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Abstract—Fostering productive engagement within teams has
been found to improve student learning outcomes. Consequently,
characterizing productive and nnproduoctive time during teamwaork
sessions is a critical preliminary step to increase engagement in
teamwork meetings. However, research from the cognitive sciences
has mainly foconsed on characterizing levels of productive engage-
ment. Thus, the theoretical contribution of this study focuses on
characterizing active and passive forms of engagement, as well as
negative and positive forms of engagement. In tandem, researchers
have used computer-based methods to supplement quantitative
and gualitative analyses to investigate teamwork engagement. Yet,
these studies have been limited to information extracted primarily
from one data stream. For instance, text data from discussion
forums or video data from recordings. We developed an artificial
intelligence (Al)-based antomatic system that detects productive
and unproductive engagement during live teamwork sessions. The
technical contribution of this study focuses on the use of three
data streams from an interactive session: audio, video, and text.
We antomatically analyze them and determine each team’s level of
engagement, such as prodoctive engagement, unproductive engape-
ment, disengagement, and idle. The Al-based svstem was validated
hased on hand-coded data. We used the system to characterize
productive and unproductive engagement patterns in teams using
deep learning methods. Results showed that there were =>91% pre-
diction accuracy and < 7% mismatches between predictions for the
three engagement detectors. Moreover, Pearson’s » values between
the predictions of the three detectors were ==0.844. On a scale of
—1 (unproductive engagement) to 1 (prodoctive engagement), the
seores for all teams were 0,94 & 0L, suggesting high productive
engagement. In addition, teams tended to mostly be in productive
engagement before transitioning to disengagement (>>90.34% of
the time) and to idle (> 93.69% of the time). Before transitioning to
productive engagement, we noticed almost egqual fractions of teams
being in idle and disengagement modes, These results show that the
system effectively detects engagement and can be a viahle tool for
characterizing productive and inproductive engagement patterns
in teamwork sessions.
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I. INTRODUCTION

EAMS are critical organizational structures for the success
T of any organization [1]. Consequently, higher education
institutions are expected to deliver graduates capable of engag-
ing in teams productively [2]. Although teamwork facilitation
should be a necessary part of good undergraduate instruction [3],
it is often difficult to implement teamwork practices in the
context of large classes at the undergraduate level.

For instance, teamwork pedagogy has been implemented to
orchestrate teamwork processes and to facilitate group work [4].
Specifically, in Science, Technology, Engineering, and Math-
ematics classrooms, teamwork pedagogy, such as cooperative
learning [5], problem-based leaming [6], and frame-of-reference
training [7], among others, has been widely adopted for or-
chestrating team-based projects for an extended period of time,
ranging from weeks to an entire semester, However, some
research reporting on implementing teamwork pedagogies in
large classes has reported a lack of success [], [9]. This could
be partly attributed to instructors having limited experience
operating in teams or not knowing when students need support
to overcome unproductive behaviors when engaged in teamwork
interactions. Thus, instructors need training, guidance, and tools
to help them teach and assess teamwork skills in their students
effectively [10]. Furthermore, even when teamwork orches-
tration approaches are effectively implemented by instructors
when providing upfront guidance in preparation for team-based
projects, effective teamwork from a learmer perspective requires
team members to experience productive engagement during
teamwork interactions [1], [11].

Research has determined that fostering productive engage-
ment within teams is important as it can improve learning
outcomes for students [12]. When students work in teams, they
can share ideas and work collaboratively to solve problems as
they learn from each other [13]. Similarly, research has identified
that negative teamwork behaviors can be detrimental to overall
team performance [14]. Thus, instructors need to know when
students are disengaged or engaged in negative behaviors as they
engage in teamwork interactions, so they can react and provide
assistance or guidance accordingly. However, researchers have
also identified the challenge of understanding when students are
engaged in productive or unproductive behaviors [15]. Thus, re-
search that characterizes productive and unproductive time dur-
ing teamwork sessions is a critical preliminary step to increase
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engagement in teamwork meetings and productive time [16].
Furthermore, by characterizing the ditferent forms of teamwork
engagement, tools, such as dashboards [17], [ 18], [19], as well as
mediating strategies [20], such as conflict resolution interven-
tions, may provide instructors with means to support learners
as they work in teams more productively. Such characterization
may also provide instructors with a means to assess teamwork
processes [21].

This smudy aims to characterize teamwork as productive and
unproductive engagement during teamwork sessions among un-
dergraduate students. Based on this characterization, we have
developed an artificial intelligence (Al)-based automatic de-
tection system. Our developed system can automatically de-
tect teamwork engagement by analyzing audio, video, and
text data streams from online teamwork sessions. Our ap-
proach uses the Russell diagram [22] that, in this context,
relates the team members” valence and alertness, allowing us to
characterize engagement. The Al-based system was validated
on hand-coded qualitative data and allowed us to character-
ize teamwork engagement across multiple semesters without
hand-coding.

The initial research question of our research is (RQ1) “Whar
are forms of productive and unproductive leamwork engagement
in the context of an undergraduate course?” Once characteri-
zations of productive and unproductive engagement have been
identified, the second goal of this study is to propose a computer-
based approach to characterize forms of engagement during
teamwork sessions. The second research question is (RQ2)
“What is the level of accuracy of a computer-based approach
for characterizing productive and unproductive teamwork en-
pagemeni?” Finally, our proposed computer-based approach
was applied to 85 additional teamwork sessions, allowing us
to pursue our third goal of describing the forms of engagement
enacted by such teams. Our third research question is (R(Q3)
“What are the different ways in which teams of undergradu-
ate students enacted productive and unproductive engagement
during teamwork sessions?"

Findings from the study include a detailed qualitative char-
acterization of four different forms of teamwork engagement:
1) productive engagement; 2) unproductive engagement; 3) dis-
engagement; and 4) idle. To determine if our Al-based automatic
detection system could identify the four different forms of
engagement, we used three streams of data from an interactive
session (audio, video, and text). Results showed that there were
> 91% prediction accuracy and <2 7% mismatches belween pre-
dictions for the three engagement detectors. Moreover, Pearson’s
1 values between the predictions of the three detectors were
= (L5844, On a scale of —1 (unproductive engagement) to 1
(productive engagement), the scores for all teams and teamwork
sessions encompassing the full dataset were (.94 =+ 0.04, sug-
gesting high productive engagement. In addition, teams tended
to mostly be in productive engagement before transitioning (o
disengagement (> 90.34% of the time) and to idle (> 93.69%
of the time). Before transitioning to productive engagement,
we noticed almost equal fractions of teams being in wdle and
disengagement.
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II. RELATED WORK

Research on teamwork has been thoroughly investigated in
the context of organizational psychology [23], as well as in
collaborative learning [24]. Such research suggests that team-
work is a complex construct combining static and dynamic
aspects of teams. For instance, a substantial body of work
has focused on how static characteristics of teams, such as
team members’ backgrounds and expertise, elements of team
formation, or developmental stages, among other features, affect
team performance. Relatively less empirical work has examined
the dynamic aspects of teams, such as those occurring during
working sessions [25]. Thus, the scope of the study is centered
on one of the dynamic aspects of teamwork, herein, teamwork
engagement in academic settings. Research focused on dynamic
aspects of teamwork has determined that productive teamwork
engagement requires team members 0 experience behavioral
synchronization processes during teamwork interactions [1],
[11]. Behavioral processes consist of members’ interdependent
actions that translate efforts to oulcomes via cognitive, verbal,
and behavioral activities for applying knowledge and skills,
organizing tasks toward achieving collective goals, and engaging
in planning, goal setting, and coordinating processes [26]. In the
context of higher education, these behavioral processes can be
characterized as ditferent forms of engagement. Engagement
refers to the academic investment, motivation, and commit-
ment students demonsirate within contexis associated with their
educational formation [27]. Academic engagement has been
linked to educational benefits, such as persistence, retention,
and achievement [28].

A. Characterizing Teamwork Engagement

Educational psychologists, organizational psychologists, and
education researchers have performed studies to characterize
teamwork engagement during meetings. Findings from most of
this body of work suggest that team engagement is a precursor of
team performance [29]. These findings are supported by the idea
that learning collaboratively can be more effective than learning
individually [30], [31]. Thus, characterizing and measuring team
engagement is an important area of research to support students
effectively while they learn with their peers. Equally important
is to understand and characterize unproductive engagement, as
it negatively influences group performance [32]. Understand-
ing when teamwork fails is equally critical [33], as negative
experiences and unproductive behaviors can be detrimental to
the learning process and cause unproductive conflict and social
anxiety, among other things, negative behaviors.

However, a substantial body of work primarily focuses on
generating quantitative team performance and engagement mea-
sures. One common metric is the number of artifacts or products
teams generate [29]. Another common metric has focused on
measures of tearn functioning [34], placing greater emphasis on
the interaction processes than the outcomes [29].

Researchers have also swilched methods for investigating
teamwork engagement by implementing mixed-methods ap-
proaches. For instance, a study by Frank et al. [16] combining
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surveys and qualitative observations characterized teamwork
engagement in terms of conversational turn-taking, the topic of
the discipline (e.g., architecture, engineering, etc.), the type of
interaction (cocreation, presentation, negotiation, etc.), and the
artifacts participants used or created during their meetings (e.g.,
sketches, schedules, models, etc.). Their findings indicated that
social interaction during project meetings, including relationship
building, is related to high levels of teamwork engagement. An
important finding included using or generating shared artifacts,
which supported collaboration,

B. Methods for Teamwork Engagement Detection

The use of computer-based methods to supplement quantita-
tive and qualitative analyses in the context of teamwork research
has recently been the focus of attention from researchers [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46].
[47]. [48]. A body of work has focused on teamwork interaction
via discussion forums. For instance, a recent study from Zheng
et al. [35] used computer-based methods to supplement quali-
tative and quantitative methods for analyzing discussion forum
data to identify when learners produce off-topic information and
variation in the level of engagement during online teamwork
sessions. Wu [36] used machine learning (ML) methods to
supplement qualitative methods to identify oft-topic messag-
ing. Another example is the study by Wong et al. [37], who
characterized social interactions and contextual topics utilizing
visualizations of online discussion forums to identify patterns
in the data.

Another body of work has focused on detecting engagement
from video data, either in a classroom or in an online environ-
ment. In the context of classroom environments, Xu et al. [38]
utilized the interactive, constructive, active, passive, disengage
(TCAPD) framework [49] and a simAM-YOLOvEn model to
detect student cognitive engagement by combining visual be-
haviors with cognitive states. Pabba and Kumar [39] introduced
a real-time system for monitoring siudent group engagement in
large classrooms, which analyzed facial expressions to recognize
academic affective states, such as boredom, focus, and frustra-
tion. Mehta et al. [40] proposed a 3-D DenseNet self-attention
neural network for the automatic detection of student engage-
ment in modern and traditional educational programs. Guhan
et al. [41] proposed the Multimodal Perception of Engagement
for Telehealth algorithm, a leaming-based approach leveraging
latent vectors corresponding to affective and cognitive features
to estimate patient engagement levels during telehealth sessions.
Zaletelj and KoZir [50] employed ML algorithms to predict
students” attention in classrooms using facial and body features,
including gaze point and body posture. Mo et al. [46] proposed a
multitask learning approach combining human pose estimation
and object detection to recognize student behavior automatically.
Hu et al. [47] constructed a noninvasive classroom learning en-
gagement database using videos and designed a bimodal method
based on ResNet30 and CoAtNet for recognizing learning en-
gagement.

In the context of online learning environments, Levordashka
et al. [43] developed a web-based application that uses real-time
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face tracking via a webcam Lo measure cognitive engagement in
individuals. At the same time, they watched streamed theater
content at home. Bosch and D'Mello [44] also used facial
features to automatically detect mind wandering, where atten-
tion drifts from the current task to unrelated thoughts. In the
laboratory, they analyzed face videos at six levels of granu-
larity, including head pose, facial textures, and facial action
units. Li et al. [45] employed supervised ML algorithms to
predict students’ cognitive engagement states based on their
facial behaviors while solving clinical reasoning problems in
an intelligent tutoring system. Bhardwaj et al. [48] employed
deep transfer learning to predict student engagement from facial
image data in the context of online courses.

Based on the previous work, it was identified that some of
these studies have only focused on characterizing engagement
using information extracted from discussion forum postings,
while other studies focused on video data have developed meth-
ods for detecting a limited number of emotion ranges, such as
only engagement and boredom. Moreover, some studies have
focused on live classrooms while ignoring online team-based
settings.

Based on findings from previous work, it was also identified
that the majority of these aforementioned studies utilized ML
and/or deep learning (DL) technigues for engagement detection,
suggesting the high effectiveness of such methods. However,
these studies mostly rely on a single modality of data (mainly
facial images or facial expressions) for engagement detection.
In a complex classroom environment (both online and otfline),
a student’s face may not always be visible due to obstructions
and/or video stream latency [47]. Moreover, video observation
and face analysis usually require high-quality images and apply
to single-person observations [50]. Therefore, focusing on only
facial expression data limits the usability or reduces the accuracy
and available complexity of engagement detection [50] in the
classroom setting. Other modalities of data, such as text [51],
[52], [53], [54], [55] and audio [56], [57], [58], have shown
promise in sentiment analysis and emotion recognition. Conse-
quently, there is a growing need to investigate student engage-
ment using multiple modes (such as text transcriptions and au-
dio conversations). Thus, other DL-based methods, combining
video, text, and audio data, are needed to identify productive
and unproductive engagement during live teamwork working
sessions. This is the primary focus of our study.

C. DL Algorithms for Feature Extraction

Researchers have extensively utilized DL technigues to ex-
tract features from video, audio, and textual data [51], [55]. [536].
[59]. [60], [61], [62], [63]. [64]. [65], [66], [67], [68], [69]. [70].
For instance, various DL models and algorithms have been used
to analyze spatiotemporal features from video and motion data,
such as 3-D convolutional neural networks (CNNs) [59], [60],
convolutional long short-term memory networks [61], atten-
tional convolutional network [62], multi-modal residual percep-
tron network (MRPN) [63]. fully connected convolutional neural
networks (FC-CINNs) [64], and residual neural networks [65].
For textual data streams, FastText [66], gate recurrent unit



maodel [56], graph convolutional networks [51], EmoTxt [67],
Emotion-Sensitive TextRank [55], MEPN [63], and CNNs [68]
have been utilized for feature extraction and label prediction.
Finally, researchers have used DenseNet201 [69], bidirectional
long short-term memory model [56], and OpenSMILE [T0] for
feature extraction and label prediction from audio data.

Among these studies, the approach taken by Zhou et al. [64] of
using FC-CNN to develop a detector that provided a probability
indicating the likelihood of an emotion being associated with
one of the four quadrants in the Russell diagram from facial
expressions informs our approach. In addition, DenseNet-201
has been extensively used for audio classification applications
[71], [72], [73], [74], [75]. In a recent systematic literature
review on DL-based audio classification technigues [74], the
authors found that an approach based on DenseNets achieved
the best performance [75]. Finally, the fastext text classifier
represents sentences as a bag of words and trains a simple linear
classifier with rank constraints. To decrease the computational
complexity and improve the real-time applicability, fastfexr
uses a hierarchical softmax [76] based on the Huffman coding
tree [77]. This allows the fastfext text classifier to classify textual
data very fast with minimal reduction in accuracy. As a result,
we chose these three approaches for developing our DL-based
engagement detectors.

IIl. CONCEPTUAL AND METHODOLOGICAL FRAMEWORKS

This study used a multimethod approach to pursue the three
defined research questions, and details of the methods are pre-
sented in the following section. The combination of qualita-
tive, quantitative, and computational approaches was deemed
adequate as integrative research has concluded that combining
multiple methods can dramatically increase the accuracy and
quality of any research’s analysis and conclusions [T8]. Specif-
ically, to answer our first research question, we implemented a
qualitative approach, whose findings were then quantized to then
implement computational approaches to respond to the second
and third research questions.

For the qualitative component of the study, we implemented
content analysis for analyzing the data as it is a structured yet
flexible approach [79]. Content analysis is appropriate when the
aim of the research is to interpret meaning from the content of the
data, thus uncovering characteristics inherent to the phenomenon
under investigation, in this case, teamwork engagement. Al-
though research in cognitive science has identified different
levels of student engagement during learning [49], recent em-
pirical work in the context of classrooms and within online team
interactions [38], [80], [81] has also identified disengagement
and unproductive engagement behaviors. Thus, we needed a
concepiual framework that guided us to better uncover and
characterize productive and unproductive forms of engagement
or disengagement. For this, we used the Russell diagram (see
Fig. 1) to guide our exploration. The Russell diagram [22] is
often used to map emotional states into a 2-I) plane according
to two principal dimensions: 1) a dimension related to valence
following a negative + positive continuum on the r-axis and
2) a dimension related to alertness following a deactivated «+
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Fig. 1. Russell diagram maps an engagement state (o a point in a 2-D plane
according to activation and type, Three participants are displayed, and the
changes in their engagement state are visualized as trajectories over time from
£y b -

activated continuum on the y-axis (see Fig. 1). Various emotions
can be situated in the 2-D plane due to a lingar combination of
the two variables [82]. Each emotion can then be mapped onto
the outer edge of the Russell diagram, e.g., satisfaction (see the
lower right quadrant in Fig. 1) can be classified as positive and
deactivated, whereas frustration (upper left quadrant) as negative
and activated.

In the comtext of technology-enhanced learning environments,
the Russell diagram has been used to detect how leamers” emo-
tions evolve during learning while interacting with technology
and to provide feedback to improve the leaming experience [83].
Applications have also been used in intelligent tutoring systems,
virtual agents [84], affective computing, and Al in education to
elicit positive emotions [85].

Research on emotions has been associated with student en-
gagement. For instance, positive emotions during the learning
process have been directly linked to student engagement [86],
[87]. Given that 1) research on emotions has focused on activated
and deactivated, as well as positive and negalive aspects of
emotional states and 2) recent empirical research on engagement
has gone beyond productive forms of engapement [49] to also
characterize unproductive forms of engagement [38], [80], we
deemed necessary 10 contextualize our research in a broader
view of teamwork engagement. Specifically, it was deemed nec-
essary to characterize engagement considering different levels
of being activated or deactivated, aligning with the activation di-
mension of the Russell diagram, as well as positive and negative
forms of productive and unproductive engagement, aligning with
the valence dimension of the Russell diagram. Thus, this study
used Russell diagram dimensions of valence and activation as
guidance to characterize different forms of student engagement
and disengagement.

Once we characterized different forms of productive and
unproductive teamwork engagement, we used our findings to
develop a system that uses DL-based automatic engagement
classification. Specifically, we detected the engagement state
Sa of a participant 4 as the two extreme values on both
axes 5,4 = {[negative, deactivated], [negative, activated)],
[positive, activated)], [positive, deactivated) }. This quantized
the 2-D plane of Russell diagram into four values corresponding
to each quadrant, which was deemed adequate for this study.
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For this, we used DL algorithms (o automatically extract the
engagement state of the team from three data streams: audio
{voice), video (facial expression), and text (video transcripts).
Once the system was developed and validated, we used it to
expand our analysis of teamwork engagement 1o a larger sample
of data, thus allowing us to identify patterns of interaction.

IV. METHODS

A. Contexr and Participants

The context of the study was a second-year systems analysis
and design course offered at a public university in the USA.
The course was required for all undergraduate students pursu-
ing computer and information technology majors. The course
aimed to introduce students to the practice of documenting
and modeling requirements of a system to be developed and
then constructing and modeling and corresponding functional
prototypes of the proposed system. These skills were practiced
through a team-based semester-long project, coordinated fol-
lowing principles of cooperative learning [88], [89], [90]. There
are five principles, which were implemented as follows.

1) The principle of individual and group accountability was
achieved by having a portion of the semester-long project
be submitted and graded individually.

2) The principle of interpersonal and small group skills was
achieved by intentionally discussing and reflecting on
effective teamwork skills and facilitating conflict manage-
ment and conflict resolution training.

3) The principle of face-to-face promolive interaction was
tacilitated by devoting lecture time for teams to work on
their projects.

4) The principle of positive interdependence was established
by setting clear goals for each project milestone and as-
signing roles.

5) Finally, the principle of group processing was facilitated
by having students reflect on their team processes and sub-
mit these team-based reflections along with each project
milestone submission.

The project was organized into four major milestones for
preparing the system documentation. The prototype was im-
plemented in five iterations called sprints. The course was de-
livered twice a week (Tuesday and Thursday), and each class
period lasted 75 min. The Tuesday lecture was often devoted
to introducing new concepts and skills along with practice
activities. In contrast, the Thursday lecture was often devoted
to teamwork, where students applied the learned skills to their
semester-long projects. The course has a regular enrollment
of 120150 students every semester. According to institutional
data, in every given semesier, the course had a population of
r=24% female students and ~=76% male students. Students were
organized into teams of four or five students to work on the
semester-long project.

B. Procedures and Dara Collection Method

The Microsoft Teams platform facilitated the teamwork dy-
namics during and outside lecture time. Each team was provided
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with a private channel to interact and share files in the same
location. On some occasions, fully online teamwork sessions
were scheduled throughout the semester. Specifically, five online
leamwork sessions were scheduled in weeks 3,4, 7, 8, and 10 0of
the semester. The purpose of the first session was for students to
get used to the Microsoft Teams platform. In that first session,
students joined their respective team channels, met their team
members, and discussed and signed their team contracts. The
team contracts provided students with guidelines on engaging
in coordination processes (e.g., internal deadlines, meeting times
outside of class, preferred methods of communication, and
preliminary role assignments). The online teamwork sessions
were scheduled right before a major project deadline. Also, the
last two weeks of the semester were facilitated entirely online,
as students would mainly work on completing their final project
submissions during that time.

Students were required to record two of the five online team-
work sessions, which were used as the data collection method for
this study. Specifically, students were asked to record the second
teamwork session (week 4), where they worked on preparing
the submission of the first project milestone. Students were also
asked to record the fifth online teamwork session (week 10),
where they worked on the third project milestone. Each of the
recordings had an average duration of 40 min. For these two
sessions, students collaborated online and self-recorded their
teamwork sessions using the features provided by the collab-
oration platform. Students were then asked to download and
submil the video recordings to the course instructor via a secure
file-sharing system. Each video recording consisted of screen
captures of each team member’s camera from the Microsoft
Teams platform (focused on their facial expressions) as well
as audio of the conversation between team members. All the
video files were stored in a secure cloud content management
and file-sharing system, with only the investigators accessing
the files. The Institutional Review Board deemed the study
exempted with the protocol number IRB-2021-1181. The data
were collected in the Fall of 2021 and 2022 and the Spring
of 2022, The total video recordings consisted of 144 files. The
recordings had a duration between 15 and Y0 min long. The total
number of teamwork sessions used for hand-coding the data was
39, the total number used for training the Al-based automatic
detection algorithm was 30 (out of the original 59), and the final
total number of additional teamwork sessions analyzed was 85.

C. Data Analysis Methods

The data analysis was approached as three separate studies
(see Fig. 2), each based on the previous study’s findings. Study
1 was a qualitative study in which human raters applied content
analysis to characterize forms of teamwork engagement from
the video recordings. Study | approached (RQI1) “What are
Jorms of productive and wunproductive teamwork engagement
in the context of an undergraduate course?” Then, Study 2
utilized the findings from Study 1 to develop and validate a
collection of computer-based algorithms that utilized video, text,
and audio data to characterize students’ levels of engagement.
Study 2 approached (RQ2) “What is the level of accuracy of
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{15 to 75 min)
Study 1 {RQ1} Study 2 [RO2) Study 3 (RQ3)
Fig. 2. Ourapproach is asequence of three studies, each corresponding (o one

research question.

a computer-based approach for characterizing productive and
unproductive teamwork engagement 7" Finally, Study 3 aimed
at identifying overall patterns of students’ enacted levels of
engagement on the entire dataset of 144 files. Study 3 ap-
proached (RQ3) “What are the different ways in which feams
aof undergraduare students enacted productive and unproductive
engagement during feamwork sessions?” The specifics of how
the data analysis was approached and the corresponding findings
are detailed in the following sections.

1) Qualitative Human-Coded Data Analysis Method (RO ):
Study 1 (see Fig. 2) approached the first research guestion
regarding the characterization of productive and unproduc-
tive teamwork engagement in the context of an undergraduate
course. A gualitative study was performed to respond to this
research question.

The analysis initiated following a content analysis [79] to
answer the first research question, RQ1, regarding the char-
acterization of engagement productivity. For this, the initial
qualitative analysis was performed with a subsample of 59 video
recordings from the Fall 2021 and the Spring 2022 cohoris
(15-75 min). Students’ names were omitted, and each team
member was identified with a number. The analysis consisted of
a cyclical three-step procedure of chunking the data, annotating
the data, and categorizing the data. Chunking the data involved
defining the unit of analysis. Thus, the analysis was performed
at the student level and in 2-min intervals. Annotating the data
involved the generation of a code with the identified level of
engagement and a qualitative description of the code. Finally,
when categorizing the data, the codes were distributed across
the four quadrants of the Russell diagram.

Since some of the codes and categorizations of the data were
debatable, the initial codebook was developed and validated
among three raters, all with expertise in qualitative research to
verify the trustworthiness of the codebook. For this, the first
step of the qualitative analysis was ensured by involving the
three raters in coding 20% of the data together. In this stage,
discrepancies in the coding process were discussed and agreed
upon with specific arguments and justifications. For example,
the code “ignoring others’ comments or suggestions” could have
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been categorized as disengaged or idle as a given team member
was unresponsive. However, the categorization was decided as
“unproductive engagement™ since the resulting action within
that same 2-min interval was other team members needing a
response in order to continue working. Similarly, if a student’s
behavior was coded as “being late for the group meeting,” it
might still contribute to some “productive engagement™ later in
the meeting; however, in that 2-min interval, other team members
had to wait for that team member in order to initiate a task, thus
resulting in unproductive behavior,

The raters underwent three anal ysis cycles to ensure inter-rater
reliability was strong for the first 20% of the data. In the first
round, all raters analyzed five videos individually, after which
they came together to discuss similarities, differences, and areas
of improvement for the coded data. In the second round of
analysis, the raters jointly recoded the same data to ensure
that everyone agreed with the comprehension of the coding
process. In the third and final round of analysis, the raters
coded the data individually again and arrived at an inter-rater
reliability score of 88%. The other 80% left of the data was
coded single-handedly by two raters. Once the initial codebook
was validated, two trained raters individually coded an additional
set of 29 videos. The coding of this second set of videos ensured
the trustworthiness of our approach.

The coding process was initiated by watching each video
and identifying codes of behaviors describing students” actions.
Examples of coded actions included behaviors directly related to
learning, such as discussing or brainstorming ideas, methods, or
approaches to solving a problem, asking questions in one’s own
words, taking notes, verbally comparing information discussed
in the group, and drawing analogies from learning materials,
Other types of actions involved teamwork processes, such as
communication of information like discussing deadlines, coor-
dination processes involving task planning and division of labor,
leadership behaviors, socialization processes, giving or secking
teedback, and helping or volunteering to do work, among others.
We also categorized behaviors that involved passive actions such
as listening or negative actions such as disruptive behavior such
as overpowering conversations, yelling at or ignoring others, not
paying attention, or being distracted with other tasks. Students’
initial actions and behaviors were then categorized into four ma-
jor forms of engagement: productive engagement, unproductive
engagement, disengagement, and idle.

Study 2 (see Fig. 2) approached the study’s second re-
search question aimed at identifying the level of accuracy of
a computer-based approach for characterizing productive and
unproductive teamwork engagement. For this, a set of algorithms
was implemented and used to detect tearmwork engagement. The
findings from Study 1 were used to guide and validate Study 2.

2) DL-Based Data Analysis Method (RQ2): The input to the
DL-based data analysis was the video, and the output was the set
of three emotional states of the team extracted from the video
stream 5V, the audio stream 59, and the text stream S7 (see
Fig. 3).

The datasets for training and testing the video, audio, and text
stream engagement detectors (described below) were extracted
from a subsample of 30 video recordings out of the 59 videos
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Fig.3. Input to the DL-based data analysis was the video, and the output was
the set of three emotional states of the team extracted from the video SV,
audio 54, and text 57 streams.
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Fig. 4.  Output of the DL emotion detector from video and its mapping o
different quadrants of Russell diagram.

hand-coded in Study 1 {only the video recordings from the Fall
2021 cohort were used). In Study 1, students in each team in
each video were classified into four different forms of engage-
ment every 2-min interval. We extended this into a collective
classification scheme for the whole team by considering the
engagement category with the highest number of students in
a 2-min interval as the category for the whole team. Using this
classification scheme, we labeled the datasets into four classes,
namely, productive engagement, unproductive engagement, idle,
and disengagement. In a tie between multiple classes, the team
classification was considered to be newtral. We omitted them
from the datasets as only 0.44% of the total number of video
frames were in the newtral category.

The video stream engagement detector uses the work of Zhou
et al. [64], a series of FC-CNNs trained on 853624 manually
annotated images from several databases [see Fig. T(a)]. To
increase the performance, we created our own dataset by ex-
tracting faces from each data frame from all video files using
the Face Recognition [91] library and labeling them according
to the hand-coded data [see Fig. 7(a)]. The dataset consisted of all
detected faces in 30 video recordings from the Fall 2021 cohort.
We considered all detected faces in a classified 2-min interval to
belong to the same class. The implementation works in real time
on a desktop computer, and an example of the classification is
shown in Fig. 4.

For the rext stream engagement detector, we first transcribed
all 30 videos using whisper [92] by OpenAl to generate subtitle
files for each video. Using the subtitle files, we created a text
dataset containing a sentence per ling and the labels based on
hand-coded data [see Fig. 7(b)], similar to the video dataset. This
dataset consisted of all transcribed sentences extracted from the
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Fig. 5. Output of the DL emotion detector from transcript text and its mapping
to different quadrants of Russell diagram.

30 videos from the Fall 2021 cohort. As there was a single
stream of transcribed text for a single video, we considered
all sentences in a classified 2-min interval to belong to the
same class. Finally, we trained a supervised text classifier using
the fastrext library [66] on our custom dataset with stochastic
gradient descent and a linearly decaying leaming rate. Similar
to the video and audio stream engagement detector, this imple-
mentation works in real time on a desktop computer (see Fig. 5).

We developed the audio stream engagement detector based on
the DenseNet-201 architecture [69], which is a 201-layer deep
CNN with all layers connected directly with each other to ensure
maximum information flow between layers in the network. First,
we used moviepy [93] to extract audio files from the videos
and pydub [94] to denoise and isolate the sentence utlerances
from the audio files (based on the timestamps on the subtitle
files) [see Fig. Tic)]. Then, we used librosa [95] to extract Mel
spectrogram of each sentence utterance [see Fig. 7(c)]. We used
these Mel spectrogram images to creale an audio dataset with
labels based on the hand-coded data from Study 1 [see Fig. 7{c)].
This dataset consisted of Mel spectrogram images of all sentence
utterances from all 30 videos from the Fall 2021 cohort. The
classification scheme for the audio dataset was the same as
the text dataset. Finally, we trained a pretrained DenseNet-201
network with two additional fully connected (FC) layers on our
custom audio dataset to output labels denoting the engagement
levels on Russell diagram in real time (see Fig. 6).

3) Training and Validation of DL Models: As the datasets for
the video stream, the audio streamn, and the text stream engage-
ment detectors were unbalanced ( >-90%) samples in the category
of productive engagement), we used different data augmentation
technigques to balance the datasets before training (see Fig. 7).
For the video dataset, we used the imgaug library [96] 1o angment
the face images, resulting in 3551666 samples. In addition,
we used librosa [95], pydub [94], and colorednoise [97], [98]
libraries to augment audio files by speeding them up, slowing
them down, modifying the pitch, and adding various noise before
extracting Mel spectrogram from them. In total, the audio dataset
contained 17 157 samples. Similarly, for augmenting the sen-
lence samples in the text dataset, we used the fextaugment [99]
and the alpaug [100] libraries, resulting in 17 676 samples. Then,
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Fig, 6.  Output of the DL emotion detector from audio and its mapping to
different quadrants of Russell diagram.
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Fig. 7. Ouiline of the preprocessing steps, methodology, and data used for
training (@) the video stream, ib) the text stream, and (c) the audio stream
engagement detactor.

we trained the three engagement detectors on their respective
datasets with an 80:20 split (80% of the data used for training
and the rest for testing). The training phase was carried out once
toreach engagement detector. We ran the trained models through
the testing phase 50 for the video stream, 100 for the audio
streamn, and 100 for engagement detectors, respectively. The
variation of the results was, on average, under 15%.

After the training and testing phase, we used the video stream,
the audio stream, and the text stream engagement detectors (o
develop software using Python that parsed through a video file
trame by frame, predicted the team engagement from the three
streams of data, and displayed them on Russell diagram in real
time (see Fig. 8). As there were multiple streams of video data
tor a single frame (i.e., multiple team members), the location of
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Fig. 8.
rruiu from video, audio, and text. The detected engagements are displayed on
Russall diagram in real time for each frame of data. Blue, yellow, and green dots
denote the predicted engagements from video, audio, and text streams, respec-
tively. The red square denotes the team engagement based on the hand-coded
data. This figure denodes the predicted engagement for a 2-s validity interval.

Engagement detector software incorporates the detection of engage-

the team engagement on the Russell diagram (the blue dot in
Fig. 8) was calculated by averaging the predicted engagement
categories of all team members detected in that particular frame.
Inspection of the dataset revealed that audio clips and textual
transcription data consisted of only 36% of the total number
of video frames. Theretfore, we employed the use of validity
intervals for the audio stream and the textual interaction stream
engagement detectors in the developed software. This process
ensured that the engagement class predicted from a single audio
clip or asingle string of textual transcription data remained in the
memory for a specific interval, i.e., the validity interval. We used
validity intervals from 0 to 10 s with 1-s incremenits. As 99.46%
of the total number of video frames from the dataset contained
al least one recognizable face, we did not use any validity
intervals for the video stream engagement detector. We used the
developed software to process all 30 videos from the Fall 2021
cohorts and recorded the prediction accuracies by comparing
the predictions to the actual team engagement based on the
hand-coded data (i.e., the red square in Fig. 8). We determined
the most suitable validity range based on prediction accuracies
and mismatches between the three engagement detectors,
Study 3 approached the third research question aimed at
identifying the different ways in which teams of undergradu-
ate students enacted productive and unproductive engagement
during teamwork sessions. For this, the software developed and
validated in Study 2 was applied to the overall dataset to char-
acterize the overall patterns of students’ levels of engagement.
4) N-GAGE Software-Based Analysis (RQ3); We modified
the software developed in Study 2 to identify levels and patterns
of team engagement on videos that do not have hand-coded
classification by removing the red square denoting team en-
gagement based on hand-coded data, resulting in the N-GAGE
i Processing) software (see Fig. 9). Furthermore, we added an
“engagement score” bar that displays the aggregated team en-
gagement score for each frame of data based on the predictions
of the three engagement detectors (see Fig. 9). This software
processed a user-selected video frame by trame, displayed the
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Fig. 9. N-GAGE (Processing) software incorporates the detection of engage-
ment from three separate data sireams (video, sudio, and text). The detected
engagements are displayed on the Russell diagram in real time for each frame of
data. Blue, yellow, and green dots denote the predicted engagements from video,
andio, and text streams, respectively. The “engagement score™ bar denotes the
level of team engagement for each frame of the video based on the predictions
of the three engagement detectors, with scores of 1, 0.5, —0.5, and —1 for
praductive engagement, idle, disengagement, and unproductive engagement,
respectively.

results in real time, and stored the results in a data file. In
addition, to assist with identifying patterns of engagement, this
software also incorporated the use of validity intervals for the
audio stream and the textual interaction stream engagement
detectors, similar to Study 2.

For developing the “engagement score™ bar, we first assigned
scores for the four different engagement categories as follows:
productive engagement = 1, idle = 0.5, disengagement = —0.5,
and unproductive engagement = — 1. Then, we assigned weights
to the predictions of the video stream, the audio stream, and
the text stream engagement detectors. Finally, we calculated the
engagement score of a single frame of data using the following:

(1

where s¢;, se4,, 8e7,, and acy, are the team engagement score,
the score from audio prediction, the score from text prediction,
and the score from video prediction for the ith frame of data,
respectively; w,, wr, and wy- are the weights assigned to the
audio stream, the text stream, and the video stream predictions,
respectively.

As the three engagement detectors demonstrated similar lev-
els of performance from Study 2, we assigned them equal
weights (i.e., wy = wr = wy = 0.33). Moreover, after pro-
cessing all frames of a video file, we calculated the normalized
team engagement (NTE) score for the team using

B0y = 804, ® W4 T 8o X W + 80y X Uy

Z;rg] Sy

Fia

where sepgn denotes the “NTE score,” sy denotes the team
engagement score for the ith frame of data, and Fl 18 the total
number of scoreable frames (frames containing data from at least
one of the three data streams) in the video file.

In addition to the N-GAGE (Processing) software, we also
developed software to investigate the processed videos and
identify the different ways in which teams of undergraduate

(2)

ECnorm —

Fig. 10.
smoothing windows of variable sizes. The smoothing is carried out using the
moving average method with a nser-defined window size, The team engagement
from three different data streams is displayed on the Russell diagram for each
data frame. Blue, yellow, and green dots denote the predicted engagements from
video, audio, and text streams, respectively. The red square denotes the actual
team engagement hased on the hand-coded data,

Postprocessing  software, with video-seeking functionality and

students enacted productive and unproductive engagement dur-
ing teamwork sessions, i.e., the N-GAGE (Postprocessing ) soft-
ware (see Fig. 10). This software contains video-seeking func-
tionality (using the “Frames” slider in Fig. 10) and allows the
user to display results for different validity intervals (0-10 s
range) (using the “Validity™ slider in Fig. 10). In addition, it
also implements smoothing of the change of predicted classes
from the three engagement detectors using the moving average
method with user-defined window sizes (using the “Smooth™
slider in Fig. 10). The moving averages are calculated as follows:

itk 2 k

vidy, = . Z ':'1?"&{#:_1 1 ['i = §:| (3)
j=i-kf2
itk 2 1

vidy, = Y (vid,,), [3 > E] 4
J=i—k,2

where k is the size of the windows, vid,, and vid,, are, respec-
tively, the x-coordinate and the y-coordinate of the predicted
engagement from the video stream in the Russell diagram (i.e.,
the blue dot in Fig. 10). We used equations similar to (3) and
(4) to smooth the predictions from the audio stream and the text
stream engagement detectors.

We used the N-GAGE (Processing) software on 85 videos
from the Spring 2022 and Fall 2022 cohorts and recorded the
NTE scores, level of mismatches between the three engagement
detectors, and patterns of changes in engagement states,

V. REsULTS

The findings of the three studies are presented in the following
sections, each responding to each of the research questions.

A. Results Characterizing Productive and Unproductive
Teamwork Engagement (RQ1)

Four different forms of engagement were identified during the
qualitative process, which were mapped to the Russell diagram,
as shown in Fig. 11.



Fig. 11, Four different forms of engagement that resulted from Study 1 and
their mapping to the Russell diagram,

TABLE L
PrECISION, RECALL, AND FI-SCORES OF THE AUDIO STREAM, THE TEXT
STREAM, AND THE VIDECQ STREAM ENGAGEMENT DETECTORS DURING THE
TRAINTNG PHASE

Accoracy | Precsion Fl-score
Text [(EEE] 0555 0,546 0550
| Audio 0,965 1.565 0.9R5 0,965
Viden (L9658 (I n.981 0,90k

1} Productive engagement: It consisted of activated and pos-
itive behaviors where students: a) worked together in cre-
ating new knowledge such as brainstorming or generating
ideas; b) worked individually to produce an additional
externalized output or idea like creating a diagram; and c)
performed a manipulation of an artifact like taking notes
or received information without overtly acting but were
listening or being attentive. This form of engagement also
consisted of communication and coordination processes
such as planning, helping or reassuring group members,
socializing, deciding roles and tasks, giving or seeking
feedback, volunteering or helping each other, and deciding
on meeting times.

2) Unproductive engagement: Tt consisted of activated or
negative disruptive behaviors such as overpowering con-
versations, being late for the group meeting, yelling at
others, ignoring others’ comments or suggestions, and
demonstrating condescending behavior.

3) Disengagement: It consisted of deactivated and negative
behaviors such as not being on task or not paying attention.

4) Idle: Tt consisted of positive deactivated behaviors such as
being passive and actively listening simultaneously.

B. Results Evaluating a Computer-Based Approach for
Characterizing Engagement (RQ2)

From the training phase, the accuracies were found to be
96.81%, 96.47%, and 94.27% for the video stream, the audio
stream, and the text stream engagement detectors, respectively.
In addition, the precision, recall, and Fi-scores for the three
streams are shown in Table 1. We ran the testing phase 100
for the video stream, 1003 the andio stream, and 100 for the
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TABLE T
PRECISION, RECALL, AND F/-SCORES OF THE AUDI) STREAM, THE TEXT
STREAM, AND THE VIDED STREAM ENGAGEMENT DETECTORS DURING THE
TeESTING PHASES (MEAN £ STANDARD DEVIATION), RAN FOR 100, 100, aND
50 TIMES, RESPECTIVELY

Accuracy Frecidon Tecall Fl-store
Text 0,931 =+ 0,003 0,930 + 0,003 0918 =+ 03 0,924 + 003
Audno | DA L 05 | ORS00 | B2 T ome | o I
Video | 0911 + 00002 | 073 + 0.00% [ 05907 + (0idHl 0,840 + 0002
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Fig. 12. (a) Prediction accuracy (%) of the audio, text, and video stream
engagement detectors (top). (b) Percentage mismatch (%) between them for
different validity intervals (0-10 s),. averaged across the 30 videos from the Fall
2021 cohort.

TABLE ITI
PREDICTION ACCURACY {MEAN + STANDARD DEVIATION) OF THE ALTHO,
TEXT, AND VIDED STREAM ENGAGEMENT DETECTORS, AVERAGED ACROSS
AL 30 Vipeos Froat THE Fall 2021 CoHoRT

Prediction accuracy Mean (%) | Sid Dev
Text G630 EXT
Audio u7.al 4.12
" Video G132 9.25

text stream engagement detectors and found minimal variance
(under 1% (see Table II).

As (-5 validity interval showed the highest prediction accu-
racy for all three engagement detectors and the lowest percent-
age mismaiches between all three engagement detectors (see
Fig. 12), we used this for the remaining analysis.

Evaluation of the engagement detector software showed high
prediction accuracies for all three engagement detectors (see
Table III). In addition, the Pearson’s r values between the
predictions of video and audio, video and text, and text and
audio stream engagement delectors were 0844, 0.946, and
0.956, respectively. Out of all videos from the Fall 2021 cohort,
56.67%, 93.33%, and 20.00% of videos showed greater than
90% prediction accuracy for the video stream, the audio stream,
and the text stream engagement detectors, respectively [see
Fig. 13(a)]. Similarly, 80.00%, 93.33%, and 76.67% of videos
demonstrated less than 10% mismatches between video and
text, text and audio, and video and audio, respectively [see
Fig. 13(b)]. Moreover, the comparison of the trend of categorized
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Fig. 13.  {a) Prediction accuracy (%) trends of the audio, text, and video stream
engagement detectors. (b) Percentage mismatch (%) trends between them across
the 30 videos from the Fall 2021 cohort, ordered from low 1o high. The shaded
areas denote the standard deviation, calculated across the 30 videos,

TABLE 1¥
COMPARISON OF THE TREND OF CATEGORIZED VIDEQ FRAMES BETWEEN THE
HAND-CODED DATA AND THE PREDICTIONS FROM THE VIDEQ STREAM
ENGAGEMENT DETECTOR

Hand-coded DL-hased

_ Coant (3] Count %] |
Frames with face EECT N T EE R

Tositive TAL144 | 0911 | 12716 | UAG6 |
Megative 4901 101y w74 012
Active 670 064 | 905 | 721008 | Si69
Tnactive CREED [EE] Boal T.09
Productive en G701 084 | 9085 | 721609 | 5769
Unproductive engngement i (] 1] (]
Tille BI050 | 826 7167 0.97
Diisengagement 4 901 {).66 [RE] 0,12

TABLE ¥
COMPARISON OF THE TREND OF CATEGORIZED YIDED FRAMES BETWEEN THE
Hanp-CopED DATA AND THE PREDICTIONS FROM THE AUDIO STREAM
ENGAGEMENT DETECTOR

Hand-coded Dl.-based
Comut | [%] | Count | %] |
Frames with audio 360,275 | 100 | 360275 | 100
Tuositive AT HEE | OBa0 | a6 | D6dT |
Megative 1476 | 309 | 1Z701 | 343
Achive 320,241 | 9139 | 334,732 | 9iE1
Toactive T0HIT | B30 | 25.54% | 7
Productive en F20.241 | 9139 | 333700 | Sihl
Unproductive engagement ] L] 1020 7120
Tdle 8441 | 512 | 13861 | 485
D'u:nzgﬂlml 11476 319 11,682 324

video frames between the hand-coded data and the predictions
demonstrated high similarity for all three engagement detectors
(see Tables IV-VI).
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TABLE VI
COMPARISON OF THE TREND OF CATEGORIZED VIDED FRAMES BETWEEN THE
HAND-CODED DATA AND THE PREDICTIONS FROM THE TEXT STREAM

Hand-coded DL -based
Tonnl | [%] | Coumi | (%] |
Frames with transcripls | 360,275 | 100 | 360275 | 100
Pusilive 347,682 | 96,50 | 349052 | ®hOT
Megative 1416 | 19 E L
Active TI0.241 | 9139 | 137006 | G560 |
Tnactive WHT | Ba0 | 22330 | 60
|~ Produciive engagement T 041 | 0130 | 330098 | DIED |
Unproductive engapement [1] 0,00 0 LX)
Tl 18,441 512 11,316 EAL]
Disengagement TTAT6 | 706 | Thoey | 306 |
T Mormalized cngagement scores

=
=

=
=

Engagement seore (normalized)

o7
Video index
06
Fig. 14, Team engagement scores {normalized with respect to the total number

of frames in each video) for 85 videos from the Spring 2022 and Fall 2022
cohoris (the black line), ordered from low o high. The corresponding NTE
soores computed from the predictions of the audio stream, the text stream, and
the video siream engagement detectors for the videos are also shown.

TABLE VI
LEVEL OF MISMATCHES BETWEEN THE PREDICTIONS FROM VIDED, AUTHO,
AND TEXT STREAMS FOR ALL 85 VIDEOS FROM THE SPRING 2022 AND FALL

2022 COHORTS

Fraction of videos with mismatches ( Ge) |

[ Wimalch level (%) | Video—Tesl | Texi—Audio | Video—Audi |
=0 and = 10 LI TR L]
=10 and = 200 SEAL B 765
=3 and < 30 EE a8.24 706
=40 and = 30 131 ERE] 735
=50 and - 60 00 2.35 235
] T.H .00 [1XE1]

C. Resulis Identifving the Patterns of Student Engagement
Duiring Teamwork Sessions (RQ3)

On a scale of —1 (uwnproductive engagement) to 1 (pro-
ductive engagement), the mean NTE scores across all teams
were .94 + 0.04, suggesting high productive engagement (see
Fig. 14). In addition, the mean NTE scores computed from the
three data streams separately were 0.98 £ 0,04, 0.91 £+ 0.05,
and (.88 + 0.05 for video, audio, and text streams, respectively
(see Fig. 14). Moreover, 90.59%, 65.88%, and 88.24% of teams
demonstrated less than 20% mismatches between the predictions
from video and text, text and audio, and video and audio streams,
respectively (see Table VII).

We identified some consistent patterns regarding changes
in engagement states from frame to frame for all teams and
for all three engagement detectors. For example, teams tended



to be mostly in productive engagement before transitioning (o
disengagement (> 90.34% of the time) and idle (> 93.60% of
the time). However, we also identified some irregular patterns.
For instance, although teams tended to transition to productive
engagement mostly from idle (90.79% of the time) for the
video stream, the patterns were slightly different for the audio
(transitioned to productive engagement 51.15% and 48.81% of
the time from idle and disengagement, respectively) and the
text streams (transitioned to productive engagement 37.38% and
62.62% of the time from idfe and disengagement, respectively).

VI DNISCUSSION AND IMPLICATIONS

This study approached three research questions aimed at
identifying the level of engagement students enacted as members
of teams as they collaborated through online teamwork sessions.
One of the primary contributions of the study is that it provided
qualitative characterizations of different forms of teamwork
engagement, including productive engagement, unproductive
engagement, disengagement, and idle. This is an important
contribution in itself, as a substantial body of research informing
our understanding of teamwork performance has focused on
investigating static characteristics of teams, such as team mem-
bers” backgrounds and expertise, elements of team formation, or
developmental stages [25]. Instead, our study examined dynamic
aspects of teams, such as those occurring during working ses-
sions. A second contribution of the study focused on identifying
overall patterns of engagement during online teamwork sessions
in the context of an undergraduate course. Overall, it was ob-
served that students enacted forms of productive engagement,
including instances of students actively contributing to the com-
pletion of a task where they worked together in brainstorming
or generating ideas, producing additional externalized outputs,
manipulating an artifact like taking notes or receiving informa-
tion without overtly performing an action but were listening or
being attentive. Productive engagement also consisted of team
members communicating and coordinating processes such as
planning, helping, or reassuring group members, socializing,
deciding roles and tasks, giving or seeking feedback, volun-
teering or helping each other, and deciding on meeting times.
These behaviors are significant as they represent interdependent
teamn processes and dynamics that helped teams achieve their
collective goals [101], therefore improving teams’ ability to
function effectively [102]. The different forms of productive
engagement combined aspects of team members contributing
with their knowledge and expertise [103] and coordination and
communication processes [104].

The study also contributed to technological advances in learn-
ing technologies for monitoring teamwork engagement. Specif-
ically, we have deployed three modalities (video, audio, and
text) of real-time Al-based classifiers, and we have validated
them on human-coded data showing high reliability of results.
The classifiers work with a wide variety of learners with different
accents and arriving from different cultures. Moreover, the video
classifier is robust in poor lighting conditions and works for
the detection of people with different clothing and glasses (see
Figs. 9 and 10).
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The first implication of the study relates to the importance
of instructors’ role in planning and coordinating teamwork
projects [2]. Research has identified that assuming that partic-
ipants will socially interact in an online environment merely
because the environment makes it possible may not result in
engaged teams [105]. While team training interventions are a
viable approach for enhancing teamwork performance in in-
dustry [106], teamwork pedagogy can be equally effective in
education environments [2]. In this study, cooperative learning
was used as the pedagogical approach to facilitate teamwork
pedagogy. The coordination and orchestration of the course,
along with the timing of teamwork sessions and project dead-
lines, may have promoted the different forms of engagement or
disengagement during the working sessions.

A second implication of this sudy relates to the potential of
our Al-based detection system to identify forms of engagement
in a timely manner. Although our implementation of the system,
along with its validation, was performed on historical data,
the validity of the approach opens new venues for automatic
detection of engagement in working classrooms. Specifically, in
the context of higher education, implementing teamwork prac-
tices is hard, and it is even harder to monitor whether students
are benefiting from the learning experience [107]. Specifically,
in large-class settings, where there may be over 120 students
per class, resulting in over 30 teams, effective collaborative
behaviors can make a difference in students’ social interac-
tion [81]. Such timely information can be delivered to instructors
in the form of digital dashboards [17], [18], [19] that can notify
instructors of unproductive or negative behaviors. By providing
instructors with information about teamwork engagement, they
could facilitate better social interaction through mediation [ 108].
Instructor mediation can include eliciting ideas, managing con-
flict, providing immediate feedback, and weaving ideas together,
among others [105]. Drashboards may also provide instructors
with a means Lo assess teamwork processes [10].

VII. CoNCLUSION, LIMITATIONS, AND FUTURE WORK

The growing complexity of modern work environments and
the increase in distributed organizations have made virtual
teamwork essential to an organization’s success. Thus, higher
education institutions should cultivate students who will be
effective collaborators in teams, both in-person and virtually.
Specifically, in the context of teams working virtually, it is
necessary to identify strategies that maximize student engage-
ment. To do this effectively, it is first necessary to characterize
forms of engagement, detect when unproductive engagement
or disengagement is happening, and provide adequate training,
pedagogical support, and mediation if needed. The study con-
tributes in part toward this goal by identifying forms of online
teamwork engagement and detecting those automatically.

However, our approach also has several limitations and scope
for future work. One of the primary limitations is that the
engagement detection was done a posteriori; thus, no immediate
feedback was provided to the instructor, Thus, our future work
could include the implementation of a dashboard that can track
teamwork engagement in real time. A second limitation was
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that we focused solely on one aspect of teamwork, specifically
cognitive engagement. However, in academic settings, engage-
ment is also operationalized in terms of behavioral engagement,
including aspects such as effort and participation, and affective
engagement, including demonstrating a positive attitude toward
learning, trust, and a sense of belonging [109]. Therefore, tuture
work could focus on characterizing behavioral and attitudinal
aspects of engagemnent and static aspects of teamwork, such as
team members’ backgrounds, expertise, and personality, among
many other characteristics.

A third limitation focused on the Al-based approach. The
deep neural classifiers respond immediately and do not consider
a more prolonged time context, causing sudden spikes in re-
sponses. We mediate for this by using the floating average, but
a more advanced method that considers extended context, such
as the Transformer [110], could provide more stable results.
Also, the wealth of responses varies significantly. Students, at
times, did not say anything but responded continuously with
facial expressions. A better version of the classifier would weigh
the responses accordingly, but the actual weight of each response
is currently unknown. In addition, for training the video stream
engagement detector, we considered behaviors from all detected
participants in a classified 2-min interval to belong to the same
class as the hand-coding was carried out at 2-min intervals for
each video. This may have caused the video-based prediction to
have the lowest accuracy among the three engagement detectors,
as all team members in a 2-min interval may not belong to the
same class. If we had chosen a smaller interval, the accuracy of
video-based prediction may have improved at the expense of the
hand-coding process becoming very lengthy and tedious.

Future studies can focus on creating a more refined dataset
using smaller intervals. Moreover, the datasets used for training
the engagement detectors were heavily imbalanced toward pro-
ductive engagement. Although we applied various data augmen-
tation technigues to balance the datasets, future studies should
consider using a more balanced dataset including more un-
productive engagement samples. Finally, the three engagement
detectors produce three different predictions in our developed
system. In the future, it may be interesting to investigate data fu-
sion techniques, such as feature-level or decision-level fusion, to
obtain a single prediction from the three engagement detectors.
Moreover, the developed detectors could be used individually
in other contexts, such as measuring the level of engagement in
chats, dialogues, or video classes. We attempted to use as many
unintrusive input channels as possible. It would be interesting to
enhance the data with additional biometric inputs, such as heart
rate, temperature, etc. However, this requires access to the data
and their labeling with respect to engagement level.

Despite these limitations, the contributions of the study are
significant as they go beyond the qualities of team members
and the products they generate to focus on interactive aspects of
teamwork mediated by technology.
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