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Abstract

The foundation of a matroid is a canonical algebraic invariant which classi-
fies, in a certain precise sense, all representations of the matroid up to rescaling
equivalence. Foundations of matroids are pastures, a simultaneous generalization
of partial fields and hyperfields which are special cases of both tracts (as defined
by the first author and Bowler) and ordered blue fields (as defined by the second
author).

Using deep results due to Tutte, Dress—Wenzel, and Gelfand-Rybnikov—Stone,
we give a presentation for the foundation of a matroid in terms of generators and
relations. The generators are certain “cross-ratios” generalizing the cross-ratio of
four points on a projective line, and the relations encode dependencies between
cross-ratios in certain low-rank configurations arising in projective geometry.

Although the presentation of the foundation is valid for all matroids, it is sim-
plest to apply in the case of matroids without large uniform minors. i.e., matroids
having no minor corresponding to five points on a line or its dual configuration. For
such matroids, we obtain a complete classification of all possible foundations.

We then give a number of applications of this classification theorem, for exam-
ple:

(1) We prove the following strengthening of a 1997 theorem of Lee and Scobee:
every orientation of a matroid without large uniform minors comes from
a dyadic representation, which is unique up to rescaling.

(2) For a matroid M without large uniform minors, we establish the follow-
ing strengthening of a 2017 theorem of Ardila-Rincon-Williams: if M is
positively oriented then M is representable over every field with at least
3 elements.

(3) Two matroids are said to belong to the same representation class if they
are representable over precisely the same pastures. We prove that there are
precisely 12 possibilities for the representation class of a matroid without
large uniform minors, exactly three of which are not representable over
any field.
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Introduction

Matroids are a combinatorial abstraction of the notion of linear independence
in vector spaces. If K is a field and n is a positive integer, any linear subspace of K™
gives rise to a matroid; such matroids are called representable over K. The task of
deciding whether or not certain families of matroids are representable over certain
kinds of fields has occupied a plethora of papers in the matroid theory literature.

Dress and Wenzel [14,15] introduced the Tutte group and the inner Tutte group
of a matroid. These are abelian groups which, in a certain precise sense, can be
used to understand representations of M over all so-called fuzzy rings (which in
particular include fields). Dress and Wenzel gave several different presentations for
these groups in terms of generators and relations, and Gelfand-Rybnikov—Stone
[17] subsequently gave additional presentations for the inner Tutte group of M.
The Dress—Wenzel theory of Tutte groups, inner Tutte groups, and fuzzy rings is
powerful but lacks simple definitions and characterizations in terms of universal
properties.

In their 1996 paper [29], Semple and Whittle generalized the notion of matroid
representations to partial fields (which are special cases of fuzzy rings); this allows
one to consider certain families of matroids (e.g. regular or dyadic) as analogous to
matroids over a field, and to prove new theorems in the spirit of Tutte’s theorem
that a matroid is both binary and ternary if and only if it is regular. Pendavingh and
van Zwam [24,25] subsequently introduced the universal partial field of a matroid
M, which governs the representations of M over all partial fields. Unfortunately,
most matroids (asymptotically 100%, in fact, by a theorem of Nelson [21]) are not
representable over any partial field, and in this case the universal partial field gives
no information. One can view non-representable matroids as the “dark matter” of
matroid theory: they are ubiquitous but somehow mysterious.

Using the theory of matroids over partial hyperstructures presented in [3]
(which has been continued in [1], [9] and [23]), we introduced in [5] a general-
ization of the universal partial field which we call the foundation of a matroid. The
foundation is a kind of algebraic object which we call a pasture; pastures include
both hyperfields and partial fields and form a natural class of “field-like” objects
within the second author’s theory of ordered blueprints in [19]. The category of
pastures has various desirable categorical properties (e.g., the existence of products
and co-products) which makes it a natural context in which to study algebraic
invariants of matroids. Pastures are closely related to fuzzy rings, but they are
axiomatically much simpler.

One advantage of the foundation over the universal partial field is that the
foundation exists for every matroid M, not just matroids that are representable over
some field. Moreover, unlike the inner Tutte group, the foundation of a matroid

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2 INTRODUCTION

is characterized by a universal property which immediately clarifies its importance
and establishes its naturality.

More precisely, the foundation of a matroid M represents the functor taking a
pasture F' to the set of rescaling equivalence classes of F-representations of M in
particular, M is representable over a pasture F' if and only if there is a morphism
from the foundation of M to F.

Our first main result (Theorem 4.21) gives a precise and useful description of
the foundation of a matroid in terms of generators and relations. Although this
theorem applies to all matroids, it is easiest to apply in the case of matroids without
large uniform minors, by which we mean matroids which do not have minors iso-
morphic to either U2 or U2.} For such matroids, we obtain a complete classification
(Theorem 5.9) of all possible foundations, from which one can read off just about
any desired representability property. We also show, for example, that there are
precisely three different representation classes of matroids without large uniform
minors which are not representable over any field. The applications of Theorem 5.9
which we present in Chapter 6 are merely a representative sample of the kinds of
things one can deduce from this structural result.

We now give a somewhat more precise introduction to the main concepts, defi-
nitions, and results in the present paper.

A quick introduction to pastures

A field K can be thought of as an abelian group G = (K*,-,1), a multiplica-
tively absorbing element 0, and a binary operation + on K = GU{0} which satisfies
certain additional natural axioms (e.g. commutativity, associativity, distributivity,
and the existence of additive inverses). Pastures are a generalization of the notion
of field in which we still have a multiplicative abelian group G, an absorbing ele-
ment 0, and an “additive structure”, but we relax the requirement that the additive
structure come from a binary operation. The following two examples are illustrative
of the type of relaxations we have in mind.

ExaMPLE (Krasner hyperfield). As a pasture, the Krasner hyperfield K consists
of the multiplicative monoid {0,1} with 0- 2 = 0 and 1-1 = 1 and the additive
relations 0O+x =z, 1+1 =1, and 14+ 1 = 0. Note, in particular, that both14+1 =1
and 1+ 1 = 0 are true, and in particular the additive structure is not derived from
a binary operation. The fact that 1 4+ 1 is equal to two different things may seem
counterintuitive at first, but if we think of 1 as a symbol meaning “non-zero”, it is
simply a reflection of the fact that the sum of two non-zero elements (in a field, say)
can be either non-zero or zero.

ExAMPLE (Regular partial field). As a pasture, the regular partial field ]Ff
consists of the multiplicative monoid {0,1, -1} with0-2 =0,1-1=1,1-(-1) = —1,
and (—1)-(—1) = 1, together with the additive relations 0+ = z and 1+(—1) = 0.
Note, in particular, that there is no additive relation of the form 14+ 1 = z or
(—=1) + (—1) = =z, so that once again the additive structure is not derived from a
binary operation (but for a different reason: here, 1 + 1 is undefined rather than
being multi-valued). We think of FT as encoding the restriction of addition and
multiplication in the ring Z to the multiplicative subset {0, £1}.

1Note that if M has no minor of type U52 or Ug, then M also has no uniform minor U], with
n > 5 and 2 < r <n— 2, hence the term “large”.
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A QUICK INTRODUCTION TO PASTURES 3

In general, we will require that a pasture P has an involution « — —z (which is
trivial in the case of K), and we can use this involution to rewrite additive relations
of the form z+vy = z as t+y — z = 0. It turns out to be more convenient to define
pastures using this formalism, and from now on we view the expression z+y = z as
shorthand for x + y + (—z) = 0. For additional notational convenience, we identify
relations of the form = + y + z = 0 with triples (,y, z); the set of all such triples
will be denoted Np and called the null set of the pasture.

More formally, a pasture is a multiplicative monoid-with-zero P such that P* =
P\{0} is an abelian group, an involution = — —z on P fixing 0, and a subset Np
of P3 such that:

(1) (Symmetry) Np is invariant under the natural action of S3 on P3.

(2) (Weak Distributivity) Np is invariant under the diagonal action of P* on
P3.

(3) (Unique Weak Inverses) (0,z,y) € Np if and only if y = —=z.

Ifwesetx B y={z€P : x+y= =z}, then the pasture P corresponds to a
field if and only if [ is an associative binary operation. If x B y contains at least
one element for all x,y € P and | is associative (in the sense of set-wise addition),
we call P a hyperfield. If x B y contains at most one element for all z,y € P and
satisfies a suitable associative law, we call P a partial field. Pastures generalize
(and simplify) both hyperfields and partial fields by imposing no conditions on the
size of the sets x B y and no associativity conditions.

EXAMPLE (Hyperfields). Let K be a field and let G < K* be a multiplicative
subgroup. Then the quotient monoid K/G = (K*/G)U{0} is naturally a hyperfield:
the additive relations are all expressions of the form [z] + [y] = [z] for which there
exist a,b,c € G such that ax + by = cz. For example, R/R* is isomorphic to the
Krasner hyperfield K, R/R+ is isomorphic to the sign hyperfield S (cf. [3, Example
2.13]), and if p > 7 is a prime number with p = 3 (mod 4) then F,/(F))? is
isomorphic to the weak sign hyperfield W (cf. [3, Example 2.13]). However, not
every hyperfield arises in this way (cf. [4,20]).

ExXAMPLE (Partial fields). Let R be a commutative ring and let G < R* be a
subgroup of the unit group of R containing —1. Then P = G U {0} is naturally a
partial field: the additive relations are all expressions of the form x 4+ y = z with
x,y,z € GU{0} such that x +y = z in R. Unlike the situation with hyperfields,
every partial field arises from this construction (cf. [25, Theorem 2.16]).

ExXAMPLE (Partial fields, continued). If R is a commutative ring, let P(R) be
the partial field corresponding to R* C R. In this paper, we will make extensive
use of the following partial fields:

(1) Ff = P(Z). We call this the regular partial field.

(2) D = P(Z[1]). We call this the dyadic partial field.

(3) H = P(Z[s]), where ¢ € C is a primitive sixth root of unity. We call this
the hexagonal partial field.?

(4) U= P(Z[z, L, {L]), where z is an indeterminate. We call this the near-

reqular partial field.
2In [25] the partial field H is denoted S, but in our context that would conflict with the

established terminology for the sign hyperfield, so we re-christen it as H. The partial field U is
denoted Uy in [25].

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 INTRODUCTION

ExaMPLE (Fields). It is perhaps worth pointing out explicitly that fields are
special cases of both hyperfields and partial fields; in fact, they are precisely the
pastures which are both hyperfields and partial fields. Since we will be making
extensive use of the finite fields Fy and F3 in this paper, here is how to explicitly
realize these fields as pastures:

(1) Fy has as its underlying monoid {0, 1} with the usual multiplication. The
involution z — —x is trivial, and the 3-term additive relations are 0 + 0 +
0=0and 0+1+1=0 (and all permutations thereof).

(2) Fj5 has as its underlying monoid {0,1, —1} with the usual multiplication.
The involution  — —z sends 0 to 0 and 1 to —1. The 3-term additive
relations are 04+0+4+0 =0, 1+ (—1)+0 = 0 (and all permutations thereof),
and 1+1+1=0.

A morphism of pastures is a multiplicative map f : P — P’ of monoids such
that £(0) =0, f(1) =1 and f(z)+ f(y)+ f(2) =0in P’ whenever z+y+2z =0in
P. Pastures form a category whose initial object is Ilﬁt and whose final object is K.

Representations of matroids over pastures
and the foundation of a matroid

Let M be a matroid of rank 7 on the finite set E, and let P be a pasture.
A P-representation of M is a function A : E™ — P such that:
(1) A(ey,...,er) #0if and only if {e1,...,e,.} is a basis of M.
(2) A(o(er),...,0(er)) =sign(o) - A(eq,...,e.) for all permutations o € S,..
(3) A satisfies the 3-term Pliicker relations: for all J € E™=2 and all (eq, es,
e3,eq4) € B4, the null set Np of P contains the additive relation

A(J6162) . A(J€3€4) - A(Jeleg) . A(J6264) + A(J6164) . A(Jegeg) = O,
where Je;e; := (ji, ..., jr—2, €i, €j).
DEFINITION.

(1) M is representable over P if there is at least one P-representation of M.

(2) Two P-representations A and A’ are isomorphic if there exists ¢ € P*
such that A’(ey,...,e.) = cAley,...,e.) for all (ey,...,e.) € E™.3

(3) A and A’ are rescaling equivalent if there exist ¢ € P* and a map d :
E — P* such that A'(ey,...,e.) =c-d(e1)---d(e.)- Aley,...,e,) for all
(e1,...,e,) € E".

(4) We denote by X%, (P) (resp. XE,(P)) the set of isomorphism classes (resp.
rescaling classes) of P-representations of M .4

EXAMPLE. By the results in [3] and [5], we have:

(1) If K is a field, the isomorphism classes of K-representations of M are
naturally in bijection with 7-dimensional subspaces of K (the K-vector
space of functions from E to K) whose underlying matroid is M.

(2) Every matroid has a unique representation over the Krasner hyperfield K.

3An isomorphism class of P-representations of M is the same thing as a weak P-matroid
whose support is M, in the terminology of [3].
4In [5], these sets are denoted X%, (P) and xg/[(P), respectively.
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MATROIDS OVER PASTURES AND THE FOUNDATION OF A MATROID 5

(3) If P is a partial field, M is representable over P if and only if it is rep-
resentable by a P-matrix in the sense of [25]. In particular, a matroid is
regular (i.e., representable over Z by a totally unimodular matrix) if and
only if it is representable over the partial field Fli A regular matroid will
in general have many different (non-isomorphic) representations over IFli,
but there is a unique rescaling class of such representations.

(4) A matroid is orientable if and only if it is representable over the sign hy-
perfield S. An orientation of M is the same thing as an S-representation,
and in this case rescaling equivalence is usually called reorientation equiv-
alence.

For fixed M the map taking a pasture P to the set X%, (P) (resp. X5, (P)) is a
functor. In particular, if f : P| — P, is a morphism of pastures, there are natural
maps I)C§\4(P1) — :X:E\/[(PQ) and DCI]\{/I(Pl) — :X:l]-\{/[(PQ)

We now come to the key result from [5] motivating the present paper:

THEOREM. Given a matroid M, the functor taking a pasture P to the set
DC%/[(P) s representable by a pasture Pp; which we call the universal pasture of
M. In other words, we have a natural isomorphism

(1) Hom(Pys, —) ~ XY,

The functor taking a pasture P to the set XY, (P) is representable by a subpasture
Fr oof Py which we call the foundation of M, i.e. there is a natural isomorphism

(2) Hom(Fy, —) ~ X%

For various reasons, including the fact that the foundation can be presented by
generators and relations “induced from small minors”, we will mainly focus in this
paper on studying the foundation of M rather than the universal pasture. Note
that both Pa; and Fj; have the property that M is representable over a pasture P
if and only if there is a morphism from Py, (resp. Fi) to P.

REMARK.

(1) The universal partial field and foundation behave nicely with respect to
various matroid operations. For example, the universal partial fields (resp.
foundations) of M and its dual matroid M* are canonically isomorphic.
And there is a natural morphism from the universal partial field (resp.
foundation) of a minor N = M\I/J of M to the universal partial field
(resp. foundation) of M.

(2) The multiplicative group Py; (resp. Fy;) of the universal partial field (resp.
foundation) of M is isomorphic to the Tutte group (resp. inner Tutte group)
of Dress and Wenzel [14, Definition 1.6].

If we take P = Pps in (1), the identity map is a distinguished element of
Hom(Pys, Pys). It therefore corresponds to a distinguished element Ay € X%, (Pay),
which (by abuse of terminology) we call the universal representation of M. (Tech-
nically speaking, the universal representation is actually an isomorphism class of
representations.)

REMARK. When F); is a partial field, the foundation coincides with the uni-
versal partial field of [24]. However, when M is not representable over any field,
the universal partial field does not exist. On the other hand, the foundation of M

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 INTRODUCTION

is always well-defined; this is one sense in which the theory of pastures helps us
explore the “dark matter” of the matroid universe.

Products and coproducts

The category of pastures admits finite products and co-products (a.k.a. tensor
products). This is a key advantage of pastures over the categories of fields, partial
fields, and hyperfields, none of which admit both products and co-products. The
relevance of such considerations to matroid theory is illustrated by the following
observations:

(1) M is representable over both P; and P, if and only if M is representable
over the product pasture P; x P,. (This is immediate from the universal
property of the foundation and of categorical products.)

(2) If My and My are matroids, the foundation of the direct sum M; & My
is canonically isomorphic to the tensor product Fis, ® Fiy,, and similarly
for the 2-sum of M; and Mj. (These facts, along with some applications,
will be discussed in detail a follow-up paper.)

(3) Tensor products of pastures are needed in order to state and apply the
main theorem of this paper, the classification theorem for foundations of
matroids without large uniform minors (Theorem 5.9 below).

In order to illustrate the utility of categorical considerations for studying ma-
troid representations, we briefly discuss a couple of key examples.

EXAMPLE. The product of the fields Fy and F3, considered as pastures, is
isomorphic to the regular partial field Ff As an immediate consequence, we obtain
Tutte’s celebrated result that a matroid M is representable over every field if and
only if M is regular. (Proof: If M is regular then since Fli is an initial object in the
category of pastures, M is representable over every pasture, and in particular over
every field. Conversely, if M is representable over every field, then it is in particular
representable over both Fy and F3, hence over their product IFli, and thus M is
regular.)

One can, in the same way, establish Whittle’s theorem that a matroid is repre-
sentable over both F3 and F, if and only if it is hexagonal, i.e., representable over
the partial field H.

These kind of arguments are well-known in the theory of partial fields; however,
the theory of pastures is more flexible. For example, the product of the field Fo
and the hyperfield S is also isomorphic to the partial field ]Fli In this way, we
obtain a unified proof of the result of Tutte just mentioned and the theorem of
Bland and Las Vergnas that a matroid is regular if and only if it is both binary and
orientable [8].

EXAMPLE. If we try to extend this type of argument to more general pastures,
we run into some intriguing complications. As an illuminating example, consider
the theorem of Lee and Scobee [18] that a matroid is both ternary and orientable
if and only if it is dyadic, i.e., representable over the partial field . In this case,
the product of F3 and S is not isomorphic to D; there is merely a morphism from D
to F3 x S. The theorem of Lee and Scobee therefore lies deeper than the theorems
mentioned in the previous example; proving it requires establishing, in particular,
that F3 x S is not the foundation of any matroid.
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UNIVERSAL CROSS RATIOS 7

To do this, one needs a structural understanding of foundations, which we
obtain by utilizing highly non-trivial results of Tutte, Dress—Wenzel, and Gelfand—
Rybnikov—Stone. The result of our analysis, in the context of matroids which are
both ternary and orientable, is that every morphism from the foundation of some
matroid to F3 xS lifts uniquely to D. More precisely, we prove that if M is a matroid
without large uniform minors (e.g. if M is ternary), then the morphism D — S
induces a canonical bijection Hom(Fys,D) — Hom(Fyy,S). This gives a new and
non-trivial strengthening of the Lee—Scobee theorem. The proof goes roughly as
follows: by Theorem B we have Fj; = F; ® --- ® Fs, where each F; belongs to
an explicit finite set P of pastures. By categorical considerations, the statement
that a morphism f : Fj; — S lifts uniquely to D is equivalent to the statement
that Hom(P,S) = Hom(P,D) for all P € P, and this can be checked by concrete
elementary computations.

Universal cross ratios

In order to explain why the “large” uniform minors U? and U? play a special
role in the theory of foundations, we need to first explain the concept of a universal
cross ratio, which is intimately related to UZ-minors.

Let M be a matroid of rank r, let P be a pasture, and let A be a P-representa-
tion of M. Let J € E"~2 have distinct coordinates and let J be the corresponding
unordered subset of E of size r — 2. If A(Jejes) and A(Jezes) are both non-zero
(i.e., if JU{e1,es4} and J U {ez,e3} are both bases of M), then we can rewrite the
3-term Pliicker relation

A(Jere)A(Jeses) — A(Jeres)A(Jezeq) + A(Jeres) A(Jeges) =0
as
A(Jeleg)A(J6264) + A(Jeleg)A(J6364) -
A(Jereg)A(Jeses)  A(Jereq)A(Jezes)
Moreover, as one easily checks, the quantities
A(Jeres)A(Jeqey) A(Jerea)A(Jesey)
A(J€164)A(J€263) a A(J6164)A(J€362)
are invariant under rescaling equivalence and do not depend on the choice of order-
ing of elements of J. In particular,

[61 62:| — A(J6163)A(J6264)
€3 €4lAJ A(Jeres) A(Jeges)

depends only on J and on the rescaling class [A] of A in XE,(P).
The cross ratio associated to the universal representation A; : E™ — Py plays
an especially important role in our theory. For notational convenience, we set

[61 62} L [61 62}
e3 eslM, g Les eslAyJ

We will write [2; o2 ] ; instead of [2; o2 } 7y When M is understood.

Using the fact that [2; 23] N depends only on the rescaling class of A M, one

A
sees easily that [Z; &2 ] 7+ which a prioriis an element of the universal pasture Py,

in fact belongs to the foundation F;.
We call elements of F; of the form [2 2 } J universal cross ratios of M. When
J = @ we omit the subscript entirely. By [5, Lemma 7.7|, we have:
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LEMMA. The foundation of M is generated by its universal cross ratios.

REMARK.

(1) When J = @ and M = U? is the uniform matroid of rank 2 on the 4-
element set {1,2,3,4}, the quantity [é 2] can be viewed as a “universal”
version of the usual cross-ratio of four points on a projective line. The
fact that the cross-ratio is the only projective invariant of four points on a
line corresponds to the fact that the foundation of U7 is isomorphic to the
partial field U = P(Z[z, 1, -1-]) described above. The six different values

dx? l-x
of [58 ZEB] for o € Sy correspond to the elements z,1—z,1,1— 1 1
and 1 — ﬁ of U.
(2) More generally, we can associate a universal cross ratio to each UZ-minor
N = M\I/J of M (together with an ordering of the ground set of N) via
the natural map from Fl to F)s, and every universal cross ratio arises

from this construction.

The structure theorem for foundations of matroids
without large uniform minors

In order to calculate and classify foundations of matroids, in addition to know-
ing that the universal cross ratios generate F;, we need to understand the relations
between these generators.

EXAMPLE. The universal cross ratios of the uniform matroid U? on {1,2,3,4,5}
satisfy certain tip relations of the form

12 12 12

sl las) [53] =1
By duality, the universal cross ratios of U3 satisfy similar identities which we call
the cotip relations.

The theoretical tool which allows one to understand all relations between uni-
versal cross ratios is Tutte’s Homotopy Theorem [32,33] (or, more specifically,
[17, Theorem 4], whose proof is based on Tutte’s Homotopy Theorem). We give an
informal description here; a more precise version is given in Theorem 4.21 below.
To state the result, we say that a relation between universal cross-ratios of M is
inherited from a minor N = M\I/J if it is the image (with respect to the natural
inclusion Fiy C Fjy) of a relation between universal cross ratios in Fiy.

THEOREM A. Every relation between universal cross ratios of a matroid M is
inherited from a minor on a 6-element set. The foundation of M is generated as
an Fli-algebm by such generators and relations, together with the relation —1 = 1
if M has a minor isomorphic to either the Fano matroid Fr or its dual.

The most complicated relations between universal cross ratios come from the tip
and cotip relations in U2 and U2, respectively (six-element minors and non-uniform
five-element minors only contribute additional relations identifying certain cross
ratios with one another). In the absence of such minors, we can completely classify
all possible foundations. Roughly speaking, the conclusion is that the foundation of
a matroid is the tensor product of copies of Fo and quotients of U (the foundation
of U2) by groups of automorphisms. By calculating all possible quotients of U by
automorphisms, we obtain the following result (Theorem 5.9):
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THEOREM B. Let M be a matroid without large uniform minors and Fyy its
foundation. Then
Fy ~ F1® --QF,
for some r = 0 and pastures Fy,...,F,. € {U,D,H, F3,Fo}.

REMARK. In a sequel paper, we will show that every pasture of the form F; ®
-~ ® F, with Fy,...,F. € {U,D,H,F3,Fy} is the foundation of some matroid.

Consequences of the structure theorem

A matroid M is representable over a pasture P if and only if there is a morphism
from the foundation Fp; of M to P. If M is without large uniform minors (which
is automatic if M is binary or ternary), then by Theorem 5.9 its foundation is
isomorphic to a tensor product of copies F; of U, D, H, F3 and Fy. There is a
morphism from F; to P if and only if there is a morphism from each F; to P, so
one readily obtains various theorems about representability of such matroids.

We mention just a selection of sample applications from the more complete list
of results in Chapter 6. For instance, our method yields short proofs of the excluded
minor characterizations of regular, binary and ternary matroids (Theorems 6.3 and
6.4). We find a similarly short proof for Brylawski-Lucas’s result that every matroid
has at most one rescaling class over Fs (Theorem 6.5 and Remark 6.6).

As already mentioned, we derive a strengthening of a theorem by Lee and
Scobee ([18]) on lifts of oriented matroids. The lifting result assumes a particularly
strong form in the case of positively oriented matroids, improving on a result by
Ardila, Rincon and Williams ([2]). The following summarizes Theorems 6.9 and
6.15:

THEOREM C. Let M be an oriented matroid whose underlying matroid is with-
out large uniform minors. Then M is uniquely dyadic up to rescaling. If M is
positively oriented, then M is near-reqular.

In Theorem 6.7, we derive similar statements for the weak hyperfield of signs
W and the phase hyperfield P; cf. section 2.1.2 for definitions. Namely, a matroid
M without large uniform minors is ternary if it is representable over W, and is
representable over D ® H if it is representable over P.

We define the representation class of a matroid M as the class Py of all pastures
P over which M is representable. Two matroids M and M’ are representation
equivalent if Ppr = Ppy. The following is Theorem 6.20.

THEOREM D. Let M be a matroid without large uniform minors. Then there
are precisely 12 possibilities for the representation class of M. Nine of these classes
are representable over some field, and the other three are not.

The structure theorem also provides short proofs of various characterizations
(some new, some previously known by other methods) of certain classes of matroids.
The following summarizes Theorems 6.26-6.34:

THEOREM E. Let M be a matroid without large uniform minors and Fy; its
foundation. Then all conditions in a given row in Table 0.1 are equivalent, where
the conditions should be read as follows:

(1) The first column describes the class by name (cf. Definition 2.14 for any
unfamiliar terms).
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TABLE 0.1. Characterizations of classes of matroids without large
uniform minors

class | possible factors of Fys | representable over

regular - U / Fo x P with —1 # 1in P

binary Fy Fo

ternary U,D,H, Fs any field extension k of F3 / \W
quaternary U, H, Fo any field extension k of Fy

U /FsxFs [FuxFs [Faxs /
near-regular U
FsxW / DxH
dyadic U,D D/FSXQ/E”XS

Fs x F, with 24/g and 3{¢g—1
hexagonal U, H H / Fs x Fy / Fix W
Ing(C/Ing]P’/

D ® H-representable U,DH
Fs x Fy with 2fgand 3 |g—1
U,D,H, Fs .
representable or UH.F, either F3 or Fy

(2) The second column characterizes the class in terms of the factors F; that
may appear in a decomposition Fyr ~ @ F;, as in Theorem B.

(3) The third column lists various classifying pastures P, separated by slashes,
which means that M is contained in the class in question if and only if it
is representable over P.

Another consequence of the structure theorem for foundations of matroids with-
out large uniform minors is the following result, which will be the theme of a forth-
coming paper.

THEOREM F. Let M be a ternary matroid. Then up to rescaling equivalence,

(1) every quarternary representation of M lifts uniquely to H;
(2) every quinary representation of M lifts uniquely to D;

(3) every septenary representation of M lifts uniquely to D ® H;
(4) every octonary representation of M lifts uniquely to U.

Content overview

In Chapter 1, we introduce embedded minors and review basic facts concerning
the Tutte group of a matroid. In Chapter 2, we discuss matroid representations over
pastures and explain the concept of the universal pasture of a matroid. In Chapter
3, we extend the concept of cross ratios to matroid representations over pastures and
define universal cross ratios. In Chapter 4, we introduce the foundation of a matroid
and exhibit a complete set of relations between cross ratios, which culminates in
Theorem A. In Chapter 5, we focus on matroids without large uniform minors and
prove Theorem B. In Chapter 6, we explain several consequences of Theorem B,
such as Theorems C, D and E.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ACKNOWLEDGMENTS 11

Acknowledgments

The authors thank Nathan Bowler and Rudi Pendavingh for helpful discussions;
in particular, we thank Rudi Pendavingh for suggesting that a result along the lines
of Theorem 4.21 should follow from [17]. We also thank the anonymous referee for
a careful reading and numerous helpful comments. Finally, the authors thank their
respective muses Camille and Cecilia for inspiring the name of the matroid Cj.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



CHAPTER 1

Background

1.1. Notation

In this paper, we assume that the reader is familiar with basic concepts from
matroid theory.

Typically, M denotes a matroid of rank r on the ground set £ = {1,...,n}.
We denote its set of bases by B = B, and its set of hyperplanes by H = Hy,. We
denote the closure of a subset J of E by (J). We denote the dual matroid of M by
M.

Given two subsets I and J of E, we denote by I —J = {i € I | i ¢ J} the
complement of J in I. For an ordered tuple J = (j1,...,js) in E*, we denote by
|J| the subset {j1,...,js} of E. Given k elements ej,...,e; € E, we denote by
Jey - ey the s + k-tuple (j1,...,Js €1,...,e,) € E5FF, If J is a subset of E, then
we denote by Jej --- e the subset J U {ey,...,ex} of E. In particular, we have
|Jei---ex| = |J|er-- e, for J € E*.

1.2. The Tutte group

The Tutte group is an invariant of a matroid that was introduced and studied
by Dress and Wenzel in [14]. We will review the parts of this theory that are
relevant for the present text in the following.

DEFINITION 1.1. Let M be a matroid of rank r on E with Grassmann-Pliicker
function A : E” — K. The multiplicatively written abelian group ’JI‘%/[ is generated
by symbols —1 and Xi for every I € supp(A) modulo the relations

(T1) (-1)? = L

(T2) X(eo(1)7"'aea(r)) = Sign(U)X(e1,-~7€r)

for every permutation o € S,, where we consider sign(c) as an element of {£1} C
']I‘A%[;
(T'?’) XJ€1€3XJ€2€4 = XJ€1€4XJ6263
for J = (j1,...,jr—2) € E""2 and e1,...,e4 € E such that Je;e; € supp(A) for all
i=1,2and j = 3,4 but A(Jejez)A(Jegeq) = 0.

The group ’]I‘ﬁ[ comes with a morphism deg : ’]I‘ﬁ[ — Z that sends Xy to 1 for
every I € supp(A). The Tutte group of M is the kernel Ty, = ker(deg) of this map.

By definition, the Tutte group T, is generated by ratios Xy/Xj of generators
of Xy, X3 of ']I‘A%I. Since the basis exchange graph of a matroid is connected, it
follows that Ty is generated by elements of the form Xj./Xj., where J € E"~1
and e, e’ € E are such that both Je and Je’ are in the support of A.

13
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14 1. BACKGROUND

The Tutte group can equivalently be defined in terms of hyperplanes, as ex-
plained in the following.

DEFINITION 1.2. Let M be a matroid and J its set of hyperplanes. We define
T3% as the abelian group generated by symbols —1 and Xy . for all H € H and
e € F — H modulo the relations

(THL) (-1)? = 1;

(TH2) XH1 s XHyyes X H ey = -1,
XH1,63XH2761XH3,€2
where Hy, Hy, H3 € H are pairwise distinct such that F' = H; N Hy N Hy is a flat
of rank r —2 and e; € H; — F for i = 1,2, 3.
This group comes with a map degq : ']I‘% — 77 that sends an element X He
to the characteristic function xg : X — Z of {H} C K, i.e. xg(H') = g u for
H e H.

The relation between Ty, and T3} is explained in [14, Thms. 1.1 and 1.2], which
is as follows.

THEOREM 1.3 (Dress-Wenzel '89). Let M be a matroid and B its set of bases.
Then the association —1 — —1 and Xje/Xzer — Xpe/XHe, where J € E™ 1
e,¢’ € E with |Je|,|Je/| € B and H = {(|J|), defines an injective group homomor-
phism Ty — T3S whose image is ker(degq).

1.3. Embedded minors

In this section, we review some basic facts about minors of a matroid and
introduce the concept of an embedded minor.

Let M and N be matroids with respective ground sets Ej; and En. An iso-
morphism ¢ : N — M of matroids is a bijection ¢ : Ey — Fj; such that B C Ey
is a basis of N if and only if ¢(B) is a basis of M.

DEFINITION 1.4. Let M be a matroid on E. A minor of M is a matroid
isomorphic to M\I/J, where I and J are disjoint subsets of E, M\I denotes the
deletion of T in M and M\I/J denotes the contraction of J in M\T.

Note that there are in general different pairs of subsets (I,J) and (I’,J’) as
above that give rise to isomorphic minors M\I/J ~ M\I'/J’'. In particular, [22,
Prop. 3.3.6] shows that there is a co-independent subset J and an independent
subset I of E for every minor N of M such that INJ =& and N ~ M\I/J. Still,
such I and J are in general not uniquely determined by IV, cf. Example 1.8.

If we fix I and J as above, then we can identify the ground set E of N with
E — (I UJ), which yields an inclusion ¢ : Exy — E. Since I is co-independent and
J is independent, the set of bases of NV is

By = {B—J‘BEBMsuchthatJCBCE—I},

where B, is the set of bases of M. Consequently, the difference between the rank
r of M and the rank ry of N is r — ry = #J. Moreover, the inclusion Eny — FE
induces an inclusion
L 'BN — 'B]V[
B +— BU.J
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1.3. EMBEDDED MINORS 15

DEFINITION 1.5. An embedded minor of M is a minor N = M\I/J together
with the pair (I,J), where I is a co-independent subset and J is an independent
subset J of E such that I N J = &. By abuse of notation, we say that ¢ : N — M
is an embedded minor, where N = M\I/J for fixed subsets I and J as above and
where ¢ : By — By is the induced inclusion of the respective set of bases.

Let N’ be a matroid. Then we say that an embedded minor ¢ : N — M is of
type N’, or is an embedded N'-minor, if N is isomorphic to N'.

Let N and M be matroids. A minor embedding of N into M is an isomorphism
N ~ M\I/J of N together with an embedded minor M\I/J — M of M.

Given two minor embeddings ¢ : N = M\J/I < M and /' : N’ = N\I'/J —
N, we define the composition v o/ of /' with ¢ as the minor embedding N’ =
M\(IuIh/(JUJ)— M.

EXAMPLE 1.6 (Embedded minors of type U?). Let M be a matroid and ¢ : N —
M an embedded minor of type U?. Let I and J be as above. Then #J = r — 2
since the rank of N is 2, and Ey = E — (I U J) has 4 elements eq,...,es. The set
of bases By of IV consists of all 2-subsets of E, and thus

(By) = {Jeiej (.} C{1,....4} andi;ﬁj}.

REMARK 1.7. Note that a composition N’ = N\I'/J" — N = M\J/I — M
of minor embeddings induces a composition By, — By — By, of inclusions of sets
of bases. On the other hand, a minor embedding ¢ : N = M\J/I — M decomposes
into ¢ =11 0tg with ¢; : N = M\I;/J;1 - M and 15 : N = N'\Iy/J; — N’ for
every pair of partitions I = I; U Iy and J = Jy U Js.

Note further that it is slightly inaccurate to suppress the subsets I and J
from the notation of an embedded minor ¢ : N — M since they are in general not
uniquely determined by the isomorphism type of N and the injection ¢ : By — By,
cf. Example 1.9. However, there is always a maximal choice for [ and J for a given
injection ¢ : By — Byy.

More precisely, for two disjoint subsets I and J of E and B = By, let B\I/J =
{BeB|JCBCEFE-I}. IfB\I/Jisnotempty, then I is co-independent and
J is independent and B\I/.J is the image ¢(Bs\7/7) C B for the embedded minor
MN\I/J of M. Tautologically,

Inox = E— U B and  Jyga = ﬂ B
BeB\I/J BeB\I/J

are the maximal co-independent and independent subsets of E such that B\I/J =
B\Imax/Jmax = L(BM\Imax/Jmax)~

ExaMPLE 1.8. In the following, we illustrate how different choices of disjoint
subsets I and J of E lead to different injections ¢ : Byp 7,7 — B

Let M be the matroid on E={1, 2,3} whose set of bases is By = {{1,2},{1,3}}.
Let N = M\{23} be the restriction of M to {1}, whose set of bases is By = {{1}}.
Since there is no canonical map By — By, it is clear that not every pair of disjoint
subsets I and J leads to an embedding Bp\;/7 — B

The minor N is isomorphic to both No = M\{2}/{3} and N3 = M\{3}/{2},
which are embedded minors with respect to the inclusions ts : By, — By with
12({1}) = {1,2} and ¢35 : By, — Bas with ¢3({1}) = {1, 3}, respectively.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



16 1. BACKGROUND

ExAMPLE 1.9. The contrary effect to that illustrated in Example 1.8 can also
happen: different embedded minors can give rise to the same inclusions of sets of
bases.

For instance, consider the matroid M on E = {1,2} with By, = {{1,2}} and
the embedded minor N = M\{2}. Then By = {{1}} and the induced embedding
t: By — By is a bijection. This is obviously also the case for the trivial minor
N'= M = M\@ /2. This shows that N is not determined by ¢ : By — Byy.
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CHAPTER 2

Pastures

2.1. Definition and first properties

By a monoid with zero we mean a multiplicatively written commutative monoid
P with an element 0 that satisfies 0-a = 0 for all a € P. We denote the unit of P by
1 and write P* for the group of invertible elements in P. We denote by Symg(P)
all elements of the form a + b+ ¢ in the monoid semiring N[P], where a,b,c € P.

DEFINITION 2.1. A pasture is a monoid P with zero such that P* = P — {0},
together with a subset Np of Syms(P) such that for all a,b,c,d € P

(P1) a+0+0¢€ Np if and only if a =0,

(P2) if a+b+c € Np, then ad + bd + ¢d is in Np,

(P3) there is a unique element ¢ € P> such that 1 + €+ 0 € Np.

We call Np the nullset of P, and say that a+b—+c is null, and write symbolically
a+b+c=0,ifa+b+c € Np. For a € P, we call ea the weak inverse of a.

The element e plays the role of an additive inverse of 1, and the relations
a+ b+ ¢ = 0 express that certain sums of elements are zero, even though the
multiplicative monoid P does not carry an addition. For this reason, we will write
frequently —a for ea and a — b for a + eb. In particular, we have e = —1. Moreover,
we shall write a +b=corc=a+bfor a+ b+ ec=0.

REMARK 2.2. As a word of warning, note that —1 is not an additive inverse of
1 if considered as elements in the semiring N[P], i.e. 1 —1 =1+ € # 0 as elements
of N[P]. Psychologically, it is better to think of “—” as an involution on P.

DEFINITION 2.3. A morphism of pastures is a multiplicative map f : P; — P»
with f(0) = 0 and f(1) = 1 such that f(a) + f(b) + f(c) = 0 in Np, whenever
a+b+c=0in Np,. This defines the category Pastures.

DEFINITION 2.4. A subpasture of a pasture P is a submonoid P’ of P together
with a subset Nj C Symg(P’) such that a=! € P’ for every nonzero a € P’ and
a+b+ce Np foralla+b+ce Np with a,b,c € P’.

Given a subset S of P>, the subpasture generated by S is the submonoid P’ =
{0} U (S), where (S) denotes the subgroup of P* generated by S, together with
the nullset Npr = Np N Symg(P’).

LEMMA 2.5. Let P be a pasture. Then a +b = 0 if and only if b = ea. In
particular, we have €2 = 1. Let f : P, — Py be a morphism of pastures. Then

1) =

PrOOF. Note that € is uniquely determined by the relation 1 4+ ¢+ 0 = 0. By
(P2), this implies that €1 4+ 1 +0 = 0 and thus by (P3), we conclude that e~ = ¢,
or equivalently, €2 = 1.

17
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18 2. PASTURES
Given a morphism f : P; — P, be a morphism of pastures, the null relation
1+€e+4+0=01in P, yields the relation f(1) + f(e) 4+ 0 =10 in P5. Thus f(e) is the

weak inverse of f(1) = 1, which is e. O

2.1.1. Free algebras and quotients. Let P be a pasture with null set Np.

We define the free P-algebra in x1,...,xs as the pasture P(x1,...,xs) whose unit
group is P{xy,...,xs)* = P* X {(x1,...,xs), where (z1,...,2,) is the free abelian
group generated by the symbols 1, ..., zs, and whose null set is

Npiay,.ms) = {da—f—db—i—dc’d €{x1,...,x5),a+b+cE€ Np},

where da stands for (a,d) € P(z1,...,z5)* if a # 0 and for 0 if @ = 0. This pasture
comes with a canonical morphism P— P(z1,...,z,) of pastures that sends a to la.

Let S C Symg(P) be a set of relations of the form a + b+ ¢ with ab # 0. We
define the quotient P J/.S of P by S as the following pasture. Let Np//g be the
smallest subset of Symg(P) that is closed under property (P2) and that contains
Np and S. Since all elements a + b + ¢ in S have at least two nonzero terms by
assumption, N pys also satisfies (P1). But it might fail to satisfy (P3), necessitating
the following quotient construction for P*.

We define the unit group (P /S)* of P/ S as the quotient of the group P*
by the subgroup generated by all elements a for which a — 1+ 0 € N pys- The
underlying monoid of P/ S is, by definition, {0} U (P /S)*, and it comes with a
surjection 7 : P — P //S of monoids. We denote the image of a € P by a = n(a),
and define the null set of P/ S as the subset

Np//s = {d+5+é|a+b+c€Np/5}

of Symg(PJ/S). The quotient P//S of P by S comes with a canonical map P — PJ/S
that sends a to @ and is a morphism of pastures.

If S C Symy(P(x1,...,zs)) is a subset of relations of the form a + b+ ¢ with
ab # 0, then the composition of the canonical morphisms for the free algebra and
for the quotient yields a canonical morphism

m: P — P(ry,...,25) — P(x1,...,2s)/S.

We denote by 7o : {z1,...,25} = P{x1,...,2s) /S the map that sends z; to Z;.

The following result describes the universal property of P(x1,...,xzs)/S, which
is analogous to the universal property of the quotient k[T', ... TF]/(S) of the
algebra of Laurent polynomials over a field k by the ideal (S5) generated by a set S
of Laurent polynomials (each with only two or three terms). Note that the special
case S = & yields the universal property of the free algebra P(xz1,...,zs) and the
special case s = 0 yields the universal property of the quotient P/ S.

PROPOSITION 2.6. Let P be a pasture, s > 0 and S C Symg(P{xq,...,xs))
a subset of relations of the form a + b+ ¢ with ab # 0. Let f : P = @ be a
morphism of pastures and fo : {x1,...,25} — QF a map with the property that
allzd +bnxfi +c[lz) € S with a,b,c € P and o, B, € Z fori=1,...,r
implies that

F@) T fo(xi)® + F(O) IT fo(:)" + f(e) [T fo(w:) ™" € No.
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2.1. DEFINITION AND FIRST PROPERTIES 19

Then there is a unique morphism f : Plxy,...,xs) S — Q such that the diagrams

P%Q {xl,...,ms}L
’Ti / wnd | /
Plzy,...,zs) )| S Plxy,...,xz5) S

commute.

PROOF. We claim that the association

f: Plzy,...,z5) S —> Q
ala — f(a) ] fo(zs)™

is a morphism of pastures. Once we have proven this, it is clear that f = f oT
and fy = fomo. Since the unit group of P = P(xy,...,zs) S is generated
by {azx; | a € P*,i = 1,...,s}, it follows that f is uniquely determined by the
conditions f = fox and fy = f o .

We are left with the verification that f is a morphism. As a first step, we show
that the restriction f x . pX Q> defines a group homomorphism. Note that
Np = {yz+yz'+y2" |y € PX 242/ +2" € S}. Thus we have an equality a [[ 2" =
b[ = in P* if and only if da [ 2% F% — db][ 2™ € S for some d[[ 2% € P*.
By our assumptions, we have f(da) [ fo(z:)®+% — f(db) [ fo(x;)%+% € Ng, and
thus multiplying with f(d=1) ] fo(zi)~% yields f(a[]z%) = f(b[]=”"). This
verifies that f x . px Q> is well-defined as a map. It is clear from the definition
that it is a group homomorphism.

For showing that f P — @ is a morphism of pastures, we need to verify that
for every element 2z + 2’ + 2" in N, the element f(2)+ f(2')+ f(2”) is in Ng. This
can be done by a similar argument as before. We omit the details. ]

2.1.2. Examples. The regular partial field is the pasture ]FljE ={0,1,-1}/
{1 — 1} whose multiplication is determined by (—1)? = 1.

Let K be a field and K* its multiplicative monoid. Then we can associate with
K the pasture K*® /{a+b+c|a+b+c=01in K}. We can recover the addition
of K by the rule —c = a+ b if a + b+ ¢ = 0. In particular, we can identify the
finite field with 2 elements with the pasture Fy = F£ /{1 + 1}, which implies that
—1 =1, and the finite field with 3 elements with the pasture F3 = F{ /{1 +1+1}.

Let F be a hyperfield and F'® its multiplicative monoid. Then we can associate
with F' the pasture F*/{a+b+c|0€a B b @ cin F}. In particular, we can
realize the Krasner hyperfield as K = FE J{1+1,1+1+ 1}, and the sign hyperfield
as S=Ff/{1+1-1}.

The near-regular partial field is

U="Fi(z,y)/{z+y—1}.
The dyadic partial field is
D = Fi(z)){z42—1}.
The hexagonal partial field is
H = FEe)f{z3 41,222~ 1}.
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It is a straightforward exercise to verify that these descriptions of U, D, H agree
with the definitions given in the introduction.
As final examples, the weak sign hyperfield is the pasture

W =TFfjQ+14+1,1+1-1)

and the phase hyperfield is the pasture P whose unit group P* is the subgroup of
norm 1l-elements in C* and whose null set is

Np = {a + b+ c € Symgy(P) | (a,b,c)so is an R-linear subspace of C}

where (a,b,c)~¢ is the smallest cone in C that contains a, b and c. In fact, P is
isomorphic to the quotient of the pasture associated with C by the action of R+
by multiplication.

2.1.3. Initial and final objects. The category Pastures admits both initial
and final objects. The initial object of Pastures is the regular partial field IF‘li
Given a pasture P, we denote by ip the unique initial morphism ip : ]Fli — P.

The final object of Pastures is the Krasner hyperfield K. Given a pasture P,
we denote by tp the unique terminal morphism tp : P — K sending 0 to 0 and
every nonzero element of P to 1.

2.1.4. Products and coproducts. The category Pastures admits both a
product and coproduct.

Let Py, P, be pastures. The (categorical) product P; x P, can be constructed
explicitly as follows. As sets, we have Py x Py = (P @ PJ) U {0}, endowed with
the coordinatewise multiplication on P & P, extended by the rule (a1,az) -0 =
0- (a1,a2) =0, and the nullset is the subset

NP1><P2 = {(al,a2)+(b1,b2)+(61,62) ai—l—bi—i—ciENpi fori:1,2}

of Sym3(P1 X PQ), where (a17a2), (bl, bg) and (Cl, CQ) are in Pl X P2 (i.e., a1a9 }é 0
or a; = ag = 0, etc.) and we identify (0,0) with 0 in P; x Ps.

The categorical coproduct is given by the tensor product Py ® P, defined as
follows. As sets, we have Py ® Py, = (P; X Py)/ ~, where P; x P, denotes the
Cartesian product (not the underlying set of the product in the category of pastures)
and (z1,x2) ~ (y1,y2) if and only if either:

e At least one of x1, 9 is zero and at least one of y1,yo is zero; or
e z1 =y and x3 = y; Or
e r1 = —y; and T3 = —ypo.

Denoting the equivalence class of (x1,x2) by 1 ® z2, the additive relations are
given by:

o aRY+bRy+cRy € Np,gp, fory € Pr and a,b,c € P; with a+b+c € Np,.
o r®a+rRb+r®c € Npgp, for x € Py and a,b,c € Py with a+b+c € Np,.

LEMMA 2.7. The tensor product of pastures satisfies the universal property of
a coproduct with respect to the morphisms f1 : Py — PL® Py and fo : P, = P ® P
given by x — x® 1 and y — 1 ® y, respectively.

PROOF. Given a pasture P and morphisms g; : P; — P for i« = 1,2, we must
show that there is a unique morphism ¢ : P ® P, — P such that g; = g o f; for
1=1,2.
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Define g by the formula g(z; ® x2) = g1(1) - g2(x2). To see that this is well-
defined, suppose (21, x2) ~ (y1,y2). If 2129 = 0 and y1y2 = 0, then g(z1 ® z3) =
g(y1 ® y2) = 0. Otherwise z; = (—1)*y; for i = 1,2 with k € {0,1}, and we have

9(x1 @ x3) = (=1)*g1(21)(=1)* g2 (22) = g1 (41)g2(y2) = g(1 @ y2).

Hence g is well-defined.

It is straightforward to verify that go f; = ¢; for ¢ = 1,2 and that g is a
morphism.

To see that g is unique, suppose ¢’ is another such morphism. Then ¢'(z®1) =
g1(z1) and ¢'(1 ® x2) = ga(x2), and since ¢’ is a morphism we have

g (1 ®@x2) = ¢ (11 @ 1)(1®@22)) = ¢' (1 @ 1)g' (1 @ x2) = g1(21)g2(22)
for all z; € P; and w9 € P». Thus ¢’ = g. |

By comparison, the category of fields (which is a full subcategory of Pastures)
does not have an initial object, a final object, products, or coproducts.

EXAMPLE 2.8. We have Fy x [F3 &2 ]Ff and Fy ® F3 = K. The first isomorphism
follows easily from our formula for the product of two pastures, and the second
is an immediate consequence of the following lemma, which in turn follows easily
from the universal property of the coproduct.

LEMMA 2.9. If P, = FE /S, where S C Symy(FE), then Py ® Py = P,/ S.

EXAMPLE 2.10. We have F3 x S ~ D /{22 =1} and Fs ® S ~ F{ /{1 + 1 +
1,1+ 1 —1}. For the first isomorphism, note that the underlying set of Fg x S is
({#£1} x {£1})U{0} while the underlying set of Dj/{2% — 1} is ({£1} x {£2})U{0}.
One checks easily that the map sending (1,1) to 1 and (=1, 1) to z is an isomorphism
of pastures. The second isomorphism is a consequence of Lemma 2.9.

EXAMPLE 2.11. Here (without proof) are a few more examples of products and
coproducts:
e Ff =Ty x S=Fy x W.
e K=F,S=F,@W.
o H= Fg X [Fy.

REMARK 2.12. More generally, one can show that the category Pastures is
complete and co-complete, i.e., it admits all small limits and colimits. In particular,
one can form arbitrary fiber products and fiber coproducts in Pastures. This is
proven in [12].

2.1.5. Comparison with partial fields, hyperfields, fuzzy rings, tracts
and ordered blueprints. The definitions of partial fields, hyperfields, fuzzy rings,
tracts and ordered blueprints, and a comparison thereof, can be found in [5]. We
are not aiming at repeating all definitions, but we will explain how the category of
pastures fits within the landscape of these types of algebraic objects.

We have already explained how partial fields and hyperfields give rise to pas-
tures. The tract associated with a pasture P is defined as F' = (P*, Np), where
N is the ideal generated by Np in N[P*]. The ordered blueprint associated to a
pasture P is defined as B=P//{0 < u+v+w]|u+v+w € Np}.

These associations yield fully faithful embeddings of the category PartFields
of partial fields and the category HypFields of hyperfields into Pastures, and of
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Pastures into the category Tracts of tracts and into the category OBlpri of or-
dered blueprints with unique weak inverses. This completes the diagram of [5, The-
orem 2.21] to

PartFields ———— Pastures —— Tracts

Fields < \/\ X T{

HypFields ——  FuzzRings ——— OBlpri

where FuzzRings is the category of fuzzy rings. This diagram commutes and all
functors are fully faithful, with exception of the adjunction between Tracts and
OBlpr®. We omit the details of these claims.

Note that fuzzy rings, seen as objects in either Tracts or OBlpr™, are not
pastures in general since the ideal I of the fuzzy ring might not be generated by
3-term elements of N[P*]. Conversely, not every pasture, seen as a tract or as an
ordered blueprint, gives rise to a fuzzy ring since the axiom (FR2) (in the notation
of [5, Section 2.4]) might not be satisfied. An example of a pasture for which (FR2)
fails to hold is the pasture Fy (z) /{z% + 1,14 1 + z}; cf. [5, Ex. 2.11] for more
details on this example.

2.2. Matroid representations

We recall the notion of weak matroids over pastures from [3]. Let P be a
pasture. A weak Grassmann—Pliicker function of rank r on E with values in P is a
function A : E” — P such that:

(1) The set of r-element subsets {e1,...,e,} C E such that A(eq,...,e,) #0
is the set of bases of a matroid M.

(2) A(o(er),...,0(er)) =sign(o) - A(ey,...,e.) for all permutations o € S,..

(3) A satisfies the 3-term Pliicker relations: for all J € E"=2 and all (eq, es,
es, 64) S E4,

A(Jeleg) . A(J€364) — A(Jeleg) . A(J€264) + A(J€1€4) . A(J€2€3) = 0.

Two weak Grassmann-—Pliicker functions A, A’ are isomorphic if there is a ¢ €
P* such that A'(ey,...,e.) =cA(e,...,e.) for all (e,...,e.) € E".

A weak P-matroid M of rank r on FE is an isomorphism class of weak Grass-
mann-—Pliicker functions A : E" — P.

We call M the underlying matroid of M, and we refer to A as a P-representation
of M.

We say that a matroid M is representable over a pasture P if there is at least
one P-representation of M.

REMARK 2.13. In [3] one also finds a definition of strong P-matroids, but this
will not play a role in the present paper. We therefore omit the adjective “weak”
when talking about P-representations.

With this terminology, we introduce the following subclasses of matroids:

DEFINITION 2.14. A matroid M is
e regular if it is representable over IFli;
e binary if it is representable over Fo;

e ternary if it is representable over Fj;
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quaternary if it is representable over Fy;

near-reqular if it is representable over U,

dyadic if it is representable over D;

hezxagonal if it is representable over H

D ® H-representable! if it is representable over D ® Hi;
representable if it representable over some field;
orientable if it is representable over S;

weakly orientable if it is representable over W.

Note that hexagonal matroids are also called ¥/1-matroids or sixth-root-of-
unity-matroids in the literature, cf. [25] and [28].

2.3. Matroid representations via hyperplane functions

There are various “cryptomorphic” descriptions of weak P-matroids, for exam-
ple in terms of “weak P-circuits”, cf. [3]. For the purposes of the present paper, it
will be more convenient to reformulate things in terms of hyperplanes rather than
circuits.

DEFINITION 2.15. Let P be a pasture and let M be a matroid on the finite set
E. Let X be the set of hyperplanes of M.

(1) Given H € H, we say that fg : E — P is a P-hyperplane function for H
if fy(e) =01if and only if e € H.

(2) Two P-hyperplane functions fm, fj; for H are projectively equivalent if
there exists ¢ € P* such that f};(e) = cfu(e) for all e € E.

(3) A triple of hyperplanes (Hy, Hy, Hs) € H3 is modular if F = HyNHyNHs
is a flat of corank 2 such that F' = H; N H; for all distinct 4, j € {1,2,3}.

(4) A modular system of P-hyperplane functions for M is a collection of P-
hyperplane functions fy : E — P, one for each H € H, such that when-
ever Hy, Hy, H3 is a modular triple of hyperplanes in I, the corresponding
functions H; are linearly dependent, i.e., there exist constants ¢y, co, c3 in
P, not all zero, such that

leHl (6) + C2fH2 (6) + C3fH3 (6) =0

for all e € E.
(5) Two modular systems of P-hyperplane functions {fy } and {f};} are equiv-
alent if fy and f}; are projectively equivalent for all H € .

The following result can be viewed as a generalization of “Tutte’s representation
theorem” [33, Theorem 5.1] (compare with [16, Theorem 3.5]). One can also view
it as adding to the collection of cryptomorphisms for weak matroids established
in [3].

THEOREM 2.16. Let P be a pasture and let M be a matroid of rank r on E.
Let H be the set of hyperplanes of M. There is a canonical bijection

=2 {P-representations of M} — { modular systems of }

P-hyperplane functions for M

Mn [25, p. 55|, the partial field D @ H is denoted Y.
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If A: E" — P is a P-representation of M and H = Z(A), then
fu(e) A(Ie)

fule) — A(Ie)

for every fu € H, elements e,e’ € E— H and I € E"™1 such that |I| is an
independent set which spans H .

ProOF. Let M be a weak P-matroid with underlying matroid M. Let H be
a hyperplane of M. The complement of H in F is a cocircuit D of M; choose a
P-cocircuit D of M whose support is D. Now define fi : E — P by fu(e) = D(e).
Then fu(e) =0iff D(e) =0iff e ¢ D iff e € H, so fy is a P-hyperplane function
for H.

Suppose H1, Ho, H3 is a modular triple of hyperplanes of M with intersection
F, a flat of corank 2. Let e be an element of H; — F. Then e € Hy — (Hy; U Hs)
by the covering axiom for flats [22, Exercise 1.4.11, Axiom (F3)]. Let Dy and Do
be the P-cocircuits of M corresponding to H; and Hs, respectively, and let o =
Dy(e), a0 = —Dy(e) € P. Then ay Dy (e) = —aaDs(e), so by [3, Axiom (C3)'], there
is a P-cocircuit D3 of M such that D3(e) = 0 and oy D1(f) + aaD2(f) — D3s(f) =0
for all f € E. By [3, Lemma 3.7], the support of D3 is E — Hs. By [3, Axiom (C2)],
D3 is a scalar multiple of fg,, say D3 = —as3 fr,. Then oy fo, +aofu, +asfr, =0,
so {fu} is a modular system of P-hyperplane functions for M.

Conversely, a similar argument shows that given a modular system of P-hyper-
plane functions {fg} for M, there is a corresponding family of P-cocircuits D
defining a weak P-matroid M. These operations are inverse to one another by
construction, and this establishes the desired bijection.

We turn to the second claim, which is obvious for e = €/, so we may assume
that e # ¢/. Let n = #E and choose I’ € E""~! such that E = |I| U [I'| U {e, ¢'}.
Note that since |I¢/| is a basis of M, the complement |T'e| is a basis for M*. If
I=_(i1,...,%—1)and I' = (&},...,4),_,._;), we define a total order on E by

<<t 1<e<ip<-<ip_g<e.
By [3, Lemma 4.1], there is a dual Grassmann-Pliicker function A* : E"~" — P to
A that satisfies
A*(T'e) = sign(idg) - A(Ie') = A(I€)
and
A*(T'e’) = sign(ree) - A(le) = —A(Te),

where idg : E — E is the identity and 7. : E — E is the transposition that
exchanges e with €¢/. This implies that

fule) A e) _ A(e)
fu(e) —  Ax(Te)  A(Ie)
as desired, where we use [3, Def. 4.6 and Lemma 4.7] for the first equality. |

2.4. The universal pasture

The universal pasture of a matroid was introduced in [5] as a tool to control
the representations of a matroid M over other pastures. We review this in the
following.
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The symmetric group S, on r elements acts by permutation of coefficients on
E". In the following, we understand the sign sign(o) of a permutation o € S, as
an element of (FT)* = {£1}.

DEFINITION 2.17. Let M be a matroid with Grassmann-Pliicker function A :
E" — K. The extended universal pasture of M is the pasture Py; = FE (Ti|A(T) #
0) /{S}, where S is the set of the relations T,y = sign(c)Ty for all I € E" and
o € S, together with the 3-term Pliicker relations

TJeleQTJ€3€4 - TJelegTJ€2€4 +TJ€1€4TJ6263 = 0

forallJ € E"? and e1,...,e4 € E.

The pasture Pj; is naturally graded by the rule that T1 has degree 1 for every
I € supp(A). The universal pasture of M is the subpasture Py of degree 0-elements
of P]f/}.

The relevance of the universal pasture is that it represents the set of isomor-
phism classes of P-representations of M. This is derived in [5] by means of the
algebraic geometry of the moduli space of matroids. We include an independent,
and more elementary, proof in the following.

THEOREM 2.18 ([5, Prop. 6.22]|). Let M be a matroid of rankr on E and P a
pasture. Then there is a functorial bijection between the set of isomorphism classes
of P-representations of M and Hom(Pyy, P). In particular, M is representable over
P if and only if there is a morphism xn; : Pyy — P.

PROOF. Let A : E™ — P be a P-representation of M and PJ\Z the extended
universal pasture of M. Define the map Xz,o : 71 — A(T) from the set {T1 | I €

supp(A)} of generators of Pj; to P. Let S be the set of 3-term Pliicker relations

TJelegTJ6364 - TJ8183TJ€2€4 + TJ8184TJ€2€37
where J € E""2 and ey,...,eq4 € E such that |Je; ...e4| has 7 + 2 elements. Ap-

plying XZ,O to this relation, with the convention that XX,O(TI) =0 if A(I) = 0,
yields

XJAr,o(TJelez)XZ,o(TJ%ez;) - Xz,o(TJeles)Xzyo(TJezm) + XZ70(TJ6164)X270(TJ8283)
= A(Jerea)A(Jezeq) — A(Jeres)A(Jeges) + A(Jereq) A(Jeges),

which is an element of Np since A is a Grassmann-Pliicker function. Thus, by
Proposition 2.6, the map XX,O together with the unique morphism Fli — P define
a morphism

XA+ Pl =Fi(Tx | 1€ supp(A)) /S — P

with XX (71) = A(I) for I € supp(A). We define xa : Pyy — P as the composition
of the inclusion Py — P]\Z with XZ. Since every element of Py, has degree 0,
we have yao = xqa for every a € P*, which shows that ya depends only on the
isomorphism class of A.

This yields a canonical map

{isomorphism classes of P-representations of M } —  Hom(Py, P),
[A] — Xa
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which turns out to be a bijection whose inverse can be described as follows. Let
X : Par — P be a morphism. Choose an Iy € E” such that |Ip| is a basis of M and
define the map
Ay: B — P,
{ x(T1/Ty,) if [I] is a basis of M;

0 otherwise.

This is a Grassmann-Pliicker function, since

Ay (Jere) Ay (Jeses) — Ay (Jeres) Ay (Jeaes) + Ay (Jereq) Ay (Jeses)

Tje;e Tjeze Tse;e Tyege Tseqe Tseqe
() (e () o (e ()

is in the nullset of Pys. Note that the isomorphism class of A, is independent of
the choice of I, since any two such choices yield Grassmann-Pliicker functions that
are constant multiples of each other.

It is straightforward to verify that the associations x — [A,] and [A] — xa are
mutually inverse, and that both maps are functorial in P; we omit the details. [

DEFINITION 2.19. The morphism xa : Py — P in Theorem 2.18 that is
associated with the (isomorphism class of the) P-representation A is called the
characteristic morphism of A.

REMARK 2.20. The proof of Theorem 2.18 also shows that the set of P-represen-
tations of M are in functorial bijection with Hom(P;, P). Under this identification,
the identity morphism P]Jvr[ — P]\J/FI defines a P&—representation A:E" - PAZ of
M, which we call the universal Grassmann-Pliicker function of M. It satisfies
A(I) = Ty if |I] is a basis of M and A(I) = 0 otherwise, and tps © A:E" 5 Kisa
Grassmann-Pliicker function for M where ¢ Py PJ\; — K is the terminal morphism,
cf. Section 2.1.3.

2.5. The Tutte group and the universal pasture

The connection between the Tutte group and the universal pasture is explained
in Theorem 6.26 of [5], which is as follows:

THEOREM 2.21. Let M be a matroid with Grassmann-Pliicker function A :
E" — K. The association —1 — —1 and Ty — Xy for I € supp(A) defines an
isomorphism of groups (PJ\‘Z)>< — ’JI‘%I that restricts to an isomorphism Py, — Thy.

REMARK 2.22. Dress and Wenzel show in [16, Thm. 3.7] that a matroid M
is representable over a fuzzy ring R if and only if there is a group homomorphism
Tar — R* that preserves the Pliicker relations. This can be seen as an analogue of
Theorem 2.18 in the formalism of Dress and Wenzel, but it also lets us explain the
advantage of our formulation.

Namely, the foundation of a matroid is an object in the same category Pastures
as the coefficient domains for matroid representations. We can thus use standard
arguments from category theory to deduce results about the representability of a
matroid. For example, if the foundation of a matroid M is the tensor product
F1 ® F5 of two pastures F; and Fy, then M is representable over a third pasture P
if and only if there exist morphisms F; — P and F» — P. We will make a frequent
use of this observation in Chapter 6.
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CHAPTER 3

Cross ratios

In this chapter, we review the theory of cross ratios for matroids from different
angles, and explain the connection between these viewpoints, which are derived from
cryptomorphic descriptions of a matroid in terms of bases and hyperplanes. There
are two principally different types of cross ratios: cross ratios for P-matroids, which
are elements of P, and universal cross ratios of a matroid M, which are elements of
the universal pasture Py; of M. It turns out that there is a close relation between
these two types of cross ratios and their different incarnations in terms of bases
and hyperplanes. In particular, we identify in a concluding subsection the set of
universal cross ratios with the set of fundamental elements in Pjy.

3.1. Cross ratios of P-matroids

Let E ={1,...,n} and 0 < r < n. Let P be a pasture and M a P-matroid
with Grassmann-Pliicker function A : E™ — P.

Define Qs to be the set of tuples (J;eq,...,eq) for which there exists a J €
E™? with underlying set |J| = J such that

A(J6164) A(J€2€3) A(Jeleg) A(J€2€4) 7’5 O7
where Jege; = (J1,. -y Jr—2, €ks €1)-

DEFINITION 3.1. Let M be a P-matroid with Grassmann-Pliicker function A :
E" — P and (J;e1,...,eq) € Qpr. The cross ratio of (J;eq,...,es4) in M is the
element

[61 €2

i| |:€1 €s A(Jeleg)A(J€2€4)
€3 sl M,J B N

€3 64}&3 A(Jereq)A(Jeqes)
of P for any J € E"~2 with |J| = J .

Note that the value of the cross ratio [ ¢} ¢2 | 7.y does not depend on the ordering

of J, nor on the choice of Grassmann-Pliicker function A for M, which justifies our
notation.

We find the following relations between cross ratios with permuted arguments.
Let (J;e1,...,eq) € Qu and J € E"2 be such that J = |J|. We say that
(J;eq,...,eq) is non-degenerate if

A(Jeleg)A(J€364) 75 O7

€o(1) 60(2)]
€o(3) Co(4) I M,J

{1,...,4}. We define QE\Z to be the subset of ), consisting of all non-degenerate

or equivalently, if [ is defined and nonzero for every permutation o of

(J;eq,...,eq). We call a cross ratio [Z; iZ]M ; non-degenerate if (J;e1,...,eq) is
non-degenerate. We call (J;eq,...,eq) € Qpr degenerate if it is not in Q%/[
27
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One finds some relations that follow immediately from the definition, such as
the fact that permuting rows and columns has no effect on the value of the cross
ratio, i.e.

[61 €2

} - [62 e1
ez eslM,J

] - [63 €4
eq eslM,g

] o [64 €3
er eolM,J

€2 €1 ] M,J ;
that permuting the last two entries inverts the cross ratio, i.e.
BRI i
and that a cyclic rotation of the last three entries yields the relation
[Z; ZﬂM,J ' [2 ZE}M,J ' [Z; zﬂM,J = -1
if (J;e1,...,eq4) € Q§\>4 is non-degenerate. We will discuss these relations and others

in detail in Theorem 4.21.
The cross ratios keep track of the Pliicker relations

(3) A(Jeleg)A(J€364) — A(Jeleg)A(J6264) + A(J6164)A(J6263) =0

satisfied by the Grassmann-Pliicker function A: E” — P. Namely, if (J;e;,...,e4) €
Qf, and J € E"~2 are such that J = |J|, then dividing both sides of the Pliicker
relation (3) by —A(Jejeq)A(Jeqes) yields the Pliicker relation for cross ratios

€1 €3

(& e ]
€2 €41 M,J

1 64}M,J+[ =1
where the notation a + b = ¢ in a pasture P is short-hand for a + b — ¢ € Np.

If (J;eq,...,eq) € Qpr is degenerate, then A(Jejes)A(Jeszes) = 0 and dividing
the Pliicker relation by —A(Jejes)A(Jeqes) yields [2; gi]M ;—1=0, and thus

[61 €2 -1

€3 €4 } M,J
by the uniqueness of additive inverses in P.

LEMMA 3.2. Let P be a pasture and M a P-matroid of rank r on E with dual
M*. Let (J;eq,...,eq) €Qp and I = E — Jey...eq. Then

[61 €2

:| o [61 €2
e3 es M1

es3 64:|M,J
as elements of P.

PROOF. Let n = #E. Choose J = (j1,...,jr—2) with [J| = J and I =
(i1,...,in—p—2) with |I] = I. Choose a total order on E. Let A : E" — P
be a Grassmann-Pliicker function for M. Then by [3, Lemma 4.2], there is a
Grassmann-Pliicker function A* : E™ " — P for M* such that for all identifica-
tions {i,7,k,1} = {1,2,3,4}, we have

A*(Ieser) = sign(m jri) - A(Jeje),
where m = m; ;1 is the permutation of E such that

(i) < ... < W(in—p_2) <7(e;) < m(er) <m(J1) < ... < 7(Jr—2) < 7(e;) < m(er)
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in the chosen total order of E. Since ; j; = 7 j k1 © Tk, for the transposition 74,

that exchanges ey, and e;, we have sign(m; j x1)/ sign(m; j 1) = —1. Thus we obtain
[61 62} _ A(Teges)A*(Tezey)
€3 €4l M1 A*(I€164)A* (16263)

_ sign(7r172,3)4) ] sign(ﬂ2)17473) ] A(J€264)A(J€163) _ |:61 62]
sign(mi24,3) sign(me134) A(Jezez)A(Jeres) €3 ealM,J

as claimed. O

3.2. Cross ratios for hyperplanes

There is a different, but closely related, notion of cross ratios associated to
certain quadruples of hyperplanes.

DEFINITION 3.3. Let M be a matroid of rank » on E and JH be its set of
hyperplanes. A quadruple of hyperplanes (Hi,..., Hy) € H* is modular if F =
HyNHyNHsNHy is a flat of corank 2 such that F' = H; N H; for all i € {1,2} and
J € {3,4}. A modular quadruple (Hy,..., Hy) is non-degenerate if F = H; N H; for
all distinct 4,5 € {1,...,4}. Otherwise it is called degenerate.® We denote the set of
all modular quadruples of hyperplanes by ©;; and the subset of all non-degenerate
modular quadruples by @§\>/1~

DEFINITION 3.4. Let P be a pasture and M a P-matroid with underlying
matroid M. Let (Hi,...,Hs) € Op. The cross ratio of (Hi,...,Hys) in M is the

element
[Hl Hz} _ fi(es)fa(eq)
Hs Hilar = fi(eq) foles)
of P, where f; : E — P is a P-hyperplane function for H; for i = 1,2 (cf. Definition
2.15), and where e}, € Hy — F for k = 3,4 with F = Hy N ---N Hy.

Since f1 and fo are determined by H; and Hs up to a factor in P>, the definition
of [g; gi ] 27 is independent of the choices of fi and f3. It follows from [3, Theorem
3.21, Lemma 4.5, and Definition 4.6] that it is also independent of the choices of e3
and ey.

We continue with a comparison of the two notions of cross ratios.

LEMMA 3.5. Let M be a matroid of rank r on E. The association (J;eq,...,
eq) — (Hy,...,Hy) with H; = (Je;) for i = 1,...,4 defines a surjective map
U : Qpr — Oy, which restricts to a surjective map U< : Q?/I — @<]>V[.

PrROOF. The flat F = Hy N---N Hy = (J) is of rank r — 2 since J is an
independent set of rank » — 2. We have H; N H; = F for all i = 1,2 and j = 3,4
since A(Je;e;) # 0 and thus (H; U H;) = E. This shows that (H,..., Hy) is
indeed a modular quadruple. By the same reasoning applied to arbitrary distinct
i,j € {1,...,4}, we conclude that ¥ restricts to a map T . QX[ — @%.

Given (Hy,...,Hy) € Oy and F = HiN---NHy, choose an independent subset
J C F with r — 2 elements and e; € H; — F fori =1,...,4. Since H; N H, = F
for i € {1,2} and k € {3,4}, the closure of Je;ey is E, i.e. Jesey is a basis of M.
Thus (J;e1,...,eq) € Qpr and ¥(J;eq,...,e4) = (Hy,...,Hy), which establishes

INote that in some papers the term “modular quadruple” is used for what we call a non-
degenerate quadruple; e.g. see [3], [7, Def. 5.1] and |26, Def. 3.18].
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the surjectivity of . If (Hy,...,Hy4) € 9%, then H; N H, = F and thus Je;eg
is a basis of M for all distinct i,k € {1,...,4}. Thus (J;eq,...,e4) € Q%d and
UO(Jseq,...,eq) = (Hy,..., Hy), which establishes the surjectivity of U¢. |

PROPOSITION 3.6. Let P be a pasture and M a P-matroid with underlying
matroid M. Let (J;eq,...,eq) € Qun and (Hy,...,Hs) = ¥(J;e1,...,e4). Then
we have

|:H1 Hz] _ [61 62}
Hy Hylnm ez es M, J

as elements of P.
PROOF. Since |Je;| is an (r —1)-set that generates H; and e; ¢ H; for i € {1, 2}
and j € {3,4}, we can apply Theorem 2.16 to conclude that

|:H1 H2:| . f1(€3)f2(64) . A(J6163)A(J6264) o |:61 62:|
Hs Hyln T o Lles ealm

- f1(64)f2(63) A(J€1€4)A(J6263)
as claimed. O

Our comparison of different notions of cross ratios has the following immediate
consequence.

COROLLARY 3.7. Let M be a matroid and (Jse1,. .. ea),(J's f1,..., f1) € Qur.
If (Jei) = (J'f;) fori=1,....4, then [ 2] = [} 1] ..

PROOF. By Proposition 3.6, we have [¢1 2] = [ 2] = [1 2], if H; =
<J€z>:<J/fz> fOI"L':L...,4. |:|

3.3. Universal cross ratios

Let M be a matroid of rank r on £ = {1,...,n} with Grassmann-Pliicker
function A : E" — K.
Recall from Section 2.4 the definition of the extended universal pasture

Py = Fy(Ti | AQL) #0) /{S}
of M, where S contains the relations T, = sign(c)Ty and the 3-term Pliicker
relations
TJ€1€2TJ6364 - TJelegTJeze4 + TJ€1€4TJ€263 =0
forallJ € E"2 and ey, ...,e4 € E, where we use the convention 71 = 0 if A(I) = 0.
The universal Grassmann-Pliicker function A : E" — PJ\JQ for M sends I € E" to
Ty if |I] is a basis of M, and to 0 otherwise. The universal Py/-matroid M for M

is defined by the Grassmann-Pliicker function T, flﬁ : BE" — Py, where I € E7 is
any r-tuple with A(I) # 0.

DEFINITION 3.8. Let M be a matroid with universal P,;-matroid M. Let
(J;e1,...,e4)€ Qprand (Hy, ..., Hy) € ©pr. The universal cross ratio of (J;eq,. ..,
eq) is the element

e] €2 L €1 €2
|:€3 64:|J '_ |:€3 €4j|1/\/[\,J
of Py, and the universal cross ratio of (Hy, ..., Hy) is the element
55 = [
Hs Hy|l "= LHz Hyldr

OfPM
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The relation between cross ratios of a P-matroid and the universal cross ratio
of the underlying matroid M is explained in the following statement.

PROPOSITION 3.9. Let P be a pasture and M a P-matroid with Grassmann
Pliicker function A : E" — P. Let M be the underlying matroid and Py its
universal pasture. Let xpr : Pyy — P be the universal morphism associated with M,
which maps T1/Tv to AX)/AX). Then

€1 €3 _ €1 €2
XM([eg 64:|J> - [63 64:|M,J
as elements of P for every (J;e1,...,e1) € Q.

PROOF. This follows directly from the definitions of Y7, A and the (universal)
cross ratios. 0

3.4. Fundamental elements

Universal cross ratios can be characterized intrinsically as the fundamental
elements of the universal pasture of a matroid. To the best of our knowledge, the
importance of fundamental elements in the study of matroid representations goes
back to Semple’s paper [27], where this concept was introduced in the context
of partial fields. We extend the notion of fundamental elements to pastures and
explain its relation to universal cross ratios in the following.

The property of cross ratios that lead to the definition of fundamental elements
are the 3-term Pliicker relations

A(Jeres)A(Jeses) — A(Jejes)A(Jeqey) + A(Jeres)A(Jegez) = 0

for a Grassmann-Pliicker function A : E" — P, where J € E" 2 and e1,...,eq € E.
If A(Je;e;) # 0 for all distinct 4, j € {1,...,4}, then division by —A(Jeieq) A(Jezes)
yields
[61 62i| + [61 63] _ A(J61€3)A(J62€4) A(Jeleg)A(J€364) 1
€3 ealAJ €2 e4lAd A(Jereq)A(Jeges)  A(Jereq)A(Jeses)

€1 €2

for the non-degenerate cross ratios [¢} €2 ], ; and [£} 2], 5 in P*.

DEFINITION 3.10. Let P be a pasture. A fundamental element of P is an
element z € P* such that z + 2’ = 1 for some 2’ € P*.

PROPOSITION 3.11. Let M be a matroid. For an element z € Py, the following
are equivalent:
(1) z is a fundamental element of Pus;
(2) z=[¢& Zi]J for some (J;e1,...,e4) € Q%/I;
3) z= [g; gi] for some (Hy,...,Hy) € @%/I.

PROOF. Our preceding discussion shows that [Z; o2 ] 5t [2; o ] ;= 1lfor (J;eq,

.,eq) € Q% Thus (2)=(1). The equivalence of (2) and (3) follows from Propo-
sition 3.6.

We are left with (1)=(2). Assume that z € P}; is a fundamental element,

ie. z+ 2 —1 =0 for some 2’ € P;;. Since the nullset of the extended universal

pasture PA‘Z is generated by the 3-term Pliicker relations, there must be an element

a € (Py;)* such that az + a2’ —a = 0 is of the form

TJelezTJ€3€4 - TJelegTJ€2€4 + TJ6164TJ62€3 = 0
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forsomeJ € E""2and ey, ...,es € E such that |Jeie;| is a basis of M for all distinct
i,7 €{1,...,4}, i.e. (J;eq,...,e4) € Q% where J = |J|. After a suitable permuta-
tion of ey,...,eq, we can assume that —a = Tye,e,TTeses a0d a2 = =T3¢ 05T Tese, -
Thus

—az TJelegTJ€2€4 €1 €2

—a TJ8184TJ€2€3 €3 €alJ

is a cross ratio, as claimed. O

3.5. Compatibility with the Tutte group formulation
of Dress and Wenzel

We provide a comparison of the different types of universal cross ratios, as
introduced above, with the cross ratios introduced by Dress and Wenzel in [15,
Def. 2.3].

The image of a universal cross ratio [2; 2 ] ; under the isomorphism Py — Ty
from Theorem 2.21 appears implicitly already in [14, Prop. 2.2], and is as follows.

LEMMA 3.12. Let M be a matroid with Grassmann-Plicker function A : E" —
K, Tutte group Ty and universal pasture Prr. Let ¢ : Py — Tay be the isomor-
phism of groups that sends T1/Ty to X1/Xyv for LT € supp(A). Then

|:€1 62] _ XJ8183XJ6264
<P 63 64 J XJ6164XJ€2€3
for all (J;e1,...,eq) € Uy and J € E™=2 with |J| = J.

PROOF. Note that the ratio (Xje,eq Xeses) (Xaeies Xaeses) ! does not depend
on the ordering of J. The rest follows immediately from the definitions. |

Let (Hy, ..., Hs) be a modular quadruple of hyperplanes of M and F the corank
2 flat contained in all H;. Let e3 € H3 — F and e € Hy — F. The Dress—Wenzel
universal cross ratio of (Hy, ..., Hy) is the element

[Hl H2:| . XH1,€3XH2,€4
Hy Halr XH2,€3XH1784
of the group T9¢.
As shown in [15, Lemma 2.1], this definition is independent of the choices of e3
H, H, Hy Hy

and e4. Since degq, ([Hs H4]j{) = 0, it follows from Theorem 1.3 that [H3 HJj{

is contained in the image of the injection ¢ : Tps — T35.

LEMMA 3.13. Let v : Py — Tg]\fj be the group homomorphism that maps TIeTI_e,1
to XH&X;IL, where 1 € E"=Y e,e/ € E, I = 1|, H = (I), and Ie,I¢’ are bases of
M. Let (Hy,...,Hy) € O be a modular quadruple of hyperplanes of M. Then

o[ ]) = [ e

PrOOF. It is clear from the definitions that ) = top. By Lemma 3.5, there is an
element (J;eq,...,eq) € Qpr with U(J;e,...,e4) = (Hy,..., Hy), ie. H; = (Je;)
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for i =1,...,4. Using Proposition 3.6, we obtain
H, Hy €1 €2
w([Hg H4:|> LOQD([63 64:|J>

= XJ6163XJ6264
XJ8184XJ€2€3

XHl,esXH27€4

XH1784XH2>83

[y 1]

as claimed. O
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CHAPTER 4

Foundations

The foundation F; of a matroid M is the subpasture of multidegree 0-elements
of the universal pasture Py, and it represents the functor taking a pasture P to the
set of P-rescaling classes of M. In particular, just as with Py, the foundation can
detect whether or not a matroid is representable over a given pasture P in terms
of the existence of a morphism from F); to P.

One advantage of the foundation over the universal pasture is that, because
of some deep theorems due to Tutte, Dress—Wenzel, and Gelfand—Rybnikov—Stone,
there is an explicit presentation of Fi; in terms of generators and relations in which
the relations are all inherited from “small” embedded minors. More precisely, the
foundation of M is generated by the universal cross ratios of M, and all relations
between these cross ratios are generated by a small list of relations stemming from
embedded minors of M having at most 7 elements.

We begin our discussion of foundations by reviewing some facts which were
proved in the authors’ previous paper [5]. Next we explain the role of embedded
minors in the study of foundations. We then exhibit, through very explicit com-
putations, the relations between universal cross ratios inherited from small minors
which enter into the presentation by generators and relations alluded to above. Fi-
nally, we use the aforementioned result of Gelfand, Rybnikov and Stone to prove
that these relations generate all relations in F; between universal cross ratios.

REMARK 4.1. The term “foundation” is derived from the fact that I, is the
subpasture of the universal pasture Pp; that is generated by the fundamental ele-
ments of Pyy.

4.1. Definition and basic facts

Let M be a matroid of rank r» on E with extended universal pasture PJJV?. For
a subset I of F, let ;7 : E — 7Z be the characteristic function of I, which is an
element of Z¥. The multidegree is the group homomorphism
degp: (Py)* — ZF
Ty — 51,
where I = [I|. It is easily verified that this map is well-defined, cf. [5, section 7.3].
The degree in i is the function deg, : (P;;)* — Z that is the composition of degp, :
(Py;)* — ZF with the canonical projection to the i-th component, i.e. deg;(T}) = 1
if i € I and deg;(T1) = 0if i ¢ I. The total degree is the function deg : (P);)* — Z
that is the sum over deg; for all i € F, i.e. deg(T1) = > _,cpdeg;(T1) = #1 = 7.

DEFINITION 4.2. Let M be a matroid with extended universal pasture PAZ. The
foundation of M is the subpasture Fj; of PX} that consists of 0 and all elements of
multidegree 0.

35
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Note that the universal pasture P, of M is the subpasture of PI\J;[ that is
generated by all units of total degree 0. Since deg(z) = 0 if degg(z) = 0, the
foundation F; of M is a subpasture of Py,.

The relevance of the foundation of M is the fact that it represents the rescaling
class space

X8 (P) = {rescaling classes of M over P}

considered as a functor in P.

THEOREM 4.3 ([5, Cor. 7.26]). Let M be a matroid and P a pasture. Then there
is a functorial bijection XY, (P) = Hom(F, P). In particular, M is representable
over P if and only if there is a morphism Fyp; — P.

Recall from [14] that the inner Tutte group ’JI‘SS[) of a matroid M is defined as the
subgroup of the Tutte group T s of M that consists of all elements of multidegree 0,
where the multidegree deg : Ty; — ZF is defined in the same way as the multidegree

deg : Py — ZF. This yields at once the following consequence of Theorem 2.21 (cf.
[5, Cor. 7.11]).

COROLLARY 4.4. The canonical isomorphism Py, — Ty restricts to an iso-
morphism Fy; — Tg&),

REMARK 4.5. Wenzel observes in [34, Thm. 6.3] that a matroid representation

over a fuzzy ring K induces a group homomorphism Tg\(y — K>, and that this
homomorphism detects the rescaling class of a representation. This can be seen as
a partial analogue of Theorem 4.3 for fuzzy rings (cf. Remark 2.22).

4.2. Universal cross ratios as generators of the foundation

Let M be a matroid of rank r on F and P]'V'} its extended universal pasture.
The simplest type of elements of Py, with multidegree 0 are universal cross ratios
[el €2i| _ TJele3TJeQe4
€ €aldJ TJ€1€4TJ€2€3
where (J;e1,...,e4) € Qp and J € E"~2 such that |J| = J. This formula shows
that the universal cross ratios are elements of the foundation F; of M. It is proven

in [5, Cor. 7.11] that the foundation is generated by the universal cross ratios. To
summarize, we have:

THEOREM 4.6. Let M be a matroid. Then [ ¢} ZL € Fyy for every (Jieq, ...,
e4) € Qur, and Fyy is generated by the collection of all such universal cross ratios.

Using Proposition 3.6, we obtain:

COROLLARY 4.7. Let M be a matroid. Then [Z; gj] € Fy; for every (Hy,. ..,

Hy) € On, and Fyy is generated by the collection of all such hyperplane universal
cross rattos.

4.3. The foundation of the dual matroid

Let M be a matroid of rank 7 on E and Py, its universal pasture. By definition
the identity morphism id : Py; — Py is the characteristic morphism of the universal
Pys-matroid M; cf. Theorem 2.18. The underlying matroid of M is M = M. The
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underlying matroid of the dual Py/-matroid M* of M is the dual E =M"* of M,
cf. [3, Thm. 3.24]. Let wys : Py« — P be the characteristic morphism of M*.

PROPOSITION 4.8. Let M be a matroid of rank r on E. Then wy; : Py« — Py
is an isomorphism of pastures that restricts to an isomorphism Fyr« — Fyr between
the respective foundations of M* and M. Let n = #FE. For every I € E"~ "1,
JeE"Y ande, f € E such that E = [I|U|J| U {e, f}, we have

wM(TIe> _ Ty
Tiy Ty’
and for every (J;e1,...,eq) € Qp and I = E — Jey ... eq, we have (I;e1,...,e4) €
Q- and
er €z _ | € ez
wM([e‘s 64]M\*,I) - [63 64}7\4\,J’

where M is the universal Pyr-matroid of M and M* is the universal Py« -matroid
of M*.

PRrROOF. The construction of wys, applied to M* in place of M, yields a mor-
phism wps+ : Ppyes — Ppy«. Since M** = M, we have Pyr+«« = Pp;. The composi-
tion wps o was+ : Py = Ppy«r — Ppy+ — Py is the characteristic morphism of the
double dual M** of ]\/{7, which is equal to M by [3, Thm. 3.24], and thus wps o wps-
is the identity of Pp;. Similarly, the composition wps« o wys is the identity of Pp«.
This shows that wp; and wps« are mutually inverse isomorphisms.

Let A : E" — Py; be a Grassmann-Pliicker function for M. Endow E with a
total order and define sign(iy,...,4,) = sign(m) as the sign of the permutation 7
of E such that m(iy) < --- < w(iy) if 41,...,4, € E are pairwise distinct. Then by
[3, Lemma 4.1], there is a Grassmann-Pliicker function A* : E"~" — Py for M
that satisfies

A" (i1, yin—r) = Sig(i1, .-y 8n) Alln—rt1s---in)

for all pairwise distinct i1, ...,i, € E. Thus if I=(41,...,9p—p—1), J=({1,--,Jr-1)
and e, f € E are as in the hypothesis of the theorem, then

wM<TIe> _ A*(Ie) sign(iy, ..., in—r—1,€,01,-- -, Jr—1, [)AJf) Ty

TIf - A*(If) B Sign(ilw"77;n—r—17f7j17"'7jT—1ae)A(Je) B TJe’

as claimed. If (J;e1,...,eq) € Qpr and I = E — Jey ... ey, then Je;e is a basis
for M, and thus Ieje; is a basis for M* for all i,j € {1,2} and k,l € {3,4}. Thus
(I;e1,...,e4) € Qpr+. The image of the corresponding cross ratio under wyy is

Wi [61 62} _ A*(Ieje3) A (Iegey) _ [61 62}/\ _
€3 calr A*(Ieyeq) A*(Ieges) €3 Cal M I

where I € E"7"2 such that |I| = I and where we use Lemma 3.2 for the last
equality. Since the foundations of M and M* are generated by cross ratios, it
follows at once that wy; restricts to an isomorphism Fi;« — F)y. [l

& o]
es es M, J

4.4. Foundations of embedded minors

Let M be a matroid of rank r on E, and let M be the universal Pps-matroid
associated with M, whose characteristic function is the identity map on Pp;; cf.
Theorem 2.18. Let A : E™ — Pj; be a Grassmann-Pliicker function for M; e.g. we
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can choose some Iy € E” such that |Iy| is a basis of M and define A(I) = Ty/Tx, if
II| is a basis of M and A(I) = 0 if not.

Let N = M\I/J be an embedded minor of M. Let s be its rank and Ey =
E — (I'UJ) its ground set. Choose an ordering J = {js41,...,j-} of the elements
of J. By [3, Lemma 4.4], the function

A\I/J: E5 — Py
I — A(I]erl.?r)

is a Grassmann-Pliicker function that represents N = M\I/J and its isomorphism
class N = M\I/J is independent of the choice of ordering of J. The characteristic

function of the Py/-matroid N is a morphism ¢yng/; @ Py — Ppr; once again cf.
Theorem 2.18.

PROPOSITION 4.9. Let M be a matroid of rank r on E and N = M\I/J an
embedded minor of rank s on En = E — (I UJ). Let J = {js41,...,4r}. Then the
morphism Yap 1,5+ Py — Pu satisfies the following properties.

(1) For all1,J € E3; such that |I| and |J| are bases of N, we have

Vg J(£> = —T1j5+1"'j"'
M\ Ty T5jutr.dn

(2) The identification N* = M*\J/I yields a commutative diagram

Y\ 1
Py« Py
WNJ/ J/wl\l
YnNI)T
Py Py

of pastures, where wy and wyy are the isomorphisms from Proposition 4.8.

(3) The morphism Y1)y @ Py — Pu restricts to a morphism oy
Fn — Fyy between the foundations of N and M. For (J';eq,...,e4) € Qn,
we have (J'U J;e1,...,eq) € Qpr and

SOM\I/J([Z Z]J/> = [2, ZLUJ"

(4) If every element in I is a loop or parallel to an element in En and if every
element in J is a coloop or coparallel to an element in En, then o,y
18 an tsomorphism.

PROOF. Property (1) follows from the direct computation

" (ﬁ) _ A Ty,
MM Ty INVIRIE I T

We continue with (2). Let r* be the corank of M and s* the corank of N.
Choose an ordering I = {ig+11,...,%+}. Let I € Efv*_l, Je Efv_l and e, f € En
be such that Ex = |I| U |J| U {e, f}, which are the assumptions needed to apply
Proposition 4.8 to wy. Since Py~ is generated by elements of the form Ty./T1¢, the
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commutativity of the diagram in question follows from

Tie T
Yangyg o wN <Tif) = Yanisg ( - %)

_T54jin i
TJejs+1~~jr

Tei\* P o
CUM( I s*4+1 r >
Tifige . i
TIe)
= W O’ll) * .
MO WYm \J/I<T1f
Note that we can apply Proposition 4.8 to wys since E = |I|U|J|U{e, ffUTUJ.
We continue with (3). If (J';eq,...,eq) € Qu, then for all ¢ € {1,2} and

k € {3,4}, the set J'e;ey, is a basis of N and thus J' U J U {e;, e;} is a basis of M.
Thus (J' U J;e1,...,eq) € Qpr. Let J' € Ef; such that |J'| = J'. Then
e; eg . A\I/J(J/6163) . A\I/J(J/6264)
Q/JM\I/J |:63 64:|J' - A ! A !
\I/J(J 6164) \I/J(J 6263)
TJ’€1€3j5+1--AerJ’€2€4js+1-~jr
Ty Ty

- [61 62:|
= Lles eqdgug

€1€4Js+1---Jr €2€3Js+1---Jr

By Theorem 4.6, the foundation of a matroid is generated by its cross ratios. Thus
the previous calculation shows that 1\ 7,5 restricts to a morphism oy g/y : Fn —
Fyr which maps [2 zi]J, to [2 Zj]J,UJ.

We continue with (4). By successively deleting or contracting one element at
a time, it suffices to prove the claim for #(I U J) = 1. Using (2), we can assume
that I = {e} and J = @. If e is a loop, then I’ — I’ defines a bijection between
the set of bases I' C Ex = E — {e} of N and the set of bases of M. Moreover, for
every (J';e1,...,eq4) € Qpr, we have e ¢ J'e; ... eq, which provides an identification
Qn = Q. Thus Py and Pps have the same generators and the same 3-term Pliicker
relations, so ¥ap\7/7 : Py — Py is an isomorphism. This argument also shows that
om\1/g  Fn — Fy is an isomorphism.

If e is parallel to an element f € Ey, then (J'e) = (J'f) for every subset J' of
Eyn. Thus for e1,...,e4 € E and fi,..., f4 € Ey with either ¢; = f; or (e;, fi) =
(e,f) fori=1,...,4, we have (J';e1,...,eq) € Qpr if and only if (J'; f1,..., f4) €

Qn, and QDM\I/J([]{; }CZ]J,) = [2; 2]]/' This shows that PM\IJJ * Fny — Fyis
an isomorphism, which completes the proof. O

An immediate consequence of Proposition 4.9 is the following.

COROLLARY 4.10. The foundation of a matroid is isomorphic to the foundation
of its simplification and isomorphic to the foundation of its cosimplification.

ProOOF. This follows at once from Proposition 4.9, since the simplification of
a matroid M is an embedded minor of M of the form M\I, where I consists of all
loops of M and a choice of all but one element in each class of parallel elements.
Similarly, the cosimplification of M is an embedded minor of M of the form M/J,
where J consists of all coloops of M and a choice of all but one element in each
class of coparallel elements. (Il
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40 4. FOUNDATIONS

Another consequence of Proposition 4.9, which we will utilize constantly in
the upcoming sections, is the following observation. Since a universal cross ratio
[Z; ij]] involves only bases Je;ex that contain J and have a trivial intersection
with I = F — Jejesesey, we have

|:61 62j| _ TJ€1€3TJ6264 . w(T(el,eg)) @(T(e27e4)) _ ([61 62:| >
J o

€3 €4 B €3 ey

TJ€1€4T36263 (p(T(El,EAL)) QO(T(ez,eg))

for the morphism ¢ = pyp7/7 @ Fapniyg — Fa from Proposition 4.9. Thus every
universal cross ratio in F); is the image of a universal cross ratio of an embedded
minor N = M\I/J of rank 2 on a 4-element set {e1,ez,e3,e4} = E — (I UJ).

4.5. The foundation of U}

Let M = UZ be the uniform minor of rank 2 on the set E = {1,...,4}, which is
represented by the Grassmann-Pliicker function A : E? — K with A(4,j) = 1—6; .
The cross ratios of M are of the form

|:6 € ] : |:5 € i|
3 ¢4 ’ “3 &4l o
ey 62]

for some permutation e : i — e; of E. Since permuting columns and rows in [63 or
does not change the cross ratio, as pointed out in section 3.1, we have

. 12 21 34 43
(Ro™) [34]:[43]:[12]:[21]'
Thus we can assume that e; = 1, and with this convention, we find that each of
the 24 possible cross ratios is equal to one of the following six:

52l Las] Ll Tael [as] 5]
They satisfy the following two types of multiplicative relations

ey ] = [l Lal=Doln sl =Goal

ey [3i]-las]-Tasl = -0 [As][aa] [5e] = v

and the Pliicker relations

®e [al+lal=v [al+lsal=v Lal+lis)=t

These relations can be illustrated in the form of a hexagon, see Figure 4.1. The
three edges with label * refer to relations of type (R1*), the three edges with label
+ refer to the Pliicker relations (R+*), and the two inner triangles refer to the
relations of type (R2*).

Note that we can rewrite the relations of type (R1*) as [$2] - [12] =1, and
so forth, which highlights an analogy with the Pliicker relations [% ?1] + B i] =1

This makes the meaning of the edge labels * and + easy to remember.

PROPOSITION 4.11. Let & = [$%] and y = [13]. Then the foundation of
M =U?} is
Fy = U = Fi{zy)/{z+y -1}
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FIGURE 4.1. The hexagon of cross ratios of U2
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In particular, we have

[ia] == Tasl = L) = —w [os] =

PROOF. By relation (Ro*), Fy is generated by the 6 cross ratios

v= (33w =LAl Ll [e] [sa] [as)

By relation (R1*), we have

HEA I 1 PRI 1 I

Relation (R2*), paired with (R1*), yields

52 = [2a) =-[3) - [i3] = —=
Applying (R1*) once again yields
23] = [32) = =

By (R+*), we have # +y — 1 = 0. This shows that the foundation Fy; of M = U2
is a quotient of U = F¥(z,y) /{z +y — 1}.

There are several different ways to show that there are no further relations in
F; aside from those already present in U, for example:

(1) One can work this out “by hand”.

(2) One can utilize the fact that U} is near-regular, which implies that there
is a morphism Fj; — U.

(3) One can apply Theorem 4.21, whose proof does not rely on Proposi-
tion 4.11.

We explain a fourth route, which uses a theorem of Dress and Wenzel determin-
ing the inner Tutte group of a uniform matroid. In the case of M = U?, [14, Thm.
8.1], paired with Corollary 4.4, shows that F,; ~ T®) ~ (Z/2Z) x Z? ~ U*. We
conclude that the quotient map U — F); is an isomorphism between the underlying
monoids. We are left with showing that every relation in the nullset of F); comes
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42 4. FOUNDATIONS

from U, which is the intersection of the nullset Np+ of Py, with Sym®(Fy/). Since
M
N Py is generated by the single term

T19T54 — T1 3704 + ThaTos = —T1aTo3- (x+y—1),

where we use the short-hand notation T; ; = T{; jy, every term in Np,, is a multiple
of x +y — 1. This shows that U — F); is an isomorphism. O

Morphisms from U into another pasture can be studied in terms of pairs of
fundamental elements:

DEFINITION 4.12. A pair of fundamental elements in P is an ordered pair (z, 2’)
of elements z, 2z’ € P* such that z + 2/ = 1.

LEMMA 4.13. Let P be a pasture. Then there is a bijection between Hom(U, P)
and the set of pairs of fundamental elements.

PROOF. Every morphism f : U = F&(z,y)/{z +y = 1} — P maps = and y
to invertible elements in P. Since z+y =1, we have f(z)+ f(y) =1 in P, which
shows that ( fl@), f (y)) is a pair of fundamental elements. This defines a map
® : Hom(U, P) — Fp, where Fp is the set of pairs of fundamental elements in P.

Since f is determined by the images of x and y, we see that ® is injective. On
the other hand, for every pair (u,v) of fundamental elements in P, the map = — u
and y — v extends to a morphism f: U — P. Thus ® is surjective as well. ]

Recall that a reorientation class is a rescaling class over the sign hyperfield S.
The following corollary is well known:

COROLLARY 4.14. The rescaling classes of U2 over a field k are in bijection
with k — {0,1}, and U} has 3 reorientation classes.

PRrROOF. If P = k is a field, then y = 1 — x is uniquely determined by z, and
x,y both belong to k™ precisely when = € k — {0,1}, which establishes the first
claim. The second claim follows from the observation that a +b = 1 in S if and
only if (a,b) is one of the 3 pairs (1,1), (1,—1) and (-1, 1). O

4.6. The tip and cotip relations

In this section, we exhibit two types of relations that occur for matroids of
ranks 2 and 3, respectively, on the five element set £ = {1,...,5}.

As in the case of the uniform matroid UZ, we write [;le] for [;le] in the
case of a rank 2-matroid M. We also use the shorthand notation T; ; = T(; ;) and
Tije = Tiijk)-

LEMMA 4.15. Let M be a matroid of rank 2 on E = {1,...,5}. Assume that
{i,7} is a basis of M for all i € {1,2} and all j € {3,4,5}. Then

12 12 12
(R3%) 3] las] [55) =1
PRrROOF. Equation (R3*) follows from the direct computation

= 1. ]

[1 2} . [1 2} . [1 2} _ Ni3Trq ThaTos TisTogs
34 45 531 7 T Ty TisTeuy TiaTogs
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4.7. RELATIONS FOR PARALLEL ELEMENTS 43

We call equation (R3*) the tip relation with tip {1,2} and cyclic orientation
(3,4,5). The reason for this terminology is that in the case of the uniform matroid
M = UZ, the three cross ratios in equation (R3*) stem from three octahedrons in
the basis exchange graph of M, which share exactly one common vertex, or tip,
which is {1, 2}.

Note that if M is not uniform, i.e. some 2-subsets {i,j} of E are not bases,
then some of the cross ratios in equation (R3*) are trivial. We will examine this
situation in more detail in Section 5.1.

In the case of a matroid of rank 3, we write [1’C ”m for Ug Jl ] (m}”

LEMMA 4.16. Let M be a matroid of rank 3 on E = {1,...,5}. Assume that
{i,7,k} is a basis of M for all i € {1,2} and all j, k € {3,4,5} with j # k. Then

(Re*) 53l lasl lasli =
PRrOOF. Equation (R4*) follows from the direct computation
sl [is]s-[550,

T513 - T524 T314-T325 Tais5-Tao3

T514-Ts523 T315-T324 Tui3-Taos
Tyns  T3p5  Ts13  Tapsz  T314  Ts24

—T415 —T325 —T513 —Ta23 —T314 —T524
= (_1)6 = 1. O

We call equation (R4*) the cotip relation with cotip {1,2} and cyclic orientation
(3,4,5). Similar to the rank 2-case, we use this terminology since in the case of the
uniform matroid M = U2, the three cross ratios in equation (R4*) stem from three
octahedrons in the basis exchange graph of M, which share exactly one common
vertex, which is {3,4,5}. Therefore we call the complement {1,2} of this common
vertex the cotip.

Note that the tip and cotip relations are both invariant under even permutations
of {1,...,5} that leave {1,2} and {3,4,5} invariant. An odd permutation that
leaves {1,2} and {3,4,5} invariant leads to an inversion of all cross ratios in the
tip or cotip relation. Any other permutation of E leads to a significantly different
tip or cotip relation, provided that all involved values of A are nonzero.

4.7. Relations for parallel elements

In this section, we exhibit a type of relation between universal cross ratios
that stems from parallel elements. As in the previous section, we write [é 2] 5 for
153y

LEMMA 4.17. Let M be a matroid of rank 3 on E = {1,...,6} and assume that
5 and 6 are parallel elements, i.e. {5,6} is a circuit of M. If ({k};1,...,4) € Qum
for k =5,6, then

12 12
(R5%) [3 4}5 - [3 4]6'
PROOF. By our assumptions, every subset of the form {i, 7, k} with ¢ € {1, 2},
j €{3,4} and k € {5,6} is a basis of M, but no basis contains both 5 and 6. Thus
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({1};3,4,6,5) and ({2};3,4,5,6) are degenerate tuples in 7, and thus |3 ‘51}1 =
[24] , = 1. With this, equation (R5*) follows from the computation

(53], = [33], [65), [5 6.

T513 - Ts524  Tize-Tias  To35-Toa6

T514-T523 Ti35-T146 1236 1245
Tvas Tozs  Ts13 1613 -Te24 T524

Tias Tozs  Ts13  Te1,4-Te23 Ts24
12
[3 4} 6 U

4.8. The foundation of the Fano matroid and its dual

In this section, we show that the Fano matroid F; and its dual F; impose
the relation —1 = 1 on their foundation, which is Fo. This already follows from
[5, Thms. 7.30 and 7.33|, using the fact that F7 and F7 are not regular. Here we
offer a proof in terms of a direct calculation that does not rely on knowledge of the
representability of Fr.

The Fano matroid F% is the rank 3 matroid on F = {1,...,7} represented by
the Grassmann-Pliicker function A : E® — K with A(i,i +1,i+3) = 0 for i € E,
where we read ¢ + 1 and ¢ + 3 modulo 7, and A(4,j,k) = 1 otherwise. Thus the

family of circuits is {{z,z +1,i+ 3} ‘@ € E}7 together with all 4-element subsets
that do not contain one of these, which can be illustrated as follows:

1

LEMMA 4.18. The foundation of both the Fano matroid Fr and its dual F7
18 FQ.

PROOF. Since the foundation of F7 is isomorphic to the foundation of F7, it is
enough to prove the lemma for the Fano matroid. Throughout the proof, we read
expressions like ¢ + k and ¢ — k modulo 7 for all ¢,k € E.

Since the rank of F7 is 3, the set J of a tuple (J;e1,...,e4) € Quy is a singleton,
ie. J = {j} for some j € E. The element j is contained in the three circuits
Ci={j,j+1,7+3}, Co={j—1,j,7+2} and C5 = {j — 3,5 — 2,4} whose union
is equal to E. By the pigeonhole principle, we must have ey, e; € C; for some i and
k # 1. Since j, e, ¢; are pairwise distinct, C; = {j, ex, e;} is not a basis. This shows
that every (J;eq,...,eq) € Qp is degenerate, and thus [2; Zi]J = 1. We conclude
that Fj; is a quotient of FT.

We use the shorthand notations [; ”m = [; {]{m} and T;,k,l = Titj,itk,itl)

in the following. Note that T;;Z,k+m,l+m = Tj?‘,k’l and Tg(j),a(k),a(l) = sign(o)T;,k’l
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for every permutation o of {j, k,l}. We calculate that

eyl beiell

I
'E“

©
I
—

151,20 16,34 15,25 16,6,

15141532 1524 To65

% [ [ %
TO,LQ ’ TO,3,4 ) T0,2,5 : T0,6,4

i—3 i—4 i—b i—2
T340 Tioe - T502 Toq10

|
i~

.
Il
i

I
'E“

=1
_ ﬁ T3,3,4 ] T§,674 ] Tg,z,s ) T3,1,2
i1 Tosa  Tooa  Tons  —Toiz
= (-1)" = -L

This shows that the foundation Fi; of Fy is a quotient of Fy = FY /{-1 = 1}.
Since F does not contain any UZ-minors, all cross ratios are degenerate and thus the
nullset of Fi; does not contain any 3-term relations. We conclude that F;=F,. 0O

4.9. A presentation of the foundation by hyperplanes
Gelfand, Rybnikov and Stone exhibit in [17, Thm. 4] a complete set of multi-

plicative relations in the inner Tutte group of M between the cross ratios [g; gﬂ of
modular quadruples (Cy,...,Cy) of circuits, which results in essence from Tutte’s

homotopy theorem. Since hyperplanes are just complements of circuits of the dual

matroid, this set of relations yields at once a complete set of relations for cross

ratios [Z; gz] of modular quadruples (Hy, ..., Hs) of hyperplanes.

THEOREM 4.19. Let M be a matroid with foundation Fy;. Then
Fy o= Fy ([ 2] (Hy,. .. Hy) €On) [ S,

where S is defined by the multiplicative relations

(H-) -1=1
if the Fano matroid Fy or its dual 7 is a minor of M;

H, H» Hy, Hy Hs Hy H, Hj
(Ho) (m ) = g ml = m = na

for all (Hy,..., Hy) € ©Y,;

(HO) [ 2] =1

Hs H,
for all degenerate (Hy,...,Hy) € Op;

(H1) ) = (e

for all (Hy,...,Hy) € @XI;

[Hl H2i| . [Hl H3i| ) [Hl H4]

(H2) Hy H, H, H, Hy, Hy] = 71
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46 4. FOUNDATIONS
for all (Hy,..., Hy) € ©Y;;
Hl H2 H1 H2 Hl H2 o
(H3) |:H3 HJ ’ [H4 H5] ' [Hs Hs} =1
for all (Hy, Hy, H, Hy), (Hy, Ha, Hy, Hs), (Hy, Ho, Hs, H3) € ©3,; and

Hys Has Hiy3 Has Hyy Hoyl
(H4) [H35 H45] ' [H43 H53} ' [H54 HsJ =1
where H;j = (F;UF;) for five pairwise distinct corank 2-flats Fy, ..., Fs that contain
a common flat of corank 3 such that (Hys, Has, Hss, Hys), (H14, Hay, Hs4, H3y) €
@§\>/1 and (Hys, Ha3, Hys, Hs3) € O)pr, as well as the additive Plicker relations

] 3 ] -

(H+) o, H, H H] =1

forall (J;eq,...,eq4) € @%/[.

PRrROOF. The theorem follows from a translation of [17, Thm. 4] to our context,
by replacing a cocycle C' by the hyperplane H = E — C. To pass from the inner

Tutte group to the foundation, we employ Lemma 3.13, which identifies [g; gj ]T

with [g; gj] under the canonical isomorphism P}, — ']I‘sg,).

Using this translation, relation (H-) is equivalent to (TG0) and (CR5) in [17].
Relation (Ho) is equivalent to (CR3). Relation (HO) is equivalent to (CR1). Re-
lation (CR4) is equivalent to (H1) (in the case that one cross ratio is degenerate)
and (H3) (in the case that all cross ratios are non-degenerate). Relation (H2) is
equivalent to (CR4). Relation (H4) is equivalent to (CR6), where we observe that
the degenerate case L = L' in [17] reduces (CR6) to (CR1). Finally note that the
3-term Pliicker relations of Fj; are captured in (H+). O

REMARK 4.20. We include a discussion of relation (H4), which has the most
complicated formulation among the relations of Theorem 4.19. Since all flats con-
tain a common flat of corank 3, this constellation comes from a minor of rank 3,
which has 5 corank 2-flats corresponding to Fi, ..., F5. In the non-degenerate situ-
ation where all hyperplanes H;; are pairwise distinct, this minor is of type U, 3. and
the containment relation of the F; and H;; can be illustrated as on the right-hand
side of Figure 4.2.

The original formulation of Gelfand, Rybnikov and Stone concerns points, which
are circuits, and lines, which are unions of circuits having projective dimension
1. To pass from our formulation to that of Gelfand-Rybnikov-Stone, we take the
complement of a hyperplane H;;, which is a circuit C; of the dual matroid. Thus,
in the non-degenerate case, axiom (CR6) expresses the point-line configuration
of U2, which we illustrate on the left-hand side of Figure 4.2. The lines L; are
the complements of the flats F;, and therefore the union of the circuits C;; (with
varying j).

Note that there are two degenerate situations that (CR6) allows for: (a) three
lines, say L1, Lo and Lj, intersect in one point C15 = C13 = Cbs; this case corre-
sponds to the point-line arrangement of a parallel extension of U7, which we denote
by C¥ in Section 5.1.3 and in this case, (His, Hogz, Has, Hs3) € Oy is degenerate;
and (b) two lines agree; this case corresponds to the point-line arrangement of UZ.
Note that this latter relation corresponds to (H3), but with one of the quadruples
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4.10. A PRESENTATION OF THE FOUNDATION BY BASES 47

of hyperplanes being degenerate. Since in this case, (H3) is equivalent to (H1), we
can assume in (H3) that all quadruples of hyperplanes are non-degenerate.

P

FIGURE 4.2. Point-line configuration for U2 and flat configuration for U3

4.10. A presentation of the foundation by bases

Using the relation between cross ratios [gﬁ gj] for modular quadruples (Hy,

..., Hy) of hyperplanes and universal cross ratios [2 o2 } ; for (J;e1,...,eq4) € Qur,
as exhibited in Proposition 3.6, we derive from Theorem 4.19 the following descrip-
tion of a complete set of relations between universal cross ratios. The possibility of
such a deduction was observed and communicated to us by Rudi Pendavingh, who
proves a similar result in the joint work [10] with Brettell.

THEOREM 4.21. Let M be a matroid with foundation Fy;. Then
Fy = FE([a2],|(Jier,...,ea) €Qu) [ S,
where S is defined by the multiplicative relations

(R-) ~1=1
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if the Fano matroid Fy or its dual F is a minor of M;

(Ro) [61 62} _ [62 61} _ [63 64} _ [64 63}
€3 €41J €4 €31J €1 e21J €2 €1 1J

for all (J;eq,...,eq) € Q%ﬁ

) e, -
for all degenerate (J;eq,...,eq) € Qpr;
-1
(RD) el = 1o al,
for all (J;el,...,e4)€Q§\>4;
(R2) ol el laal, =
for all (J;el,...,e4)€(2%/[;
(R3) [Z; :ﬂf[:; ZE}J.[:; :ﬂJ =1

foralley,...,es € E and J C E such that each of (J;e1,ea,e3,¢e4), (J;e1,ea,€4,€5)
and (J; e, ez, e5,e3) is in Qpr;

el 62} .[61 62} .[61 62} -
(R4) [63 €sljes Les e5lje; Lles e3ljey = 1
for all ey,...,e5s € E and J C E such that (Jes;eq,ea,e3,e4), (Jes;eq, e, eq,e5)
and (Jey;e1,ez2,es5,e3) are in Qpy;
e1 62:| o |:61 62:|
(R5> [63 egljes — Les esgl jeg

foralley,...,ec € E and J C E such that (Jes) = (Jeg) and such that (Jes;eq, e,
es,eq) and (Jeg;e1, e, e3,eq4) are in QI<\>/I; as well as the additive Pliicker relations
€] €2 €1 €3 o

(R+) [63 64]J+|:62 64i|J =1
for all (J;eq,...,eq) € Q%

PRrROOF. By Proposition 3.6, we have [2; Eib = [g; gﬂ for every (J;eq,...,
eq) € Qp and H; = (Je;) for i = 1,...,4. Thus (R-)—(R3) follow from (H-)-
(H3), and (R+) follows from (H+). To see that (R4) implies (H4), define for given
Jis-v-yjr_3,€1,...,e5 € E and J = {j1,...,7-—3} as in (R4) the corank 2 flats
F; = (Je;) fori =1,...,5, which are pairwise distinct and contain the common flat

(J) of corank 3, as required. For i # j, we define hyperplanes H;; = (F; U F;) =
(Jese;). Then we have for all identifications {7, j,k} = {3,4,5} that

(o], = [ ]

which shows that (H4) implies (R4). The relation (R5) follows from
e e _ [Hy Hy7l _ Je1 e
[63 €4i| Jes [Hg HJ - [63 64]]@6’
where H; = (Jese;) = (Jege;) is the i-th coefficient of the common image (Hy, ..., Hy)
of (Jes;er,...,eq) and (Jeg;eq,...,eq) under ¥ : Qpr — Oy
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We are left to show that (R-)-(R5) imply that [} £2], = [2 Z;ﬂj, if U(J;eq,
coeq) =T e, e)), Le if (Je) = (Je)) fori=1,...,4. We will prove this
by replacing one element of Je; ...eq by an element of J'e} ...e} at a time. Note
that both J and J' are bases of the restriction M|p = M\(E — F), where F' =
(J) = (J') is the flat of rank r — 2 generated by J and J’. Since the basis exchange
graph of M|r is connected, we find a sequence J = Jy, J1,...,Js_1,Js = J' of
bases for M|p such that J, = Ijx and Jyy1 = Ij;, for I = Ji N Jr41 and some
Ji € Ji and jj, € Jrq1. Considered as subsets of M, we have (J;) = F' and thus

(Jg;€l,...,€4) € QXI for all k =0,...,s. Thus we can apply (R5), which yields

€1 €2 _ €1 €2 _ €1 €2 _ €1 €2
[eg 64]Jk - |:63 eJ[kjk - [63 eJ[kj;C - [63 64]Jk+1'

We conclude that [2; &2 ] ;= [2; &2 } g

Next we replace the e; by the €}, one at a time. After permuting rows and
columns appropriately, which does not change the value of the cross ratio by (Ro),
we are reduced to studying cross ratios of the forms [}c; ﬁ} 5 and [2 ;z such
that (J'fs1) = (J'f;) is a hyperplane. By (R3), we have

f1 fe f1 fe f1 fo B
[f:a fJJ’ ' [f4 fi}J’ ' [fﬁ f:JJ’ = L

Since (J'f4) = (J'f1) is a hyperplane, the subset J'f4f; of M has rank r — 1 and

I

is not a basis of M. Thus [2 ;Z]J’ =1 by (RO), which shows that
[f1 fz] _ [fl fz}_1 _ |:f1 fz}
fa fadp = LUfy fale = Lfs falayr
where we use (R1) for the last equality. We conclude that
e1 e _[e1 ez I G
|:63 64i|J - |:63 64i|J’ - [eg eQ]J/’
as desired. This completes the proof of the theorem. O

COROLLARY 4.22. The foundation Fy; of a matroid M is naturally isomorphic

to a quotient

N—M
of type Uf

of a tensor product of foundations Fy ~ U, where the set S is generated by the
relations of type (R-) in the presence of an F; or FF-minor and of types (R3)-
(R5) that are induced by embedded minors M\I/J — M on at most 6 elements
{e1,...,e6} = E—(TUJ).

PRrROOF. By Theorem 4.21, the foundation is generated by the universal cross

€1 €2 €1 €2

ratios [63 64]J of M, which are the images [63 eJJ = LpM\I/J<[Z§ Zﬂ) of the

universal cross ratios [¢} ¢2] of minors N = M\I/J on 4 elements ey, ..., e4; cf.
Proposition 4.9. The morphisms @p\7/5 @ Fn — Fa testify that all relations of
Fy also hold in F;, and therefore we conclude that F); is of the form

Fy ~ ( (09 FN)//S

N—M
with #En = 4
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for some set of 3-term relations S, where Ey denotes the ground set of N. A priori,
this holds if we include all relations (R—)—(R+) of Theorem 4.21 in S. To reduce
this to the assertion of the corollary, we observe the following.

If N = M\I/J is a minor on 4 elements that is not of type UZ, then N is
regular and Fy = ]FljE Thus we can omit these factors from the tensor product.
Note that (RO) assures that the cross ratios coming from such a minor are trivial
in Fps. Therefore we can omit (R0O) from S.

Each of (Ro), (R1), (R2) and (R+) involve only cross ratios that come from
the same UZ-minor N = M\I/J. Therefore the analogous relations hold already
in Fiy, and we can omit them from the set S.

By Theorem 4.21, the relation (R—) holds if M has a minor of type F; or F7.
Each of the relations (R3)—(R5) involve cross ratios that come from the same minor
on 5 or 6 elements. This shows all assertions of the corollary. (Il

4.11. A presentation of the foundation by embedded minors

Let N = M\I/J and N’ = M\I'/J" be two embedded minors of a matroid M.
IfI'clandJ CJ,then N=N\(I-1I)/(J—J)is an embedded minor of N'.
We write ¢ : N — N’ for the inclusion as embedded minors and ¢, : Fy — Fn for
the induced morphism between the respective foundations.

THEOREM 4.23. Let M be a matroid with foundation Fyy. Let € be the collection
of all embedded minors N = M\I/J of M on at most 7 elements with the following
properties:

e if N has at most 6 elements, then it contains a minor of type UZ;
e if N has exactly 6 elements, then it contains two parallel elements;
o if N has 7 elements, then it is isomorphic to Fr or F7.

Fy o~ <®FN>//57

Neé

Then

where the set S is generated by the relations a = t4(a) for every inclusiont : N — N’

of embedded minors N and N’ in &.

PROOF. It is clear that the morphisms oang/s : Far\ryg — Far from Proposi-
tion 4.9 induce a canonical morphism (®Ne€ FN)//S — F, and since € contains

all embedded UZ-minors of M, this morphism is surjective. Thus we are left with
showing that S contains all defining relations of M.

Let us define & = {N € & | #En =i} for i = 4,...,7 where Ex denotes the
ground set of the embedded minor N. Then €& = €4 U... U E7. The set &4 consists
of the embedded UZ-minors of M, and thus

Neé&y
by Corollary 4.22, where S’ contains all relations of types (R-) (in the presence of
an F; or F-minor) and (R3)-(R5).
The relations (R3) and (R4) stem from embedded minors N = M\I/J on 5
elements, and these relations involve a nondegenerate cross ratio only if N contains
a UZ-minor, i.e. N € 5. Thus (R3) and (R4) can be replaced by tensoring with

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4.11. A PRESENTATION OF THE FOUNDATION BY EMBEDDED MINORS 51

Fy and including the relations a = t,(a) for every minor embedding ¢ : N’ =
N\I'/J' — N with N’ € &,.

Similarly, (R5) stems from embedded minors N = M\1/J on 6 elements with
two parallel elements, and involves a nondegenerate cross ratio only if N contains
a Uf-minor, i.e. N € €. Thus (R5) can be replaced by tensoring with F and
including the relations a = ¢, (a) for every minor embedding ¢ : N' = N\I'/J' — N
with N' € &4.

The set €7 consists of all embedded minors of types F7 and F¥. Since Fp, =
Fps = Fy and P /(1 = —1) ~ P ® [y for every pasture P, we can replace the
relation (R-) by — ® Fy if N € &7. This recovers all relations in S” and completes
the proof. |
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CHAPTER 5

The structure theorem

In this section, we prove the central result of this paper, Theorem 5.9, which
asserts that the foundation of a matroid M without large uniform minors is iso-
morphic to a tensor product of finitely many copies of the pastures U, D, H, F3
and Fs.

This is done by first showing that in the absence of large uniform minors, the
tip and cotip relations are of a particularly simple form, which eventually leads to
the conclusion that the foundation of M is the tensor product of quotients of U by
automorphism groups, and possibly Fy. The quotients of U by automorphisms are
precisely U, D, H and Fj.

5.1. Foundations of matroids on 5 elements

By Theorem 4.23, the foundation of a matroid is determined completely by its
minors on at most 5 elements and the embedded minors on 6 elements with two
parallel elements.

In this section, we will determine the foundations of all matroids on at most 5
elements. Most of these matroids are regular and have foundation IF‘li by [5, Thm.
7.33]. There is only a small number of non-regular matroids on at most 5 elements,
which we will inspect in detail.

Let 0 <7 <n<5and M be a matroid of rank » on E = {1,...,n}.

5.1.1. Regular matroids. A matroid M is regular if and only if there is
no nontrivial cross ratio, which is the case if and only if the matroid M does not
contain any minor of type UZ.

This is the case in exactly one of the following situations: (a)r € {0,1,n—1,n};
(b) n =4, r =2 and M is not uniform; (¢) n =5, r = 2 and M\¢ is not uniform
for every i € E; (d) n =5, r = 3 and M /i is not uniform for every i € E.

5.1.2. Matroids with exactly one embedded UZ-minor. There are sev-
eral isomorphism classes of matroids with exactly one UZ-minor, which we list in
the following.

Since the tip and cotip relations involve cross ratios from different embedded
UZ-minors, they do not appear for matroids with only one embedded UZ-minor.

If n = 4, then there is exactly one such matroid, namely M = U? itself, which
has foundation U by Proposition 4.11.

PROPOSITION 5.1. Let M be a matroid on 5 elements with exactly one embedded
UZ-minor. Then M is isomorphic to U} & N where N is a matroid on 1 element.
The foundation of M is isomorphic to U.

PROOF. In order to have an UZ-minor, M must have rank 2 or 3. Since the
embedded minors N — M of M correspond bijectively to the embedded minors

53
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54 5. THE STRUCTURE THEOREM

N* — M* and since U} is self-dual, the matroids M and M* have the same
number of UZ-minors. Once we have shown that every rank 2-matroid with exactly
one embedded UZ-minor is isomorphic to U & N for a matroid N on one element,
which has to be of rank 0, then we can conclude that M* is isomorphic to U7 & N*.
To complete this reduction to the rank 2-case, we note that the foundation of M*
is canonically isomorphic to the foundation of M, cf. Proposition 4.8.

Assume that the rank 2-matroid M on E = {1,...,5} has an embedded U3}-
minor. After a permutation of E, we can assume that this embedded UZ-minor is
M\5 = M\{5}, i.e. that all of the following 2-subsets

(1,2}, {13}, {14}, {2,3}), {24} and {34}

of E are bases. If these are all bases of M, then 5 is a loop and M is isomorphic to
U? @ N, as claimed.

We indicate why M cannot have more bases of the form {4, 5}. If M has exactly
one additional basis element, say {1, 5}, then the basis exchange property is violated
by exchanging 1 by an element of the basis {3,4}. The same reason excludes the
possibility that M has exactly two additional basis elements, say {1,5} and {2,5}.
If M has 9 or more basis elements, say all 2-subsets of E but possibly {4,5}, then
both minors M\4 and M\5 are isomorphic to UZ. Thus in this case, M has at least
two embedded UZ-minors.

This shows that M has to be isomorphic to U? @ N. Since 5 is a loop, the
conditions for the tip relations are not satisfied, which means that all relations
stem from the unique embedded UZ-minor M\5. This shows that the foundation
of M is isomorphic to Fp\5 >~ U, as claimed. O

5.1.3. Matroids with exactly two embedded U}-minors. If M has two
embedded UZ-minors, then the ground set must be E = {1,...,5}. As explained
in Section 5.1.2, M must have rank 2 or 3 if M has an UZ-minor. We will show
that if M has exactly two embedded UZ-minors, then it must be isomorphic to the
following matroid, or its dual.

DEFINITION 5.2. We denote by C5 the rank 3-matroid on E = {1,...,5} whose
set of bases is (%) — {3,4,5}.

PROPOSITION 5.3. A matroid M on 5 elements has exactly two embedded U3 -
minors if and only if M is isomorphic to either Cy or its dual. The cross ratios of

Cs satisfy
|:k: 4}5 - [k 5]4’
and the cross ratios of C¥ satisfy
[+ 1) = &3]
for all identifications {i,j,k} = {1,2,3}. The foundations of both Cs and C¥ are
isomorphic to U.

We illustrate all non-degenerate cross ratios of C¥ and their relations in Fig-
ure 5.1.

PRrOOF. The claims for C5 and Cf follow from each other by the duality result
Proposition 4.8. Thus we can restrict ourselves to the proof of all claims for C?.
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[32] u [32]
’ \[;,21 - [%z]/ :
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FIGURE 5.1. The cross ratios of C¢ and their relations

In the proof of Proposition 5.1, we saw that CF has at least two embedded
UZ-minors, which correspond to the UZ-minors Ci\4 and Cz\5. All other minors
of rank 2 on 4 elements of C¥ are of the form CZ\i for ¢ € {1,2,3}. But since {4, 5}
is not a basis of C%, none of these minors is isomorphic to UZ. This shows that CZ
has exactly two embedded UZ-minors, as has every matroid M that is isomorphic
to Cs.

Conversely, assume that M is a rank 2 matroid on 5 elements with exactly
two embedded UZ-minors. Since duality preserves UZ-minors, can assume that M
is of rank 2. After a permutation of E, we can assume that these two embedded
UZ-minors are M\4 and M\5. Thus all of the 2-subsets

{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4} and {3,5}

are bases. If {4,5} was also a basis of M, then M would be the uniform matroid
U2, which has five U? minors U2\i for i = 1,...,5. Thus M is isomorphic to C?.
This proves our first claim.

Let us choose an identification {4, j,k} = {1,2,3}. The tip relation (R3) in
Theorem 4.21 with tip {7, 7} and cyclic orientation (k,4,5) for CZ is

il Tasl - il =

Since [i %] =1 is degenerate, we obtain the claimed relation

i1 i1t i
Leal = 5l = [es]
where the second equality is relation (R1). Since C is a parallel extension of UZ,
the foundation of C¥ is U by Corollary 4.10, which concludes the proof. O
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5.1.4. Matroids with five embedded UZ-minors. The only matroids on
at most five elements that do not appear among the previous cases with at most
two embedded UZ-minors are the uniform matroids U2 and U3, which have five
embedded UZ-minors.

For completeness, we describe their foundations. However, we postpone the
proof to a sequel to this paper where we develop more sophisticated methods to
calculate the foundations of matroids. Note that the results of this first part are
independent from the following result since we consider matroids without large
uniform minors.

PROPOSITION 5.4. The foundations of U2 and U2 are isomorphic to
Fli<.’131,...,l'5>//{.’13i+J)i_1l‘i+1 - 1|Z = 1,,5}

where o = x5 and xe = 1.

5.2. Symmetry quotients

The classification of foundations of matroids on up to five elements in Section
5.1 shows that in a matroid without large uniform minors, all relations between
cross ratios of different embedded UZ-minors arise from minors of type Cs or Cy.
Proposition 5.3 shows that these types of minors identify the two hexagons of cross
ratios, which implies an identification of two copies of the near-regular partial field
U; cf. Figure 5.1. The same happens for relations of type R5: they identify two
copies of U.

It can, and it will, happen that a matroid contains a chain of such minors, which
creates a self-identification of the cross ratios belonging to an embedded UZ-minor
of M. By Proposition 5.3, this self-identification must respect the relations between
the cross ratios in each hexagon, and induces an automorphism of U. Therefore we
are led to study the quotients of U by such automorphisms.

5.2.1. Automorphisms of the near-regular partial field. In the follow-
ing, we determine all automorphisms of the near-regular partial field U = Fli (x,y))
{x +y = 1}. By Lemma 4.13, it suffices to determine the images of z and y to
describe an automorphism of U. A result equivalent to the following is also proved
in [25, Lemma 4.4].

LEMMA 5.5. The elements of the form z + z' — 1 in the nullset Ny of U with
2,2/ € UX are

r+y—1, zl—zly—1 and yt—azy Tt —1.

1 -1 -1

Thus the fundamental elements of U are z, y, 2, —x~ty, y~ 1, —xy

PRrROOF. Note that the only element z with z4+1—1=01is z = 0. Thus to find
all fundamental elements, it suffices to search for relations of the form z+2z'—1 € Ny
with 2,2’ € UX. Since Ny is generated by 1—1+0 and z+y— 1, and since all terms
have to be nonzero and at least one term has to be equal to —1 to find a relation
for fundamental elements, we find exactly three relations of the form z+2'—1 =0,
which are

z+y—1, zl—a7ly—1 and yt—ay -1

Thus the claim of the lemma. O
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PROPOSITION 5.6. The associations

p: U — U and c: U — U,
xr y_1 r — y
Yy —xy_l Yy +——

define automorphisms of U that generate the automorphism group of U and satisfy
the relations p* = 0% = (po)? =id. In particular, Aut(U) ~ S3.

PROOF. By Lemma 5.5, both (y~1, —xy~!) and (y, z) are pairs of fundamental
elements in U. Thus, by Lemma 4.13, p and o define morphisms from U to U.
Since p?(x) = x and p3(y) = y, we conclude that p defines a group automorphism
of U* of order 3. Similarly, o defines a group automorphism of U* of order 2. The
relation (po)? = id can be easily verified by evaluation on z and y.

We conclude that the automorphism group of U contains (p,o) ~ Ss5 as a
subgroup. By Lemma 5.5, U contains precisely 6 fundamental elements, which
implies easily that Aut(U) is generated by p and o. O

REMARK 5.7. It follows from Lemma 5.5 that the isomorphism Fy2 — U from
Proposition 4.11 maps the cross ratios of U} bijectively to the fundamental elements
of U. We can arrange these fundamental elements in a hexagon

+
r——-1Y
% x
z~! -1 y~!
'\ /‘

7y —— —ay!

in the same way as we arrange the cross ratios in Figure 4.1. It follows from Propo-
sition 5.6 that the automorphisms of U correspond bijectively to the symmetries of
this hexagon that preserve the edge labels and the inner triangles.

5.2.2. Classification of the symmetry quotients of U. A symmetry quo-
tient of U is the quotient of U by a group of automorphisms. More precisely, if H
is a subgroup of Aut(U), then the quotient of U by H is

U/H = Uf{z=7(x),y=7(y)|T€ H}.

In fact, we have U/H =U//{x=7(x),y=7(y)|T€ S} if S is a set of generators of H.
Recall from section 2.1.2 that Fz = FE /{1 + 1+ 1},

D = FE2)){z+2-1} and H = FE)/{z*+1, z— 22 - 1}.
Note that this implies that 23 = —1 and 2% =1 in H.

PROPOSITION 5.8. The symmetry quotients of U are, up to isomorphism,

U/(id) ~ T, U/{oc) ~ D, U/{p) ~ H, U/{p,0) ~ Fs.
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PrROOF. In the following, we show that the quotients of U by different sub-
groups H of Aut(U) ~ Sz are exactly the pastures U, D, H and F3, up to isomor-
phism. Clearly U= U/(id) is the quotient of U by the trivial subgroup.

Note that if H’ is a subgroup conjugate to H, i.e. H = T7H7~! for some
7 € Aut(U), then the quotient of U by H' equals the quotient of 7(U) = U by H.
This means that it suffices to determine the isomorphism classes of the quotients of
U by the groups (o), (p) and Aut(U) = (p, o), which represent all conjugacy classes
of nontrivial subgroups of Aut(U).

Let H = (o). We denote the residue classes of z and y in U/{(o) by Z and 7,
respectively. We claim that the association

f: U/{o) — D
T —_— =z
Yy —_— z
defines an isomorphism of pastures. We begin with the verification that f defines
a morphism. The map f : U — D with f(z) = f(y) = z is a morphism, since the
generator z + y — 1 of the nullset of U is mapped to z + z — 1, which is in the
nullset of D. Since f(or(x)) =z = f(z) and f(a(y)) = z = f(y), the morphism
f induces a morphism f : U/{s) — D by the universal property of the quotient
U/{(o) =U){o(x) = y,0(y) = x}, cf. Proposition 2.6.

We define the inverse to f as the association ¢ : z +— Z. This defines a multi-

plicative map since D* is freely generated by z. Since

9g(z)+g(z) -1 =z4+z2-1=2+75—1

is null in U/(o), this defines a morphism g : D — U/(o). It is obvious that g is an
inverse to f, which shows that f is an isomorphism.
We continue with the automorphism group H = (p). We claim that the associ-
ation
foU/p) — H
z — oz
] — =22
defines an isomorphism of pastures. We begin with the verification that f defines a
morphism. The map f : U — H with f(z) = z and f(y) = —z? is a morphism, since
the generator r+y—1 of Athe nullset of U is mapped to z—z“—1, which is in the nullset
of H. Since f(p(z)) = f(y~') =z = f(z) and f(p(y)) = f(-2y~") = =2% = f(y),
the morphism f induces a morphism f : U/(p) — D by the universal property of
the quotient U/{(p) =U/{p(x) =y, p(y) = x}.
We define the inverse of f as follows. Let §: Ff(z) — U/(p) be the morphism
that maps z to #. The defining relations of U/{p) are z = % and § = —zy L.
Thus

G +9(1) = B +1 = g224+1 = -z gy lz+1 = —1+1,

2 = >7! and thus

which is in the nullset of U/p. Since 2% = —1 in H, we have —z
92 +9(-2*) -1 =z4+2"'-1 =2+j§-1,

which is also in the nullset of U/(p). This shows that the morphism § defines a
morphism g : H — U/(p), which is obviously inverse to f.
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Finally we show that U/(p, o) is isomorphic to F3. Since U/(p, o)~ (U/(p))/{o),

it suffices to show that the association
f: H/{(oc) — F3
z — =1
is an isomorphism. Since o(z) = ¢(Z) = § = 2~ ! and f(z) = f(z7!), and since
f(z%) = (=1)° = 1 = f(1), the assignment f(z) = —1 extends to a multiplicative
map. Since f(23)+ f(1) = (-1)3+1=—-1+1and f(2)+ f(-2})—1=-1-1-1

are null in F3, the map f is a morphism. Note that in H/(c), we have z° = —1
and Z = z7', and thus Z = —1. We conclude that the assignment g: 1+ 1= —%
defines a morphism g : F3 — H/(o), since

g1)+9(1)+g(1) = 1+1+1 = —(2-2°-1)
is null in H/(o). It is clear that g is an inverse of f, which shows that f is an
isomorphism. This concludes the proof of the proposition. (Il

5.3. The structure theorem for matroids without large uniform minors

We are prepared to prove the central result of this paper. In the following, the
empty tensor product stands for the initial object in Pastures, which is Fli

THEOREM 5.9. Let M be a matroid without large uniform minors and Fyy its
foundation. Then

Fy ~ N®---®F,
for some r = 0 and pastures Fy,...,F,. € {U,D,H, F3,Fo}.

PROOF. Let € be the collection of embedded minors N of M from Theorem

4.23. Then
FM >~ ( ® FN) //S7
Neé&
where the set S is generated by the relations a = v, (a) for every inclusion ¢ : N — N’
of embedded minors N and N’ in €.

From the analysis in section 5.1, it follows that the foundation Fy of every
embedded minor N of M with at most 5 elements is either F{ or U, where we use
the assumption that M is without minors of types U? and U2. A matroid with
foundation ]Ff is regular and has thus no minor of type U?. We conclude that every
embedded minor in € on at most 5 elements has foundation U.

If an embedded minor N in € has 6 elements, and thus two of them are parallel,
then deleting one of these parallel elements yields an embedded minor N’ = N\e
of N, and the induced morphism Fjs — Fy is an isomorphism. Thus also every
embedded minor in € with 6 elements has foundation U.

Since neither F7 nor F contains a minor of type U, an embedded minor N in
& with 7 elements cannot contain another embedded minor N’ in €. Consequently
the isomorphism of Theorem 4.23 implies that

Fy ~ ® FN®<® FN)//S/,
Nee, Nee’

where €7 is the subset of & that contains all embedded minors with 7 elements, &
is the subset of € that contains all embedded minors with at most 6 elements and
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S is the set generated by the relations a = . (a) for every inclusion ¢ : N — N’ of
embedded minors N and N’ in &'

By what we have seen, an inclusion N — N’ of embedded minors in & is an
isomorphism, and either foundation is isomorphic to U. Thus all identifications in S’
stem from isomorphisms between some factors Fy of the tensor product. What can,
and does, happen is that a chain of such isomorphisms imposes a self-identification
of a factor Fry ~ U with itself by a non-trivial automorphism. This leads to a
symmetry quotient of U, which is one of U, D, H and F3. Thus

(& r)rs
Neeg!
is a tensor product of copies of U, D, H and F3.
This leaves us with the factors Fy for N € £7. By Theorem 4.21, we have
—1 =1, and all cross ratios are trivial since there are no UZ-minors. Thus Fy ~
FE /{1 = =1} = F,. This concludes the proof of the theorem. O

Theorem 5.9 can be reformulated as follows, which expresses the dependencies
of the factors F; on M.

COROLLARY 5.10. Let M be a matroid without large uniform minors, Fy; its
foundation. Then
Fy ~ (@R --QF
for a uniquely determined r > 0 and uniquely determined pastures Fyy € {IFli, Fy, F3,
K} and Fy, ..., F. € {U,D,H}, up to a permutation of the indices 1,...,r. We have
Fo =Fy or Fo =K if and only if M contains a minor of type Fr or F7.

PRrROOF. By Theorem 5.9, the foundation Fj; of a matroid M without large
uniform minors is isomorphic to a tensor product of copies of U, D, H, F5 and Fs.
Since morphisms from Fs and F3 into other pastures are uniquely determined,
if they exist, we conclude that Fo ® ---®@Fy = Fy and F3® - - - ® F3 = F5. Thus the
pasture
Fo® - @F@F®- - ®F;3

T times s times

is isomorphic to
IF% ifr=5=0; Fy ifr>s5=0; F3 ifs>r=0; FoF;3=K ifr,s > 0;

cf. Example 2.8 for the equality Fo ® F3 = K. This explains the list of possible
isomorphism types for Fy. Since Fy appears as a factor of Fj; if and only if M has
a minor of type F7 or F7, this verifies the last claim of the corollary.

It follows that Fj; is isomorphic to a tensor product of Fy with pastures
Fy,...,F. € {U,D,H}.

We are left with establishing the uniqueness claims. To begin with, Fy is
uniquely determined by the presence or absence of the relations 1 +1 = 0 and
1+ 1+ 1 =0, which correspond to the relations » > 0 and s > 0, respectively, in
our previous case consideration. Thus F{ is uniquely determined.

The factors Fy,..., F, are determined by the fundamental elements of Fy;, as
we explain in the following. Let ¢; : F; — @ F; =~ Fy be the canonical inclusion.
By the construction of the tensor product, the nullset of F); consists of all terms
of the form di;(a) + di;(b) + di;(c) for some i € {0,...,r}, d € @ Fj and a,b,c € F;
such that a + b + ¢ is in the nullset of F;. The fundamental elements of F); stem
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from such equations for which di;(a) and di;(b) are nonzero and di;(c) = —1. Thus
d = —1;(c)7! = 1;(=c71!) is in the image of ¢;, and therefore di;(a) = t;(—c ta)
and di;(b) = 1;(—c~'b). Since —c¢ ta — ¢ 1b— 1 is in the nullset of F};, we conclude
that all fundamental elements in Fj; are of the form ¢;(z) for some i and some
fundamental element z of Fj.

To make a distinction between the different isomorphism types of the factors,

we note that every fundamental element z with relation x + y — 1 = 0 gives rise

to a set {:c, oy, yTh —a Ty, —xy_l} of fundamental elements. If these six

fundamental elements come from a factor F; ~ U, then they are pairwise different.
If they come from a factor F; ~ D, then

{.’I], x_la Y, y_17 —55_1?/7 _xy_l} = {‘/L.ﬂ y_17 _:E_ly}
is a set with three distinct elements. If they come from a factor F; ~ D, then

{J?, xila Y, yila _xilya _myil} = {J?,y}

is a set with two distinct elements. Note that if Fy = F3 or Fy = K, then x = —1 is
also a fundamental element, and in this case 7! =y =y ! = —z7ly = —ay~!
—1 are all equal. This shows that the number of factors of types U, D and H are
determined by the fundamental elements of Fj;, which completes the proof of our
uniqueness claims. ([l

REMARK 5.11. In a sequel to this paper, we will show that for all » > 0 and
Fy,...,F. € {UD,H,F3,Fs}, there is a matroid M without large uniform minors
whose foundation is isomorphic to the tensor product F; ® - -+ ® F,.
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CHAPTER 6

Applications

In this concluding part of the paper, we explain various applications of our
central result Theorem 5.9. Along with some new results and strengthenings of
known facts, we also present short conceptual proofs for a number of established
theorems which illustrate the versatility of our structure theory for foundations.

The main technique in most of the upcoming proofs is the following. A matroid
M is representable over a pasture P if and only there is a morphism from the
foundation Fi; of M to P. If M is without large uniform minors, then we know by
Theorem 5.9 that Fj; is isomorphic to the tensor product of copies F; of U, D, H,
F3 and Fy. Thus a morphism from F); to P exists if and only there is a morphism
from each F; to P, which in practice is quite easy to determine.

For reference in the later sections, we will provide some general criteria for such
morphisms in the following result, and list the outcome for a series of prominent
pastures in Table 6.1.

LEMMA 6.1. Let P be a pasture.

(1) There is a morphism U — P if and only if P contains a fundamental
element. For a field k, this is the case if and only if #k > 3.

(2) There is a morphism D — P if and only if there is an element u € P*
such that u+u = 1. For a field k, this is the case if and only if char k # 2.

(3) There is a morphism H — P if and only if there is an element u € P>
such that u® = —1 and u — u? = 1. For a field k, this is the case if and
only if char k = 3 or if k contains a primitive third root of unity.

(4) There is a morphism Fs — P if and only if 1+1+1 =0 in P. For a
field k, this is the case if and only if char k = 3.

(5) There is a morphism Fo — P if and only if =1 =1 in P. For a field k,
this is the case if and only if char k = 2.

There exist morphisms from U, D, H, F3 and Fy into the pastures U, D, H, F, for
q=2,....8Q,C, S, P and W where Table 6.1 contains a check mark—a dash
indicates that there is no morphism.

PRrROOF. We briefly indicate the reasons for claims (1)—(5). We begin with
claim (1). The universal property from Proposition 2.6 implies that there is a
morphism from U = F¥(z,y) /{x + y — 1} to P if and only if there are u,v € P
such that v +v = 1. By definition, such elements are fundamental elements of P.
If P =k is a field, then a pair (u,v) of fundamental elements is a point of the line
L = {(w,1 —w))|w € k} in k2. Since L contains precisely two points (0,1) and
(0,1) with vanishing coordinates, the elements of L N (k*)? are in bijection with
k —{0,1}. Thus k has a fundamental element if and only if #k > 3.

63
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TABLE 6.1. Existence of morphisms from U, D, H, F3 and F5 into
other pastures

| [ U[D[H[F [Fs[F [F [Fr |Fs [Q[C[S|P W]

A A A AN arararararararans
D —|v |- ||V | V|| = ||/ [V
H|- ||V ||V |V ||V | === V[V
Fs | — |- |- |- |v |- |-|-|-|-|=|=|=|V
Fol— | = ||V ||V |- |- |v |- |-|=|=]=

We continue with claim (2). The first assertion follows at once from the uni-
versal property for D = F£(z) /{z 4+ z — 1}. A field P = k contains an element
with v+ = 1 if and only if 1+ 1 is invertible in k, which is the case if and only if
k is of characteristic different from 2.

We continue with claim (3). The first assertion follows at once from the univer-
sal property for H = FE(2) /{2® — 1,2 — 22 —1}. In a field P = k of characteristic 3,
the element u = —1 satisfies u> = —1 and u — u? = 1. If k has characteristic differ-
ent from 3, then v = —u satisfies the equation v? + v + 1 = 0, which characterizes
a primitive third root of unity. Note that we have automatically v = —v3 = —1 in
a field if v is a third root of unity.

Claims (4) and (5) are obvious. The existence or non-existence of morphisms
as displayed in Table 6.1 can be easily verified using (1)—(5). O

6.1. Forbidden minors for regular, binary and ternary matroids

The techniques of this paper allow for short arguments to re-establish the known
characterizations of regular, binary and ternary matroids in terms of forbidden
minors, as they have been proven by Tutte in [32] for regular and binary matroids,
and independently by Bixby in [6] and by Seymour in [30] for ternary matroids.

We spell out the following basic fact for its importance for many of the upcom-
ing theorems.

LEMMA 6.2. Binary matroids and ternary matroids are without large uniform
minors.

PRrROOF. All minors of a binary or ternary matroid are binary or ternary, re-
spectively. Since U? and U3 are neither binary nor ternary, the result follows. O

Next we turn to the proofs of the excluded minor characterizations of regular,
binary and ternary matroids.

THEOREM 6.3 (Tutte ’58). A matroid is reqular if and only if it contains no
minor of types U7, Fr or F¥. A matroid is binary if and only if it contains no
minor of type UZ.

PROOF. By Corollary 4.14, U? is not binary and therefore also not regular. It
follows from Theorem 4.21 that the foundations of F7 and F7 contain the relation
—1 =1, which means that they do not admit a morphism to FT. Thus Fy; and FZ
are not regular.

We are left with showing that the respective lists of forbidden minors are com-
plete. If a matroid M does not contain a minor of type U7, then Corollary 4.22
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implies that the foundation Fy; of M is equal to F¥ or Ff /{-1 =1} = Fy. In
either case, there is a morphism from Fj; to Fy, which shows that M is binary if it
has no minor of type UZ.

If, in addition, M has no minor of types Fr or F¥, then Corollary 4.22 implies
that Fyy = Fli, and thus M is regular. O

THEOREM 6.4 (Bixby ’79, Seymour '79). A matroid is ternary if and only if it
does not contain a minor of type U2, U3, Fr or F3.

PROOF. If M is ternary, then it does not have a minor of type U2 or U3 by
Lemma 6.2. Thus Theorem 4.21 applies, and since —1 # 1 in F3, M does not have
a minor of type F; or F7. This establishes all forbidden minors as listed in the
theorem.

To show that the list of forbidden minors is complete, we assume that M
contains no minors of these types. Then Corollary 5.10 implies that the foundation
of M is isomorphic to F} ® - - - ® F,. with F; € {U,D,H, F3}. Since each of U, D, H,
F3 admits a morphism to F3, there is a morphism Fj; — F3, which shows that M
is ternary. O

6.2. Uniqueness of the rescaling class over Fj

Brylawski and Lucas show in [11] that a representation of a matroid over Fj
is uniquely determined up to rescaling. Our method yields a short proof of the
following generalization.

THEOREM 6.5. Let P be a pasture with at most one fundamental element. Then
every matroid has at most one rescaling class over P.

PRrROOF. Let M be a matroid with foundation Fjs. Since the rescaling classes of
M over P are in bijective correspondence with the morphisms Fj; — P, it suffices
to show that there is at most one such morphism.

By Proposition 3.11, every cross ratio of Fj; is a fundamental element of Fiy,
and thus must be mapped to a fundamental element z of P. By the uniqueness of
z (if it exists), the image of every cross ratio is uniquely determined. Since Fj; is
generated over ]FljE by cross ratios, the result follows. O

REMARK 6.6. Examples of pastures with at most one fundamental element are
]Fli, Fs, F3 and K. In fact it is not hard to prove that every pasture with at most one
fundamental element contains one of these pastures as a subpasture, and that the
fundamental element is —1 (if it exists). Note that Brylawski and Lucas’s theorem
concerns the case P = F3.

6.3. Criteria for representability over certain fields

Our theory allows us to deduce at once that matroids without large minors
that are representable over certain pastures are automatically representable over
certain (partial) fields. For instance, we find such criteria in the cases of the sign
hyperfield S, the phase hyperfield P and the weak sign hyperfield W.

Note that the proof of Criterion (1) in the following theorem strengthens Lee
and Scobee’s result that every ternary and orientable matroid is dyadic; see [18, Cor.
1]. In fact, we further improve on this result in Theorem 6.9 where we show that
every orientation is uniquely liftable to D up to rescaling.
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In the statement of the following theorem, recall that a matroid is said to be
weakly orientable if it is representable over W.

THEOREM 6.7. Let M be a matroid without large uniform minors.

(1) If M is orientable, then it is representable over every field of characteristic
different from 2.

(2) If M is representable over P, then it is representable over fields of every
characteristic except possibly 2.

(3) If M is weakly orientable, then it is ternary.

PROOF. Let F); be the foundation of M and Fj; ~ F| ® - - - ® F,. the decompo-
sition from Theorem 5.9 into factors F; € {U,D,H, F5,Fy}. If M is representable
over a pasture P, then there is a morphism F)j; — P, and thus there is a morphism
F; — P for every ¢ = 1,...,r. Conversely, if one of the building blocks U, D, H,
F3 and Fy does not map to P, we conclude that this building block does not occur
among the Fj.

Claim (1) follows since there are no morphisms from H, F3 or Fs to S, and both
U and D map to every field of characteristic different from 2. Claim (2) follows since
there are no morphisms from F3 or Fy to P, and since each of U, D and H maps
to a field k if its characteristic is 3 or if it is different from 2 and if k contains a
primitive third root of unity. Claim (3) follows since there is no morphism from Fy
to W, and each of U, D, H and F3 maps to Fs. ([l

REMARK 6.8. The proof of Theorem 6.7 shows that similar conclusions can be
formulated for other pastures P that do not receive morphisms from some of the
building blocks of the foundation Fj; of a matroid M without large uniform minors.
If M is representable over P, then we can conclude the following, for instance:

e if there is no morphism from D to P, then M is quaternary;
e if there is no morphism from either Fy or D to P, then M is hexagonal.

6.4. Oriented matroids without large minors are uniquely dyadic

Our techniques allow us to strengthen the result of Lee and Scobee ([18, Thm.
1]) that an oriented matroid is dyadic if its underlying matroid is ternary. At the
end of this section, we deduce Lee and Scobee’s result from ours.

An oriented matroid is an S-matroid, i.e. the class M = [A] of a Grassmann-
Pliicker function A : E™ — S, where r is the rank of M and F its ground set. The
underlying matroid of M is the matroid M = ts (M), where ts : S — K is the
terminal morphism, cf. section 2.1.3. Recall that a reorientation class is a rescaling
class over S.

Let sign : D — S be the morphism from the dyadic partial field D = F (2) /{2 +
z — 1} to S that maps z to 1. An oriented matroid M = [A] is dyadic if there is a

D-matroid M such that M = sign*(]\//f). We call M a lift of M along sign : D — S.

THEOREM 6.9. Let M be an oriented matroid whose underlying matroid M is

without large uniform minors. Then there is a unique rescaling class [M] of dyadic
matroids such that sign, (M) = M.

Proor. Let F); be the foundation of M. The oriented matroid M determines
a reorientation class [M] and thus a morphism f : Fiy — S. Since rescaling classes
of M over D correspond bijectively to morphisms F; — I, we need to show that
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the morphism f : Fiy — S lifts uniquely to D, i.e. that there is a unique morphism
f : Fpy — D such that the diagram

FM4>]D>

\ lmgn
cominutes.

Note that this implies only that there is a unique rescaling class []\//.7 | such that
the reorientation classes [sign, (]\//.7 )] and [M] are equal. In order to conclude that we
can choose M such that sign*(]\//f) = M, we note that the morphism sign : D — S
is surjective, and thus any reorientation M’ = sign, (M\ ) of M can be inverted by a
rescaling of M over D. This shows that we have proven everything, once we show
that f lifts uniquely to D.

Since M is without large uniform minors, Theorem 5.9 implies that Fjs is
isomorphic to F} ® --- ® F,. for some Fy,...,F. € {U/D,H,F3,Fo}. Composing
f+ Fy — S with the canonical inclusions ¢; : F; — Fjs yields morphisms f; =
fou : Fy —Sfori=1,...,r. Asvisible in Table 6.1, there are no morphisms from
H, F5 or Fy to S. This means that Fi,..., F,. € {U,D}.

By the universal property of the tensor product, the morphisms Fy; — D
correspond bijectively to the tuples of morphisms f; : F; — D. Thus there is a
unique lift of f to D if and only if for every 4, there is a unique lift of f; to D. This
reduces our task to an inspection of the two cases F; =D and F; = U.

Consider the case f; : F; = D — S. Since z + z = 1 in D, we must have
f(z) + f(2) = 1 in S, which is only possible if f(z) = 1. Thus f; = sign, which
means that the identity morphism fl =id: D — D lifts f;, i.e.

D= p

\ \L:,lgn
fi S

commutes. This lift is unique since u + v = 1 is only satisfied by u = z € D, and
thus f;(z) = z is determined.

We are left with the case f; : F; = U — S, for which we inspect the possible
images of the fundamental elements z and y of U in S and . The relations of the
fomu+v—1=0inSarel+1—-1=0and 1—-1—1=0. Thus f; maps (z,y) to
one of (1,1), (1,—1) and (—1,1). This means that there are precisely 3 morphisms
U — S, and f; has to be one of them.

The relations of the form u+v—1=0inDare z4+2—1=0and 2~ —~1—-1=0.
Thus the morphisms U — U correspond to a choice of mapping (z, y) to one of (z, z),
(271, —1) and (—1,271). Considering the respective images sign(z) = sign(z~!) =1
and sign(—1) = —1 in S, we conclude that every morphism f; : U — S lifts uniquely
to a morphism f, :U— D, ie.

U—" 5D
\ \Lblgn

commutes. This completes the proof of the theorem. (Il
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As an application, we show how Theorem 6.9 implies the result [18, Thm. 1]
of Lee and Scobee.

THEOREM 6.10 (Lee-Scobee '99). An oriented matroid is dyadic if and only if
its underlying matroid is ternary.

PRrOOF. Let M be an oriented matroid and let M be its underlying matroid.
If M is ternary, then it is without large uniform minors. Thus M is dyadic by
Theorem 6.9. .

Conversely, assume that M is dyadic, i.e. it has a lift M along sign : D — S.
Since there is a morphism f : D — F3, and since tp, o f = tg o sign, the Fz-matroid

—~

f+«(M) is a representation of M = ts (M) over F3. Thus M is ternary. O

6.5. Positively oriented matroids without large uniform minors
are near-regular

In their 2017 paper [2], Ardila, Rincon and Williams prove that every posi-
tively oriented matroid can be represented over R (and a posteriori, by a theorem
of Postnikov, over @), which solves a conjecture from da Silva’s thesis [13] from
1987. A second proof has recently been obtained by Speyer and Williams in [31].
Neither of these proofs yields information about the structure of the lifts of positive
orientations to Q or R.

With our techniques, we can recover and strengthen the result for positively
oriented matroids whose underlying matroid is without large uniform minors. To
begin with, let us recall the definition of positively oriented matroids.

DEFINITION 6.11. Let M be a matroid of rank r on the ground set £ =
{1,...,n}. A positive orientation of M (with respect to E ) is a Grassmann-Pliicker
function A : E” — S such that ¢, s([A]) = M and such that A(j1,...,5,) € {0,1}
for every (ji1,...,Jr) € E” with j1 < ... < jp.

An oriented matroid M of rank r on E is positively oriented if its underlying
matroid has a positive orientation A : E” — S with respect to some identification
E ~{1,...,n} such that M = [A].

A key tool for proof of Theorem 6.15 is the following notion.

DEFINITION 6.12. Let M be a matroid of rank r on the ground set £ =
{1,...,n}. Let V be the Klein 4-group, considered as a subgroup of Sy. The
Q-signature of M (with respect to E) is the map

¥ QY — Sy/V

that sends (J; ey, ..., es) € QY to the class [e] € S4/V of the uniquely determined
permutation € € Sy that

{617...,64} — {1,74}
€; — E(Z)

is an order-preserving bijection.

EXAMPLE 6.13. The key example to understand the relevance of the (2-signature
is the uniform matroid M = U2, whose foundation is F; = U. In this case, QXI con-
sists of the tuples (&;eq,...,e4) for which (ey,...,es) is a permutation of (1,...,4).

Since the cross ratio [2 Ej] € F) determines (e1,es,€3,e4) up to a permutation
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in V', which corresponds to a permutation of the rows and the columns of the cross
ratio, the Q-signature induces a well-defined bijection

{cross ratios in FM} —_— S4/V
[ e2] — X(T5e1,...,e4).

LEMMA 6.14. Let M be a matroid of rank r on the ground set E = {1,...,n}
and let A : E™ — S be a positive orientation of M. Let (J;eq,...,eq) € QXI and
€ € Sy be such that [e] = X(J;e1,...,eq4). Then

_ (_1)5(1)+e(2)+1

[& @]

€3 €alA,J
PROOF. Choose J = (j1,...,jr—2) € E" 2 so that |J| = J. Since A is a

positive orientation, we have for all ¢ € {1,2} and j € {3,4} that A(Jee;) =

signm; j, where m; ; : Je;e; — Jeze; is the unique permutation such that

mig(i) < oo < mie—2) < mijle) < mij(e;).
Since the cross ratio [2; 2 ] Ay Is invariant under permutations of J, we can assume
that j; < . < Jr—2. Thus we can write m; ; = 0, ; o €;; as the composition of
04 = T; ;0 Wlth the permutation ¢; ; of Je;e; that fixes j1,. .., jr—2 and satisfies

€,i(e) < € (e]). A minimal decomposition of ; ; into transpositions is
oij = (r; &) (r—2 €5) (Jr, €) - (Jr—2 i),
where k; is such that ji,_1 < e; < ji,. Thus

sign(o; ;) = (_1)(r—1—ki)+(r—1—kj) _ (_Uk,;Jrkj7

and
[61 62] _ A(Jeiez)A(Jezeq)
€3 e4lA,J (J€164)A(J€263)
sign(m,

(
(—1)k1+k3(—1)k2+k4 ] sign(6173) sign(62,4)
(—1)katka(—1)k2tks sign(e; 4) sign(ea,s)
(

= Sign 6173) sign(egA)sign(elA) Sign(ég,g).

Since the parity of €/(1) +€¢/(2) + 1 is even for every € € V, we can assume that
€ is the representative that occurs in the definition of ¥, i.e. we can assume that
e; — €(i) defines an order preserving bijection {e1,...,es} — {1,...,4}. Then ¢ ;
is the identity if (i) < €(j) and €;; = (e; e;) if €(¢) > €(j). Thus s1gn(e”) =1if

€(7) < e(j) and sign(e; ;) = —1 if €(2) > €(j).
Since [2; 2 AL is invariant under exchanging rows and columns, we can as-
sume that e; is the minimal element in {eq,...,es}, i.e. (1) =1 and sign(e; ;) =1
for j € {3,4}. We verify the claim of the lemma by a case consideration for the
value of €(2).

If €(2) = 2, then ey is minimal in {ey, e3, e4} and sign(es ;) = 1 for all j € {3,4}.
Thus

[2 ZﬂAJ -] = (_1)1+2+1 _ (_1)6(1)+e(2)+1.
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If €(2) = 3, then e3 < ex < e4 or e4 < eg < e3. Thus sign(e 3) sign(ez4) = —1 and

[61 €2

_ _ 14341 _ e(1)+e(2)+1
es3 eJA,J = -1 = (-1 B (_1)() @,

If €(2) = 4, then ey is maximal in {eg, es,es} and sign(ey ;) = —1 for all j € {3,4}.
Thus

€1 €2 o (_1)2 _— (_1\14+4+1 o ye(D)+e(2)+1
|:€3 64]A7J - ( 1) - ( 1) - ( 1) )
which completes the proof. (Il

Let f : P — S be a morphism of pastures. A lift of M to P (along f) is a
P-matroid M such that f*(]/w\ ) = M. In the following result, we will implicitly
understand that a subfield k£ of R comes with the sign map sign : k£ — S.

As explained in Corollary 4.14, the near-regular partial field U = F5 (z, y) /{z +
y — 1} admits three morphisms to S. Since the automorphism group Aut(U) acts
transitively on these three morphisms, we can fix one of them without restricting
the generality of our results. Thus we will implicitly understand that U comes with
the morphism sign : U — S given by sign(z) = sign(y) = 1.

THEOREM 6.15. Let M be a positively oriented matroid whose underlying ma-
troid M is without large uniform minors. Then M is near-reqular and Fyy ~ U®"
for some r > 0. Up to rescaling equivalence, there are precisely 2" lifts of M to
U, and for every subfield k of R, thf lifts of M to k modulo rescaling equivalence

correspond bijectively to ((O, nn k)

Proor. By Theorem 5.9, the foundation F; is isomorphic to a tensor product
F1 ® - ® F,. of copies F; of Fo and symmetry quotients of U. The rescaling class
of M induces a morphism Fjs — S. Since there is no morphism from F; to S, each
of the factors F; has to be a symmetry quotient of U.

From the proof of Theorem 5.9, it follows that each symmetry quotient F; =
U/H; of U is the image of the induced morphism U ~ F — F); of foundations for
an embedded UZ-minor N = M\I/J of M. This means that for every o € H; and
every (J;e,...,eq) € Qp, we have an identity of universal cross ratios

|:61 62:| _ |:0'(€1) 0(62)i| '
es €4l oleg) o(eq)l s

We claim that if [ L ii]J = [2 Z:zb then X(ey,...,eq) = X(e},...,€}), where
DI Qg/l — S4/V is the Q-signature. We verify this in the following for all the
defining relations of F, that involve non-degenerate cross ratios, as they appear in
Theorem 4.21.

The relations (R-) and (R0) do not involve non-degenerate cross ratios (and
(R-) does not occur in our case since neither the Fano matroid not its dual are
orientable). The relations (Ro), (R1), (R2) and (R+) are already incorporated in
U and can thus be ignored. For relation (R5), it is obvious that both involved cross
ratios have the same ()-signature.

Thus we are left withthe relations (R3) and (R4). Since M is without large
uniform minors, each of these relations reduces to an identity of two universal cross
ratios. We begin with the tip relation (R3), which is of the form

[61 62} - [61 62}
es eqlyg — Les esly
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. -1 .
in our case, where we use (R1) to express [2, 2 ] 5 as [Z; 2 ] ;- After a permutation
of {e1,...,eq}, we can assume that e; < e4 < ea < e3, and thus

_ (_1)1+3+1 = 1

(o <]
€3 €41 AT

€1 €2

by Lemma 6.14. Therefore also [63 o = —1, which means that the unique

Ja.s
order preserving bijection 7 : {e1, es, €3, 65}: — {1,...,4} must satisfy w(e1) = 7(e2)
according to Lemma 6.14. Since e; < e2 < eg by our assumptions, this implies that
e1 < es < eg. Thus X(eq, ez, e3,e4) = (e, €2, €3, €5).

The cotip relations (R4) are in our case of the form

[61 62] o [61 62]
e3 esljes ~ Lez esl ey’

As before, we can assume that e; < e4 < ey < e3 and thus [2; EﬂA . —1. By
the same reasoning, this implies that e; < e5 < es < ez and thus X(eq, ez, e3,€4) =
Y(e1, ea, 3, e5). This establishes our claim that X(ey,...,eq) = (€], ..., e}) when-

ever [&182],=[3 2],

In particular, if [} 2], = [a(el) U(ez)]J then X(e1,...,eq4) = E(a(el), .

o(es) o(ea) »

0(64)), which means that o is in V. These are precisely the relations in (Ro),

which are already satisfied in U. We conclude that ¢ is the identity on U.

This shows that every factor F; of Fis is a trivial quotient of U and thus
Fy ~ U®", as claimed in the theorem. It also implies at once that M is near-
regular.

Let xar : Far — S be the morphism of pastures induced by the rescaling class
of M. The lifts of M to U and k, up to rescaling, correspond to the lifts of y s to
U and k, respectively. We can study this question for each factor F; = U of Fis
individually.

A lift of f : U — S to U is a morphism f : U — U such that sign (f(x)) =

sign ( f (y)) = 1. This determines f up to a permutation of z and y, which shows
that there are precisely two lifts of f : U — S to U. Thus there are precisely 2" lifts
of M to U up to rescaling equivalence.

A lift of f : U — S to k is a morphism f : U — k such that sign (f(x)) =

sign (f(y)) = 1. Since f(y) = 1 — f(x), this means that f(z) € ((O7 1N k:) and,

conversely, every choice of image f(z) € ((0, nHn k;) determines a lift f of f to
k. Thus the lifts of M to k up to rescaling equivalence correspond bijectively to
((O, 1N k:) . This completes the proof of the theorem. O

6.6. Representation classes of matroids without large uniform minors

Given a matroid M, we can ask over which pastures M is representable. This
defines a class of pastures that we call the representation class of M.

For cardinality reasons, it is clear that not every class of pastures can be the
representation class of a matroid. The theorems in Section 6.7 make clear that this
fails in an even more drastic way—for example, a matroid that is representable over
F5 and 3 is representable over all pastures; cf. Theorem 6.26.
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In this section, we determine the representation classes that are defined by
matroids without large uniform minors. It turns out that there are only twelve of
them; see Table 6.2 for a characterization.

DEFINITION 6.16. Let M be a matroid. The representation class of M is the
class P of all pastures P over which M is representable. Two matroids M and
M’ are representation equivalent if Pyr = Ppy.

Note that the representation class P, of a matroid M consists of precisely those
pastures for which there is a morphism from the foundation Fj; of M to P. This
means that the representation class of a matroid is determined by its foundation.
Evidently, Py; = Py if M and M’ are representation equivalent, which justifies
the notation Po = Py, where C is the representation class of M.

Often there are simpler pastures than the foundation that characterize repre-
sentation classes in the same way, which leads to the following notion.

DEFINITION 6.17. Let M be a matroid with representation class Py;. A char-
acteristic pasture for M is a pasture II for which a pasture P is in P, if and only if
there is a morphism II — P. A matroid M is strictly representable over a pasture
P if P is a characteristic pasture for M.

By the existence of the identity morphism id : II — II, strictly representable
implies representable. And the foundation of a matroid M is clearly a characteristic
pasture for M. The following result characterizes all characteristic pastures:

LEMMA 6.18. Let M be a matroid with foundation Fp;. A pasture 11 is a
characteristic pasture of M if and only if there exist morphisms Fypy — II and

PROOF. Assume that IT is a characteristic pasture for M. Since also Fy; is
a characteristic pasture, we have Fj;,II € Pjs, and by the defining property of
characteristic pastures, there are morphisms Fj; — II and II — F,.

Conversely, assume that there are morphisms Fj; — Il and II — Fy,;. If P €
Par, then there is a morphism Fj; — P, which yields a morphism IT — F; — P.
If there is a morphism II — P, then there is a morphism Fj; — II — P, and thus
P € Pj;. This shows that II is a characteristic pasture for M. |

The next result describes an explicit condition for representation equivalent
matroids.

LEMMA 6.19. Let M and M be two matroids with respective representation
classes Pyr and Py and respective characteristic pastures II and II'. Then Py is
contained in Py if and only if there is a morphism II — II'. In particular, M and
N are representation equivalent if and only if there exist morphisms II — II' and
Ir — 11.

PRrOOF. If there is a morphism f : II — II’, then we can compose every mor-
phism II' — P with f, which implies that Py, C Pps. Assume conversely that
Py C Pas. Then IT' € Py, which means that there is a morphism II — II’. The
additional claim of the lemma is obvious. (]

In the following, we say that a matroid M is

e strictly binary if Fy is a characteristic pasture for M;
e strictly ternary if Fs is a characteristic pasture for M;
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TABLE 6.2. The equivalence classes of matroids without large uni-
form minors

C Name minimal Il | add. F; | P € P¢ iff. Ju,v € P* s.t. | field?
Ci regular Fy yes
C5 | str. near-regular U U u+v=1 yes
Cs strictly dyadic D U, D utu=1 yes
Cy str. hexagonal H U, H v—vi=—v?=1 yes
Cs5 | str. D ® H-repr. D®H UDH| utu=v—0v>=-03=1 yes
Ces | strictly ternary Fs U, D H 1+1=-1 yes
Cr strictly binary Fa -1=1 yes
Cs Fo@U U —1l=u+v=1 yes
Coy Fo®D U, D —1l=u+u=1 no
Cho Fo @ H U, H l=v—02=03=1 yes
C11 FoD@H | U, D H A=utu=v—1v> =03 =1 no
C12 idempotent Fo @ F3 U, D, H —-1=1+1=1 no

o strictly near-reqular if U is a characteristic pasture for M

e strictly dyadic if D is a characteristic pasture for M;

o strictly hexagonal if H is a characteristic pasture for M

o strictly D ® H-representable if D ® H is a characteristic pasture for M;

e idempotent if K is a characteristic pasture for M.

Note that an idempotent matroid M is representable over a pasture P if and only
if P is idempotent, by which we mean that both —1 =1 and 14+ 1 =1 hold in P.

THEOREM 6.20. Let M be a matroid without large uniform minors. Then M
belongs to precisely one of the 12 classes that are described in Table 6.2. The six
columns of Table 6.2 describe the following information:

(1) a label for each class C;

(2) a name (as far as we have introduced one);

(3) a characteristic pasture o that is minimal in the sense that the foun-
dation of every matroid M in the class C is of isomorphism type Fp; ~
Me®@F ®---QF, for somer >0 and Fy,...,F,. € {U,D,H};

(4) the type of factors F; that can occur in the expression Fpy ~ 1l @ F} ®
<@ F, for M in C;

(5) a characterization of the pastures P in the representation class Pc;

(6) whether the matroids in this class are representable over some field.

The left diagram in Figure 6.1 illustrates the existence of morphisms between the
different characteristic pastures Ilg in Table 6.2. The right diagram illustrates the
inclusion relation between the representation classes P; = Pe, (fori=1,...,12)—
an edge indicates that the class on the bottom end of the edge is contained in the
class at the top end of the edge.
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FIGURE 6.1. Morphisms between characteristic pastures and con-
tainment of the representation classes for matroids without large
uniform minors

PROOF. For the sake of this proof, we say that two pastures P and P’ are
equivalent, and write P ~ P’  if there are morphisms P —+ P’ and P’ — P.

If there is a morphism P’ — P, then there are morphisms P — P ® P’ and
P ® P’ — P, which means that P ® P’ ~ P. This applies in particular to P’ = P.
This shows that Py ® -+ ® P. ~ P, ® - -+ ® P, for s < r and pastures P, ..., P, if,
for every i € {s+1,...,r}, there is a j € {1,...,r} and a morphism P, — P;.

Let M be a matroid without large uniform minors and Fj; its foundation. By
Theorem 5.9, )y ~ Fy ® - ® F, for some Fi,..., F. € {U,D,H,F3,Fy}, where we
can assume that [Fy appears at most once as a factor. By the previous considerations,
Fy ~ F) ®---® F; for pairwise distinct F,..., Fs € {U,D,H,F3,Fy}. Since there
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are morphisms

U/D\Fg,
\H/

we have DU ~D, HR U ~ H and F3 ® F ~ F3 for F € {U,D,H}. Thus we can
assume that in the expression F} ® - - - ® Fs at most one of U, D, H and F3 appears,
with the exception of D ® H.

Thus we are limited to the twelve different expressions for F; ® --- ® Fs that
appear in Figure 6.1. We conclude that F; is equivalent to one of those and that
II=F, ®---® Fs is a characteristic pasture for M.

An easy case-by-case verification based on Table 6.1, which we shall not carry
out, shows that there is a morphism between two pastures if and only if there is a
directed path between these pastures in the diagram on the left hand side of Figure
6.1. By Lemma 6.19, this diagram determines at once the inclusion behaviour of
the associated representation classes P1—P15 as illustrated on the right hand side
of Figure 6.1.

Note that the way we found the twelve characteristic pastures II shows that
they are minimal in the sense of part (3) of the theorem, and it shows that the
types of additional factors displayed in the forth column of Table 6.2 are correct.
The conditions in the fifth column of Table 6.2 follows at once from Lemma 6.1.

For the verification of the last column, note that there is a morphism Il — F3
for the classes C' € {C4,...,Cs} and that there is a morphism II — Fy for C €
{C7,Cs,C10}. Thus the matroids in the classes C1—Cs and C1p are representable
over a field. There is no morphism from Fy; ® D to any field since in a field only
oneof 1+1=0and1+1=u"" for some u # 0 can hold. Thus matroids in the
classes Cy, C1; and Cio are not representable over any field, which concludes the
proof of the theorem. O

As a sample application, we formulate the following strengthening of the result
[37, Thm. 3.3] by Whittle. Recall that a matroid is called representable if it is
representable over some field.

THEOREM 6.21. Let P¢g = {Fq ’q < 8 a prime power}. Then two repre-
sentable matroids M and M’ without large uniform minors are representation equiv-
alent if and only if Par N Pgs = Pa N Pgs. More precisely, fori € {1,...,8,10}
and p; and g; as in Table 6.3, the class Pc, is the intersection of the representation
classes Py of all matroids M without large uniform minors that are representable
over Fp,. and F,,.

TABLE 6.3. Prime powers such that Po, =
N{Pum ‘ M is representable over F,,, and Fy, }

Lo [L[2][3[4][5[6[7[8]10]
p2](3[3[3[3[3[2]8] 4
% |3]|8[5(4|7[3[2[8[4
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PRroOF. For i € {1,...,8,10} and M in Cj, let U; be the subset of {U, D, H,
F3,F5} such that II; = ®P€u,; P is a characteristic pasture for M, cf. Table 6.2.
Then we can read off from Table 6.1 that there are morphisms P — F,,, and P — F,
for all P € U;, and that for all P € {U,D,H,F5,F5} that are not in U;, there is
either no morphism from P to F,, or no morphism from P to F,. This shows
that the existence of morphisms into I,, and F,, characterize the factors of the
characteristic pasture II; and establishes the claims of the theorem. O

REMARK 6.22. Note that the representation class Py of regular matroids con-
tains all pastures and is therefore the largest possible representation class. The
representation class P15 of idempotent pastures is the smallest representation class,
since every matroid is by definition representable over K and thus over every idem-
potent pasture. (Recall that a pasture P is called idempotent if there is a morphism
from K to P.) Every other representation class thus lies between P15 and P;.

REMARK 6.23. We will show in a sequel to this paper that every tensor product
of copies of the pastures U, D, H, F3 and 3 occurs as the foundation of a matroid.
Consequently each of the classes C1—C12 is nonempty.

Alternatively, we can use known results to deduce this. Since there are matroids
that are regular, strictly near-regular (e.g. U3), strictly dyadic (e.g. the non-Fano
matroid F, ), strictly hexagonal (e.g. the ternary affine plane AG(2,3)), strictly
ternary (e.g. the matroid Ty from Oxley’s book [22]) and strictly binary (e.g. the
Fano matroid Fy), the classes Cy, Cs, C3, Cy, Cg and C7 are nonempty.

Since the characteristic pastures of the remaining classes in Table 6.2 are tensor
products of characteristic pastures of one of the aforementioned matroids, we can
deduce that the other classes are also nonempty by observing that

(P|Fu®Fur > PY = {P|Fy 3 P}n{P|Far 3 P} = PunPar = Prrgar
for two matroids M and M’.

REMARK 6.24. Since all binary and ternary matroids are without large uniform
minors, all matroids in the classes C;—C% are without large uniform minors. This
is not true for all classes though. For instance the direct sum of an idempotent
matroid with U2 is also idempotent and thus in Cjo, but has a minor of type UZ;
cf. Remark 6.23 for the existence of idempotent matroids.

In fact, a similar construction yield matroids with U2-minors in the classes Ci
and C7;. By contrast, all matroids in Cg and Cy are without large uniform minors.
This latter fact can be proven as follows: a class C; contains a matroid M with a
U2- or a U3-minor if and only if there is morphism from the foundation of U2 (cf.
Proposition 5.4) to the minimal characteristic pasture for M. There is no morphism
from the foundation of Ug to Fo®U or to Fo ®D, but there are morphisms to Fo @ H
and Fo @ D ® H.

6.7. Characterization of classes of matroids

In this section, we use our results to provide different characterizations of some
prominent classes of matroids, such as regular, near-regular, binary, ternary, quater-
nary, dyadic, and hexagonal matroids. In particular, we find new proofs for results
by Tutte, Bland and Las Vergnas, and Whittle, which we refer to in detail at the
beginnings of the appropriate sections. Moreover, we obtain new characterizations,
which often involve the pastures S, P and W.
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All these characterizations are immediate applications of Theorem 5.9 in com-
bination with Table 6.1. It is possible to work out additional descriptions for the
classes of matroids under consideration, or to study other classes with the same
techniques. For example, our technique allows for an easy proof of the following
results found in Theorems 5.1 and 5.2 of Semple and Whittle’s paper [28].

THEOREM 6.25 (Semple-Whittle '96). Let Cp denote the class of matroids
without large uniform minors that are representable over a pasture P. Then the
following hold true.

(1) Cr,. NCry = Cy for oddr > 2

(2) Cp,. NCr, = Cy for even r > 2.

(3) Ck C Cpg, for every field k of characteristic different from 2, and C, = Cp
if, in addition, k does not contain a primitive sixth root of unity.

6.7.1. Regular matroids. The following theorem extends a number of clas-
sical results that characterize regular matroids, namely as binary matroids that are
representable over a field k with char k # 2 by Tutte in [32] (use P = k in (5)) and
as binary and orientable matroids by Bland and Las Vergnas in [8] (use P = S in
(5)). Up to the characterization (3), the authors of this paper have proven Theorem
6.26 in its full generality in [5, Thm. 7.33] with a slightly different proof.

THEOREM 6.26. Let M be a matroid with foundation Fy;. Then the following
assertions are equivalent:
(1) M is Tegular.
(2) Fu =
3) M belongs to C.
(4) M is representable over all pastures.
(5) M is representable over Fo and a pasture with —1 # 1.

PrOOF. The logical structure of this proof is (1)=(3)=(4)=(5)=(2)=(1).
The implications (2)=-(1)=(3)=(4) follow from Theorem 6.20 and (4)=(5) is
trivial.

We close the circle by showing (5)=-(2). If M is binary, then it is without large
uniform minors by Lemma 6.2. Thus, by Theorem 5.9, F); is a tensor product of
copies of U, D, H, F3 and Fs. But none of U, D, H or F3 admits a morphism to
Fs, and Fy admits no morphism into a pasture P with —1 % 1. Thus Fj; = ]Ff, as
claimed. 0

6.7.2. Binary matroids. We find the following equivalent characterizations
of binary matroids.

THEOREM 6.27. Let M be a matroid with foundation Fy;. Then the following
assertions are equivalent:
(1) M is binary.
(2) FM Z]Fit OTF]V[ EFQ.
(3) M belongs to Cy or Cy.
(4) M is representable over every pasture for which —1 = 1.
(5) All fundamental elements of Fpy are trivial.

PRrOOF. We prove (1)=(3)=(2)=(5)=(2)=(4)=(1). Steps (1)=(3)=(2) fol-
low from Theorem 6.20, step (5)=(2) follows from part (1) of Lemma 6.1 and
Corollary 5.10, and steps (2)=-(5) and (2)=-(4)=-(1) are trivial. O
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6.7.3. Ternary matroids. We find the following equivalent characterizations
of ternary matroids.

THEOREM 6.28. Let M be a matroid with foundation Fy;. Then the following
assertions are equivalent:

(1) M is ternary.

(2) Fy2F® - QF, forr >0 and F1,...,F. € {U,D,H,Fs}.

(3) M belongs to one of C1-Cg.

(4) M is representable over every pasture for which 1+ 1+ 1= 0.

(5) M is without large uniform minors and representable over a field of char-
acteristic 3.

(6) M is without large uniform minors and weakly orientable.

(7) M is without large uniform minors and there is no morphism from Fy to
Fy.

ProoF. We show (2)<(3), (1)<(4) and (2)=(1)=(5) / (6) / (7)=(2). The
implications (2)=-(1)<(4) are trivial. The equivalence (2)<(3) follows from Theo-
rem 6.20.

Assuming (1), then M is without large uniform minors by Lemma 6.2. Since
there are morphisms F3 — k for every field k of characteristic 3 and F3 — W, this
implies (5) and (6).

If M is without large uniform minors, then Theorem 5.9 implies that F; is the
tensor product of copies of U, D, H, F3 and Fo. Thus (1) and the fact that Fy does
not map to Fs implies (7). Conversely, each condition of (5), (6) and (7) implies
that Fy cannot occur as a building block of Fys, and thus (2). O

6.7.4. Quaternary matroids without large uniform minors. We find the
following equivalent characterizations of quaternary matroids without large uniform
minors.

THEOREM 6.29. Let M be a matroid without large uniform minors and Fay its
foundation. Then the following assertions are equivalent:

(1) M is quaternary.

(2) Fy 2F1® - QF, forr =20 and F1,...,F,. € {U,H,Fa}.

(3) M belongs to Cy, Ca, Cy, C7, Cs or Chp.

(4) M is representable over every pasture for which 14+1 = 0 and that contains
an element w for which u? +u+1 = 0.

(5) M is representable over all field extensions of Fy.

(6) There is no morphism from D to Fiy.

PRrROOF. We show (2)<(3) and (2)=(4)=-(1)=(5)=(6)=-(2). The equivalence
(2)<(3) follows from Theorem 6.20. The implications (2)=(4)=-(1)=(5) are trivial.
The implication (5)=-(6) follows since there is no morphism from D to F4 by Lemma
6.1. The implication (6)=(2) follows by Theorem 5.9, together with the fact that
there is a morphism D — F3 but there are no morphisms from D to U, H and Fs,
and thus only the latter three pastures can occur as factors of F;. O

6.7.5. Near-regular matroids. In this section, we provide several character-
izations of near-regular matroids. The descriptions (5) and (6) appear in Whittle’s
paper [36, Thm. 1.4].
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THEOREM 6.30. Let M be a matroid with foundation Fy;. Then the following
assertions are equivalent:

(1) M is near-regular.

) Fy~F® -QF, forr>20and Fy =---=F, =U.

3) M belongs to Cy or Cs.

4) M is representable over all pastures with a fundamental element.

5) M is representable over fields with at least 3 elements.

6) M is representable over F3 and Fg.

7) M is without large uniform minors and representable over Fy and Fy.
8) M is without large uniform minors and representable over Fy and S.
9) M is without large uniform minors and representable over Fg and W.
0) M is dyadic and hexagonal.

1) M is without large uniform minors and there are no morphisms Fo — Fiy,
]D)—)FM, OTH—>FM.

PRrROOF. We show (2)<(3), (2)=(1)=(4)=(5)=(2) and the equivalence of (2)
with each of (6)—(11). The equivalence (2)<(3) follows from Theorem 6.20, (2)=(1)
and (4)=(5) are trivial and (1)=(4) follows from Lemma 6.1. That (2) implies (6)—
(11) can be read off from Table 6.1. Conversely, each of (5)—(11) implies that M is
without large uniform minors and thus Theorem 5.9 applies. In turn, each of (5)-
(11) excludes that any of D, H, F3 and Fy occur as a factor Fyy, and thus (2). O

(

(2
(
(
(
(
(
(
(
1
(1

6.7.6. Dyadic matroids. In this section, we provide several characterizations
of dyadic matroids. Description (6) has been given by Whittle in [35, Thm. 7.1].
Descriptions (4) and (5) have been given by Whittle in [36, Thm. 1.1].

THEOREM 6.31. Let M be a matroid with foundation Fy;. Then the following
assertions are equivalent:

(1) M is dyadic.

(2) Fy2F® - QF, forr 20 and F1,...,F. € {U,D}.

(3) M belongs to Cy, Cy or Cs.

(4) M is representable over every pasture P such that 1 + 1 = u for some
u € P*.

(5) M is representable over every field of characteristic different from 2.

(6) M is representable over Fs and F,, where q is an odd prime power such
that ¢ — 1 is not divisible by 3.

(7) M is representable over Fs and Q.

(8) M is representable over F3 and S.

(9) M is without large uniform minors and there are no morphisms Fy — Fiy
or H— Fyy.

PrOOF. We show (2)<(3), (2)=(1)=(4)=(5)=(2) and the equivalence of (2)
with each of (6)—(9). The equivalence (2)<(3) follows from Theorem 6.20, (2)=-(1)
and (4)=(5) are trivial and (1)=-(4) follows from Lemma 6.1. That (2) implies (6)-
(9) follows from Lemma 6.1 and Table 6.1. Conversely, each of (5)—(9) implies that
M is without large uniform minors and thus Theorem 5.9 applies. In turn, each of
(5)—(9) excludes that any of H, F5 and Fs occur as a factor Fys, and thus (2). O

6.7.7. Hexagonal matroids. In this section, we provide several character-
izations of hexagonal matroids. Description (5) has been given by Whittle in
[36, Thm. 1.2].
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THEOREM 6.32. Let M be a matroid with foundation Fp;. Then the following
assertions are equivalent:

(1) M is hexagonal.

2 Fy~F® ---QF, forr >0 and Fy,...,F,. € {UH}.

(3) M belongs to Cy, Cy or Cy.

(4) M s representable over every pasture that contains an element u with
uw=—1andu?>—-u+1=0.

(5) M is representable over every field that is of characteristic 3 or contains
a primitive sixth root of unity.

(6) M is representable over F3 and Fy.

(7) M is without large uniform minors, weakly orientable, and representable
over Fy.

(8) M is without large uniform minors and there are no morphisms Fo — Fiy
orD — Fyy.

PRrROOF. We show (2)<(3), (2)=(1)=(4)=(5)=(2) and the equivalence of (2)
with each of (6)—(8). The equivalence (2)<(3) follows from Theorem 6.20, (2)=-(1)
and (4)=(5) are trivial and (1)=-(4) follows from Lemma 6.1. That (2) implies (6)—
(8) follows from Lemma 6.1 and Table 6.1. Conversely, each of (5)—(8) implies that
M is without large uniform minors and thus Theorem 5.9 applies. In turn, each of
(5)—(8) excludes that any of I, F3 and Fy occur as a factor Fjs, and thus (2). O

6.7.8. D ® H-representable matroids. Whittle describes in [36, Thm. 1.3]
equivalent conditions that are satisfied by D ® H-representable matroids, which
are conditions (4) and (5) below. We augment Whittle’s result with the following
theorem.

THEOREM 6.33. Let M be a matroid with foundation Fp;. Then the following
assertions are equivalent:

(1) M is D ® H-representable.

(2) Fy2F1® - QF, forr >0 and F1,...,F, € {U,D,H}.

(3) M belongs to one of C1-Cs.

(4) M is representable over F3 and C.

(5) M is representable over Fs and F,, where q is an odd prime power con-
gruent to 1 modulo 3.

(6) M is representable over Fs and IP.

3
4
5

PRrROOF. We show (1)=(2)=-(3)=(1) and the equivalence of (2) with each of
(4)—(6). The implications (1)=-(2)=-(3)=(1) follow from Theorem 6.20. That (2)
implies (4)—(6) follows from Lemma 6.1 and Table 6.1. Conversely, each of (4)—(6)
implies that M is without large uniform minors by Lemma 6.2, and thus Theorem
5.9 applies. In turn, each of (4)—(6) excludes the possibility that either F3 or Fy
occurs as a factor Fys, and thus (2). O

6.7.9. Representable matroids without large uniform minors. As a fi-
nal application, we find the following equivalent characterization of matroids with-
out large uniform minors which are representable over some field.

THEOREM 6.34. Let M be a matroid without large uniform minors and Fay its
foundation. Then the following assertions are equivalent:

(1) M is representable over some field.
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(2) Fy ~Fi,®---®F, forr > 0 and either Fy,...,F,. € {U/D,H,Fs} or
F,...,F, e {UH,F,).

(3) M belongs to one of C1-Cs or Cig.

(4) M is ternary or quaternary.

(5) There is no morphism from Fo @ D to Fyy.

PRrROOF. The equivalences (1)< (2)<(3) follow from Theorem 6.20. The impli-
cations (2)=(4)=(5)=-(2) can be derived by combining the implications (2)=-(1)=
(7)=(2) from Theorem 6.28 and (2)=(1)=(6)=-(2) from Theorem 6.29. O
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