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Abstract

Recent advancements in semiconductor process technolo-
gies have unveiled the susceptibility of hardware circuits to
reliability issues, especially those related to transistor ag-
ing. Transistor aging gradually degrades gate performance,
eventually causing hardware to behave incorrectly. Such
misbehaving hardware can result in silent data corruptions
(SDCs) in software—a type of failure that comes without logs
or exceptions, but causes miscomputing instructions, bitflips,
and broken cache coherency. Alas, while design efforts can
be made to mitigate transistor aging, complete elimination of
this problem during design and fabrication cannot be guar-
anteed. This emerging challenge calls for a mechanism that
not only detects potentially aged hardware in the field, but
also triggers software mitigations at application runtime.
We propose Vega, a novel workflow that allows efficient
detection of aging-related failures at software runtime. Vega
leverages the well-studied gate-level modeling of aging ef-
fects to identify susceptible signal propagation paths that
could fail due to transistor aging. It then utilizes formal veri-
fication techniques to generate short test cases that activate
these paths and detect any failure within them. Vega in-
tegrates the test cases into a user application by directly
fusing them together, or by packaging the test cases into
a library that the application can invoke. We demonstrate
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our proposed techniques on the arithmetic logic unit and
floating-point unit of a RISC-V CPU. We show that Vega
generates effective test cases and integrates them into appli-
cations with an average of 0.8% performance overhead.
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1 Introduction

In recent decades, the semiconductor industry has made re-
markable technological progress. Continuous advancements
in process nodes have ensured a consistent downsizing of
transistors to nanoscale dimensions, yielding improvements
in performance and reductions in energy consumption. How-
ever, these advances have also heightened circuit reliability
challenges [9, 57], notably evidenced by the emergence of
silent data corruptions in data centers [23, 36-38, 52, 69, 75].

Silent data corruptions, or SDCs, are a form of undetected
failure that occurs without generating logs, exceptions, or
immediate program crashes. Instead, SDCs silently introduce
incorrect data into applications. As a result, an error can
spread far from its point of origin, potentially leading to
failures that are difficult to predict, prevent, and troubleshoot.
Recently, cloud providers have identified CPUs with such
SDCs in their data centers [37, 52, 75].

SDCs are risky, as they challenge the fundamental “fail-
stop” assumption of hardware failures that software devel-
opers have been accustomed to for decades. Most software
applications in data centers and personal computers assume
that a circuit, having undergone correct design, fabrication,
and testing, will either function correctly or not work at all.
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Unfortunately, SDCs usually involve hardware malfunctions
like miscomputing instructions and broken cache coherency,
which are typically not considered by applications. Worse,
these faults may be transient or persistent, which increases
the difficulty of monitoring and mitigating SDCs.

Transistor aging is believed to be one of the causes of
SDCs [12, 17, 19, 20]. This gradual performance degradation
of transistors over time steadily increases signal propagation
delays. Eventually, this aging results in timing violations
inside a circuit, thus causing certain components to malfunc-
tion. Alibaba observed that a significant portion of SDCs in
their CPUs appear only after a period of usage [75], suggest-
ing that these SDCs may be attributed to transistor aging.

A straightforward strategy for mitigating the risks associ-
ated with SDCs is to conduct frequent and proactive testing
using well-designed test cases, enabling quick identification
and removal of malfunctioning hardware. Following this
strategy, previous research has explored the formulation of
test cases specifically for the detection of SDCs, as well as
the development of frameworks for test management and
scheduling. However, in order to stress individual compo-
nents inside the circuit, these works tend to create complex
tests with a long execution time, preventing them from being
frequently scheduled. For example, in Alibaba, such tests are
only scheduled once every three months [75].

The detection of SDCs—especially these attributed to aging—
would be markedly improved by increasing testing frequency.
Aging accumulates progressively and a circuit may exhibit
SDCs at any stage of its lifecycle, so more frequent testing
helps ensure more timely detection. Ideally, test cases should
be selectively integrated within applications, guaranteeing
routine execution and enabling immediate error-handling,.
This approach is traditionally impractical because of the long
execution times associated with existing SDC tests. For ex-
ample, Google’s SiliFuzz [69] generates around 500,000 test
cases, and a full execution of DCDiag [10]—Intel’s official
CPU diagnosis tool—takes 45 minutes.

Previous research tends to yield tests with a long execu-
tion time because of their adoption of a “top-down” approach.
These works treat the hardware as a black box and generate
test cases atop an abstract model of it. For example, Google’s
SiliFuzz [69] generates test cases by fuzzing the instruction
set architecture (ISA) of a CPU, while Intel designed OpenD-
CDiag [1]—an open-source variation of DCDiag [10]—on top
of popular libraries such as zlib [2] and eigen [48]. Due to
the lack of implementation details in the abstract hardware
model, these methods must generate a set of complex tests to
ensure that all components inside the hardware are stressed.

However, hardware is not a black box. Circuit design is
detailed in hardware description languages (HDLs) and sub-
sequently synthesized into a netlist, which comprises a com-
plex placement of gates and wires. This netlist serves as a
blueprint during chip fabrication. Unsurprisingly, as a dom-
inant factor in circuit reliability, transistor aging has been
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extensively studied at the level of gates and netlists [12, 22, 51,
64, 65]. Particularly, prior research has identified key electri-
cal effects that contribute to transistor aging and developed
comprehensive models to estimate these effects [15, 43].

In this paper, we present Vega, a novel “bottom-up” work-
flow designed to bridge the gap between the gate-level un-
derstanding of transistor aging and the proactive detection
of aging-related SDCs in software. Vega empowers frequent
and routine detection at application runtime, thereby im-
proving the effectiveness of transistor aging failure detection.
Specifically, Vega is comprised of three phases:

1- Aging Analysis identifies susceptible signal propagation
paths that can potentially fail due to transistor aging. This
is achieved through the use of aging-aware static timing
analysis, supplemented by the well-studied gate-level models
for transistor aging [15, 43].

2—- Error Lifting transforms aging-prone paths into short
test cases that are executable in a software environment and
integrable into an application. This conversion leverages a
combination of formal methods, logical modeling for timing
errors, and heuristics based on the hardware’s microarchitec-
ture to ensure precise test case generation. As a byproduct,
this phase additionally yields a number of failure models
for the analyzed hardware, which can be valuable for future
research in circuit and software reliability.

3— Test Integration combines test cases with an application.
We showcase two approaches for such integration: a profile-
guided method for automated test instrumentation, and a
manual method for a more controlled integration.

We demonstrate Vega on the arithmetic logic unit (ALU)
and the floating-point unit (FPU) of a RISC-V CPU, syn-
thesized into a 28nm cell library. We show that Vega can
identify aging-susceptible signal paths and generate effec-
tive test cases to target faults arising from them: these test
cases incur negligible runtime performance overhead while
ensuring routine aging detection.

Overall, we make the following contributions:

e We design Vega, a novel workflow that bridges the gap
between the physical understanding of transistor ag-
ing and the proactive detection of aging-related SDCs
in software.

e We evaluate Vega with a circuit synthesized into a
real-world cell library, demonstrating the capability of
frequent aging-related failure detection with negligible
runtime overhead.

e We provide a set of circuit-level failure models for the
analyzed hardware to facilitate future research into
silent data corruptions.

2 Background and Motivation

This section begins with context about recent observations of
silent data corruptions (SDCs) on data center-deployed hard-
ware circuits (§2.1). Next, we summarize the development
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process of such circuits (§2.2), and explore how transistor
aging—a common cause of SDCs—can impact the perfor-
mance and reliability of hardware circuits (§2.3). After each
subsection, we present key takeaways that motivate Vega.

2.1 Silent Data Corruptions

Silent data corruptions (SDCs) are a form of undetected fail-
ure that silently introduces incorrect data into applications.
These occur without generating logs, triggering exceptions,
or causing immediate program crashes. Consequently, SDCs
can propagate beyond their point of origin, leading to issues
that are challenging to prevent, predict, or troubleshoot.

Recently, major data center operators, including Meta,
Google, and Alibaba, have reported incidents of SDCs within
their clusters [37, 52, 75]. Investigations into these SDCs
uncovered that they stem from faults within computational
circuits (i.e., CPUs), rather than the more typical suspect,
memory devices. Occasionally, a CPU, despite having been
correctly designed, fabricated, and tested, may still consis-
tently produce incorrect results during certain operations,
leading to various misbehaviors including miscomputing
instructions and disruptions in cache coherency.

SDCs may manifest at any point during the lifecycle of a
circuit, but only a limited subset of them can be detected dur-
ing factory testing. Alibaba’s data indicates that a significant
73.5% of the SDCs they identified occur in CPUs that have
already been in use, either during system re-installations
(63.9%) or while in production (9.6%) [75].

Currently, data center operators detect SDCs through ex-
tensive, long-running test suites that proactively stress the
underlying hardware. However, given the low probability of
SDC occurrence, it is impractical to run these tests frequently.
For instance, in Alibaba’s data centers, these tests are con-
ducted only once every three months [75]. Consequently,
there is a growing need for a more efficient and practical
mechanism to identify SDCs.

Takeaway #1. Increasing the frequency of SDC testing
can lead to more timely detection of SDCs. Reducing test
execution time can make frequent testing more practical.

2.2 Hardware Development

The development of digital circuits involves a complex, multi-
stage process, employing a diverse range of simulation and
automated design tools at each stage.

2.2.1 Digital Circuits Design Flow. Digital circuits such
as CPUs and GPUs are initially developed in hardware de-
scription languages (HDLs) like Verilog, SystemVerilog, and
VHDL. HDLs empower developers to precisely describe the
functionality of each component in a hardware design. Func-
tionalities can then be tested through circuit simulations,
allowing developers to verify and debug a design before it
progresses to the physical fabrication stage.
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Subsequently, in a process akin to software compilation, a
hardware synthesizer transforms the circuit’s functional de-
scription from an HDL into a netlist. The netlist is structured
as a directed graph comprised of a large number of cells from
a standard cell library, with wires that describe the electrical
connections between the cells. These libraries, provided by
chip manufacturers, describe the functionality and timing
behavior of predefined circuit components such as logical
gates and flip-flops, allowing the synthesized design to be
practically implemented in hardware.

Following circuit synthesis, the hardware design progresses
to a stage known as place-and-route. This stage involves
strategically positioning cells into designated locations on
a silicon die, and creating the wires that interconnect these
cells. Moreover, it also ensures the clock signal reaches all
parts of the chip in a timely and synchronized manner, which
is crucial for the proper functioning of synchronous logic.
Additionally, static timing analysis (STA) is employed to
evaluate the compliance of digital signals with timing con-
straints, thereby determining the circuit’s maximum oper-
ating frequency and ensuring its reliable operation. As an
industry standard, STA assumes a set of conservative condi-
tions for factors like temperature, voltage drop, and process
variations, and calculates signal propagation delays for the
worst case scenarios. While this approach may lead to some
false positives by flagging non-critical timing issues, it pri-
oritizes design robustness by ensuring functionality even
under worst-case conditions.

2.2.2 Automated Design Tools. Automated design tools
play a crucial role in almost every phase of hardware devel-
opment, making it possible for large and complex circuits to
be tested before the costly chip fabrication (a.k.a., tape-out),
thus saving time and resources by identifying potential is-
sues early in the design cycle [40, 60, 61, 73]. These tools rely
on well-validated physical models and simulations to per-
form critical analyses such as timing, power consumption,
and circuit reliability. To ensure that these models capture
the real-world behavior of fundamental circuit components
(e.g., transistors and wires), leading semiconductor foundries
routinely perform a rigorous validation process that com-
pares the simulation outputs against actual fabricated silicon.
Such validation guarantees the high fidelity of the physical
models in predicting device behavior under various condi-
tions with recent technology nodes [49], thereby making
them trusted resources in the semiconductor industry.

Takeaway #2. Hardware is not a black box: its implemen-
tation details can provide insights that guide SDC detection.
Well-validated physical models can power a series of anal-
yses that help identify SDCs.

2.3 Transistor Aging

Transistor aging, which is believed to be a significant cause
of SDCs [12, 17, 19, 20], refers to the gradual degradation
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Figure 1. The setup and hold windows of a clock edge. Sig-
nals should arrive at its destination flip-flop before @ and
hold stable until @.

of the performance and reliability of transistors over time.
This process leads to an increase of a transistor’s threshold
voltage, which in turn causes a higher switching delay. As a
result, signal propagation through an aged circuit may take
longer than anticipated, potentially violating the circuit’s
timing constraints and resulting in malfunctions.

In modern circuits, this aging process predominantly stems
from a physical phenomena called bias temperature insta-
bility (BTI), occurring when a static voltage is applied to a
transistor for a long period of time [15, 55]. In other words,
when a transistor remains in a constant state without regular
switching, it is more likely to experience aging.

2.3.1 The Nonuniform Nature of Transistor Aging.
Transistor aging in a circuit is a nonuniform process [43],
and several factors vary degradation rates. A key factor is the
different BTI stress each transistor experiences during opera-
tion. Rarely-used circuit components tend to have more tran-
sistors idling in a fixed state, increasing their vulnerability
to BTI effects. This variation is heightened in CMOS-based
technologies due to their inherent design and operational
characteristics. Specifically, as p-type transistors are more
susceptible to BTI effects than n-type transistors, logical
gates that consistently idle in a “0” state tend to age faster
than those that idle in a “1” state or that switch regularly.

There are several additional causes of non-uniform transis-
tor aging [44]. For example, clock gating, a standard power-
saving technique, has been identified as a primary cause of
uneven transistor aging. Clock gating inadvertently intro-
duces varying levels of BTI stress across different areas of
the clock network. Therefore, it leads to different aging rates
in different regions of the network.

2.3.2 Timing Violations Caused by Transistor Aging.
For a circuit to operate correctly, it is crucial that signals
comply with their timing constraints, reach their intended
destinations, and remain stable within a critical time interval,
as shown in Figure 1. Unfortunately, an aged circuit may
potentially breach these requirements, leading to two types
of timing violations: setup violations and hold violations.

A setup violation happens when a signal arrives at a flip-
flop too late (i.e., after @), failing to meet the required setup
time before the clock edge. In contrast, a hold violation hap-
pens when a signal changes too soon (i.e., before @), failing
to hold stable for the required window after the clock edge.
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Both setup violations and hold violations can result in in-
correct data being captured by the flip-flop, thereby causing
circuit malfunctions. When this arises due to transistor ag-
ing in a previously-working circuit, this can result in SDCs
or other application-level misbehavior. While setup viola-
tions can be addressed by lowering the clock frequency, this
approach is ineffective for hold violations, as the clock fre-
quency does not affect the required hold time. Consequently,
hold violations are considered more severe than setup viola-
tions, as they necessitate chip repair.

2.3.3 The Physical Model for Transistor Aging. The
reaction-diffusion model, widely accepted for transistor ag-
ing, effectively describes the increase in a transistor’s thresh-
old voltage under BTI stress [13, 14, 26, 29]. With this model,
the threshold voltage increase of a transistor, denoted as
AVip, can be determined via the following equation:

AViy o e (t — t)1/6, (1)

where E, is a constant related to process technology, T is the
operating temperature, k is Boltzmann’s constant, and ¢ — ¢,
represents the duration for which the transistor undergoes
stress due to BTI effects. The reaction-diffusion model shows
that the most significant V;;, degradation happens early in
the circuit’s lifetime. For example, approximately 70% of the
Vi degradation that will occur within a 10-year time frame
occurs within the first year.

Using this equation, we can calculate the changes in a
transistor’s threshold voltage based on the duration of its
exposure to BTT stress. Once the stress is removed, some of
the degradation can be reversed, and a similar equation can
be employed to quantify the recovery process.

Like other physical models, the reaction-diffusion model
has also been validated against fabricated silicon with recent
technology nodes, making it trustworthy and reliable as a
tool for predicting transistor aging [13, 25, 26].

2.3.4 Profiling BTI Stresses with Signal Probability.
A common method for profiling the BTI stress of a logical
element is to use signal probability (SP). SP calculates the
probability of a signal being in the logical “1” state, calcu-
lated as the ratio of time spent in that state over total time.
For example, an SP of 0.25 means the signal is in the logi-
cal “1” state 25% of the time (and in the “0” state 75% of the
time). Usually, an SP profile is gathered by conducting func-
tional simulations for the circuit, using a set of representative
workloads that the circuit is expected to process.

With a given SP profile, we can calculate the AV}, for
each transistor within a given cell (e.g., a NOT gate) using the
reaction-diffusion model. Subsequently, analog simulation
techniques, e.g., SPICE [63], can be employed to determine
the change in the cell’s switching delay. This change can
then be considered in static timing analysis to identify timing
violations that may occur after the impact of transistor aging.
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Phase 1: Aging Analysis

Phase 2: Error Lifting
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Figure 2. Overview of Vega’s workflow, comprising three key phases: Aging Analysis, Error Lifting, and Test Integration.
Each step in the workflow is outlined with a black box, with the inputs enclosed in gray boxes and the outputs in red boxes.

Takeaway #3. Signal probability profiles, along with aging-
aware static timing analysis, can help identify logical el-
ements prone to timing violations and potential SDCs,
thereby producing effective targets for test cases.

3 Design of the Vega Workflow

Vega leverages these three takeaways to enable frequent and
proactive detection of aging-related SDCs at application run-
time. The workflow produces a set of software-executable
instructions for testing a CPU’s critical functional units, such
as the ALU or FPU. Vega adopts a bottom-up approach, ana-
lyzing a CPU’s detailed implementation to craft precise test
cases for likely aging-related faults. The test suite is compact
enough to be seamlessly integrated into an application’s run-
time. This targeted approach makes it practical to conduct
frequent and timely detection of aging-related SDCs.

Figure 2 illustrates the three-phase workflow of Vega.
In the first phase, Aging Analysis, Vega identifies locations
within a circuit that are the most vulnerable to transistor
aging. These are potential origins of SDCs that Vega aims
to detect. To precisely identify the locations, Vega simulates
the circuit with a set of representative workloads, and uses
gate-level modeling of transistor aging to determine each
components’ timing degradation.

In the second phase, Error Lifting, Vega generates tiny
software-executable test cases for each potential aging-related
timing violation pinpointed in Phase One. First, Vega em-
ploys formal verification techniques to create a cycle-accurate
trace of module-level input that could trigger a specific tim-
ing violation inside the CPU. Then, Vega translates the trace
into assembly instructions using heuristics based on the
CPU’s microarchitecture. As a byproduct, this phase also
yields a set of circuit-level failure models. These models, for-
matted as gate-level netlists, simulate failures and describe
the possible misbehavior of the CPU as it ages.

In the third and final phase, Test Integration, Vega performs
application-level integration of the previously-generated

module adder (clk, a, b, 0);

1

2 input wire clk; input wire [1:0] a, b;
3 output reg [1:0] o; reg [1:0] aq, bqg;
4 always @(posedge clk) begin

5 aq <= a; bq <= b;

6 0 <= aq + bqg;

7 end

8  endmodule

Listing 1. An example hardware module.

test cases. Vega supports two methods of integration, allow-
ing test integration without code modification or enabling
greater developer control. One approach produces a software
library supporting different strategies of transistor aging
detection and response, and wrappers compatible with vari-
ous programming languages. Another approach minimizes
a developer’s integration effort by employing profile-guided
techniques to embed test cases directly into an application
while incurring minimal performance overhead.

In the rest of this section, we explain the design details of
these three phases using an example circuit.

3.1 Preparation for the Workflow

Consider the hardware module presented in Listing 1, written
in System Verilog, as a representative example. This module
implements a pipelined 2-bit adder that calculates the sum
of two 2-bit integers, denoted as a and b. The computation is
segmented into two cycles. In the first, a and b are sampled
in aq and bq, respectively (Line 5). In the second, aq and bq
are summed, with the result stored in o (Line 6).

As we described in Section 2.2, this module will proceed
through a sequence of processes during development, includ-
ing circuit synthesis and place-and-route, which eventually
transform the circuit into the netlist illustrated in Figure 3.
For simplicity, we exclude components used solely for tim-
ing correction, such as clock buffers, and employ a minimal
standard cell library. This library consists of three cell types:
AND and XOR cells, which respectively perform the “and” and
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Figure 3. The netlist associated with Listing 1. Components
used for timing correction (e.g., clock buffers) are excluded.

“xor” operations on their inputs, and the DFF cell, a D-type
flip-flop that registers its input D for one clock cycle. For our
example, we also assume the maximum propagation delay of
the AND, XOR and DFF cells is 0.3ns, and the minimum delay is
0.1ns. The DFF cell requires a setup time of 0.06ns and a hold
time of 0.03ns. Additionally, the module targets an operation
frequency of 1GHz; therefore, each cycle spans 1ns.

Our example netlist satisfies the cells’ timing constraints:
The longest path ($4 — $7 — $8 — $10) accumulates a
maximum delay of 0.9ns, indicating signal arrival at $10
more than 0.06ns (setup time) before the next clock edge.
Conversely, the shortest path ($1 — $5 — $9) has a total
minimum delay of 0.2ns, ensuring $9’s input is stable for
greater than 0.03ns (hold time) after the clock edge. However,
transistor aging may disrupt these constraints. To evaluate
aging’s impact on the circuit, the netlist is forwarded to the
Aging Analysis phase for further examination.

3.2 Aging Analysis

In the first phase, Aging Analysis, Vega identifies signal
propagation paths that are likeliest to violate timing con-
straints after experiencing realistic transistor aging. First,
Vega instruments the circuit’s netlist and simulates a set of
representative workloads on it (@ in Figure 2). We record the
signal probability for each cell in the design, which correlates
with its susceptibility to BTL This profile is then consumed
by an Aging-Aware Static Timing Analysis to determine the
most likely locations of future timing violations (@).

3.2.1 Signal Probability Simulation. To determine which
of a circuit’s cells will experience the largest effect from tran-
sistor aging, Vega needs to estimate the likelihood that a cell
will rest at different signals during its lifetime. Vega does this
through simulation of an instrumented circuit. It attaches a
counter to the output port of each cell in the circuit’s netlist,
recording the incidence of logical “0” and “1” states from that
cell. For our example circuit, these counters attach to the Q
port for DFF cells and the Y port for AND cells and XOR cells.
Notably, these counters are driven by a separate free running
clock generated by Vega. Vega assures this clock continues
toggling even if the clock within the circuit is paused.

Maet al.
Signal SP | Signal SP | Signal SP
DFF$1.Q 0.85 | DFF$2.Q 0.54 | DFF$3.Q 0.38
DFF$4.Q 0.27 | XOR$5.Y 0.46 | AND$6.Y 0.48
XOR$7.Y  0.13 | XOR$8.Y 0.52 | DFF$9.Q 0.44
DFF$10.Y 0.54

Table 1. An SP profile associated with the netlist in Figure 3.

Vega then simulates the instrumented circuit, post-place
and route, with an HDL simulator and a set of represen-
tative workloads. After the simulation is completed, Vega
aggregates the values of each cell’s counters to determine
what fraction of the time the cell remained at logical “1”:
together, this forms a signal probability (SP) profile for the
circuit. Table 1 shows an example SP profile corresponding
to a simulation of the netlist in Figure 3. Notably, the XOR cell
$7 has a particularly extreme SP value; therefore, it is under
the highest BTI pressure and more susceptible to transistor
aging. The clk signal is omitted from this example, because
clock distribution in a placed and routed design involves the
use of numerous clock buffers. In a real-world SP profile,
each of these clock buffers is profiled individually.

3.2.2 Aging-Aware Static Timing Analysis. Vega can
now identify timing violations that may emerge in the cir-
cuit due to transistor aging. By harnessing the SP profile
generated in the last step along with an aging-aware tim-
ing library, Vega can quantify the performance degradation
of each logical cell in the circuit. This timing library char-
acterizes how signal probability affects each cell’s timing
characteristics, such as maximum and minimum propaga-
tion delay, over a period of time. Vega generates this library
by conducting analog simulation with SPICE [63] for each
cell in the standard cell library, determining how changes in
a cell’s physical property correspond to changes in its timing
characteristics. Since multiple circuit designs may use the
same standard cell library, this work is pre-computed to ac-
celerate Aging-Aware Static Timing Analysis (STA). Figure 4
shows an example entry from a pre-computed timing library,
showcasing the speed degradation of a typical AND cell.

Once the aging-aware timing library is generated, Vega
looks up cell data by their signal probabilities and updates
the timing characteristics of the netlist under test. Vega per-
forms static timing analysis to identify signal propagation
paths that exhibit timing violations. These paths are consid-
ered aging-prone, with a higher risk of experiencing timing
violations due to the impact of transistor aging. The Aging-
Aware STA is based on a 10-year assumed lifetime that is
commonly adopted by mission critical systems [32]. During
the Aging-Aware STA, Vega also analyzes the effect of aging
on the clock distribution network. This analysis can reveal
phase shifts of the clock signals in different locations, which
could potentially lead to hold violations.
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Notably, the Aging-Aware STA runs while taking into ac-
count the most pessimistic conditions for voltage drop, pro-
cess variation, on-chip variations, and temperature. These
conditions are provided as part of the requirements spec-
ified by foundries [27], and are aligned with the industry
standard in delivering statistically robust analysis results.
Consequently, while paths identified by Aging-Aware STA
may not manifest failures in the real world due to less critical
voltage and temperature, the real world’s failing paths would
be captured using these conservative conditions.

Based on the SP profile in Table 1 and the timing library
demonstrated in Figure 4, Vega finds that the propagation de-
lay of the path $4 — $7 — $8 — $10 accumulates to 0.946ns
after considering transistor aging. Therefore, it violates the
required setup window (0.946ns > 1ns - 0.06ns) and incurs a
violation. For demonstration purpose, we also assume that a
phase shift is detected between the clock signals connected
to DFF $1 and DFF $9, causing a hold violation in path $1
— $5 — $9. These violating paths are provided for the next
phase, Error Lifting, to help test case formulation.

3.3 Error Lifting

In the Error Lifting phase, Vega formulates test cases for
aging-related hardware faults, targeting these tests to the
aging-sensitive signal paths identified in the previous phase.
Vega crafts test cases in two steps. First, it instruments the
hardware module’s netlist with a failure model propagating
the effect of a previously-identified timing violation (Fig-
ure 2, @). Then Vega uses a hardware formal verification
tool to produce a sequence of cycle-accurate, module-level
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Figure 7. The netlist instrumented with the shadow replica
(in gray) and the failure model (in green).

inputs that provably provoke the current hardware fault (@).
These inputs, represented in a hardware waveform, are con-
strained to ensure an incorrect value will be generated in the
module’s output. Finally, Vega processes the input sequence
to generate a series of software-executable instructions that
activates the exact waveform inside the circuit (@).

We opt for formal verification in test case generation be-
cause it provides a systematic way to explore infrequently
used components inside the circuit. Formal verification en-
ables us to create a concise set of test cases that target specific
potential failures inside the circuit, therefore avoiding the
long execution time associated with tests crafted from top-
down approaches like fuzzing. Furthermore, formal methods
allow us to prove a given hardware fault cannot provoke
logical inconsistencies in the tested module, a possibility that
fuzzing cannot conclusively rule out.

Formal verification only operates within the logical do-
main and does not consider timing violations, so we need to
introduce a model that logically describes the misbehaviors
associated with these timing violations. Moreover, hardware
formal verification via model checking proves more practical
at the scale of individual hardware modules, rather than an
entire hardware design: a single FPU is much easier to check
than a full CPU with cache, memory, and complex software
running on top of it. Consequently, we choose to only apply
formal verification on specific hardware modules, and then
construct the corresponding instructions by leveraging our
understanding of the hardware design’s microarchitecture.

3.3.1 Logical Models for Timing Violations. As we de-
scribed in Section 2.3, transistor aging may cause setup vio-
lations and hold timing violations. During a setup violation,
the signal reaches the flip-flop too late, failing to meet the



ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

setup window. As a result, the flip-flop may sample an in-
correct value during the clock tick. However, it is important
to note that even if a signal path fails to meet its required
setup time, the flip-flop may still sample the correct value
in some cycles, provided the values previously held in the
path remain unchanged [67]. As a result, for a signal path
between a pair of DFFs X ~» Y that violates its required
setup time, Y’s output at cycle ¢ + 1 is logically modeled as:

{ Yoriginal(t + 1) le(t) = X(t - 1)
C

Y(t+1)= otherwise

. ()
where Yoriginai represents the value of Y assuming no viola-
tion occurs, and C denotes the wrong value sampled by Y
when the timing violation occurs. For formal verification, C is
set to a constant value—either 0 or 1—to limit the search space
the formal verification tool is required to explore. Nonethe-
less, the tool can conduct separate rounds of verification
for each case of C, allowing Vega to generate test cases for
different scenarios that could occur in an actual circuit.

Similarly, in a hold violation, the flip-flop may still sample
a correct value by chance when the path’s value remains
unchanged in the next cycle. Therefore, for a signal path
X ~» Y that violates its required hold time, Y’s output is
modeled as:

Y(t+1) = 3)

Yoriginal(t + 1) ifX(t) = X(t + 1)
C otherwise

In the special case where the path starts and ends at the same
flip-flop, we consider Y to always produce the value C. This
approach is adopted because, in these situations, the value
captured by Y relies on its own value in the same cycle. As a
result, Y will consistently be in a meta-stable state [47, 67].

3.3.2 Failure Model Instrumentation. To integrate this
logical model of timing violations into the circuit’s netlist, we
introduce a MUX cell. MUX functions as a selector, outputting
either of its inputs, A or B, depending on the value of a select
signal, S. Figure 5 shows the instrumented failure model for
the setup violation occurring in path $4 (X) ~» $10 (Y). In
this instrumentation, DFF $12 is used to retain the output
value of $4 for a cycle, thereby allowing X (t) = X (¢ — 1)
to be calculated. Similarly, Figure 6 shows the failure model
for the hold violation in path $1 (X) ~» $9 (Y). In this instru-
mentation, X (¢ + 1) is derived from the input of $1, since $1
is a DFF and its input value will be output in the next cycle.

Failure Model Instrumentation can function in one of two
modes. In one mode, the instrumentation phase generates
a failing netlist, a Verilog file that describes the behavior of
the circuit component after the impact of transistor aging
(@). This file can be synthesized for a range of targets, in-
cluding simulation environments and FPGAs, rendering it
useful as a circuit-level failure model in future reliability
research. Currently, this circuit-level failure model enables
us to validate the effectiveness of test cases constructed by
Vega, as detailed in Section 5.2.2.
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Alternately, the instrumentation phase can prepare the
netlist for trace generation to support the crafting of targeted
test cases for the modeled failure. Instead of directly integrat-
ing the failure model into the netlist, Vega first generates a
shadow replica for a portion of the netlist. Specifically, for
an aging-prone path X ~» Y, the instrumentation conducts
a static analysis of the circuit and identifies all cells that can
potentially be influenced by Y—this includes Y itself. Based
on this analysis, it creates copies of these identified cells,
with the same interconnections between copied cells that
the original cells have. The failure model is then integrated
into this shadow replica, so the module-wide effects of a
targeted timing violation can be tracked.

Figure 7 shows the instrumentation for the setup violation
path $4 ~» $10. As shown in the figure, a shadow cell, $10S,
is created, with its input linked to the failure model and its
output to a shadow wire named o_s[1]. In the subsequent
step, this shadow wire will be used by the formal verification
tool to guide the generation of module-level inputs.

Hold violation paths use similar instrumentation to setup
violation paths. In the case of the hold violation path $1 ~»
$9 from Figure 6, a shadow replica will be created for cell
$9, with its output linked to a shadow wire.

3.3.3 Trace Generation using Formal Methods. After
the shadow replica is created and connected to the failure
model, Vega incorporates a formal verification tool to pro-
duce a sequence of module-level inputs that provokes the
instrumented failure. Specifically, it formulates a cover prop-
erty—a System Verilog primitive—that requires that the value
in the shadow replica differs from the values in its corre-
sponding original copy. For example, Vega generates the
below property for the instrumented netlist in Figure 7:

1 cover property (@(posedge clk) o[1] != o_s[1]);

Hardware formal verification tools are designed to inter-
pret these properties, combining a variety of formal methods
to attempt to prove whether the properties remain true for a
given design. To aid debugging, these tools often provide a
trace of design inputs to illustrate the result of this proof. In
the case of cover properties, the tool will attempt to find a
trace causing the expression in the property to evaluate to
true for at least one cycle.

The traces that show a shadow replica’s output differs
from its original copy can be used to generate software tests
for hardware faults. In the example circuit from Figure 7
with C—the current fault’s constant output—set to 1, the
hardware formal verification tool finds the trace described in
Table 2. When the circuit’s input signals align with the trace,
the expression in the cover property will evaluate to true at
cycle 3. The trace is then captured and saved as a waveform,
which proceeds to step @ for instruction generation.

In some scenarios, it is necessary to apply extra restric-
tions on the module’s input to prevent unrealistic traces
from being generated. These restrictions are described using
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Cycle 1 2 3

a[1:0]1 ’b@1 ’b11 ’b11
b[1:0] ’b11 ’bod ’bo1l
o[1] b0 "bo ’b0
o_s[1] ’be  ’be  ’bil
Table 2. An example trace that provokes the instrumented
failure in Figure 7. o[1] and o_s[1] mismatch at cycle 3.

the assume property primitive of System Verilog, and writing
useful restrictions requires that developers have some knowl-
edge of the target microarchitecture’s behavior. For instance,
when analyzing a hardware module like an ALU, we may
restrict the range of input to include only valid operations.

3.3.4 Mitigation for Initial Value Dependency. In some
instances, the traces produced by the formal verification tool
may not reliably trigger failures in a real-world execution.
This issue occurs because the tool assumes that the circuit’s
initial state has been perfectly reset. Specifically, the tool
first simulates the circuit’s reset behavior to obtain the initial
values for each signal within the circuit, before beginning
its symbolic exploration of the design. Consequently, it may
generate traces that are effective only under these specific ini-
tial values. However, in a real-world execution, these initial
values may be modified by a previous instruction, potentially
making the generated trace ineffective.

To mitigate this issue, Vega allows configuring the failure
model to activate only when detecting a rising or falling
edge in the value of X (i.e., the starting point of the violated
path). For example, in Figure 7, it may replace cell $13 with
logics that determines —=$12.Q A $4.Q (i.e., a rising edge) or
$12.Q A =$4.Q (i.e., a falling edge).

3.3.5 Instruction Construction. Reliable activation of
aging-related failures is raised to the software level in this
step, which translates a trace of module-level I/O signals
into assembly code that could generate them. Vega leverages
expert knowledge of the CPU’s microarchitecture here. This
step is the most labor-intensive part of Vega, but only has to
be done once: For each CPU microarchitecture and hardware
component under analysis, developers must write a script
to facilitate instruction construction. To create this script,
developers use their knowledge of how each instruction acti-
vates signals in the analyzed hardware component; therefore,
they can create a look-up table that links the activation of
signals to an instruction. In some cases, additional steps like
mapping constant values to specific registers are necessary.
During instruction construction, Vega determines the val-
ues of the input registers and the expected value of the out-
put registers. However, the allocation of these registers is
deferred to the next phase (i.e., Test Integration), to allow a
more seamless integration of test cases with applications.
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3.4 Test Integration

In this phase, Vega crafts the constructed instruction se-
quences into test cases that can be run from applications.
There are two methods of integration, allowing flexibility in
how SDCs can be monitored. First, Vega can create a software
aging library for detecting aging-related SDCs (@). Second,
Vega provides a profile-guided method to automatically inte-
grate the test cases into an application (@).

3.4.1 Generation of Software Aging Library. In this
approach, Vega combines the generated test cases together
in a C file, using a set of pre-defined templates. In this C file,
each test case is specified with the standard inline assem-
bly format, while the registers are designated as variables
for clarity. Furthermore, Vega generates support files for
the compilation, as well as a set of helper functions and
language-specific wrappers. These helper functions are de-
signed to support different scheduling methods for the test
cases, allowing them to be executed either sequentially or in
a random order. Additionally, for programming languages
that support exceptions, this library can be configured to
trigger an exception when failing a test case. This allows de-
tected hardware faults to be handled by an exception handler
(e.g., a catch block) within the call stack.

3.4.2 Profile-Guided Test Integration. To enable test
integration without the need to modify the application’s
source code, Vega employs a profile-guided approach for
embedding test cases. Specifically, Vega first instruments the
application with a series of counters, which track and record
the invocations of application code (i.e., at the granularity
of basic blocks) throughout the application runtime. Vega
then executes the application with representative inputs
to collect a profile that reflects the characteristics of the
application’s execution. Using this profile, Vega identifies a
location in the program that, while not frequently invoked,
is still routinely accessed. This location is chosen to be the
point of test integration.

Subsequently, Vega integrates its generated SDC test cases
into the chosen location. Vega estimates the expected perfor-
mance overhead of the test cases by comparing the number
of intermediate representation (IR) instructions before and
after adding the test cases. If the estimated overhead is above
a user-defined threshold, Vega then restricts the invocation
of test cases so that they trigger with a certain probabil-
ity, controlling SDC testing frequency at a finer granularity.
Thus, Vega ensures that the overall performance overhead
remains within manageable limits.

4 Implementation

We prototype and demonstrate Vega for the arithmetic logic
unit (ALU) and floating-point unit (FPU) of the CV32E40P [33,
46, 59]—an open-source, 32-bit, in-order RISC-V CPU—and a
real-world 28nm process technology. However, Vega’s design
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can be applied to other instruction sets, microarchitectures,
and process technologies.

During Aging Analysis, we use embench’s floating point
matrix inversion test, “minver”, as a representative workload
for the ALU and FPU under test. To construct the aging-
aware timing library, SPICE [63] is used to conduct the ana-
log simulation which determines the gate delay degradation
of cells with varying SP profiles. Cadence Innovus [3] is then
used to perform the timing analysis. Subsequently, we em-
ploy a set of TCL scripts to post-process the timing report
and update the cells’ timing characteristics to those affected
by aging. Error Lifting is primarily implemented atop of
Yosys [76], adding ~3,700 lines of C++ for Failure Model
Instrumentation and ~400 lines of Python for Instruction
Construction. JasperGold [4] is used to conduct the formal
verification. Profile-Guided Test Integration is implemented
as a set of LLVM [56] passes with ~800 lines of C++.

5 Evaluation

We evaluate Vega along the following dimensions:

Effectiveness. Can Vega identify signal propagation paths
prone to transistor aging (§5.2.1)? Can Vega generate test
cases that are executable in a software environment (§5.2.2)?
Can these test cases detect aging-related SDCs, and do they
outperform randomly generated test cases (§5.2.3)?

Efficiency. How much performance overhead do these
test cases incur when integrated into an application (§5.3)?

5.1 Experimental Setup

Hardware. We evaluate Vega on the ALU and FPU of the
CV32E40P. These components are synthesized for a 28 nm
process technology using Cadence Genus [5] and Synopsys
Design Compiler [6], and placed-and-routed using Cadence
Innovus [3]. The ALU targets an operating frequency of 167
MHz and the FPU targets a frequency of 250 MHz.

Software. We evaluate Vega’s performance impact with
embench benchmarks [7], a benchmark set for embedded
CPUs like the CV32E40P. These benchmarks are compiled
using OpenHWGroup’s clang fork [8] with an -02 flag. This
set of benchmarks are also used as representative workloads
during Signal Probability Simulation (§3.2.1).

Failing Netlists. To evaluate Vega’s effectiveness in iden-
tifying aging-related SDCs, we use the failing netlists gen-
erated during failure model instrumentation (Section 3.3.2).
We configure these failing netlists to operate in three distinct
modes by setting C, the value sampled by the endpoint of
the failing path that we describe in §3.3.2. C is either held at
0, 1, or allowed to take a random value in each cycle.

Simulation Environment. All experiments are carried
out using the official simulation framework of the CV32E40P
with Verilator [70]. To speed up simulation and focus on the
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Figure 8. The distribution of aging-induced delay increase
for the logical cells in FPU and ALU.

Unit WNS / # of Violated Paths
Setup Hold

ALU -76ps / 11 —/0

FPU | -157ps/ 1,363 -1ps/3

Table 3. STA Result with Aging-Aware Timing Libraries.

primary evaluation targets, i.e., the ALU and FPU, only these
components are replaced with the placed-and-routed netlist.
The remainder of the CPU is simulated in System Verilog.

5.2 Effectiveness of Vega

5.2.1 Potential Aging Identification. Despite the ALU
and FPU being correctly placed-and-routed, initially meeting
required timing constraints, Vega reveals that over an ex-
tended period of usage (10 years in our analysis), transistor
aging has the potential to break these constraints. Figure
8 shows a histogram of the distribution of transistor aging
delay increases for both the FPU and ALU. The figure illus-
trates that aging degradation is not uniformly distributed
across logical cells. Specifically, 52% and 35% of the logical
cells in the ALU and FPU, respectively, experience a 6% de-
lay increase, and 35% and 25% of the cells exhibit a delay
increase of 1.9%. The remaining cells experience a delay in-
crease ranging from 2.2% to 5.7%. Table 3 summarizes the
worst negative slack (WNS) and the number of identified
timing violations within the ALU and FPU after 10 years of
aging. In summary, Vega identifies 11 aging-prone paths in
the ALU, and 1,366 such paths in the FPU.

Many of these aging-prone paths share the same pairs
of starting and ending points, indicating that these paths
would exhibit the same misbehavior under the failure model
we employ (§3.3.1). Filtering these paths, Vega recognizes 6
unique pairs of starting and ending points for the ALU and 41
pairs for the FPU. Therefore, for the rest of our analysis and
test case generation, we only use one representative failing
path for each unique pair of starting and ending points.

5.2.2 Test Case Construction. For each unique pair of
starting and ending points, Vega invokes formal verification
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Unit

w/o Mitigation (%)

w/ Mitigation (%)

S UR FF FC

S UR FF FC

ALU

66.7 333 0 0

333 667 0 0

FPU

51.2 439 49 0

40.2 439 85 73
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Unit w/o Mitigation w/ Mitigation
Test Cases Cycles | Test Cases Cycles

ALU 8 124 8 134

FPU 42 685 66 1202

Table 4. Result of Test Case Construction. “S” denotes the
successful construction of a test case; “UR” indicates that the
formal verification tool proves that the failing path cannot
cause an actual error; “FF” indicates a timeout occurred in
the formal verification tool; “FC” indicates a waveform is
generated while Vega fails to convert it to a test case.

to produce a set of waveforms that activate this failing path
in an observable manner, and then converts these waveforms
into a few test cases. Depending on configuration, different
numbers of test cases may be generated. When the mitigation
for initial value dependency (Section 3.3.4) is disabled, Vega
produces a maximum of 2 test cases for each pair, attributable
to the failure model’s constant, C, which can be either 0 or 1.
With the mitigation enabled, Vega generates a maximum of
4 test cases per pair, in order to account for different signal
transitions (i.e., rising or falling) in the starting point.

Table 4 presents the effectiveness of this process. Without
the mitigation, Vega can construct the test cases for 66.7%
and 51.2% of these unique pairs of endpoints identified in the
ALU and FPU respectively. Additionally, it formally proves
that 33.3% of the pairs in the ALU and 43.9% of the pairs
in the FPU will not cause an actual error—no allowable set
of inputs to the module can trigger the timing violation for
these paths. Enabling the mitigation reduces the proportion
of test cases that can be successfully generated. However,
because it generates up to twice as many test cases, it can
produce a more robust test suite.

In some instances, we observed that Vega may produce a
waveform that is not convertible into a practical test case.
These instances are indicated as “FC” in Table 4. All such
instances occur with the FPU. This situation happens because
certain failures require multiple instructions to propagate an
error to the output; moreover, the only detectable erroneous
output is a status flag (e.g., a flag indicating an overflow),
which is already altered by a prior instruction. As a result,
Vega cannot compare this output against a correct value,
making the conversion impossible.

Table 5 shows the total number of test cases generated by
Vega and the corresponding CPU cycles required for their
execution, both in scenarios with and without the mitigation
for initial value dependency. Notably, a complete execution
of these test cases consumes only a few hundred to a couple
thousand cycles, thereby making frequent testing practical.

5.2.3 Quality of Test Cases. We evaluate the quality of
these test cases by simulating them against the failing netlists
produced by failure model instrumentation (Section 3.3.2).
For each failing netlist associated with one of the generated

Table 5. The quantity of test cases generated and the number
of CPU cycles required for their execution.

. w/o Mitigation (%) w/ Mitigation (%)
Unit | FM =5t — B L s [Dett. B L S
0 1000 500 O 0 100.0 50.0 O 0
ALU 1 1000 750 O 0 100.0 50.0 O 0
R 1000 750 O 0 100.0 50.0 O 0
0 954 727 4.5 9.1 | 100.0 72.7 0 9.1
FPU 1 954 818 9.1 0 100.0 81.8 4.5 0
R 954 727 45 9.1 | 954 727 45 9.1

Table 6. The quality of the generated test cases measured
by their ability to detect failures. “FM” refers to the failure
mode used in the experiment; “Det.” indicates the failures
that are detectable by one of the test cases; “B” represents
the failures detected by a test case that executed before the
test case designed to detect it; “L” represents the failures that
are not detected by their corresponding test case, but are
identified by later test case; “S” indicates cases where the
failure results in the CPU stalling.

test cases, we run the entire suite of test cases to see whether
the suite can detect the failure. As mentioned in experimental
setup, we configure each failing netlist to fail in three modes:
with C held to 0, 1, or taking a random value at each cycle.
Table 6 shows the result of this experiment. In summary,
the test cases generated by Vega are generally effective in
detecting their intended failures. Interestingly, in many cases,
a failure is identified by a test case designed for another
failure, before its own corresponding test case is scheduled
to execute. In rare cases, a failure may be missed by its own
test case; however, it is very likely to be identified by a
subsequent test case. In two instances, the failure occurs
on a set of ready/valid handshake signals, causing the CPU
to stall as it waits for data that cannot be transmitted. From
the software’s perspective, the application does not progress
or respond to interrupts, thus making the failure detectable.
In one particular instance, a failure remained undetected
after the execution of the entire set of test cases. This occurs
because the test cases generated for this failure depend on
certain initial signal values to be effective. Unfortunately,
these values are modified by a prior instruction, thereby
preventing the failure from being detected. However, using
the mitigation technique described in Section 3.3.4, Vega
can generate a test suite that successfully detects this failure
when C is held to a fixed value. When C’s value changes
randomly at each cycle, the test suite fails to detect one
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Figure 9. Performance overhead of the embench benchmark set with Vega’s Profile-Guided Test Integration. The “-M” and
“-N” labels indicate that only the test cases generated with and without the mitigation technique are enabled, respectively.

Unit | FM | Vega | Random
0 100% 50.0%
ALU 1 100% 50.0%
R | 100% 45.0%
0 100% 35.3%
FPU 1 100% 95.4%
R | 95.4% 97.2%

Table 7. Effectiveness of Vega-generated vs. random test
cases, measured by their ability to detect failures.

failure due to the resulting randomness in fault visibility for
a tested instruction’s outputs.

To establish a fair baseline for comparison, we imple-
mented a random test suite generator that produces test
cases in the style and quantity of Vega’s trace-generated test
cases: each case verifies the functional correctness of a single
random instruction from the current module’s instruction
set, using random inputs. For each experiment, we generate
a test suite of these random tests, and we execute the suite
in the same environment used to evaluate Vega. We run 10
experiments against each module and failure model (where C
was set to different values). The average number of faults de-
tected across these experiments is shown in Table 7. In most
scenarios, Vega outperforms the random test case generator
in producing effective test cases. Surprisingly, when C is held
to 1 or takes random values, randomly generated test cases
can also be effective for the FPU, detecting up to 97.2% of
failures. However, this approach lacks Vega’s unique benefit
of formally proving certain failures would never occur.

5.3 Efficiency of Vega

We evaluate the performance overhead of Vega’s Profile-
Guided Test Integration by comparing the execution time
of the benchmarks instrumented with the test cases against
their baseline. We adopt a variety of configurations, with
different configurations enabling different sets of test cases.

Figure 9 presents the overhead. On average, Vega’s Profile-
Guided Test Integration introduces 0.8% overhead. In many

instances, this overhead is so negligible that it becomes in-
distinguishable with environmental noise (e.g., compiler op-
timizations accidentally triggered as a side effect of the in-
strumentation), resulting in a negative overhead. Therefore,
we conclude that Vega’s Profile-Guided Test Integration can
effectively manage and minimize its performance overhead.

6 Discussion

We now discuss the design decisions and trade-offs of Vega
and other frameworks for SDC detection (§6.1), the impact
of environmental noises (§6.2), and future directions (§6.3).

6.1 Vega Versus Top-Down Frameworks

Current frameworks for SDC detection, such as SiliFuzz [69]
and OpenDCDiag [1], utilize a top-down approach. These
frameworks treat the underlying hardware as a black box,
relying on fuzzing or analysis of popular software libraries
and applications to generate test cases. Consequently, they
often produce a large volume of tests aimed at uncovering a
broad spectrum of potential hardware failures.

Vega’s novelty lies in its targeted, bottom-up approach, fo-
cusing solely on identifying aging-related hardware failures.
To achieve this, it uses low-level implementation details to
guide test generation. This focus allows Vega to produce a
significantly smaller test suite. As a result, these tests can be
executed very frequently (e.g., per second), enabling proac-
tive and real-time monitoring of hardware health.

We view Vega and these top-down frameworks as orthog-
onal tools: their different approaches and targeting provide
different strengths. Although these differences hinder a di-
rect comparison of framework utility, with the difficulty of
porting architecture-specific test frameworks to our RISC-V
CPU an additional burden, we can envision scenarios where
multiple frameworks can be used in tandem to target differ-
ent testing needs. For example, a data center operator could
leverage Vega to embed targeted tests within their software
for continuous monitoring, while long-running test suites
generated by top-down frameworks could be scheduled dur-
ing regular maintenance cycles for broader coverage.
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6.2 Impact of Environmental Noises

Environmental noises, such as voltage and temperature, may
influence the effectiveness of Vega-generated test cases. Dur-
ing Aging Analysis, Vega relies on worst-case temperature
and voltage assumptions when determining signal propaga-
tion delays, which may result in an overestimation of likely
hardware faults. A more detailed analysis that considers real-
world power delivery and temperature variations within the
circuit could potentially help eliminate these false positives.
Current test suite deployment in data centers uses a few
approaches to mitigate environmental noises, including test
repetition, frequent execution, and execution while care-
fully varying relevant physical conditions [36, 75]. These
techniques are applicable to Vega, and Vega’s short test suite
length is conducive to timely tests that reduce environmental
variance between a period of testing and code execution.

6.3 Future Research Directions

While we present Vega as a complete, end-to-end prototype
for the bottom-up workflow, each of its three phases holds
the potential for future improvement.

The Aging Analysis phase can be expanded to analyze
further circuit reliability issues, such as dynamic IR drop and
electromigration. Similar to transistor aging, these issues
have also been well-studied at the transistor and gate level.

Future research could also explore alternative test case
generation methods during Error Lifting. One avenue in-
volves fast exploration of useful test cases via random and
fuzzing-based methods. Harnessing insights from Aging
Analysis, we could also develop efficient filtering techniques
to identify the most effective test cases for SDC testing.

Moreover, Instruction Construction could be simplified
by automating test case generation using program synthesis
and machine learning. This would reduce the manual effort
involved in adapting Vega’s workflow to a new module.

Finally, future research could investigate configuring Vega
for a commercial setting, where chip manufacturers gener-
ate test suites for data center operators. Concurrently, data
center operators could collect valuable traces and statistics
within their own environment. Chip manufacturers could
then harness this data to refine Aging Analysis and generate
a test suite tailored for specific data center workloads.

7 Related Work

Analyses of SDCs. Previous research studied radiation-
induced SDCs, including in storage systems [24], memory de-
vices [58], FPGAs [68], HPC systems [39, 41, 62], and satellite
processors [77]. Recently, hyperscalers have reported SDCs
caused by malfunctioning CPUs in both case studies and
comprehensive analyses at the scale of data centers [23, 36—
38, 52, 69, 75]. Vega is inspired by these studies, and focuses
on the detection of aging-related SDCs inside CPUs.
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Detection of SDCs. Data center operators identify SDCs
in their CPU populations by conducting infrequent or low
priority tests [69, 75]. In certain systems, SDCs are detected
through checksums or by verifying whether the computation
result is reasonable [23, 50]. Additionally, SDCs can be de-
tected by introducing redundancies in software or hardware
designs [21, 28, 34, 74]. Vega focuses on generating compact
test cases for frequent, at-scale SDC testing in data centers.

Test Case Construction for SDCs. OpenDCDiag [1] de-
tects SDCs by using popular software libraries. Google’s
SiliFuzz [69] synthesizes test cases by fuzzing a functional
model of the CPU. Unlike these works, Vega constructs test
cases by analyzing the CPU’s low-level implementation.

Analyses of Transistor Aging. Previous work has an-
alyzed the effect of transistor aging on various hardware
designs, such as CPUs [43], GPUs [45], and FPGAs [16], as
well as a variety of hardware building blocks, such as stan-
dard cell libraries [18, 53] and SRAMs [35]. In this paper,
we focus on transistor aging within CPUs; however, Vega’s
design and insights can be applied to other hardware designs.

Hardware Mitigations for Transistor Aging. Prior work
has explored transistor aging mitigation techniques that op-
erate across multiple phases of the hardware design process.
These works include the design of aging-resistant micropro-
cessors [43] and SRAM caches [30], as well as EDA tools
for simulating, analyzing, and mitigating the impact of tran-
sistor aging [31, 54, 66, 71, 72]. Unlike these works, Vega
analyzes a hardware design for the sake of building better
application-level detection techniques for transistor aging.

Software Mitigations for Transistor Aging. Previous re-
search on software mitigations for transistor aging includes
inserting NOP instructions [42] and scheduling anti-aging
programs during processors’ idle periods [11]. Vega is or-
thogonal to these works, and provides a systematic way to
provoke specific aging-related failures within a CPU design.

8 Conclusions

In this paper, we presented Vega, a bottom-up workflow that
bridges the gap between the physical understanding of tran-
sistor aging and the software detection of aging-related SDCs.
Vega targets the most aging-prone components within a CPU
and generates a compact test suite that only takes hundreds
to thousands of cycles to execute, therefore enabling frequent
detection of aging-related SDCs at application runtime.
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