiated for the value of the

input slew (determined via STA) for the current iteration of the DNF

solver; hence 𝑓𝑑𝑒𝑙𝑎𝑦() becomes in general an (𝑚 + 1) -variable

function dependent only on the 𝑥𝑖 variables of the driver and sink

gates. For each combination 𝑞 of the size-Vth option of each gate

(e.g., (𝑜1,1, 𝑜2,1, 𝑜3,1) in Fig. 3(b)), there is a star-graph (SG), denoted

Figure 4: (a) A 5-cell subcircuit. (b) The DNF graph for this subcircuit,
and a valid solution flow (red dashed lines) through it. (c) The more
complex DNF graph incorporating cell replication as an option for g1 for
the replication-based subcircuit version, shown in Fig. 2(b), of the
subcircuit in (a), and a valid solution flow (red dashed lines).

by 𝑆(𝑞), representing it: the SG has a center node which has arcs

from/to an option for each driver/sink; the cost of the combination

(value of 𝑓𝑑𝑒𝑙𝑎𝑦()) is represented as the cost of the arc from the

driver option to the center node (the actual value is not exactly this

but based on it—it has a normalized version of the raw delay value

so that different metric costs can be added in a meaningful way, and

additionally has an LM coefficient). The orange SG in the figure

represents the above combination.

In a min-cost flow based solver, the SG of 𝐺(𝑓()) for a function f

(that is a sub-function in the Lagrangian function 𝐹′(𝑋) of Eqn. 9)

that the flow goes through, selects the corresponding combination of

values for the input variables of 𝑓(). Clearly for a valid flow-selected

solution: (a) The flow should go through exactly 1 SG for each

𝐺(𝑓()) for a valid selection. (b) Also, since each 𝑂𝑆(𝑔𝑖) will be part

of different 𝐺(𝑓())’s (e.g., for 𝑓𝑑𝑒𝑙𝑎𝑦() and 𝑓𝑠𝑙𝑒𝑤() for 𝑔𝑖 ’s own

output as well as those of each of its drivers), all valid flows for each

such 𝐺(𝑓()) should also select exactly one option of 𝑂𝑆(𝑔𝑖). As

mentioned earlier, these flow requirements are called MEAs for their

respective arc sets (e.g., each SG set for each 𝐺(𝑓()) and the arc set

in each 𝑂𝑆(𝑔𝑖); see Fig. 3(b)).

For a function 𝑓() with 𝑡 𝑥𝑖 variables, and assuming a uniform

number 𝑘 of options in each 𝑂𝑆(𝑔𝑖) , there are 𝑘𝑡 option

combinations, and thus 𝑘𝑡 SGs in 𝐺(𝑓()); this set of SGs is denoted

by p-MEA(𝐺(𝑓())). Since 𝑡 is at most (𝑚 + 1), where m is the # of

sinks of 𝑔𝑖 , the average 𝑚 is around 3, and the number of

pruned/relevant options is about 8, 𝑘𝑡 = 48 is a medium-sized

constant that is not computationally intractable.

However, for better runtime efficiency, we partition each (𝑚 + 1)-

variable 𝑓(𝑥𝑖 , 𝑥𝑖1, … , 𝑥𝑖𝑚) (𝑔𝑖 being the driving cell and 𝑔𝑖1, … , 𝑔𝑖𝑚,
its sinks) into 𝑚 2-variable functions 𝑓(𝑥𝑖 , 𝑥𝑖1, {𝑜𝑗,𝑐| 𝑓𝑜𝑟 𝑠𝑖𝑛𝑘 𝑔𝑗 ≠

𝑔𝑖1}), … , 𝑓(𝑥𝑖 , 𝑥𝑖𝑚, {𝑜𝑗,𝑐| 𝑓𝑜𝑟 𝑠𝑖𝑛𝑘 𝑔𝑗 ≠ 𝑔𝑖𝑚}), where each 𝑜𝑗,𝑐 is a

constant and is the currently flow-selected option for of 𝑔𝑗 (in the

previous DNF iteration—in the first iteration, the 𝑜𝑗,𝑐 ’s are

determined by an initial greedy heuristic). For conciseness, we

abbreviate each 𝑓(𝑥𝑖 , 𝑥𝑖𝑟 , {𝑜𝑗,𝑐| 𝑓𝑜𝑟 𝑠𝑖𝑛𝑘 𝑔𝑗 ≠ 𝑔𝑖𝑟}), by 𝑓(𝑥𝑖 , 𝑥𝑖𝑟).

Thus we have 𝑚 𝐺(𝑓(𝑥𝑖 , 𝑥𝑖𝑟))’s each with a p-MEA set of 𝑘2 simple

arcs, as shown in Fig. 3(c); the cost of, say, arc (𝑜𝑖,1, 𝑜𝑖1,3) , is

(1/𝑚) ∙ 𝑓(𝑜𝑖,1, 𝑜𝑖1,3, {𝑜𝑗,𝑐| 𝑗 = 𝑖2, 𝑖3, … }) . This is a significant

decrease from 𝑘𝑚+1 SGs, each with (𝑚 + 1) arcs, to only 𝑚𝑘2 arcs.

Interestingly, for a convex function, the DNF solver, in multiple

iterations, can reach the same (good) solution on the partitioned sub-

graphs in ∪ {𝐺(𝑓(𝑥𝑖 , 𝑥𝑖𝑟))} with cost = the minimum cost selection

obtained by the solver in the un-partitioned 𝐺(𝑓(𝑥𝑖 , 𝑥𝑖1, … , 𝑥𝑖𝑚)).

However, for a non-convex function, this approximation may lead to

a local minima being chosen by DNF in ∪ {𝐺(𝑓(𝑥𝑖 , 𝑥𝑖𝑟))} with

cost > the minimum cost selection obtained in 𝐺(𝑓(𝑥𝑖 , 𝑥𝑖1, … , 𝑥𝑖𝑚)).

As shown in Fig.3(b), each 𝑂𝑆(𝑔𝑖) is represented in the DNF graph

as a set of 𝑘 arcs, each corresponding to one size-Vth option of 𝑔𝑖.

Similar to each p-MEA set, each 𝑂𝑆(𝑔𝑖) also has an MEA

requirement, since exactly one option needs to be chosen for each 𝑔𝑖.

Further, each arc in 𝑂𝑆(𝑔𝑖) has a normalized leakage power cost

corresponding to 𝑔𝑖’s option that it represents.

Figure 5: The DNF Based Solver.

4. The DNF Graph and Solver

The entire DNF graph 𝑮(𝑪) for the circuit 𝑪 is constructed by

connecting the various 𝑮(𝒇())’s according to the structure of the

circuit, and merging the common 𝑶𝑺(𝒈𝒊)’s of the 𝑮(𝒇())’s that

contain 𝑶𝑺(𝒈𝒊). This is shown in Fig. 4(b) for the circuit in Fig. 4(a).

The DNF solver works over multiple iterations to get better solutions

in terms of constraint-satisfaction and power optimization, via

minimization of 𝑭′(𝑿) (Eqn. 9). These are the DNF iterations

alluded to earlier. Furthermore, after each DNF iteration, if either a

constraint is under-satisfied (violated) or over-satisfied, then the LM

coefficient of that constraint function (composed of its component

atomic 𝒇() functions described above and shown in Fig. 3(b-c), e.g.,

the 𝒇𝒅𝒆𝒍𝒂𝒚()’s along a violating critical path) are either increased or

decreased, respectively. Thus the arc-costs in each p-MEA(𝑮(𝒇()))

is correspondingly adjusted. Along with LM update, the current-

design options 𝒐𝒊,𝒄’s are updated, and STA is performed to determine

the slew at each gate input. Both these changes cause the arc costs of

the partitioned PMEAs to potentially change every iteration in a way

that drives the solver towards a more accurate and better solution

(constraint-satisfying, if currently violated, and power-minimizing,

if constraints are over-satisfied).

Finally, each iteration of DNF, in which an MEA-satisfying near

min-cost flow is determined, is itself obtained by multiple iterations

of classical min-cost flow (NF). An iteration of NF will not

necessarily respect MEA requirements (NF being a continuous

solver, its flows can go through multiple arcs in each MEA set). The

MEA requirement is then met by pruning out arcs in each MEA set

that have 0 or low flow amount through them, thereby converging

through multiple NF iterations to full flow going through exactly one

arc in each MEA set (and thereby a near min-cost flow). This

provides us a valid discrete/OSP solution in the current DNF iteration.

The DNF pseudo-code is given in Fig. 5.

5. Incorporating the Cell Replication Option

As explained in Sec. 1 and depicted in Fig. 2, cell replication has the

potential to reduce power in solving the ISPD13-H problem. In some

cases, without cell replication it is not even possible to satisfy delay

constraints due to a consecutive set of sink-size reductions (that can

increase their output delays) to satisfy the strict heating-based load

constraint of a driver gate. However, cell replication is not a

straightforward option to incorporate in the DNF graph since, unlike

cell size-Vth options, it is an option that changes the basic structure

of the circuit; see Fig. 2(b). As shown in Fig, 4(c), the way we

incorporate this option in the DNF graph is for every driver-sink-set

combination (𝒈𝒊, 𝑺(𝒈𝒊) = {𝒈𝒊𝟏, … , 𝒈𝒊𝒎}) where the driver 𝒈𝒊 is

targeted for possible replication (when its heat-based load constraint

cannot be satisfied easily), we construct the alternate subcircuit

[𝒈𝒊,𝟏, 𝑺(𝒈𝒊,𝟏)] ∪ [𝒈𝒊,𝟐, 𝑺(𝒈𝒊,𝟐)] , where 𝒈𝒊,𝟏 and 𝒈𝒊,𝟐 are the two

replicated versions of 𝒈𝒊, with sink sets 𝑺(𝒈𝒊,𝟏) and 𝑺(𝒈𝒊,𝟐), resp.,

and 𝑺(𝒈𝒊,𝟏) ∪ 𝑺(𝒈𝒊,𝟐) = 𝑺(𝒈𝒊) and 𝑺(𝒈𝒊,𝟐) . The criticalities of

paths in terms of their negative slacks and total current input loads

are balanced across 𝑺(𝒈𝒊,𝟏) and 𝑺(𝒈𝒊,𝟐) (sum of the square of

differences in these 2 metrics is minimized). We then connect this

replication-based subcircuit’s DNF subgraph and the original

subcircuit’s DNF subgraph via a replication-option 2-arc MEA set

𝑹𝒆𝒑𝒍(𝒈𝒊) = (𝒆𝒏𝒓, 𝒆𝒓) at their input points: 𝒆𝒏𝒓, is connected to the

original subcircuit, and er to its replicated version; see Fig. 4(c).

Further, the fanout p-MEAs from the drivers of 𝒈𝒊 to this replication-

based DNF subgraph are constructed assuming they drive 𝒈𝒊 (instead

of its replications) using a copy 𝑶𝑺′(𝒈𝒊) of 𝑶𝑺(𝒈𝒊), as shown in Fig.

4(c). This also means that if the flow goes via 𝒆𝒏𝒓 to 𝑶𝑺(𝒈𝒊), as

opposed to via 𝒆𝒓 to 𝑶𝑺(𝒈𝒊,𝟏) and 𝑶𝑺(𝒈𝒊,𝟐), then our DNF solver

ascertains that the flow selects the same option in 𝑶𝑺′(𝒈𝒊) of

𝑶𝑺(𝒈𝒊) by mimicking the MEA arc prunings and cost-updates (see

Fig. 5) of 𝑶𝑺′(𝒈𝒊) in 𝑶𝑺(𝒈𝒊)). In order to account for the “missing”

p-MEAs from these drivers to 𝑶𝑺(𝒈𝒊,𝟏) and 𝑶𝑺(𝒈𝒊,𝟐) , there is a

collapsing cost function 𝑪𝑭(𝑶𝑺(𝒈𝒊,𝟏) ∪ 𝑶𝑺(𝒈𝒊,𝟐)) that is the cost

of arc 𝒆𝒏𝒓 through which flow reaches the replicated subcircuit

option for 𝒈𝒊 (see Fig. 4(c)). A relatively simple version of this

function is:

𝑪𝑭(𝑶𝑺(𝒈𝒊,𝟏) ∪ 𝑶𝑺(𝒈𝒊,𝟐)) = 𝒂 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝑲
 𝒂𝒄𝒓𝒐𝒔𝒔 𝒂𝒍𝒍 𝒅𝒓𝒊𝒗𝒆𝒓𝒔 𝒈𝒋𝒐𝒇𝒈𝒊

[min-cost

(p-MEA(𝑮(𝒇(𝒙𝒋, 𝒙𝒊,𝟏)))) + min-cost (p-MEA(𝑮(𝒇(𝒙𝒋, 𝒙𝒊,𝟐))))] –

𝑲
𝒂𝒄𝒓𝒐𝒔𝒔 𝒂𝒍𝒍 𝒅𝒓𝒊𝒗𝒆𝒓𝒔 𝒈𝒋𝒐𝒇𝒈𝒊

[min-cost (p-MEA(𝑮(𝒇(𝒙𝒋, 𝒙𝒊))))] (10)

Thus the 𝑪𝑭() cost in arc 𝒆𝒏𝒓 is the difference between an

appropriately averaged cost across all the missing p-MEAs to the

OS’s of the 2 replicated cells 𝒈𝒊,𝟏 and 𝒈𝒊,𝟐, and a similar average for

all the present p-MEAs to 𝑶𝑺(𝒈𝒊) (a difference is needed for the

flow cost to the replicated subcircuit, since that flow incurs the cost

of the p-MEAs to 𝒈𝒊, as shown in Fig. 4(c)).

To add another level of complexity to the DNF modeling of cell

replication, if any of the drivers 𝒈𝒋 of 𝒈𝒊 also has a replicated option,

then replicated cells of 𝒈𝒊 are partitioned across the replicated cells

of 𝒈𝒋. And the corresponding CF function cost for 𝒆𝒏𝒓 is augmented

to obtain the minimum of the two 𝑪𝑭()’s for the non-replicated 𝒈𝒋

and its replicated version.

6. Experimental Results

The proposed technique was implemented in C++ and the

experiments were performed on workstations with Intel(R) Core-i9

10900K @ 3.7GHz CPU with 64 GB memory.

In order to establish the quality of our DNF solver, we first compare

in Table 1, our leakage power (LP) results for the original ISPD13

problem that has no heating constraint, to those of the state-of-the-

art technique of [7] that we abbreviate as “South Brazil” (SB+) for 8

mainly mid-size to large circuits. There are two versions of results

from SB+: one is SB-LR, which is a Lagrangian relaxation (LR)-

based gate-sizer with an internal STA timer. The other one is SB+,

which uses the design obtained by SB-LR, with a post-processing

stage for further power improvement which interacts with and uses

timing information directly from the Synopsys PrimeTime (PT) STA

[30]. Our STA (DNF-timer) uses the exact same delay and slew

models as used by the SB-LR STA and recommended by [24]: (1)

Elmore-delay for the distributed RC-tree interconnect [28] with (2)

the method of [29] to compute the effective capacitance (Ceff) for the

driver node of a net, and (3) the slew-propagation formulations (Algo.

5 in [7]). Therefore, our DNF results are precisely comparable to SB-

LR. Compared to both SB-LR and SB+, it can be seen that DNF has

close (mainly) to better power results.

We also note that for circuit DES-F (des-perf-fast), DNF has a

significantly different power performance (42-50% improvement)

w.r.t SB-LR/SB+ compared to those for other circuits. The

discrepancies of PT with various academic STAs, in spite of the latter

following the general delay/slew models of PT, (primarily since PT

has not made all parameters of their models clear) are well known [6,

7]. However, to verify that there is no prima facie incorrectness of

DNF’s DES-F results, we determined its and the related circuit DES-

S’s (for which DNF’s power result is close to SB-LR/SB+) timing

and power results using PT. We found that PT provides the same

leakage power for the two circuits as our analyzer, and that PT’s %

timing discrepancies for them w.r.t our internal STA are almost

identical. Thus we conclude that our DES-F results don’t seem to

have any mistake. Nevertheless, in the last row of Table 1, we give

the total power results for all circuits except DES-F, and this also

shows that our results are very close to those of SB-LR/SB+. We

believe this establishes the state-of-the-art quality of the DNF solver

(comparable to the current state-of-the-art SB-LR/SB+ solvers).

Next, we discuss the two DNF techniques’ results for the heating-

based problem which have all the given metric constraints (for delay,

slew, and load) of the ISPD13 gate-sizing problem, plus, as discussed

in Sec. 1, one additional constraint–the heating-based output-load

constraint for all cells. Table 2 shows two versions of the DNF

technique for this problem: (1) no cell replication used in DNF

(problem ISPD13-H), and (2) cell-replication based DNF (problem

ISPD13-HR). As described in Sec. 2-B, we can obtain a heating-

based load constraint 𝐶ℎ(𝑔𝑖) for each cell 𝑔𝑖 in a given circuit.

However, to streamline the experimentation process, and without any

loss of solving generality for DNF, we use a simple and uniform

heating-based load constraint 𝐶𝐿−𝐻 for a circuit 𝐶 as:

𝐶𝐿−𝐻(𝐶) = 𝛼 ∙ 𝐶𝐿−𝑚𝑎𝑥(𝐶) (11)

where 𝐶𝐿−𝑚𝑎𝑥(𝐶) is the maximum output total-sink-cell load across

all cells of C for its final design provided by DNF for the original

ISPD13 problem, and 𝛼 = 0.3 in our experiments—this value of 𝛼

hits the sweet-spot of being realistic (not making the heat-based load

cap constraint intensely hard) but also hard enough to stress the

solutions obtained without cell replication.

All the results shown in Table 2 have 0 slew and load violation. First

of all, using 𝐶𝐿−𝐻(𝐶), we find that about 4.54% of cells violate this

load constraint in the final DNF-based designs for the original

ISPD13 problem. On the other hand, the DNF solutions explicitly

taking the heating-based load constraint into account (problems

ISPD13-H and ISPD13-HR) satisfy this constraint for all cells. albeit

at a significant cost for ISPD13-H: its solutions violate the delay

constraint by an average of 3%. On the other hand, ISPD13-HR

solutions have 100% delay satisfaction, underscoring the usefulness

of cell replication and its effective deployment by DNF in the face of

hard load constraints. We can also see that ISPD13-HR solutions

have better power performance than ISPD13-H solutions by more

than 4%, again underscoring the efficacy of both cell-replication and

DNF. The reason for these results is the conceptual scenarios of

circuit performance with and without cell replication described in

Secs. 1 and 5. Also, not surprisingly, leakage power consumption

increases in ISPD13-H/HR solutions compared to ISPD13 (where

there are no heat constraints) by 24.6%/19.6%. This is due to a

combination of cell replication and the required cell upsizings when

not replicating (see below).Table 2 also shows that while we start

with an average of 4.5% of cells violating the heating-based load

constraint without any specific consideration of this constraint in the

original ISPD13 problem, in the ISPD13-HR solutions only an

average of 1.5% of cells are replicated to satisfy this constraint (other

cells satisfy it by a combination of sink downsizing, if needed, and

their own upsizing and possible upsizings in the fanout cones of its

sinks to compensate for the increased delay at sink outputs).

7. Conclusions

We introduced cell replication in the physical synthesis process to

better tackle hard heating-based load constraints. To this end, we

incorporated the cell replication option in the DNF graph in a

complex and innovative structure. Our results establish:

• The state-of-the-art quality of DNF for the original ISPD13

problem, and thus confidence in its QoS for the two

heating-constraint based problems.

• The usefulness of incorporating the cell-replication

transform in the physical synthesis process in order to

satisfy hard 𝐼2𝑅 heat dissipation upper bound constraints

on interconnects (translated to corresponding upper bound

load constraint on the driver cell), and the efficacy of DNF

in judiciously deploying this transform: DNF solutions to

the heating-based problem using cell replication ISPD13-

HR satisfies all hard heating-based load constraints while

also satisfying delay and slew constraints with only 1.5%

of cells undergoing replication. Further, the solutions for

the heating-based problem that does not use cell replication

ISPD13-H, while satisfying all load constraints, have an

average of 3% delay violation, and also have 4% higher

power than ISPD13-HR solutions.

• The general ability of DNF graph modeling for

incorporating almost any design options (including those

that change the basic structure of the problem/circuit, as

does cell replication) in a streamlined manner, and the

ability of the DNF solver to efficiently process any DNF

graph modeling any problem.

Acknowledgements

This work was funded by NSF grant CCF 2035610.

Table 1: Leakage Power (LP) results for DNF, SB-LR and SB+ [7]. All
results have 0 slew and load violations with DNF-timer. A positive
(negative) % difference indicates power increase (decrease).

References

[1] Li, M. (2016). Joule Heating Induced Interconnect Failure in 3D IC

Technology,. PhD Thesis, 2016, UCLA.
https://escholarship.org/uc/item/1pf907hr

[2] J. Hu et al. Sensitivity-guided metaheuristics for accurate discrete gate

sizing. In IEEE/ACM International Conference on Computer-Aided
Design, pages 233–239, 2012.

[3] L. Li et al. An efficient algorithm for library-based cell-type selection

in high-performance low-power designs. In IEEE/ACM International
Conference on Computer-Aided Design, pages 226–232. IEEE, 2012.

[4] V. S. Livramento et al. A hybrid technique for discrete gate sizing

based on lagrangian relaxation. ACM Transactions on Design
Automation of Electronic Systems, 19(4):40, 2014.

[5] A. Sharma et al. Fast Lagrangian relaxation based gate sizing

usingmulti-threading. In IEEE/ACM International Conference on
Computer-Aided Design, pages 426–433. IEEE, 2015.

[6] A. Sharma, D. Chinnery, S. Dhamdhere and C. Chu, "Rapid gate

sizing with fewer iterations of Lagrangian Relaxation," 2017

IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017, pp. 337-343.

[7] G. Flach et. al. Effective Method for Simultaneous Gate Sizing and V-

th Assignment Using Lagrangian Relaxation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,
33(4):546-557, 2014.

[8] F. Gao, and J. P. Hayes, “Total power reduction in CMOS circuits via

gate sizing and multiple threshold voltages”, in Proc. Des. Autom.
Conf., pp. 31-36, 2005.

[9] A. Srivastava, D. Sylvester, and D. Blaauw, “Power minimization

using simultaneous gate sizing, dual-Vdd and dual-Vth assignment”,
in Proc. Des. Autom. Conf., pp. 783-787, 2004.

[10] H. Ren and S. Dutt, “Effective Power Optimization via Simultaneous

Vdd, Vth Assignments, Gate-Sizing and Placement Under Timing and

Voltage-Island Constraints”, IEEE Trans. CAD, 30(5): 746-759, May
2011.

[11] D. Chinnery and K. Keutzer, “Linear programming for sizing, vth and

vdd assignment,” in Proc. International Symposium on Low Power
Electronics and Design, 2005, pp. 149–154.

[12] S. Shah, et. al., “Discrete vt assignment and gate sizing using a self-

snapping continuous formulation,” ICCAD, 2005, pp. 705–712.

[13] H. Chou, Y.-H. Wang, and C. C.-P. Chen, “Fast and effective gate-

sizing with multiple-vt assignment using generalized lagrangian

relaxation,” ASP-DAC, 2005.

[14] S. Roy, et. al., “Numerically convex forms and their application in gate

sizing,” IEEE Transactions on Computer Aided Design, 2007.

[15] H. Tennakoon and C. Sechen, “Efficient and accurate gate sizing with

piecewise convex delay models,” DAC, 2005.

[16] H Tennakoon and C Sechen, “Gate sizing using Lagrangian relaxation

combined with a fast gradient-based pre-processing step,” In

Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, 2002.

[17] J. Wang, D. Das, and H. Zhou, “Gate sizing by lagrangian relaxation

revisited,” ICCAD, 2007.

[18] S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell-library-based designs,”

IEEE Transactions on Computer Aided Design, 2009.

[19] Y Liu and J Hu, “GPU-based parallelization for fast circuit

optimization,” TODAES, 2011.

[20] Y. Liu and J. Hu. A new algorithm for simultaneous gate sizing and

threshold voltage assignment. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(2):223–234, 2010.

[21] M. Ozdal, S. Burns, and J. Hu, “Gate sizing and device technology

selection algorithms for high-performance industrial designs,” in Proc.
Intl. Conf. on Computer-Aided Design, 2011, pp. 724–731.

[22] J. Wang, D. Das, and H. Zhou, “Gate sizing by lagrangian relaxation

revisited,” ICCAD, 2007.

[23] M. M. Ozdal, et. al., “The ISPD-2012 discrete cell sizing contest and

benchmark suite,” in Proc. Intl. Symposium on Physical Design, 2012.

[24] M. M. Ozdal et al., “An improved benchmark suite for the ISPD-2013

discrete cell sizing contest,” In Proceedings of the 2013 ACM

international symposium on International symposium on physical
design, pages 168–170. ACM, 2013.

[25] R. K. K. Ahuja, et al., Network Flows: Theory, Algorithms, and

Applications, Pearson Education, 1993.

[26] A. Nahapetyan, and P. Pardalos, “Adaptive Dynamic Cost Updating

Procedure for Solving Fixed Charge Network Flow Problems”,

Computational Optimization and Applications journal, 2008.

[27] R. Puri, D. S. Kung, and A. D. Drumm, “Fast and accurate wire delay

estimation for physical synthesis of large ASICs,” GLSVLSI, 2002.

[28] R. Gupta, et. al., “The elmore delay as bound for rc trees with

generalized input signals,” in Proc. ACM/IEEE DAC, 1995, pp. 364–

369.

[29] J. Qian, S. Pullela, and L. Pillage, “Modeling the “effective

capacitance” for the RC interconnect of CMOS gates,” IEEE Trans.
Computer-Aided Design Integr. Circuits Syst., vol. 13, no. 12, pp.
1526–1535, Nov. 2006.

[30] https://www.synopsys.com/implementation-and-
signoff/signoff/primetime.html

Table 2: Metrics comparison for heat-based DNF technique between non-replication-cell version (ISPD13-H) and replication-cell version (ISPD13-
HR). All results have 0 slew and load violations with DNF-timer, and 𝜶 = 0.3.

