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ABSTRACT
Accurate prediction of protein–peptide complex structures plays a critical role in structure-based drug design, including anti-
body design. Most peptide-docking benchmark studies were conducted using crystal structures of protein–peptide complexes; 
as such, the performance of the current peptide docking tools in the practical setting is unknown. Here, the practical setting 
implies there are no crystal or other experimental structures for the complex, nor for the receptor and peptide. In this work, we 
have developed a practical docking protocol that incorporated two famous machine learning models, AlphaFold 2 for structural 
prediction and ANI-2x for ab  initio potential prediction, to achieve a high success rate in modeling protein–peptide complex 
structures. The docking protocol consists of three major stages. In the first stage, the 3D structure of the receptor is predicted by 
AlphaFold 2 using the monomer mode, and that of the peptide is predicted by AlphaFold 2 using the multimer mode. We found 
that it is essential to include the receptor information to generate a high-quality 3D structure of the peptide. In the second stage, 
rigid protein–peptide docking is performed using ZDOCK software. In the last stage, the top 10 docking poses are relaxed and 
refined by ANI-2x in conjunction with our in-house geometry optimization algorithm—conjugate gradient with backtracking 
line search (CG-BS). CG-BS was developed by us to more efficiently perform geometry optimization, which takes the potential 
and force directly from ANI-2x machine learning models. The docking protocol achieved a very encouraging performance for a 
set of 62 very challenging protein–peptide systems which had an overall success rate of 34% if only the top 1 docking poses were 
considered. This success rate increased to 45% if the top 3 docking poses were considered. It is emphasized that this encouraging 
protein–peptide docking performance was achieved without using any crystal or experimental structures.

1   |   Introduction

Peptides are becoming an indispensable therapeutic agent 
class in the small-molecule–dominated world in recent years 
[1, 2]. According to a survey, there are 22 peptides among 
the 278 new chemical entities approved by Food and Drug 

Administration (FDA) from 2016 to 2021 [3]. Peptide drugs 
are usually more target-specific and potent than small mol-
ecule drugs, but they usually have poor ADME (absorption, 
distribution, metabolism, excretion) profiles  [4–6], whereas 
approved drugs usually have good ADME profiles and fewer 
adverse effects. Identified oligopeptide inhibitors can also 
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serve as structural templates for developing small molecule 
drugs [7, 8]. Thus, it is becoming increasingly important to 
accurately predict protein–peptide complex structure to facili-
tate structure-based drug design.

Many protein–peptide docking programs have been developed 
to study protein–peptide interactions. Critically and compre-
hensive evaluations of their docking performance have been 
conducted [9, 10]. Weng et  al. evaluated the docking perfor-
mance for 14 docking programs on 185 protein–peptide com-
plexes. Note that they used ligand-free crystal structures of 
receptors to evaluate the peptide–protein docking perfor-
mance, which is a less practical docking setting according to 
our definition (both the receptor and the ligand structures 
are unknown). According to their study, the best success rate 
for top 1 poses is less than 12% for all the studied programs 
[9]. Agrawal et  al. found that FRODOCK [11] and ZDOCK 
[12] achieve the best ligand-RMSD in blind docking and re-
docking, respectively [13]. In recent years, new docking pro-
grams or docking strategies have emerged and been tested for 
more challenging protein–peptide systems. In 2022, Xu and 
Zou [14] developed a docking protocol coined MDockPeP2 to 
address the challenge of peptide flexibility in protein–peptide 
docking studies. Their docking protocol achieved a signifi-
cantly high success rate of about 70% for the bound-docking 
on two protein–peptide datasets, peptiDB and LEADS-PEP. 
However, the success rate dropped dramatically for the un-
bound docking, 35.9% for peptiDB when top 10 poses were 
considered. In 2020, Santos et al. developed the DockThor pro-
gram and tested its performance on the LEADS-PEP dataset. 
They found that DockThor achieved a success rate of 40% with 
the overall backbone RMSD below 2.5 Å for the top 1 docking 
poses; this performance is comparable with that of Glide dock-
ing [15]. However, the above docking studies utilized crystal 
structures of either complexes in terms of re-docking/bound 
docking or receptors in terms of unbound docking. Their per-
formance is unknown for a more practical setting for which 
there are no crystal or measured structures for complex, re-
ceptor, and peptide.

In 2021, AlphaFold [16], a machine learning (ML)-based 
protein modeling model has been developed and outper-
formed  many protein modeling tools in critical assessment 
of protein structure predictions [17]. Recently, a large-scale 
assessment of AlphaFold 2 (AF2) was conducted for 11 pro-
teomes [18], a major finding is that the ML model can iden-
tify rare structural features in Protein Data Bank (PDB) [19] 
and 25% more residues can be confidently modeled than tra-
ditional homology modeling. AlphaFold has been applied to 
predict peptide structures with amino acid residues between 2 
and 50 residues [20]. However, its good performance is achiev-
able only if the peptide sequences have well-defined secondary 
structures and lack random coils. Tsaban et  al. also applied 
AF2 to model protein–peptide interactions for 96 complexes 
[21]. They found that AF2 outperformed the state-of-the-
art peptide docking protocol PIPER-FlexPepDock; however, 
their data set might be less challenging as about half of the 
peptides are helices or strands. It is still unclear whether the 
performance of AF2 decreases or not when the structures or 
structure motifs of the receptors and peptides are unseen or 
uncommon in PDB.

Recently, ML has been applied to develop energy potential 
mimicking an ab  initio chemistry model. A famous example 
is ANI-2x ML potential mimicking wB97X/6-31G(d) [22, 23]. 
Although ANI-2x achieves a speedup of ∼106 factor in com-
parison to the DFT method, the potential energy surface gen-
erated by this ML potential is rough, which causes failures 
in geometry optimization using the conventional algorithms. 
Thus, we have developed a conjugate gradient backtracking 
line search (CG-BS) method which utilizes a more adaptive 
algorithm to determine the searching steps and directions 
while ensuring the Wolfe conditions are satisfied, to conquer 
the difficulty of reaching convergence utilizing ANI-2x [24]. 
ANI-2x/CG-BS has been applied by us to study the active 
conformations among the conformational ensembles for PDB 
ligands [25].

In this work, we proposed a computational protocol to pre-
dict protein–peptide complex structures utilizing two famous 
ML models, AF2 for receptor and ligand structure predic-
tion, and ANI-2x for refining and reranking docking poses. 
Considering ZDOCK's excellent performance in bound dock-
ing, it was applied to generate docking poses prior to ANI-2x/
CG-BS refinement. Unlike most protein–peptide docking 
studies, our protocol does not rely on any crystal structures of 
the complex, receptor, or peptide. As shown in Figure 1, this 
docking protocol consists of three major stages. Starting from 
PDB sequences of receptor and complex (receptor + peptide), 
AF2 structural prediction is conducted solely for the receptor 
using monomer mode for a monomeric receptor and multimer 
mode for a multimeric receptor. AF2 structural prediction is 
performed for the complex with the multimer mode, and the 
peptide structure in the 3D-complex structure is extracted. In 
the second stage, ZDOCK is conducted for the AF2-predicted 
receptor and peptide structures. In the third stage, the top 10 
ZDOCK poses are refined and reranked. We first perform re-
strained geometric optimization using the AMBER software 
package, followed by ANI-2x/CG-BS optimization. Last, we 
re-rank the docking poses according to their ANI-2x potential 
energies. We evaluated the docking performance using two 
levels, top 1 and top 3. In the top 1 level, only the best-ranked 
docking pose according to ANI-2x potential energy is consid-
ered, whereas in the top 3 level, the docking pose that best 
reproduces the peptide conformation in the crystal structure, 
that is, the smallest Docking RMSD among the top 3 docking 
poses, is selected for docking performance evaluation. We did 
not calculate the mean values of RMSDs as this performance 
metric is much more meaningful when one considers a larger 
number of docking poses. This docking protocol is assessed by 
LEADS-PEP [14], which contains 62 challenging protein–pep-
tide systems.

2   |   Methodology

2.1   |   Datasets Preparation

We compiled a protein–peptide dataset to test our docking 
performance, which includes all the entries in the LEADS-
PEP dataset  [14] and nine more to enhance the diversity of 
the sequence length. The information on the PDB entry and 
chain ID for the peptide, as well as the amino acid sequence 
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are provided in Table  S1. The FASTA files for both receptor 
and receptor + peptide were prepared for the AF2 structural 
prediction.

2.2   |   AF2 Structural Prediction

We utilized AF2 docker (https://​github.​com/​googl​e-​deepm​
ind/​alpha​fold) to conduct structural predictions in two modes, 
monomer (the default) and multimer. Only the top 1 structure 
was selected for structural analysis.

2.3   |   Protein–Peptide Docking Using ZDOCK

We performed rigid protein–peptide docking using ZDOCK3.0.2. 
Each docking run resulted in 2000 docking poses. Only the top 
10 docking poses were subjected to post-docking refinement to 
make the docking protocol efficient.

2.4   |   Glide Docking

We followed a standard protocol to conduct a Glide docking study 
using the standard precision (SP) scoring function. Specifically, 
Protein Preparation Wizard was first applied to prepare recep-
tor structures by adding missing atoms and adjusting charged 
residues based on the experimental pH and partial geometry op-
timization only applying to hydrogen atoms; next, the docking 
grid was generated with the coordinate center of the co-crystal 
peptide being the center of the box, and box dimensions are 
comparable to that of the enclosed peptide; next, flexible dock-
ing was conducted with up to 10 docking poses being recorded. 
In SP docking, we manually rewarded intramolecular hydrogen 

bonds and enhanced the planarity of conjugated pi groups while 
keeping the default settings for all other parameters.

2.5   |   AMBER-Restrained Structural Minimization

The Leap module of the AMBER 23 [26] software package was 
applied to generate topologies for the protein–peptide complexes 
that were described by the FF14SB [27]. The heavy atoms were 
restrained using a force constant of 1000 kcal/mol/Å2 during a 
maximum of 2000 steps of conjugated gradient minimization 
using the Sander program.

2.6   |   ANI-2x/CG-BS Structural Optimization

The AMBER optimized geometries were used to prepare the 
input file for the subsequent ANI-2x/CG-BS optimization. An 
ANI-2x/CG-BS optimization was converged when the follow-
ing criteria were met: The maximum force and RMS force are 
no greater than 0.00045 and 0.0003 a.u., and the maximum and 
RMS displacements are no greater than 0.0018 and 0.0012 a.u., 
respectively. The maximum number of iterations (MAXITER) 
was set to 10,000. In most cases, ANI-2x/CG-BS optimization 
converged before the MAXITER condition was met. However, 
if an optimization was terminated because MAXITER was 
reached, we restarted the ANI-2x/CG-BS optimization using the 
restart file.

2.7   |   Root-Mean-Square Deviation (RMSD)

As we used the complete amino acid sequences, that is all the 
gaps in the PDB structures were filled in, to generate more 

FIGURE 1    |    Flowchart of AI-assisted protein–peptide docking in practical setting assuming no crystal structures are available. The protocol 
consists of three major steps: 3D-structure prediction with AlphaFold 2 (dark red), rigid peptide–protein docking with ZDOCK (yellow), and post-
docking structural refinement with AMBER and ANI-2x/CG-BS (blue).
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complete 3D structures using AF2, thus, directly aligning 
AF2-generated structure to a crystal one via least-square (LS) 
fitting may be problematic due to the mismatch of the amino 
acids. We developed an intern program, SPA, an abbreviation 
for smart protein alignment, to perform protein structural 
alignment for protein structures with different sequences. SPA 
takes a sequence alignment of the input and reference proteins 
so that only the protein positions without gaps can participate 
in LS fitting. The docking RMSD was calculated as follows: LS-
fitting was first performed for the receptor structures; then the 
resulting transformation matrix was applied to the input peptide 
structure; last, the RMSD between the transformed input pep-
tide structure and the reference peptide structure was calculated 
without fitting. Note that all heavy atoms of the peptide partici-
pate in the docking RMSD calculations.

A successful structure prediction or a protein–peptide docking 
prediction is recognized when the RMSD value is smaller than 
4 Å for all peptide sequences. This threshold is consistent with 
the definition of near-native prediction defined by Weng et al., 
but slightly more stringent for peptides with sequence lengths 
longer than 10. By using the same criterion of success prediction, 

we are able to compare the docking performance of our protocol 
with 14 docking programs recently studied by Weng et al. [9].

3   |   Results and Discussion

3.1   |   Assessment of AF2 in Modeling the Protein 
Structures for a Highly Challenging Dataset

The protein–peptide dataset compiled by us included all the 53 
entries in the LEADS-PEP dataset, and 9 more were added to 
increase the coverage of sequence lengths. The 62 entries have 
amino acid sequence length ranges from 3 to 39. The sequence 
information of all the entries is shown in Table S1. Most of the 
peptide structures form random coils; thus, they are highly flex-
ible and mostly adopt random coil secondary structure. There 
are three major outcomes of the AF2 modeling, either for the 
single domain receptor (Figure 2) or the multidomain receptor 
(Figure 3). In Outcome 1, the structure of the complex, receptor, 
and peptide are very well modeled (yellow for receptor and green 
for peptide) in comparison with the crystal structure (white for 
the receptor and red for peptide). In Outcome 2, good RMSD was 

FIGURE 2    |    Representative outcomes of AlphaFold 2 modeling for peptides complexed with single domain receptors. Outcome 1: Good RMSDs 
for receptor, peptide, and complex, represented by 1F47, 1N12, and 3NJG; Outcome 2: Good RMSD for the peptide, bad RMSDs for receptor and com-
plex, represented by 1G3F, 3BRL, and 4C2C; Outcome 3: Good RMSDs for both receptor and peptide, but bad RMSD for the complex, represented by 
3CH8.

FIGURE 3    |    Representative outcomes of AlphaFold modeling for peptides complexed with multi-domain receptors. Outcome 1: Good RMSDs for 
receptor, peptide, and complex, represented by 2XFX; Outcome 2: Good RMSD for the peptide, bad RMSDs for receptor and complex, represented by 
4DGY; Outcome 3: Good RMSDs for both receptor and peptide, but bad RMSD for the complex, represented by 3IDG.
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observed only for the peptide, but not for the receptor and com-
plex. In Outcome 3, even though good structures were predicted 
for the receptor and peptide, the binding mode is incorrect, re-
sulting in a bad complex structure and large Docking RMSD.

The average RMSDs are 2.95, 2.60, and 1.17 Å for the complexes, 
receptors, and peptides, respectively, and the corresponding 
success rates are 85%, 87%, and 98% (Table  S2). However, the 
success rate for docking decreased to 74% owing to the scenario 
of Outcome 3. We also performed AF2 modeling for the recep-
tor and peptide separately (Table S3). Interestingly, the average 
RMSDs become 2.17 Å for the receptors and 2.20 Å for the pep-
tides. The corresponding success rate increased to 89% for the 
receptors and decreased to 95% for the ligands. The distribu-
tions of the RMSDs are illustrated in Figure 4. It is observed that 
separately modeling receptors leads to better structures which 

have smaller RMSDs to the corresponding X-ray structures. 
On the contrary, the peptide structures from the complex mod-
eling have smaller RMSDs to the corresponding X-ray struc-
tures. Representative protein–peptide systems that showcase 
the above observations are illustrated in Figure 5. Apparently, 
for the receptor of a system, the blue cartoons from the separate 
modeling can be better aligned with the white cartoons (the X-
ray structures) than the yellow cartoons from the joint modeling 
of the receptor and peptide. On the other hand, for the peptide 
of a system, the green cartoons from the joint modeling can be 
better aligned with the red cartoons (the X-ray structures) than 
the magenta ones of the separate modeling.

The following is our rationale for the above observation: The 
AF2 monomer model can result in more accurate structural pre-
diction than the multimer model; thus, separately modeling a 

FIGURE 4    |    Distributions of RMSDs of complex (COM), receptor (REC, REC_only), peptide (PEP, PEP_only), and docking (DOCK) for RMSD for 
the best structure predicted by AlphaFold 2. REC_only or PEP_only indicate that the structures were separately modeled for the receptor or peptide 
using the monomer mode. The scatter distributions of all RMSD values and the column distribution of RMSD ranges are shown in the right and left 
panels, respectively.

FIGURE 5    |    Comparison of two AlphaFold modes (monomer and multimer) in modeling protein–peptide complexes. For each system, the left 
and right panels show how well the AF2 structures are aligned to the crystal structures for the receptor and the peptide, respectively. Color code 
for receptors: White for the crystal structures, whereas yellow and blue for the AF2 structures generated with the multimer and monomer modes, 
respectively. Color code for peptides: Red for the crystal structures, whereas green and magenta for the AF2 structures generated with the multimer 
and monomer modes, respectively.
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receptor leads to more accurate receptor structural prediction, 
whereas for a peptide, its short sequences may have many tem-
plate structures in PDB and they may adopt different conforma-
tions; thus, modeling the peptide structure in the context of the 
receptor can result in the receptor-specific conformation for the 
peptide.

The success rate of protein–peptide docking with AF2, 71%, is 
very encouraging and comparable to the findings by Tsaban 
et al. [21] However, this performance may be challenged as those 
protein–peptide structures were already deposited in the PDB. 
Thus, we continue to study if we can accurately predict the pro-
tein–peptide complexes using docking. In the following Glide or 
ZDOCK docking studies using AF2 structures, all the receptor 
structures came from individual modeling, whereas all the pep-
tide structures came from joint modeling of the receptor/peptide 
complexes with the multimer mode.

3.2   |   Prediction of Protein–Peptide Complexes 
With Glide and ZDOCK

We chose two representative docking programs to conduct pro-
tein–peptide docking. Both are mainstream docking programs 
and achieved good performance in other benchmark studies. As 
shown in Table S6, the success rate is 33% for the bound docking 
using the X-ray structures for top 1 level, whereas it increased 
to 35% for top 3 level. When the AF2 structures were used, as 
expected, the success rates dropped to 12.5% for top 1 level and 
top 3 level as well. The distributions of the RMSD ranges for 
the Glide docking were illustrated in Figure S2. Thus, the Glide 
docking performance was significantly decreased when mod-
eled structures were applied.

ZDOCK achieved a much better docking performance in a 
bound docking study with X-ray structures. The success rates 
are 66% and 73% for top 1 level and top 3 level, respectively. If 
all the 2000 docking poses were considered, the success rate in-
creased to 94%, indicating ZDOCK can produce correct dock-
ing poses for most protein–peptide systems, albeit they are not 
necessarily top ranked. As expected, the docking performance 

decreased when AF2 structures were used: The success rates are 
27%, 44%, and 76% for top 1 level, top 3 level, and the minimum 
docking RMSDs in docking pose ensembles, respectively. It is 
apparent that ZDOCK achieved a much a higher success rate 
than Glide docking under the same scenario. The distributions 
of the docking RMSDs are illustrated in Figure  6. The dock-
ing RMSDs using both X-ray and AF2 structures were listed in 
Tables S8 and S9.

3.3   |   Post-Docking Refinement and Reranking

Considering the correct docking poses are hidden in the docking 
pose ensembles produced by ZDOCK, we expect further refine-
ment on those poses with more promising potential function can 
make those correct docking poses ranked higher. To make this 
docking protocol efficient, only the top 10 docking poses from 
ZDOCK were selected to enter the post-docking refinement 
stage. As shown in Figure 1, the refinement stage consists of two 
steps: the restrained structural minimization with the AMBER 
software package [26]. This step can efficiently remove possible 
clashes in the ZDOCK-generated docking poses while keeping 
the overall complex structure unchanged. Note that this step can 
significantly reduce the minimization steps in the subsequent 
ANI-2x/CG-BS optimization. In the second step, ANI-2x/CG-BS 
optimization was performed utilizing the default convergence 
criteria in Gaussian 16 [28]. As shown in Table  S9, the two-
step refinement and reranking significantly boosted the suc-
cess rates. For the top 1 level, the mean RMSD decreased from 
15.71 to 13.43 Å, whereas the success rate increased from 27% to 
34%; for the top 3 level, the mean RMSD decreased from 10.50 
to 8.95 Å, whereas the success rate increased from 44% to 45%. 
Figure  7 illustrated some representative peptide systems with 
enhanced (Panels A and B) or worsened performance (Panel C).

According to the report by Weng et al. [9], the best top 1 and 10 
success rates are 4.3% and 24.3% for global docking, achieved by 
HPEPDOCK for the peptiDB dataset. Thus, the docking perfor-
mance of our AI-assisted docking protocol is very encouraging, 
considering that the high success rates were achieved under a 
practical setting without using any crystal structures.

FIGURE 6    |    Distributions of best docking RMSDs for ZDOCK using crystal structures (X-Ray) and AlphaFold 2-generated receptor and peptide 
structures without (AF2) and with post-docking refinement (ANI-2x). Left panel: Only the best docking poses were considered; right panel: The best 
docking poses in the top 3 docking poses were considered.
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The current ANI-2x was developed to reproduce gas phase en-
ergies and forces calculated at the wB97X/6-31G(d) level. There 
is a lack of the description of the solvent effect as well as the 

entropic effect when a peptide is bound to its receptor in the 
current ANI-2x potential. It is expected that the successors 
of ANI-2x, which explicitly consider the solvent effect in the 

FIGURE 7    |    Two scenarios of the AI-assisted docking protocol, either improving the docking performance (A and B) or decreasing the docking 
performance (C). The peptides adopt secondary structures for the four protein–peptide complexes in (A), which are 1BE9 (0.87 Å), 1YCR (2.74), 3LNY 
(1.13), and 4Q6H (0.98), respectively. The peptides adopt random coil structures for the six protein–peptide complexes in (B), which are 1B9J (1.47), 
1ELW (4.62), 1TW6 (4.74), 2B9H (2.73), 3BS4 (1.70), and 3OBQ (4.30). The protein–peptide systems in (C) have decreased docking performance after 
ANI-2x structural refinement and reranking, which are 4BTB (9.85), 4EIK (6.62), and 4N7H (21.86). The best RMSDs resulting from the docking 
protocol are provided for each system. Note that, for the worst scenario for which the docking performance was decreased, good conformations with 
RMSDs being smaller than 4 Å were among the top 3 conformations for 2B9H (2.77) and 3BS4 (1.26).
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training process, together with conformational entropy predic-
tion, for example, using WSAS [29], could significantly enhance 
the success rate of our docking protocol.

In this proof-of-concept study, the docking protocol was assessed 
by a set of 62 very challenging protein–peptide systems. A sys-
tematic evaluation of this protocol and the refined versions (such 
as using AlphaFold 3 instead of AlphaFold 2) using a larger da-
tabase, such as peptiDB, and for more docking programs is on-
going and will be reported in the future.

3.4   |   Cross-Protein Complex Modeling

It is interesting to investigate the ability of the proposed pro-
tocol in identifying non-binders of a given receptor. If the two 
peptides, one binder and the other a non-binder, share high 
sequence identity (> 50% for accurate protein modeling), the 
above protocol should be able to generate similar binding poses 
for relative binding affinity prediction using free energy-based 
methods like MM-PBSA [30, 31]. However, if the sequence iden-
tity is low, the above protocol may fail. We conducted cross pro-
tein–peptide modeling for three pairs of receptors: 1B9J/2B6N, 
1BE9/1NVR, and 1G3F/2W0Z. To conduct cross protein–peptide 
modeling for a pair of receptors P1-L1/P2-L2, we generate P1-L2 
and P2-L1 structures using AF2, where L1 is the native peptide 
of the P1 receptor and L2 is the native peptide of the P2 recep-
tor. L1 and L2 have distinct but the same length of amino acid 
sequences. As shown in Figure S3, 50% of the mismatched pep-
tides bind to the same sites (1B9J, 1BE9 and 2W0Z), whereas the 
rest have distant binding modes. The modeling scores, the sum 
of the predicted template modeling (pTM) and interface pre-
dicted template modeling (ipTM), were calculated for the native 
and mismatched peptides binding to a receptor. The scores of 
the original peptides are better than the mismatched ones for all 
receptors except for 1NVR, for which the score is 0.8641 for the 
mismatched peptide and 0.6379 for the native peptide. As illus-
trated in Figure S3, the mismatched peptide forms six hydrogen 
bonds with the receptor, whereas the native peptide only forms 
four. It is interesting to further validate if the mismatched pep-
tide can truly bind to the receptor. In brief, AF2 can be applied to 
roughly discriminate binders from non-binders; for those bind-
ing to the same site, the relative binding affinities can be further 
determined by performing binding free energy calculations.

4   |   Conclusions

In our study, we developed and evaluated a docking protocol 
integrated with two famous ML models for predicting protein–
peptide complexes in a practical setting using 62 protein–peptide 
systems. AF2 itself has achieved a very accurate prediction of the 
protein–peptide complexes, with an overall success rate of 74%. 
We found that individual modeling of receptor structures can 
better reproduce the crystal structure of the complex, whereas 
the joint modeling of receptor and peptide using the multimer 
mode can facilitate AF2 to generate the receptor-specific pep-
tide structure which can better reproduce the counterpart in the 
crystal structure of the complex. Our docking protocol using 
AF2-predicted structures to conduct rigid docking followed by 
ANI-2x/CG-BS refinement has achieved success rates of 34% for 

the best docking poses and 45% if the top 3 docking poses were 
considered. This is a very encouraging docking performance 
given the fact that it was achieved without using any crystal 
structures.
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