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Abstract. Understanding how students use math strategies is impor-
tant to help us build tools and techniques that improve cognitive flexi-
bility in students, i.e., select strategies that are appropriate and efficient
for a problem. In this work, we focus on instructional content within
MATHia, where students choose between strategies that were previously
taught to them independently. Some problems favor one strategy over
the other, giving us the opportunity to understand how/if students learn
to pay attention to problem characteristics that suggest one strategy
over the other. Using data from over 600 schools, we show that students
find it hard to adapt their strategies to suit a problem. Further, we learn
a BERT model to learn embeddings for strategies, develop a prediction
task to distinguish between successful and unsuccessful strategies, and
analyze its results to reveal deeper insights into student strategies.
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1 Introduction

Problem-solving strategies are foundational to math learning [11]. However, in
Intelligent Tutoring Systems (ITSs), understanding strategies is challenging since
the system’s interface may limit the possible strategies. In this paper, we analyze
strategies in MATHia, an ITS that is part of a blended curriculum for middle-
school math. In MATHia, problem-solving is broken down into sub-goals, and
students perform actions to complete these sub-goals. We focus our analysis
on a specific MATHia workspace (instructional module) that teaches ratio and
proportion. This module follows the general pedagogical principle of teaching
students multiple problem-solving strategies and then allowing them to choose
between strategies. We first analyze if students use the optimal strategy based on
data collected from over 600 schools. Our results seem to indicate that students
have a hard time choosing efficient strategies, and even when they do, they do
not execute the strategy correctly. To understand more deeply how strategies
are related to student performance, we develop advanced Al models to distin-
guish between strategies using hidden patterns in the data. In particular, we



2 A. Thapa Magar et al.

use Bidirectional Encoding Representations From Transformers (BERT) [6], a
model typically used in language understanding, to separate strategies that are
correctly executed from those that are not. Specifically, we pre-train BERT using
student interaction data from 100 schools to learn representations (embeddings)
for strategies. We then fine-tune the embeddings on data from the remaining
schools to classify strategies. To add more context to the strategy, during fine-
tuning, we augment the embedding of a strategy with prior skills inferred by
Bayesian Knowledge Tracing [5], temporal features extracted from actions per-
formed by the student and from problem text. Our model shows excellent gen-
eralizability, i.e., fine-tuning on just the first 10% of the problems worked on by
a student in the workspace yields a maximum ROC-AUC score of 92% when we
test the model on the remaining 90% of problems in the workspace.

2 Related Work

Several different approaches have been explored to identify strategies in virtual
environments [14]. In [13], an approach was developed to augment the strate-
gies in model tracing tutors. In [1], a machine learning model was learned using
data labeled from Cognitive Tutor, and similar approaches have been used in
other domains [7,15]. Sequence modeling has often been used to identify strate-
gies [8,9] in virtual environments such as Betty’s brain [3]. In [20], sequence
pattern mining was applied to a MOOCs platform to analyze activity sequences
of learners [20]. Other studies have explored Markov models and sequence min-
ing to uncover patterns in student interactions within ITSs [2]. More recently,
deep models such as LSTMs have been used to learn strategies [16]. In [18],
a foundational BERT model was developed to learn embeddings for MATHia
strategies, but unlike our work, context-specific strategies were not analyzed.

3 Strategies in MATHia

Newell and Simon [12] in their classical work provide a formal framework to un-
derstand problem-solving as a search through the problem-space. Thus, a strat-
egy corresponds to making choices of actions to perform within this space. In the
MATHia ITS, a student solves sub-goals (or steps) within the problem-space. In
this work, we focus on a specific piece of instructional content where the student
is supposed to make deliberate choices reflecting their strategy. Specifically, the
instructional module for the ratio and proportions workspace in MATHia follows
the general pedagogical strategy of teaching different strategies one at a time
and then asking students to choose between strategies based on the context of
a problem. The steps in this module include setting up a proportion based on
the problem text and then solving the proportion for the unknown variable. For
instance, given a question, Akuro is the manager of a car wash. Last week there
were 50 customers. This week there were 50% more customers than last week.
What is the number of customers this week?, we can set up the proportion for
50

the change in amount as, 155 = #5- Now, students are presented with two choices
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Fig. 1. Analyzing strategies in the ratio and proportions workspace. (a) shows the
distribution of how students used strategies and (b) shows the Successful Completion
Rate (SCR) for these strategies.

called optional tasks. in choice 1, they solve the unknown variable by observing
that 100 = 2 = 50 and therefore x = 25. We call this approach as equivalent
ratios (ER). In choice 2, called means and extremes (ME), they use cross multi-
plication, i.e., 50 x 50 = 100 x = and solve for x. Both these approaches are valid
strategies. However, the ER approach requires the student to recognize the pat-
tern where it can be easily applied, i.e., when one value can be scaled up/down
to another value (using an integer value), the ER strategy is very efficient. Thus,
we have a notion of ground truth in terms of which strategy is efficient for a
problem. Students solve prerequisite workspaces that train them on both these
approaches separately. Here, the goal is for them to make a choice depending on
the problem context and thus build cognitive flexibility.

Data Analysis. To understand how students use strategies within the ratio
and proportions workspace, we analyze data collected from 655 schools. This
workspace is part of blended instruction in 7**-grade math. Our data consists
of 414K unique instances (identified by a student, problem pair), 27946 unique
students and 280 word-problems. The data format is similar to the tutor inter-
action format available through the PSLC datashop [17]. The data includes the
sequence of steps students work on within the problem, hint usage, feedback from
MATHia, and the skills (knowledge components [10]) tracked for the problem.
Fig. 1 compares the strategies followed by the students with the ground truth
strategies. Specifically, Fig. 1 (a) shows the distribution of strategies. As seen
here, only 39% correctly choose the ER strategy and 43% correctly choose the
ME strategy. This indicates that in majority of the cases, students were unable to
switch to the optimal strategy. Further, it can be seen that 26% use both strate-
gies, which is a strong signal of poor meta-cognition since these students failed
to correctly comprehend that both strategies are in fact alternate but equivalent
approaches to solving the problem. Next, we analyzed the successful completion
rate (SCR) for strategies. Specifically, a strategy is successfully completed if after
completing the last optional task step, the student is able to answer the question
without any additional help, i.e., without requiring multiple attempts or hints to
answer the question. We believe this indicates that the student is able to apply
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the strategy to a specific problem. The SCR for a set of strategies S is the ratio
> Where s is the number of successful completions of strategies in S and N is
the total number of times a strategy in S was used. Fig. 1 (b) shows the strategy-
wise SCR breakdown. As seen here, using the ER strategy for problems with ER
as the ground truth has a slightly higher SCR compared to the ME strategy. For
problems where the ground truth is ME, the SCR remains the same for either
ER or ME strategies. Since ME is more algorithmic in nature, it can be applied
to all problems and therefore, students seem to have similar success applying
this strategy regardless of the ground truth strategy. When both strategies are
applied to a problem, as expected, the SCR is significantly lower.

3.1 BERT Model

From the analysis in the previous section, it is evident that even when the opti-
mal strategy is used, there is only around 55-57% chance of success. Therefore,
we next explore how AI methods can help distinguish between successful and
unsuccessful strategies. To do this, we use BERT to learn a low-dimensional
embedding for the problem-space. As in the classical BERT model used for lan-
guage understanding, there are two key steps within our BERT framework. The
first step pre-trains the model and learns general embeddings for strategies. The
next step fine-tunes these embeddings for a specific prediction task. The architec-
ture for our model is a multi-layer bidirectional Transformer encoder [19] which
uses context in both directions, i.e., in our case, a transformer block scans the
input from both the right-to-left and left-to-right directions. The main hyperpa-
rameters include the number of Transformer blocks (L), the size of the hidden
representation (H), and the number of attention heads (A) within each block to
implement the attention mechanism. For our model, we use L =4, H = 64, and
A = 8. Next, we describe the main components of our model.

Pre-Training. We use the Masked Language Model (MLM) approach that is
typically used for pre-training language models. Specifically, we encode the in-
teraction between the student and MATHia as a sequence of tokens where each
token contains the step-name, the response of MATHia to the action performed
in this step (e.g., whether the step had an error), and whether a hint was re-
quired to perform the action. We then mask tokens and train the model to
predict the masked tokens. To do this, the model must infer the token from its
context (neighboring tokens) and therefore, it learns to represent the sequence
of tokens as an embedding in a fully unsupervised manner. Our model consists
of approximately 200K trainable parameters. We used training data from 100
schools that had the largest number of instances in the dataset. The number of
instances we used in pre-training is 130K and 20K for validating the pre-trained
model. We masked 15% of the steps similar to the approach used in the original
BERT model and set the maximum length of a sequence as 128. We performed
pre-training in 8 hours on two parallel Tesla GPUs.

Fine-Tuning. Fine-tuning the pre-trained model adapts it to downstream tasks
without the need to retrain the full model. We initialize the BERT model with
parameters learned during pre-training and then supervise the fine-tuning with
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[FT[FT+skills[FT+time[FT+gt[FT+gt(u)[FT+skills+time|

[0.67] 0.80 [ 0.83 [ 067 [ 067 | 0.92 \
Table 1. Comparing ROC-AUC scores of fine-tuned models on test data.

a small set of labeled examples. A classification layer is added on top of the
pre-trained model to predict the outcome of a strategy, i.e., whether the final
answer step was solved by the student correctly without additional help. During
fine-tuning, we augment the embedding generated for (s,p), a student-problem
pair, with additional context that is relevant to the strategy as follows.

Skills. We track skills or knowledge components [10] for each student that are
relevant to the workspace. The skills are updated using the standard Bayesian
Knowledge Tracing (BKT) model [4]. We use the probabilities of correctness
for each of the skills based on the BKT parameters computed using the prior
problems that the student has attempted.

Temporal features. We track the activity time of students for each step and aug-
ment the embedding with the following temporal features. The cumulative time
spent over all the steps of the problem indicates how long the student engaged
with MATHia in solving the problem. We measure the time spent between com-
pleting the final step in an optional task and attempting the final answer. This
is an indicator of how long the student takes to think about the strategy worked
out in the optional task and relate this to answering the problem. Finally, we
also measure the total time taken to complete all the optional task steps and the
total time taken to answer all the other (non-optional) steps in the problem.
Ground Truth Strategy. We add the ground truth strategy label (i.e., whether the
problem’s optimal strategy is ER/ME) to the embedding. Further, we considered
a second variant in which we computed the uncertainty in the strategy label
based on the problem text. For instance, for the ER strategy, some scaling factors
may be harder than others (e.g., scaling 18 to 54 is harder than scaling 10 to
100). To encode this, we generated an embedding for the problem text using a
pre-trained BERT language model and trained a binary classifier to distinguish
between ER and ME problems based on the text embedding. We then add the
probability output of this classifier as an input feature to the fine-tuned model.
Model Evaluation. We evaluated the model on data from 555 schools (we
excluded the 100 schools used in pre-training). We fine-tune the pre-trained
model only with data from the first 10% of problems that the students have
attempted and evaluate the accuracy of the model on the remaining 90% of
future problems they worked on. The training time for each fine-tuned model
was less than 30 minutes. We develop 6 models, F'T is the baseline model that
only uses embeddings. To this, we add skills, time (temporal features), ground
truth strategy label (gt), and the probability associated with the ground truth
strategy (gt(u)). The results from all our fine-tuned models® are summarized in
Table 1. We use the Receiver Operating Characteristic Area Under the Curve

3 https://github.com/abisha-thapa/ft _bert
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(a) Promoted (b) Graduated

Fig. 2. t-SNE plots for strategy embeddings. Promoted/Graduated student strategies
are shown separately. In each case, the first plot shows embeddings from the first 10%
of problems and the second from the last 10% of problems. Blue colored points follow
the ground truth strategy and orange colored points do not follow the ground truth.

(ROC-AUC) metric (since outputs from our model are continuous values) to
compare the performance of our models. As seen from our results, skills and
temporal features significantly improve the baseline model (FT). In contrast,
the ground truth strategy for a problem does not improve performance over
the baseline. This seems to indicate that choosing the right strategy does not
imply correct execution of the strategy. One possible explanation is that the ME
strategy is algorithmic and is more generally applicable. Therefore, students who
learn ME do not want to switch strategies.

Strategy Embeddings Fig. 2 shows the t-SNE plots for embeddings over time
for graduated and promoted students (graduated students demonstrate mastery
over all skills related to the workspace). As seen here, the embeddings for initial
strategies for graduated students shows a fuzzy separation between orange and
blue colored strategies. However, over time, it seems like the model obtains a
better separation between them, showing that their strategies evolve. In contrast,
for promoted students, the variation in embeddings is minimal.

4 Conclusion

In this work, we analyzed instructional content in MATHia, where students can
choose between two different strategies to solve ratio and proportion problems.
In this workspace, based on data collected from 655 schools, we discovered that
students find it hard to choose and execute the strategies that are efficient for a
specific problem. Further, we developed a BERT-based model to learn strategy
embeddings and, using this, we discovered that students who attain mastery
evolve their strategies over time. In the future, we plan to use insights from our
model to improve outcomes such as time-to-mastery.
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