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1. INTRODUCTION

Cyber-physical-human systems (CPHS) integrate control
systems with human interaction, enabling adaptive in-
teraction across various levels: physiological, cognitive-
behavioral, and population-wide levels. Notable progress
has been made in the study of CPHS, particularly in tech-
nological areas such as physical world simulations, feed-
back algorithms, and sensor integration (Samad (2023)).
However, despite notable differences in modeling, analysis,
control objectives, and design tools across the various
levels of CPHS, common central challenges remain to
be addressed. Due to the complexity and often limited
access to measurements, human models are inherently
highly uncertain. Understanding how these human models
adapt during interaction remains a critical research goal
(Annaswamy et al. (2023)).

In this paper, we focus on behavioral interactions at the
cognitive-behavioral level, where humans are viewed as
decision makers who interact with cyber-physical systems
(CPS) in a spatio-temporal fashion via behaviors. Here,
“spatial” indicates that there are observable actions and
reactions that individuals or groups exhibit in a physical
space that can be directly or indirectly measured to
inform the control objective. The main challenge at this
level is to create computational models that accurately
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simulate human behavior dynamics and decision processes
for system design and control. Major applications include
collaboration between humans and robots, rehabilitation
and assistance, self-driving vehicles, process plants, smart
homes, and managing the ambient environment.

However, in deriving computational models that describe
the interaction between humans and CPS, there are no
first-principle models to draw upon—this is in stark con-
trast to pure CPS. Hence, various simulation approaches
have been utilized to analyze human behavior in the built
environment, each requiring human behavior models at
different levels of abstraction. As identified by Schaumann
and Kapadia (2019), these approaches include system
dynamics, process-driven, flow-based, particle-based, and
multi-agent simulation (MAS). MAS is distinguished by
its ability to provide detailed simulations that capture
the complex interactions between agents, using specific
behavioral rules that reflect their motives and preferences,
enabling autonomous decision-making. This method facil-
itates the emergence of behaviors that are more represen-
tative of real-world complexities, offering a valuable tool
for understanding and predicting human behavior in dy-
namic settings. Nonetheless, formulating predefined rules
for agents to effectively engage with each other and their
changing environments is challenging due to the range
of factors influencing behavior and preferences, including
physiological (e.g., age, sensory perceptions), psychological
(e.g., motivations, needs, preferences), spatial and envi-
ronmental (e.g., temperature, proximity to others, seat
arrangements), time-related (e.g., time of day), contextual
(e.g., social norms), social ties, and random factors Doc-
torarastoo et al. (2024b).
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Researchers have long tried to develop the rules governing
spatial behavior based on these influential factors. These
efforts have led to the development of different modeling
approaches, predominantly classified as knowledge-driven
(Chun et al. (2019)) and data-driven (Zhu et al. (2023)) ap-
proaches. Knowledge-driven models are traditionally built
on data sourced from surveys, observational studies, and
expert insights (Dawes and Ostwald (2014)). On the other
hand, the rise of the Internet of Things and advancements
in sensor technology have transformed data collection,
enabling the assembly of detailed datasets that fuel data-
driven models (e.g., privacy-preserving activity recogni-
tion) (Martins et al. (2023); Lin et al. (2024b)). The data
used for training these models incorporate both known
(e.g., temperature) and unknown variables that can affect
decisions, yet these models often struggle to generalize to
environments not included in their training data. Hybrid
models have the potential to merge the advantages of each
modeling approach, reducing their individual limitations
and amplifying their strengths. In this context, Reinforce-
ment Learning (RL) stands out as a primarily data-driven
technique that also employs stochasticity. RL’s strengths
in complex and evolving environments stems from its dy-
namic learning capabilities and its proficiency in managing
complexity and uncertainty, focusing on long-term goal op-
timization and the strategic balance between exploration
and exploitation. RL also mirrors human decision-making
processes by being goal-driven, sequential, and focused on
maximizing the internal utility functions of agents.

However, in the context of modeling human behavior,
this internal utility function, which reflects individual
goals and preferences, is unknown. Therefore, the task
of formulating humans’ internal utility functions based
on data remains a complex challenge. This is not only
due to the individual-specific factors that influence human
decisions, but also because the human agent must perceive
relational configurations—that is, the spatial arrangement
and relative positioning of elements and people within the
environment with which the agent interacts. If we can
model human perceptions and reactions to the built world
spatio-temporally, we can apply control actions to these
configurations to encourage specific behaviors, aligning
with the objectives of CPHS.

To meet the multi-faceted needs of accounting for factors
influencing human decisions and human agents’ perception
of relational configurations within their environment, we
use Graph Neural Networks (GNN) in our study. GNN can
uniquely capture, process, and aggregate relational data
Scarselli et al. (2008); Taghizadeh et al. (2024), offering
notable advantages in representing both the physical and
social features of the environment and their interconnec-
tions. Therefore, we use GNN as a key building block
to map complex human perceptions and preferences to
reward functions. The proposed GNN-based preference
model enhances realism of the reward function in the RL
algorithm, compared to allocating rewards merely for per-
forming activities. This results in behavioral simulations
that are responsive to the diverse physical, social, and
environmental attributes of the built environment.

In the remainder of this paper, we first explore the con-
struction and training of the GNN-based preference model.
Next, we investigate the use of RL to autonomously learn

action rules for modeling human spatial behavior in dy-
namic settings. We then detail how this GNN-based pref-
erence model is integrated with the RL-driven behavior
model to form a preference-aware human spatial behavior
model. This multi-layered approach improves the accu-
racy of behavior simulations by incorporating individual
preferences, while also enhancing adaptability through
RL’s ability to adjust to changing conditions. To showcase
the practical applications and benefits of this model, we
present an illustrative example featuring two scenarios in a
conference room at Carnegie Mellon University (CMU) in
Pittsburgh, PA. Using synthetic data, we demonstrate how
this model improves simulation realism and behavioral
predictions compared to a non-preference-based approach.

2. METHODOLOGY

2.1 GNN Preference Model

In this section, we systematically outline the develop-
ment of the proposed preference model. First, in “Data
Collection,” we develop a multi-layered dataset that cap-
tures the spatial, social, and environmental factors within
built environments. Then, in “Graph Representation of
the Environment,” we transform the gathered data into a
graph structure in preparation for analysis with the GNN.
Building on this graph-based representation, the “Imple-
mentation of the Preference Model” section discusses how
the dataset is used to develop the preference model.

Data Collection. A key input of the GNN is in-situ
data collected from sensors, such as from depth or RGB
cameras. The authors note that in public settings (e.g.,
smart cities), there is an ongoing push to generate valu-
able data using privacy-preserving technologies, undergo-
ing processing through activity recognition algorithms, as
detailed in Martins et al. (2023) and Lin et al. (2024b).
The data is further enhanced by adding tracklets capturing
the exact locations of the activities observed. Addition-
ally, a social map is created by tracking the location of
individuals in the area over time. The environment’s am-
bient conditions are monitored using sensors (e.g., digital
thermometers, photodiodes), providing real-time environ-
mental data. Data layers, such as time stamps recorded by
system clocks and the physical layout documented through
digital blueprints or LiDAR scans, are crucial for building
a comprehensive dataset. This multifaceted dataset lays
the groundwork for the GNN model to analyze and inter-
pret human preferences within spatial and social contexts
of the built environments.

Graph Representation of the Environment. To utilize
GNN, the collected data in the “Data Collection” section
must be represented in a graph structure. Given the spatial
setting, the environment is segmented into a grid, where
each grid cell is mapped to a node of a graph, G = (V,E).
Here, V represents the set of nodes, each corresponding to
a distinct grid cell within the built environment. The set
E comprises edges illustrating the proximity between the
cells, with an edge, eij , existing in E if there is a direct
adjacency between cells i and j. The graph’s adjacency
matrix, A, is defined such that aij = 1 if there is an
edge eij ∈ E, indicating adjacency between the two cells,
and aij = 0 otherwise. We denote the number of nodes
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and edges by |V | = N and |E| = L, respectively, which
depends on the refinement of gridification and the size of
the environment. Each node vi ∈ V is associated with
a composite feature vector, encapsulating cell i’s spatial,
environmental, and social characteristics, xi:

xi = [Eri, Eni, Si] (1)

where Eri is a binary vector indicating ergonomic features,
with the binary format simplifying the representation
of cells containing multiple items. Vector Eni reflects
the built environment’s environmental attribute, while Si

indicates whether the cell is currently occupied by other
individuals. Vectors Eri and Eni are adaptable to include
a variety of features depending on specific applications. For
example, in educational settings, Eri may include elements
like the presence of tables, chairs, and proximity to walls,
windows, and exits, whereas Eni could incorporate factors
like temperature, light intensity, noise level, and humidity.

In GNN, the term target refers to the output or ground
truth of a node, edge, or the entire graph. This depends on
the specific task, whether it is node classification, graph
classification, or edge prediction. Our approach utilizes
node classification within the GNN model to determine
the probability of each grid cell (node) being selected for
various activities. Consequently, each node is assigned a
label indicating whether that cell has been chosen for
a specific activity. The target vector for each node i is
defined, where each element corresponds to one of the M
possible activities:

yT
i = [yi1 yi2 · · · yiM ] (2)

Implementation of the Preference Model. The develop-
ment of the preference model unfolds in two main phases:
Training and Prediction. During the Training phase, the
model assesses grid cells and calculates probabilities that
reflect their likelihood of being selected for various activ-
ities. This evaluation uses preprocessed input and output
data, as detailed in the “Graph Representation of the
Environment” section. The preference model integrates
each cell’s spatial, environmental, and social features into
a graph-structured format, referred to as the Input Graph.
The Output Graph illustrates the selection of specific cells
based on the Input Graph. This selection mechanism is
shaped by the dynamics of human physiological and psy-
chological traits and their preferences in terms of relational
configuration of the physical space, captured through sen-
sor data, mirroring individual preferences in selecting cer-
tain cells. The preference model operates as follows:

H(0) = X (3)

H(l+1) = ReLU
(
GNN (l)

(
H(l), A

))
(4)

Ŷv = σ
(
GNN (L−1)

(
H(L−1), A

))
(5)

where at each layer l, H(l) denotes the node features,
and A represents the adjacency matrix that indicates the
connections between nodes. The GNN layers, indexed by
l, refine these features to calculate the probability ŷv for
each node’s selection, utilizing the Sigmoid function σ.
The GNN’s parameters are then adjusted to ensure the
model’s predictions align with the target vector. Given
the imbalance present in the training data, where only
one node is selected from the entire graph, we employ a
weighted Binary Cross-Entropy (BCE) loss function. This

function assigns greater weight to the underrepresented
class (positive samples), enhancing their impact on the
loss calculations and reducing the bias towards the ma-
jority class. This adjustment is crucial in applications like
preference modeling where the minority class is of greater
interest. The loss is computed across all nodes N in the
environment graph and averaged over the training samples
T and the total number of nodes N as follows:

LBCEw(Yv, Ŷv) =− 1

T ·N

T∑
j=1

N∑
i=1

[
w · y(i)j log(ŷ

(i)
j )

+ (1− y
(i)
j ) log(1− ŷ

(i)
j )

] (6)

where Yv and Ŷv denote the true labels and the estimated
probabilities for nodes of the graph, respectively. The
variable w represents the weight given to the positive class.
After successfully training the GNN, the model moves into
the Prediction phase. During this phase, it calculates the
probability of selecting each grid cell for any of the M
possible activities referred to as pm.

2.2 Preference-Aware RL Spatial Behavior Model

Specification of RL Behavior Model. In RL, agents learn
optimal behaviors through sequential decisions by inter-
acting with their environment and receiving feedback in
the form of rewards or penalties. The core components
of RL include agents, the environment, actions, states,
and rewards (Sutton and Barto (2018)). In our work,
humans are represented as RL agents, with their spatial
decision-making behavior modeled using policy functions.
The environment encompasses the cyber, physical, and
social worlds in which the agent operates and interacts.
The human agent observes the state of the environment,
which may include partial information from the surround-
ing physical, social, and cyber worlds, referred to as the ob-
servation. Based on this observation, the RL human agent
performs specific activities through fine-grained actions
such as moving, sitting, standing, and initiating interac-
tions. The agent’s objective is to successfully accomplish
these activities, for which it receives rewards. However,
such a simplistic reward function ignores humans’ spatial
preferences for performing activities, resulting in homoge-
neous behaviors across all agents that focus solely on the
execution of activities. This does not reflect how humans
behave, an issue addressed in the following section.

GNN Integration with RL. The integration process be-
gins with the RL agent observing the environment’s cur-
rent state. Using the GNN’s predictions on the likelihood
of spaces being chosen for different activities, the agent
evaluates the desirability of various locations rather than
relying on a simplistic reward function. This means that
the rewards received by the agent are determined by
its complex perceptions and spatial preferences captured
by the GNN. During each time step, the agent’s policy
function evaluates possible actions based on the GNN-
predicted rewards indicating the suitability of locations,
resulting in human agents choosing locations that align
with their specific preferences. For instance, if the GNN
predicts a high likelihood for a particular location being
ideal for a specific activity (e.g., studying in a quiet, well-lit
corner), the RL agent receives a higher reward for choos-
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Fig. 1. Non-grid floor plan (Doctorarastoo et al. (2024a)).

Fig. 2. Grid floor plan (Doctorarastoo et al. (2024a)).

Table 1. Light interpolation parameters.

Location Mean (µ) Standard deviation (σ)

Next to window 600 lux 200 lux
Corners 300 lux 150 lux
Under artificial lights 500 lux 75 lux

ing that location for studying. Conversely, less suitable
locations result in lower rewards. This reward can change
based on the evolving physical and social characteristics
of the surroundings, potentially prompting the agent to
change their location if suitability notably changes, guid-
ing the agent toward more human-like spatial behaviors.

3. ILLUSTRATIVE EXAMPLE

A practical application of CPHS is within infrastructure
systems, referred to as cyber-physical-social infrastructure
systems (CPSIS). CPSIS extends traditional CPS by in-
tegrating the interactions between humans and infrastruc-
ture (Doctorarastoo et al. (2023a,b)). In CPSIS, physical
infrastructure is designed or controlled to achieve not only
economic goals but also human-centered objectives. For in-
stance, how can we design and operate educational spaces
to maximize productivity and learning quality? Or, how
can we manage heating, ventilation, and air conditioning
systems to minimize energy use while maximizing comfort?
As an illustrative proof of concept, we demonstrate the
capabilities of our proposed work within this context.
This case study develops a human preference model in
an educational facility at CMU, serving as a compact
model for examining human interactions and preferences
in a well-defined spatial environment. Within the broader
control paradigm, this is an important aspect of modeling
needed to meet objectives desired by the community such
as productivity, collaboration, or sociability.

Case Study Setting. The conference room, shown in
Figure 1, is a 4m×10m space that has been divided into a
grid (Figure 2), converting the room into a discrete spatial
model for graph representation. Each 50cm×50cm cell
within the environment grid is assigned values representing
physical entities like walls, entrances, windows, movable
objects (e.g., chairs, desks), and unoccupied spaces. The
identified activities are studying, eating, and socializing.

Table 2. Temp. interpolation parameters.

Location Mean (µ) Standard deviation (σ)

Next to window and heating 26◦C 3◦C
Corners 22◦C 1.5◦C
Next to entrance 19◦C 2◦C

Table 3. Preference model training parameters.

Parameter/method Value/description
Optimizer Adam
Learning rate (LR) 0.0005
Batch size 128
Activation function ReLU (hidden layers), Sigmoid (output layer)
Loss function Weighted BCE
LR scheduler Step size 50 and gamma 0.99
Early stopping patience 50 epochs
Number of epochs 1000 (max)

Graph Structure. A subset mesh is extracted from the
grid, encompassing all cells excluding those marked as
unoccupiable or as walls, focusing on potential areas for
human presence. A graph structure overlays the mesh,
with nodes representing mesh cells and edges connecting
adjacent nodes, including diagonals. Each node possesses a
feature vector encompassing environmental characteristics
(e.g., light intensity, temperature), object presence (e.g.,
tables, chairs), proximity to architectural elements (e.g.,
windows, walls), and occupancy by individuals.

Creating the Synthetic Dataset. For this proof-of-concept
illustration, we generated 10,000 synthetic data points
per activity to analyze spatial preferences. Node feature
vectors are populated based on fixed room characteris-
tics, while social and environmental attributes (referred
to as maps) are derived using probabilistic distributions
to better mirror real-world conditions and to enrich the
dataset. The social map indicates individual locations,
generated by randomly placing individuals to simulate
presence of others, influencing preferences for social in-
teractions or quiet zones conducive to concentrated tasks.
Light intensity values are assigned to nodes based on their
distance from light sources, i.e., windows and artificial
lighting. The temperature map reflects room temperature
distribution influenced by proximity to windows, heating,
and entrance. Table 1 and Table 2 detail the Gaussian
probability distribution parameters at specific locations
for light intensity and temperature, respectively. These
values are then interpolated to other locations using Near-
est Neighbor interpolation for light intensity and Cubic
interpolation for temperature.

Human preferences for activities are generated using
a probabilistic selection mechanism that evaluates cells
for suitability as activity zones. Suitability is quantified
through a weighted sum of node features, with weights
reflecting the relative importance of features for a specific
activity, which can indicate willingness, indifference, or
avoidance to different extents. For example, when study-
ing, one might prioritize light intensity and proximity to
windows, while for socializing, they might prioritize furni-
ture arrangement. Each data instance involves selecting an
initial node representing an activity’s starting point and a
target node chosen based on weighted feature preferences,
encoding preferences given the current spatial, social, and
environmental features. For this case study, we included
three human agents in the conference room. Agent 1, while
studying, prefers areas with couches, avoids high temper-
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(a) (b) (c)

Fig. 3. GNN training and test loss over epochs for (a) Agent 1, (b) Agent 2, and (c) Agent 3.

Fig. 4. Temperature heatmap of the conference room.

Fig. 5. Light intensity heatmap of the conference room.

atures, and is indifferent to other factors. Agent 2 prefers
warmer areas, avoids crowded spaces, and is indifferent to
other conditions. Agent 3 seeks well-lit areas near windows
and is indifferent to other features.

Preference Model Training. The GNN is trained by iter-
atively adjusting its parameters using the Adam optimizer
to minimize the difference between the predicted outcomes
and the actual data. Early stopping is applied to avoid
overfitting. Table 3 summarizes key training parameters.
The decline in training and test loss curves (Figure 3)
indicates the model’s effective learning and generalization.
Their convergence suggests a balance between adapting to
the training data and generalizing to unseen data.

4. RESULTS

In this section, we present the results of the proof-of-
concept demonstration, showing movement trajectories
and usage patterns for the three agents using simulation.
The environment’s temperature and light intensity maps
are shown in Figure 4 and Figure 5, respectively. The
analysis of agent trajectories in the conference room re-
veals distinct behaviors based on the inclusion or exclusion
of preference modeling. Figures 6a, 6b, and 6c show the
trajectories for the three agents across two scenarios: with
and without preference modeling. Each scenario includes
200 trajectories to provide a robust comparison.

When preferences are not considered, the agents tend to
select the nearest available seating to the entrance, leading

to a higher concentration of activity in this area. This
behavior aligns with a basic utilitarian approach where
the primary goal is minimizing travel distance within the
room. Consequently, the closest chairs to the entrance are
often occupied first, reflecting a simplistic and predictable
pattern of movement. Introducing the GNN-based prefer-
ence model significantly alters the agents’ behaviors, as
agents seek out locations aligned with their individual
preferences regarding temperature, light, and social dis-
tance. This leads agents to exhibit behaviors that more
closely mirror human decision making, leading to diverse
and realistic movements within the space. The results show
that agents in the preference-aware scenario often traveled
farther distances to reach their preferred locations. This
finding suggests that preference-driven decision making
can result in longer, but more goal-oriented, paths—an
important consideration for optimizing environments, such
as in urban planning or smart building systems.

(a) Agent 1

(b) Agent 2

(c) Agent 3

Fig. 6. Agent movement trajectories showing behavior
with and without preference modeling.
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Agent 1, who prefers couches and cooler areas, predomi-
nantly chooses the couch in the cooler part of the room,
prioritizing temperature comfort over proximity to the
entrance. Agent 2, who favors solitude and warmer tem-
peratures, moves across the room to the couch located
in far left, clearly favoring both thermal comfort and
social distancing. Agent 2 ’s decision is influenced by the
presence of other agents, particularly Agent 3, reflecting
the multi-agent nature of the simulation. As shown in
Figure 6c, Agent 3, who prefers well-lit areas and proximity
to windows, consistently selects seating near the window,
favoring the chairs closer to the window over the more
distant ones. This prompts Agent 2 to select the couch,
even though the temperature near the chairs is similar to
the couch and they are positioned closer to the entrance.
This interaction demonstrates how preferences for social
distance can outweigh simple spatial proximity.

5. CONCLUSION

This paper introduces a new approach to modeling human
spatial behavior in CPHS, with a focus on preference-
aware decision making. By integrating GNN, RL, and in-
situ sensor data, the model captures individual preferences
related to environmental, social, and ergonomic factors,
resulting in more realistic simulations of human behav-
ior. This approach represents a significant advancement
over traditional models by accounting for the dynamic
nature of human-environment interactions and individual
preferences. This multi-layered approach holds promise for
revolutionizing areas such as smart building management,
urban planning, and human-robot collaboration, where
human-centric design and adaptability are crucial.

Future work should prioritize incorporating near real-
time model retraining to adapt to evolving preferences
and goals. Another key area for exploration is evaluating
how well the training data represents human physiological
and psychological traits, with comparisons to existing
benchmarks. Expanding the model to account for internal
factors such as emotions (Lin et al. (2024a)), refining the
reward discount factor to balance short- and long-term
objectives, and validating the models using real-world data
will also improve this work’s applicability.
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