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Abstract

The foundation of a matroid is a canonical algebraic invariant which classi-
fies, in a certain precise sense, all representations of the matroid up to rescaling
equivalence. Foundations of matroids are pastures, a simultaneous generalization
of partial fields and hyperfields which are special cases of both tracts (as defined
by the first author and Bowler) and ordered blue fields (as defined by the second
author).

Using deep results due to Tutte, Dress–Wenzel, and Gelfand–Rybnikov–Stone,
we give a presentation for the foundation of a matroid in terms of generators and
relations. The generators are certain “cross-ratios” generalizing the cross-ratio of
four points on a projective line, and the relations encode dependencies between
cross-ratios in certain low-rank configurations arising in projective geometry.

Although the presentation of the foundation is valid for all matroids, it is sim-
plest to apply in the case of matroids without large uniform minors. i.e., matroids
having no minor corresponding to five points on a line or its dual configuration. For
such matroids, we obtain a complete classification of all possible foundations.

We then give a number of applications of this classification theorem, for exam-
ple:

(1) We prove the following strengthening of a 1997 theorem of Lee and Scobee:
every orientation of a matroid without large uniform minors comes from
a dyadic representation, which is unique up to rescaling.

(2) For a matroid M without large uniform minors, we establish the follow-
ing strengthening of a 2017 theorem of Ardila–Rincón–Williams: if M is
positively oriented then M is representable over every field with at least
3 elements.

(3) Two matroids are said to belong to the same representation class if they
are representable over precisely the same pastures. We prove that there are
precisely 12 possibilities for the representation class of a matroid without
large uniform minors, exactly three of which are not representable over
any field.

Received by the editor September 28, 2020, and, in revised form, August 22, 2022.
Article electronically published on January 14, 2025.
DOI: https://doi.org/10.1090/memo/1536
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Introduction

Matroids are a combinatorial abstraction of the notion of linear independence
in vector spaces. If K is a field and n is a positive integer, any linear subspace of Kn

gives rise to a matroid; such matroids are called representable over K. The task of
deciding whether or not certain families of matroids are representable over certain
kinds of fields has occupied a plethora of papers in the matroid theory literature.

Dress and Wenzel [14,15] introduced the Tutte group and the inner Tutte group
of a matroid. These are abelian groups which, in a certain precise sense, can be
used to understand representations of M over all so-called fuzzy rings (which in
particular include fields). Dress and Wenzel gave several different presentations for
these groups in terms of generators and relations, and Gelfand–Rybnikov–Stone
[17] subsequently gave additional presentations for the inner Tutte group of M .
The Dress–Wenzel theory of Tutte groups, inner Tutte groups, and fuzzy rings is
powerful but lacks simple definitions and characterizations in terms of universal
properties.

In their 1996 paper [29], Semple and Whittle generalized the notion of matroid
representations to partial fields (which are special cases of fuzzy rings); this allows
one to consider certain families of matroids (e.g. regular or dyadic) as analogous to
matroids over a field, and to prove new theorems in the spirit of Tutte’s theorem
that a matroid is both binary and ternary if and only if it is regular. Pendavingh and
van Zwam [24,25] subsequently introduced the universal partial field of a matroid
M , which governs the representations of M over all partial fields. Unfortunately,
most matroids (asymptotically 100%, in fact, by a theorem of Nelson [21]) are not
representable over any partial field, and in this case the universal partial field gives
no information. One can view non-representable matroids as the “dark matter” of
matroid theory: they are ubiquitous but somehow mysterious.

Using the theory of matroids over partial hyperstructures presented in [3]
(which has been continued in [1], [9] and [23]), we introduced in [5] a general-
ization of the universal partial field which we call the foundation of a matroid. The
foundation is a kind of algebraic object which we call a pasture; pastures include
both hyperfields and partial fields and form a natural class of “field-like” objects
within the second author’s theory of ordered blueprints in [19]. The category of
pastures has various desirable categorical properties (e.g., the existence of products
and co-products) which makes it a natural context in which to study algebraic
invariants of matroids. Pastures are closely related to fuzzy rings, but they are
axiomatically much simpler.

One advantage of the foundation over the universal partial field is that the
foundation exists for every matroid M , not just matroids that are representable over
some field. Moreover, unlike the inner Tutte group, the foundation of a matroid

1
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2 INTRODUCTION

is characterized by a universal property which immediately clarifies its importance
and establishes its naturality.

More precisely, the foundation of a matroid M represents the functor taking a
pasture F to the set of rescaling equivalence classes of F -representations of M ; in
particular, M is representable over a pasture F if and only if there is a morphism
from the foundation of M to F .

Our first main result (Theorem 4.21) gives a precise and useful description of
the foundation of a matroid in terms of generators and relations. Although this
theorem applies to all matroids, it is easiest to apply in the case of matroids without
large uniform minors, by which we mean matroids which do not have minors iso-
morphic to either U2

5 or U3
5 .1 For such matroids, we obtain a complete classification

(Theorem 5.9) of all possible foundations, from which one can read off just about
any desired representability property. We also show, for example, that there are
precisely three different representation classes of matroids without large uniform
minors which are not representable over any field. The applications of Theorem 5.9
which we present in Chapter 6 are merely a representative sample of the kinds of
things one can deduce from this structural result.

We now give a somewhat more precise introduction to the main concepts, defi-
nitions, and results in the present paper.

A quick introduction to pastures

A field K can be thought of as an abelian group G = (K×, ·, 1), a multiplica-
tively absorbing element 0, and a binary operation + on K = G∪{0} which satisfies
certain additional natural axioms (e.g. commutativity, associativity, distributivity,
and the existence of additive inverses). Pastures are a generalization of the notion
of field in which we still have a multiplicative abelian group G, an absorbing ele-
ment 0, and an “additive structure”, but we relax the requirement that the additive
structure come from a binary operation. The following two examples are illustrative
of the type of relaxations we have in mind.

Example (Krasner hyperfield). As a pasture, the Krasner hyperfield K consists
of the multiplicative monoid {0, 1} with 0 · x = 0 and 1 · 1 = 1 and the additive
relations 0+x = x, 1+1 = 1, and 1+1 = 0. Note, in particular, that both 1+1 = 1
and 1+ 1 = 0 are true, and in particular the additive structure is not derived from
a binary operation. The fact that 1 + 1 is equal to two different things may seem
counterintuitive at first, but if we think of 1 as a symbol meaning “non-zero”, it is
simply a reflection of the fact that the sum of two non-zero elements (in a field, say)
can be either non-zero or zero.

Example (Regular partial field). As a pasture, the regular partial field F±
1

consists of the multiplicative monoid {0, 1,−1} with 0·x = 0, 1·1 = 1, 1·(−1) = −1,
and (−1) ·(−1) = 1, together with the additive relations 0+x = x and 1+(−1) = 0.
Note, in particular, that there is no additive relation of the form 1 + 1 = x or
(−1) + (−1) = x, so that once again the additive structure is not derived from a
binary operation (but for a different reason: here, 1 + 1 is undefined rather than
being multi-valued). We think of F±

1 as encoding the restriction of addition and
multiplication in the ring Z to the multiplicative subset {0,±1}.

1Note that if M has no minor of type U
2

5
or U

3

5
, then M also has no uniform minor U

r
n with

n � 5 and 2 � r � n− 2, hence the term “large”.
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In general, we will require that a pasture P has an involution x �→ −x (which is
trivial in the case of K), and we can use this involution to rewrite additive relations
of the form x+ y = z as x+ y− z = 0. It turns out to be more convenient to define
pastures using this formalism, and from now on we view the expression x+y = z as
shorthand for x+ y+ (−z) = 0. For additional notational convenience, we identify
relations of the form x + y + z = 0 with triples (x, y, z); the set of all such triples
will be denoted NP and called the null set of the pasture.

More formally, a pasture is a multiplicative monoid-with-zero P such that P× =
P\{0} is an abelian group, an involution x �→ −x on P fixing 0, and a subset NP

of P 3 such that:

(1) (Symmetry) NP is invariant under the natural action of S3 on P 3.
(2) (Weak Distributivity) NP is invariant under the diagonal action of P× on

P 3.
(3) (Unique Weak Inverses) (0, x, y) ∈ NP if and only if y = −x.

If we set x � y = {z ∈ P : x+ y = z}, then the pasture P corresponds to a
field if and only if � is an associative binary operation. If x � y contains at least
one element for all x, y ∈ P and � is associative (in the sense of set-wise addition),
we call P a hyperfield. If x � y contains at most one element for all x, y ∈ P and
satisfies a suitable associative law, we call P a partial field. Pastures generalize
(and simplify) both hyperfields and partial fields by imposing no conditions on the
size of the sets x � y and no associativity conditions.

Example (Hyperfields). Let K be a field and let G � K× be a multiplicative
subgroup. Then the quotient monoid K/G = (K×/G)∪{0} is naturally a hyperfield:
the additive relations are all expressions of the form [x] + [y] = [z] for which there
exist a, b, c ∈ G such that ax + by = cz. For example, R/R× is isomorphic to the
Krasner hyperfield K, R/R>0 is isomorphic to the sign hyperfield S (cf. [3, Example
2.13]), and if p � 7 is a prime number with p ≡ 3 (mod 4) then Fp/(F

×
p )

2 is
isomorphic to the weak sign hyperfield W (cf. [3, Example 2.13]). However, not
every hyperfield arises in this way (cf. [4,20]).

Example (Partial fields). Let R be a commutative ring and let G � R× be a
subgroup of the unit group of R containing −1. Then P = G ∪ {0} is naturally a
partial field: the additive relations are all expressions of the form x + y = z with
x, y, z ∈ G ∪ {0} such that x + y = z in R. Unlike the situation with hyperfields,
every partial field arises from this construction (cf. [25, Theorem 2.16]).

Example (Partial fields, continued). If R is a commutative ring, let P (R) be
the partial field corresponding to R× ⊂ R. In this paper, we will make extensive
use of the following partial fields:

(1) F±
1 = P (Z). We call this the regular partial field.

(2) D = P (Z[ 12 ]). We call this the dyadic partial field.
(3) H = P (Z[ζ6]), where ζ6 ∈ C is a primitive sixth root of unity. We call this

the hexagonal partial field.2

(4) U = P (Z[x, 1
x ,

1
1−x ]), where x is an indeterminate. We call this the near-

regular partial field.

2In [25] the partial field H is denoted S, but in our context that would conflict with the
established terminology for the sign hyperfield, so we re-christen it as H. The partial field U is
denoted U1 in [25].
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Example (Fields). It is perhaps worth pointing out explicitly that fields are
special cases of both hyperfields and partial fields; in fact, they are precisely the
pastures which are both hyperfields and partial fields. Since we will be making
extensive use of the finite fields F2 and F3 in this paper, here is how to explicitly
realize these fields as pastures:

(1) F2 has as its underlying monoid {0, 1} with the usual multiplication. The
involution x �→ −x is trivial, and the 3-term additive relations are 0+ 0+
0 = 0 and 0 + 1 + 1 = 0 (and all permutations thereof).

(2) F3 has as its underlying monoid {0, 1,−1} with the usual multiplication.
The involution x �→ −x sends 0 to 0 and 1 to −1. The 3-term additive
relations are 0+0+0 = 0, 1+(−1)+0 = 0 (and all permutations thereof),
and 1 + 1 + 1 = 0.

A morphism of pastures is a multiplicative map f : P → P ′ of monoids such
that f(0) = 0, f(1) = 1 and f(x)+ f(y)+ f(z) = 0 in P ′ whenever x+ y+ z = 0 in
P. Pastures form a category whose initial object is F±

1 and whose final object is K.

Representations of matroids over pastures

and the foundation of a matroid

Let M be a matroid of rank r on the finite set E, and let P be a pasture.
A P -representation of M is a function ∆ : Er → P such that:

(1) ∆(e1, . . . , er) 	= 0 if and only if {e1, . . . , er} is a basis of M .
(2) ∆(σ(e1), . . . , σ(er)) = sign(σ) ·∆(e1, . . . , er) for all permutations σ ∈ Sr.
(3) ∆ satisfies the 3-term Plücker relations: for all J ∈ Er−2 and all (e1, e2,

e3, e4) ∈ E4, the null set NP of P contains the additive relation

∆(Je1e2) ·∆(Je3e4)−∆(Je1e3) ·∆(Je2e4) + ∆(Je1e4) ·∆(Je2e3) = 0,

where Jeiej := (j1, . . . , jr−2, ei, ej).

Definition.

(1) M is representable over P if there is at least one P -representation of M .
(2) Two P -representations ∆ and ∆′ are isomorphic if there exists c ∈ P×

such that ∆′(e1, . . . , er) = c∆(e1, . . . , er) for all (e1, . . . , er) ∈ Er.3

(3) ∆ and ∆′ are rescaling equivalent if there exist c ∈ P× and a map d :
E → P× such that ∆′(e1, . . . , er) = c · d(e1) · · · d(er) ·∆(e1, . . . , er) for all
(e1, . . . , er) ∈ Er.

(4) We denote by XI
M (P ) (resp. XR

M (P )) the set of isomorphism classes (resp.
rescaling classes) of P -representations of M .4

Example. By the results in [3] and [5], we have:

(1) If K is a field, the isomorphism classes of K-representations of M are
naturally in bijection with r-dimensional subspaces of KE (the K-vector
space of functions from E to K) whose underlying matroid is M .

(2) Every matroid has a unique representation over the Krasner hyperfield K.

3An isomorphism class of P -representations of M is the same thing as a weak P -matroid

whose support is M , in the terminology of [3].
4In [5], these sets are denoted Xw

M (P ) and X
f
M

(P ), respectively.
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(3) If P is a partial field, M is representable over P if and only if it is rep-
resentable by a P -matrix in the sense of [25]. In particular, a matroid is
regular (i.e., representable over Z by a totally unimodular matrix) if and
only if it is representable over the partial field F±

1 . A regular matroid will
in general have many different (non-isomorphic) representations over F±

1 ,
but there is a unique rescaling class of such representations.

(4) A matroid is orientable if and only if it is representable over the sign hy-
perfield S. An orientation of M is the same thing as an S-representation,
and in this case rescaling equivalence is usually called reorientation equiv-
alence.

For fixed M the map taking a pasture P to the set XI
M (P ) (resp. XR

M (P )) is a
functor. In particular, if f : P1 → P2 is a morphism of pastures, there are natural
maps XI

M (P1) → XI
M (P2) and XR

M (P1) → XR
M (P2).

We now come to the key result from [5] motivating the present paper:

Theorem. Given a matroid M , the functor taking a pasture P to the set
X

I
M (P ) is representable by a pasture PM which we call the universal pasture of

M . In other words, we have a natural isomorphism

(1) Hom(PM ,−) 
 X
I
M .

The functor taking a pasture P to the set XR
M (P ) is representable by a subpasture

FM of PM which we call the foundation of M , i.e. there is a natural isomorphism

(2) Hom(FM ,−) 
 X
R
M .

For various reasons, including the fact that the foundation can be presented by
generators and relations “induced from small minors”, we will mainly focus in this
paper on studying the foundation of M rather than the universal pasture. Note
that both PM and FM have the property that M is representable over a pasture P
if and only if there is a morphism from PM (resp. FM ) to P .

Remark.

(1) The universal partial field and foundation behave nicely with respect to
various matroid operations. For example, the universal partial fields (resp.
foundations) of M and its dual matroid M∗ are canonically isomorphic.
And there is a natural morphism from the universal partial field (resp.
foundation) of a minor N = M\I/J of M to the universal partial field
(resp. foundation) of M .

(2) The multiplicative group P×
M (resp. F×

M ) of the universal partial field (resp.
foundation) of M is isomorphic to the Tutte group (resp. inner Tutte group)
of Dress and Wenzel [14, Definition 1.6].

If we take P = PM in (1), the identity map is a distinguished element of

Hom(PM , PM ). It therefore corresponds to a distinguished element ∆̂M ∈ XI
M (PM ),

which (by abuse of terminology) we call the universal representation of M . (Tech-
nically speaking, the universal representation is actually an isomorphism class of
representations.)

Remark. When FM is a partial field, the foundation coincides with the uni-
versal partial field of [24]. However, when M is not representable over any field,
the universal partial field does not exist. On the other hand, the foundation of M
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is always well-defined; this is one sense in which the theory of pastures helps us
explore the “dark matter” of the matroid universe.

Products and coproducts

The category of pastures admits finite products and co-products (a.k.a. tensor
products). This is a key advantage of pastures over the categories of fields, partial
fields, and hyperfields, none of which admit both products and co-products. The
relevance of such considerations to matroid theory is illustrated by the following
observations:

(1) M is representable over both P1 and P2 if and only if M is representable
over the product pasture P1 × P2. (This is immediate from the universal
property of the foundation and of categorical products.)

(2) If M1 and M2 are matroids, the foundation of the direct sum M1 ⊕ M2

is canonically isomorphic to the tensor product FM1
⊗FM2

, and similarly
for the 2-sum of M1 and M2. (These facts, along with some applications,
will be discussed in detail a follow-up paper.)

(3) Tensor products of pastures are needed in order to state and apply the
main theorem of this paper, the classification theorem for foundations of
matroids without large uniform minors (Theorem 5.9 below).

In order to illustrate the utility of categorical considerations for studying ma-
troid representations, we briefly discuss a couple of key examples.

Example. The product of the fields F2 and F3, considered as pastures, is
isomorphic to the regular partial field F±

1 . As an immediate consequence, we obtain
Tutte’s celebrated result that a matroid M is representable over every field if and
only if M is regular. (Proof: If M is regular then since F±

1 is an initial object in the
category of pastures, M is representable over every pasture, and in particular over
every field. Conversely, if M is representable over every field, then it is in particular
representable over both F2 and F3, hence over their product F±

1 , and thus M is
regular.)

One can, in the same way, establish Whittle’s theorem that a matroid is repre-
sentable over both F3 and F4 if and only if it is hexagonal, i.e., representable over
the partial field H.

These kind of arguments are well-known in the theory of partial fields; however,
the theory of pastures is more flexible. For example, the product of the field F2

and the hyperfield S is also isomorphic to the partial field F±
1 . In this way, we

obtain a unified proof of the result of Tutte just mentioned and the theorem of
Bland and Las Vergnas that a matroid is regular if and only if it is both binary and
orientable [8].

Example. If we try to extend this type of argument to more general pastures,
we run into some intriguing complications. As an illuminating example, consider
the theorem of Lee and Scobee [18] that a matroid is both ternary and orientable
if and only if it is dyadic, i.e., representable over the partial field D. In this case,
the product of F3 and S is not isomorphic to D; there is merely a morphism from D
to F3 × S. The theorem of Lee and Scobee therefore lies deeper than the theorems
mentioned in the previous example; proving it requires establishing, in particular,
that F3 × S is not the foundation of any matroid.
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To do this, one needs a structural understanding of foundations, which we
obtain by utilizing highly non-trivial results of Tutte, Dress–Wenzel, and Gelfand–
Rybnikov–Stone. The result of our analysis, in the context of matroids which are
both ternary and orientable, is that every morphism from the foundation of some
matroid to F3×S lifts uniquely to D. More precisely, we prove that if M is a matroid
without large uniform minors (e.g. if M is ternary), then the morphism D → S
induces a canonical bijection Hom(FM ,D) → Hom(FM , S). This gives a new and
non-trivial strengthening of the Lee–Scobee theorem. The proof goes roughly as
follows: by Theorem B we have FM

∼= F1 ⊗ · · · ⊗ Fs, where each Fi belongs to
an explicit finite set P of pastures. By categorical considerations, the statement
that a morphism f : FM → S lifts uniquely to D is equivalent to the statement
that Hom(P, S) = Hom(P,D) for all P ∈ P, and this can be checked by concrete
elementary computations.

Universal cross ratios

In order to explain why the “large” uniform minors U2
5 and U3

5 play a special
role in the theory of foundations, we need to first explain the concept of a universal
cross ratio, which is intimately related to U2

4 -minors.
Let M be a matroid of rank r, let P be a pasture, and let ∆ be a P -representa-

tion of M . Let J ∈ Er−2 have distinct coordinates and let J be the corresponding
unordered subset of E of size r − 2. If ∆(Je1e4) and ∆(Je2e3) are both non-zero
(i.e., if J ∪ {e1, e4} and J ∪ {e2, e3} are both bases of M), then we can rewrite the
3-term Plücker relation

∆(Je1e2)∆(Je3e4)−∆(Je1e3)∆(Je2e4) + ∆(Je1e4)∆(Je2e3) = 0

as
∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)
+

∆(Je1e2)∆(Je3e4)

∆(Je1e4)∆(Je3e2)
= 1.

Moreover, as one easily checks, the quantities

∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)
and

∆(Je1e2)∆(Je3e4)

∆(Je1e4)∆(Je3e2)

are invariant under rescaling equivalence and do not depend on the choice of order-
ing of elements of J . In particular,

[ e1 e2
e3 e4

]
∆,J

:=
∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)

depends only on J and on the rescaling class [∆] of ∆ in XR
M (P ).

The cross ratio associated to the universal representation ∆̂M : Er → PM plays
an especially important role in our theory. For notational convenience, we set

[ e1 e2
e3 e4

]
M,J

:=
[ e1 e2
e3 e4

]
∆̂M ,J

.

We will write
[
e1 e2
e3 e4

]
J

instead of
[
e1 e2
e3 e4

]
M,J

when M is understood.

Using the fact that
[
e1 e2
e3 e4

]
∆̂M ,J

depends only on the rescaling class of ∆̂M , one

sees easily that
[
e1 e2
e3 e4

]
J
, which a priori is an element of the universal pasture PM ,

in fact belongs to the foundation FM .
We call elements of FM of the form

[
e1 e2
e3 e4

]
J

universal cross ratios of M . When
J = ∅ we omit the subscript entirely. By [5, Lemma 7.7], we have:
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Lemma. The foundation of M is generated by its universal cross ratios.

Remark.

(1) When J = ∅ and M = U2
4 is the uniform matroid of rank 2 on the 4-

element set {1, 2, 3, 4}, the quantity
[
1 2
3 4

]
can be viewed as a “universal”

version of the usual cross-ratio of four points on a projective line. The
fact that the cross-ratio is the only projective invariant of four points on a
line corresponds to the fact that the foundation of U2

4 is isomorphic to the
partial field U = P (Z[x, 1

x ,
1

1−x ]) described above. The six different values

of
[ σ(1) σ(2)
σ(3) σ(4)

]
for σ ∈ S4 correspond to the elements x, 1−x, 1

x , 1− 1
x ,

1
1−x ,

and 1− 1
1−x of U.

(2) More generally, we can associate a universal cross ratio to each U2
4 -minor

N = M\I/J of M (together with an ordering of the ground set of N) via
the natural map from FN to FM , and every universal cross ratio arises
from this construction.

The structure theorem for foundations of matroids

without large uniform minors

In order to calculate and classify foundations of matroids, in addition to know-
ing that the universal cross ratios generate FM , we need to understand the relations
between these generators.

Example. The universal cross ratios of the uniform matroid U2
5 on {1, 2, 3, 4, 5}

satisfy certain tip relations of the form
[ 1 2
3 4

]
·
[ 1 2
4 5

]
·
[ 1 2
5 3

]
= 1.

By duality, the universal cross ratios of U3
5 satisfy similar identities which we call

the cotip relations.

The theoretical tool which allows one to understand all relations between uni-
versal cross ratios is Tutte’s Homotopy Theorem [32, 33] (or, more specifically,
[17, Theorem 4], whose proof is based on Tutte’s Homotopy Theorem). We give an
informal description here; a more precise version is given in Theorem 4.21 below.
To state the result, we say that a relation between universal cross-ratios of M is
inherited from a minor N = M\I/J if it is the image (with respect to the natural
inclusion FN ⊆ FM ) of a relation between universal cross ratios in FN .

Theorem A. Every relation between universal cross ratios of a matroid M is
inherited from a minor on a 6-element set. The foundation of M is generated as
an F±

1 -algebra by such generators and relations, together with the relation −1 = 1
if M has a minor isomorphic to either the Fano matroid F7 or its dual.

The most complicated relations between universal cross ratios come from the tip
and cotip relations in U2

5 and U3
5 , respectively (six-element minors and non-uniform

five-element minors only contribute additional relations identifying certain cross
ratios with one another). In the absence of such minors, we can completely classify
all possible foundations. Roughly speaking, the conclusion is that the foundation of
a matroid is the tensor product of copies of F2 and quotients of U (the foundation
of U2

4 ) by groups of automorphisms. By calculating all possible quotients of U by
automorphisms, we obtain the following result (Theorem 5.9):
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Theorem B. Let M be a matroid without large uniform minors and FM its
foundation. Then

FM 
 F1 ⊗ · · · ⊗ Fr

for some r � 0 and pastures F1, . . . , Fr ∈ {U,D,H,F3,F2}.
Remark. In a sequel paper, we will show that every pasture of the form F1 ⊗

· · · ⊗ Fr with F1, . . . , Fr ∈ {U,D,H,F3,F2} is the foundation of some matroid.

Consequences of the structure theorem

A matroid M is representable over a pasture P if and only if there is a morphism
from the foundation FM of M to P . If M is without large uniform minors (which
is automatic if M is binary or ternary), then by Theorem 5.9 its foundation is
isomorphic to a tensor product of copies Fi of U, D, H, F3 and F2. There is a
morphism from FM to P if and only if there is a morphism from each Fi to P , so
one readily obtains various theorems about representability of such matroids.

We mention just a selection of sample applications from the more complete list
of results in Chapter 6. For instance, our method yields short proofs of the excluded
minor characterizations of regular, binary and ternary matroids (Theorems 6.3 and
6.4). We find a similarly short proof for Brylawski-Lucas’s result that every matroid
has at most one rescaling class over F3 (Theorem 6.5 and Remark 6.6).

As already mentioned, we derive a strengthening of a theorem by Lee and
Scobee ([18]) on lifts of oriented matroids. The lifting result assumes a particularly
strong form in the case of positively oriented matroids, improving on a result by
Ardila, Rincón and Williams ([2]). The following summarizes Theorems 6.9 and
6.15:

Theorem C. Let M be an oriented matroid whose underlying matroid is with-
out large uniform minors. Then M is uniquely dyadic up to rescaling. If M is
positively oriented, then M is near-regular.

In Theorem 6.7, we derive similar statements for the weak hyperfield of signs
W and the phase hyperfield P; cf. section 2.1.2 for definitions. Namely, a matroid
M without large uniform minors is ternary if it is representable over W, and is
representable over D⊗H if it is representable over P.

We define the representation class of a matroid M as the class PM of all pastures
P over which M is representable. Two matroids M and M ′ are representation
equivalent if PM = PM ′ . The following is Theorem 6.20.

Theorem D. Let M be a matroid without large uniform minors. Then there
are precisely 12 possibilities for the representation class of M . Nine of these classes
are representable over some field, and the other three are not.

The structure theorem also provides short proofs of various characterizations
(some new, some previously known by other methods) of certain classes of matroids.
The following summarizes Theorems 6.26–6.34:

Theorem E. Let M be a matroid without large uniform minors and FM its
foundation. Then all conditions in a given row in Table 0.1 are equivalent, where
the conditions should be read as follows:

(1) The first column describes the class by name (cf. Definition 2.14 for any
unfamiliar terms).
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Table 0.1. Characterizations of classes of matroids without large
uniform minors

class possible factors of FM representable over

regular – U
/

F2 × P with −1 �= 1 in P

binary F2 F2

ternary U,D,H,F3 any field extension k of F3

/

W

quaternary U,H,F2 any field extension k of F4

near-regular U
U

/

F3 × F8

/

F4 × F5

/

F4 × S
/

F8 ×W
/

D×H

dyadic U,D
D

/

F3 ×Q
/

F3 × S
/

F3 × Fq with 2 � q and 3 � q − 1

hexagonal U,H H
/

F3 × F4

/

F4 ×W

D⊗H-representable U,D,H
F3 × C

/

F3 × P
/

F3 × Fq with 2 � q and 3 | q − 1

representable
U,D,H,F3

or U,H,F2

either F3 or F4

(2) The second column characterizes the class in terms of the factors Fi that
may appear in a decomposition FM 
 ⊗

Fi, as in Theorem B.
(3) The third column lists various classifying pastures P , separated by slashes,

which means that M is contained in the class in question if and only if it
is representable over P .

Another consequence of the structure theorem for foundations of matroids with-
out large uniform minors is the following result, which will be the theme of a forth-
coming paper.

Theorem F. Let M be a ternary matroid. Then up to rescaling equivalence,

(1) every quarternary representation of M lifts uniquely to H;
(2) every quinary representation of M lifts uniquely to D;
(3) every septenary representation of M lifts uniquely to D⊗H;
(4) every octonary representation of M lifts uniquely to U.

Content overview

In Chapter 1, we introduce embedded minors and review basic facts concerning
the Tutte group of a matroid. In Chapter 2, we discuss matroid representations over
pastures and explain the concept of the universal pasture of a matroid. In Chapter
3, we extend the concept of cross ratios to matroid representations over pastures and
define universal cross ratios. In Chapter 4, we introduce the foundation of a matroid
and exhibit a complete set of relations between cross ratios, which culminates in
Theorem A. In Chapter 5, we focus on matroids without large uniform minors and
prove Theorem B. In Chapter 6, we explain several consequences of Theorem B,
such as Theorems C, D and E.
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CHAPTER 1

Background

1.1. Notation

In this paper, we assume that the reader is familiar with basic concepts from
matroid theory.

Typically, M denotes a matroid of rank r on the ground set E = {1, . . . , n}.
We denote its set of bases by B = BM and its set of hyperplanes by H = HM . We
denote the closure of a subset J of E by 〈J〉. We denote the dual matroid of M by
M∗.

Given two subsets I and J of E, we denote by I − J = {i ∈ I | i /∈ J} the
complement of J in I. For an ordered tuple J = (j1, . . . , js) in Es, we denote by
|J| the subset {j1, . . . , js} of E. Given k elements e1, . . . , ek ∈ E, we denote by
Je1 · · · ek the s+ k-tuple (j1, . . . , js, e1, . . . , ek) ∈ Es+k. If J is a subset of E, then
we denote by Je1 · · · ek the subset J ∪ {e1, . . . , ek} of E. In particular, we have
|Je1 · · · ek| = |J|e1 · · · ek for J ∈ Es.

1.2. The Tutte group

The Tutte group is an invariant of a matroid that was introduced and studied
by Dress and Wenzel in [14]. We will review the parts of this theory that are
relevant for the present text in the following.

Definition 1.1. Let M be a matroid of rank r on E with Grassmann-Plücker
function ∆ : Er → K. The multiplicatively written abelian group TB

M is generated
by symbols −1 and XI for every I ∈ supp(∆) modulo the relations

(−1)2 = 1;(T1)

X(eσ(1),...,eσ(r)) = sign(σ)X(e1,...,er)(T2)

for every permutation σ ∈ Sr, where we consider sign(σ) as an element of {±1} ⊂
TB

M ;

XJe1e3XJe2e4 = XJe1e4XJe2e3(T3)

for J = (j1, . . . , jr−2) ∈ Er−2 and e1, . . . , e4 ∈ E such that Jeiej ∈ supp(∆) for all
i = 1, 2 and j = 3, 4 but ∆(Je1e2)∆(Je3e4) = 0.

The group TB

M comes with a morphism deg : TB

M → Z that sends XI to 1 for
every I ∈ supp(∆). The Tutte group of M is the kernel TM = ker(deg) of this map.

By definition, the Tutte group TM is generated by ratios XI/XJ of generators
of XI, XJ of TB

M . Since the basis exchange graph of a matroid is connected, it
follows that TM is generated by elements of the form XJe/XJe′ , where J ∈ Er−1

and e, e′ ∈ E are such that both Je and Je′ are in the support of ∆.

13
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The Tutte group can equivalently be defined in terms of hyperplanes, as ex-
plained in the following.

Definition 1.2. Let M be a matroid and H its set of hyperplanes. We define
TH

M as the abelian group generated by symbols −1 and XH,e for all H ∈ H and
e ∈ E −H modulo the relations

(−1)2 = 1;(TH1)

XH1,e2XH2,e3XH3,e1

XH1,e3XH2,e1XH3,e2

= −1,(TH2)

where H1, H2, H3 ∈ H are pairwise distinct such that F = H1 ∩H2 ∩H3 is a flat
of rank r − 2 and ei ∈ Hi − F for i = 1, 2, 3.

This group comes with a map degH : TH

M → ZH that sends an element XH,e

to the characteristic function χH : H → Z of {H} ⊂ H, i.e. χH(H ′) = δH,H′ for
H ′ ∈ H.

The relation between TM and TH

M is explained in [14, Thms. 1.1 and 1.2], which
is as follows.

Theorem 1.3 (Dress-Wenzel ’89). Let M be a matroid and B its set of bases.
Then the association −1 �→ −1 and XJe/XJe′ �→ XH,e/XH,e′ , where J ∈ Er−1,
e, e′ ∈ E with |Je|, |Je′| ∈ B and H = 〈|J|〉, defines an injective group homomor-
phism TM → TH

M whose image is ker(degH).

1.3. Embedded minors

In this section, we review some basic facts about minors of a matroid and
introduce the concept of an embedded minor.

Let M and N be matroids with respective ground sets EM and EN . An iso-
morphism ϕ : N → M of matroids is a bijection ϕ : EN → EM such that B ⊂ EN

is a basis of N if and only if ϕ(B) is a basis of M .

Definition 1.4. Let M be a matroid on E. A minor of M is a matroid
isomorphic to M\I/J , where I and J are disjoint subsets of E, M\I denotes the
deletion of I in M and M\I/J denotes the contraction of J in M\I.

Note that there are in general different pairs of subsets (I, J) and (I ′, J ′) as
above that give rise to isomorphic minors M\I/J 
 M\I ′/J ′. In particular, [22,
Prop. 3.3.6] shows that there is a co-independent subset J and an independent
subset I of E for every minor N of M such that I ∩ J = ∅ and N 
 M\I/J . Still,
such I and J are in general not uniquely determined by N , cf. Example 1.8.

If we fix I and J as above, then we can identify the ground set EN of N with
E − (I ∪ J), which yields an inclusion ι : EN → E. Since I is co-independent and
J is independent, the set of bases of N is

BN =
{
B − J

∣∣B ∈ BM such that J ⊂ B ⊂ E − I
}
,

where BM is the set of bases of M . Consequently, the difference between the rank
r of M and the rank rN of N is r − rN = #J . Moreover, the inclusion EN → E
induces an inclusion

ι : BN −→ BM

B �−→ B ∪ J.
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Definition 1.5. An embedded minor of M is a minor N = M\I/J together
with the pair (I, J), where I is a co-independent subset and J is an independent
subset J of E such that I ∩ J = ∅. By abuse of notation, we say that ι : N ↪→ M
is an embedded minor, where N = M\I/J for fixed subsets I and J as above and
where ι : BN → BM is the induced inclusion of the respective set of bases.

Let N ′ be a matroid. Then we say that an embedded minor ι : N ↪→ M is of
type N ′, or is an embedded N ′-minor, if N is isomorphic to N ′.

Let N and M be matroids. A minor embedding of N into M is an isomorphism
N 
 M\I/J of N together with an embedded minor M\I/J ↪→ M of M .

Given two minor embeddings ι : N = M\J/I ↪→ M and ι′ : N ′ = N\I ′/J ′ →
N , we define the composition ι ◦ ι′ of ι′ with ι as the minor embedding N ′ =
M\(I ∪ I ′)/(J ∪ J ′) ↪→ M .

Example 1.6 (Embedded minors of type U2
4 ). Let M be a matroid and ι : N →

M an embedded minor of type U2
4 . Let I and J be as above. Then #J = r − 2

since the rank of N is 2, and EN = E − (I ∪ J) has 4 elements e1, . . . , e4. The set
of bases BN of N consists of all 2-subsets of EN , and thus

ι(BN ) =
{
Jeiej

∣∣∣ {i, j} ⊂ {1, . . . , 4} and i 	= j
}
.

Remark 1.7. Note that a composition N ′ = N\I ′/J ′ ↪→ N = M\J/I ↪→ M
of minor embeddings induces a composition BN ′ → BN → BM of inclusions of sets
of bases. On the other hand, a minor embedding ι : N = M\J/I → M decomposes
into ι = ι1 ◦ ι2 with ι1 : N ′ = M\I1/J1 → M and ι2 : N = N ′\I2/J2 → N ′ for
every pair of partitions I = I1 ∪ I2 and J = J1 ∪ J2.

Note further that it is slightly inaccurate to suppress the subsets I and J
from the notation of an embedded minor ι : N → M since they are in general not
uniquely determined by the isomorphism type of N and the injection ι : BN → BM ,
cf. Example 1.9. However, there is always a maximal choice for I and J for a given
injection ι : BN → BM .

More precisely, for two disjoint subsets I and J of E and B = BM , let B\I/J =
{B ∈ B | J ⊂ B ⊂ E − I}. If B\I/J is not empty, then I is co-independent and
J is independent and B\I/J is the image ι(BM\I/J ) ⊂ B for the embedded minor
M\I/J of M . Tautologically,

Imax = E −
⋃

B∈B\I/J

B and Jmax =
⋂

B∈B\I/J

B

are the maximal co-independent and independent subsets of E such that B\I/J =
B\Imax/Jmax = ι(BM\Imax/Jmax

).

Example 1.8. In the following, we illustrate how different choices of disjoint
subsets I and J of E lead to different injections ι : BM\I/J → BM .

Let M be the matroid on E={1, 2, 3} whose set of bases is BM =
{
{1, 2}, {1, 3}

}
.

Let N = M\{23} be the restriction of M to {1}, whose set of bases is BN =
{
{1}

}
.

Since there is no canonical map BN → BM , it is clear that not every pair of disjoint
subsets I and J leads to an embedding BM\I/J → BM .

The minor N is isomorphic to both N2 = M\{2}/{3} and N3 = M\{3}/{2},
which are embedded minors with respect to the inclusions ι2 : BN2

→ BM with
ι2({1}) = {1, 2} and ι3 : BN3

→ BM with ι3({1}) = {1, 3}, respectively.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

16 1. BACKGROUND

Example 1.9. The contrary effect to that illustrated in Example 1.8 can also
happen: different embedded minors can give rise to the same inclusions of sets of
bases.

For instance, consider the matroid M on E = {1, 2} with BM =
{
{1, 2}

}
and

the embedded minor N = M\{2}. Then BN =
{
{1}

}
and the induced embedding

ι : BN → BM is a bijection. This is obviously also the case for the trivial minor
N ′ = M = M\∅/∅. This shows that N is not determined by ι : BN → BM .
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CHAPTER 2

Pastures

2.1. Definition and first properties

By a monoid with zero we mean a multiplicatively written commutative monoid
P with an element 0 that satisfies 0 ·a = 0 for all a ∈ P . We denote the unit of P by
1 and write P× for the group of invertible elements in P . We denote by Sym3(P )
all elements of the form a+ b+ c in the monoid semiring N[P ], where a, b, c ∈ P .

Definition 2.1. A pasture is a monoid P with zero such that P× = P − {0},
together with a subset NP of Sym3(P ) such that for all a, b, c, d ∈ P

(P1) a+ 0 + 0 ∈ NP if and only if a = 0,
(P2) if a+ b+ c ∈ NP , then ad+ bd+ cd is in NP ,
(P3) there is a unique element ε ∈ P× such that 1 + ε+ 0 ∈ NP .

We call NP the nullset of P , and say that a+b+c is null, and write symbolically
a+ b+ c = 0, if a+ b+ c ∈ NP . For a ∈ P , we call εa the weak inverse of a.

The element ε plays the role of an additive inverse of 1, and the relations
a + b + c = 0 express that certain sums of elements are zero, even though the
multiplicative monoid P does not carry an addition. For this reason, we will write
frequently −a for εa and a− b for a+ εb. In particular, we have ε = −1. Moreover,
we shall write a+ b = c or c = a+ b for a+ b+ εc = 0.

Remark 2.2. As a word of warning, note that −1 is not an additive inverse of
1 if considered as elements in the semiring N[P ], i.e. 1− 1 = 1 + ε 	= 0 as elements
of N[P ]. Psychologically, it is better to think of “−” as an involution on P .

Definition 2.3. A morphism of pastures is a multiplicative map f : P1 → P2

with f(0) = 0 and f(1) = 1 such that f(a) + f(b) + f(c) = 0 in NP2
whenever

a+ b+ c = 0 in NP1
. This defines the category Pastures.

Definition 2.4. A subpasture of a pasture P is a submonoid P ′ of P together
with a subset N ′

P ⊂ Sym3(P
′) such that a−1 ∈ P ′ for every nonzero a ∈ P ′ and

a+ b+ c ∈ NP ′ for all a+ b+ c ∈ NP with a, b, c ∈ P ′.
Given a subset S of P×, the subpasture generated by S is the submonoid P ′ =

{0} ∪ 〈S〉, where 〈S〉 denotes the subgroup of P× generated by S, together with
the nullset NP ′ = NP ∩ Sym3(P

′).

Lemma 2.5. Let P be a pasture. Then a + b = 0 if and only if b = εa. In
particular, we have ε2 = 1. Let f : P1 → P2 be a morphism of pastures. Then
f(ε) = ε.

Proof. Note that ε is uniquely determined by the relation 1 + ε + 0 = 0. By
(P2), this implies that ε−1 + 1+ 0 = 0 and thus by (P3), we conclude that ε−1 = ε,
or equivalently, ε2 = 1.

17
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Given a morphism f : P1 → P2 be a morphism of pastures, the null relation
1 + ε + 0 = 0 in P1 yields the relation f(1) + f(ε) + 0 = 0 in P2. Thus f(ε) is the
weak inverse of f(1) = 1, which is ε. �

2.1.1. Free algebras and quotients. Let P be a pasture with null set NP .
We define the free P -algebra in x1, . . . , xs as the pasture P 〈x1, . . . , xs〉 whose unit
group is P 〈x1, . . . , xs〉× = P× × 〈x1, . . . , xs〉, where 〈x1, . . . , xs〉 is the free abelian
group generated by the symbols x1, . . . , xs, and whose null set is

NP 〈x1,...,xs〉 =
{
da+ db+ dc

∣∣ d ∈ 〈x1, . . . , xs〉, a+ b+ c ∈ NP

}
,

where da stands for (a, d) ∈ P 〈x1, . . . , xs〉× if a 	= 0 and for 0 if a = 0. This pasture
comes with a canonical morphism P→P 〈x1, . . . , xs〉 of pastures that sends a to 1a.

Let S ⊂ Sym3(P ) be a set of relations of the form a + b + c with ab 	= 0. We

define the quotient P �S of P by S as the following pasture. Let ÑP�S be the
smallest subset of Sym3(P ) that is closed under property (P2) and that contains
NP and S. Since all elements a + b + c in S have at least two nonzero terms by
assumption, ÑP�S also satisfies (P1). But it might fail to satisfy (P3), necessitating

the following quotient construction for P×.
We define the unit group (P �S)× of P �S as the quotient of the group P×

by the subgroup generated by all elements a for which a − 1 + 0 ∈ ÑP�S . The

underlying monoid of P �S is, by definition, {0} ∪ (P �S)×, and it comes with a
surjection π : P → P �S of monoids. We denote the image of a ∈ P by ā = π(a),
and define the null set of P�S as the subset

NP�S =
{
ā+ b̄+ c̄

∣∣ a+ b+ c ∈ ÑP�S

}

of Sym3(P�S). The quotient P�S of P by S comes with a canonical map P → P�S
that sends a to ā and is a morphism of pastures.

If S ⊂ Sym3(P 〈x1, . . . , xs〉) is a subset of relations of the form a + b + c with
ab 	= 0, then the composition of the canonical morphisms for the free algebra and
for the quotient yields a canonical morphism

π : P −→ P 〈x1, . . . , xs〉 −→ P 〈x1, . . . , xs〉�S.

We denote by π0 : {x1, . . . , xs} → P 〈x1, . . . , xs〉�S the map that sends xi to x̄i.
The following result describes the universal property of P 〈x1, . . . , xs〉�S, which

is analogous to the universal property of the quotient k[T±1
1 , . . . , T±

r ]/(S) of the
algebra of Laurent polynomials over a field k by the ideal (S) generated by a set S
of Laurent polynomials (each with only two or three terms). Note that the special
case S = ∅ yields the universal property of the free algebra P 〈x1, . . . , xs〉 and the
special case s = 0 yields the universal property of the quotient P�S.

Proposition 2.6. Let P be a pasture, s � 0 and S ⊂ Sym3(P 〈x1, . . . , xs〉)
a subset of relations of the form a + b + c with ab 	= 0. Let f : P → Q be a
morphism of pastures and f0 : {x1, . . . , xs} → Q× a map with the property that

a
∏

x³i
i + b

∏
x´i

i + c
∏

xµi

i ∈ S with a, b, c ∈ P and ³i, ´i, µi ∈ Z for i = 1, . . . , r
implies that

f(a)
∏

f0(xi)
³i + f(b)

∏
f0(xi)

´i + f(c)
∏

f0(xi)
µi ∈ NQ.
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Then there is a unique morphism f̂ : P 〈x1, . . . , xs〉�S → Q such that the diagrams

P Q

P 〈x1, . . . , xs〉�S

f

π
f̂

and

{x1, . . . , xs} Q

P 〈x1, . . . , xs〉�S

f0

π0
f̂

commute.

Proof. We claim that the association

f̂ : P 〈x1, . . . , xs〉�S −→ Q
a
∏

x³i
i �−→ f(a)

∏
f0(xi)

³i

is a morphism of pastures. Once we have proven this, it is clear that f = f̂ ◦ π

and f0 = f̂ ◦ π0. Since the unit group of P̂ = P 〈x1, . . . , xs〉�S is generated

by {axi | a ∈ P×, i = 1, . . . , s}, it follows that f̂ is uniquely determined by the

conditions f = f̂ ◦ π and f0 = f̂ ◦ π0.

We are left with the verification that f̂ is a morphism. As a first step, we show

that the restriction f̂× : P̂× → Q× defines a group homomorphism. Note that

NP̂ = {yz+yz′+yz′′ | y ∈ P̂×, z+z′+z′′ ∈ S}. Thus we have an equality a
∏

x³i
i =

b
∏

x´i

i in P̂× if and only if da
∏

x³i+δi
i − db

∏
x´i+δi
i ∈ S for some d

∏
xδi
i ∈ P̂×.

By our assumptions, we have f(da)
∏

f0(xi)
³i+δi − f(db)

∏
f0(xi)

´i+δi ∈ NQ, and

thus multiplying with f(d−1)
∏

f0(xi)
−δi yields f̂(a

∏
x³i
i ) = f̂(b

∏
x´i

i ). This

verifies that f̂× : P̂× → Q× is well-defined as a map. It is clear from the definition
that it is a group homomorphism.

For showing that f̂ : P̂ → Q is a morphism of pastures, we need to verify that

for every element z+z′+z′′ in NP̂ , the element f̂(z)+ f̂(z′)+ f̂(z′′) is in NQ. This
can be done by a similar argument as before. We omit the details. �

2.1.2. Examples. The regular partial field is the pasture F±
1 = {0, 1,−1}�

{1− 1} whose multiplication is determined by (−1)2 = 1.
Let K be a field and K• its multiplicative monoid. Then we can associate with

K the pasture K•�{a + b + c | a + b + c = 0 in K}. We can recover the addition
of K by the rule −c = a + b if a + b + c = 0. In particular, we can identify the
finite field with 2 elements with the pasture F2 = F±

1 �{1 + 1}, which implies that
−1 = 1, and the finite field with 3 elements with the pasture F3 = F±

1 �{1 + 1+ 1}.
Let F be a hyperfield and F • its multiplicative monoid. Then we can associate

with F the pasture F •�{a + b + c | 0 ∈ a � b � c in F}. In particular, we can
realize the Krasner hyperfield as K = F±

1 �{1+1, 1+1+1}, and the sign hyperfield
as S = F±

1 �{1 + 1− 1}.
The near-regular partial field is

U = F±
1 〈x, y〉�{x+ y − 1}.

The dyadic partial field is

D = F±
1 〈z〉�{z + z − 1}.

The hexagonal partial field is

H = F±
1 〈z〉�{z3 + 1, z − z2 − 1}.
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It is a straightforward exercise to verify that these descriptions of U,D,H agree
with the definitions given in the introduction.

As final examples, the weak sign hyperfield is the pasture

W = F±
1 �〈1 + 1 + 1, 1 + 1− 1〉

and the phase hyperfield is the pasture P whose unit group P× is the subgroup of
norm 1-elements in C× and whose null set is

NP =
{
a+ b+ c ∈ Sym3(P )

∣∣∣ 〈a, b, c〉>0 is an R-linear subspace of C
}

where 〈a, b, c〉>0 is the smallest cone in C that contains a, b and c. In fact, P is
isomorphic to the quotient of the pasture associated with C by the action of R>0

by multiplication.

2.1.3. Initial and final objects. The category Pastures admits both initial
and final objects. The initial object of Pastures is the regular partial field F±

1 .
Given a pasture P , we denote by iP the unique initial morphism iP : F±

1 → P .
The final object of Pastures is the Krasner hyperfield K. Given a pasture P ,

we denote by tP the unique terminal morphism tP : P → K sending 0 to 0 and
every nonzero element of P to 1.

2.1.4. Products and coproducts. The category Pastures admits both a
product and coproduct.

Let P1, P2 be pastures. The (categorical) product P1 × P2 can be constructed
explicitly as follows. As sets, we have P1 × P2 = (P×

1 ⊕ P×
2 ) ∪ {0}, endowed with

the coordinatewise multiplication on P×
1 ⊕ P×

2 , extended by the rule (a1, a2) · 0 =
0 · (a1, a2) = 0, and the nullset is the subset

NP1×P2
=

{
(a1, a2) + (b1, b2) + (c1, c2)

∣∣∣ ai + bi + ci ∈ NPi
for i = 1, 2

}

of Sym3(P1 × P2), where (a1, a2), (b1, b2) and (c1, c2) are in P1 × P2 (i.e., a1a2 	= 0
or a1 = a2 = 0, etc.) and we identify (0, 0) with 0 in P1 × P2.

The categorical coproduct is given by the tensor product P1 ⊗ P2 defined as
follows. As sets, we have P1 ⊗ P2 = (P1 × P2)/ ∼, where P1 × P2 denotes the
Cartesian product (not the underlying set of the product in the category of pastures)
and (x1, x2) ∼ (y1, y2) if and only if either:

• At least one of x1, x2 is zero and at least one of y1, y2 is zero; or
• x1 = y1 and x2 = y2; or
• x1 = −y1 and x2 = −y2.

Denoting the equivalence class of (x1, x2) by x1 ⊗x2, the additive relations are
given by:

• a⊗y+b⊗y+c⊗y ∈ NP1⊗P2
for y ∈ P2 and a, b, c ∈ P1 with a+b+c ∈ NP1

.
• x⊗a+x⊗b+x⊗c ∈ NP1⊗P2

for x ∈ P1 and a, b, c ∈ P2 with a+b+c ∈ NP2
.

Lemma 2.7. The tensor product of pastures satisfies the universal property of
a coproduct with respect to the morphisms f1 : P1 → P1⊗P2 and f2 : P2 → P1⊗P2

given by x �→ x⊗ 1 and y �→ 1⊗ y, respectively.

Proof. Given a pasture P and morphisms gi : Pi → P for i = 1, 2, we must
show that there is a unique morphism g : P1 ⊗ P2 → P such that gi = g ◦ fi for
i = 1, 2.
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Define g by the formula g(x1 ⊗ x2) = g1(x1) · g2(x2). To see that this is well-
defined, suppose (x1, x2) ∼ (y1, y2). If x1x2 = 0 and y1y2 = 0, then g(x1 ⊗ x2) =
g(y1 ⊗ y2) = 0. Otherwise xi = (−1)kyi for i = 1, 2 with k ∈ {0, 1}, and we have

g(x1 ⊗ x2) = (−1)kg1(x1)(−1)kg2(x2) = g1(y1)g2(y2) = g(y1 ⊗ y2).

Hence g is well-defined.
It is straightforward to verify that g ◦ fi = gi for i = 1, 2 and that g is a

morphism.
To see that g is unique, suppose g′ is another such morphism. Then g′(x1⊗1) =

g1(x1) and g′(1⊗ x2) = g2(x2), and since g′ is a morphism we have

g′(x1 ⊗ x2) = g′((x1 ⊗ 1)(1⊗ x2)) = g′(x1 ⊗ 1)g′(1⊗ x2) = g1(x1)g2(x2)

for all x1 ∈ P1 and x2 ∈ P2. Thus g′ = g. �

By comparison, the category of fields (which is a full subcategory of Pastures)
does not have an initial object, a final object, products, or coproducts.

Example 2.8. We have F2×F3
∼= F±

1 and F2⊗F3
∼= K. The first isomorphism

follows easily from our formula for the product of two pastures, and the second
is an immediate consequence of the following lemma, which in turn follows easily
from the universal property of the coproduct.

Lemma 2.9. If P2
∼= F±

1 �S, where S ⊆ Sym3(F
±
1 ), then P1 ⊗ P2

∼= P1�S.

Example 2.10. We have F3 × S 
 D�{z2 − 1} and F3 ⊗ S 
 F±
1 �{1 + 1 +

1, 1 + 1 − 1}. For the first isomorphism, note that the underlying set of F3 × S is
({±1} × {±1})∪{0} while the underlying set of D�{z2−1} is ({±1} × {±z})∪{0}.
One checks easily that the map sending (1, 1) to 1 and (−1, 1) to z is an isomorphism
of pastures. The second isomorphism is a consequence of Lemma 2.9.

Example 2.11. Here (without proof) are a few more examples of products and
coproducts:

• F±
1 = F2 × S = F2 ×W.

• K = F2 ⊗ S = F2 ⊗W.
• H = F3 × F4.

Remark 2.12. More generally, one can show that the category Pastures is
complete and co-complete, i.e., it admits all small limits and colimits. In particular,
one can form arbitrary fiber products and fiber coproducts in Pastures. This is
proven in [12].

2.1.5. Comparison with partial fields, hyperfields, fuzzy rings, tracts

and ordered blueprints. The definitions of partial fields, hyperfields, fuzzy rings,
tracts and ordered blueprints, and a comparison thereof, can be found in [5]. We
are not aiming at repeating all definitions, but we will explain how the category of
pastures fits within the landscape of these types of algebraic objects.

We have already explained how partial fields and hyperfields give rise to pas-
tures. The tract associated with a pasture P is defined as F = (P×, NF ), where
NF is the ideal generated by NP in N[P×]. The ordered blueprint associated to a
pasture P is defined as B = P�{0 � u+ v + w | u+ v + w ∈ NP }.

These associations yield fully faithful embeddings of the category PartFields
of partial fields and the category HypFields of hyperfields into Pastures, and of
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Pastures into the category Tracts of tracts and into the category OBlpr± of or-
dered blueprints with unique weak inverses. This completes the diagram of [5, The-
orem 2.21] to

PartFields Pastures Tracts

Fields

HypFields FuzzRings OBlpr±

	

where FuzzRings is the category of fuzzy rings. This diagram commutes and all
functors are fully faithful, with exception of the adjunction between Tracts and
OBlpr±. We omit the details of these claims.

Note that fuzzy rings, seen as objects in either Tracts or OBlpr±, are not
pastures in general since the ideal I of the fuzzy ring might not be generated by
3-term elements of N[P×]. Conversely, not every pasture, seen as a tract or as an
ordered blueprint, gives rise to a fuzzy ring since the axiom (FR2) (in the notation
of [5, Section 2.4]) might not be satisfied. An example of a pasture for which (FR2)
fails to hold is the pasture F±

1 〈z〉�{z2 + 1, 1 + 1 + z}; cf. [5, Ex. 2.11] for more
details on this example.

2.2. Matroid representations

We recall the notion of weak matroids over pastures from [3]. Let P be a
pasture. A weak Grassmann–Plücker function of rank r on E with values in P is a
function ∆ : Er → P such that:

(1) The set of r-element subsets {e1, . . . , er} ⊆ E such that ∆(e1, . . . , er) 	= 0
is the set of bases of a matroid M .

(2) ∆(σ(e1), . . . , σ(er)) = sign(σ) ·∆(e1, . . . , er) for all permutations σ ∈ Sr.
(3) ∆ satisfies the 3-term Plücker relations: for all J ∈ Er−2 and all (e1, e2,

e3, e4) ∈ E4,

∆(Je1e2) ·∆(Je3e4)−∆(Je1e3) ·∆(Je2e4) + ∆(Je1e4) ·∆(Je2e3) = 0.

Two weak Grassmann–Plücker functions ∆,∆′ are isomorphic if there is a c ∈
P× such that ∆′(e1, . . . , er) = c∆(e1, . . . , er) for all (e1, . . . , er) ∈ Er.

A weak P -matroid M of rank r on E is an isomorphism class of weak Grass-
mann–Plücker functions ∆ : Er → P .

We call M the underlying matroid of M , and we refer to ∆ as a P -representation
of M .

We say that a matroid M is representable over a pasture P if there is at least
one P -representation of M .

Remark 2.13. In [3] one also finds a definition of strong P -matroids, but this
will not play a role in the present paper. We therefore omit the adjective “weak”
when talking about P -representations.

With this terminology, we introduce the following subclasses of matroids:

Definition 2.14. A matroid M is

• regular if it is representable over F±
1 ;

• binary if it is representable over F2;
• ternary if it is representable over F3;
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• quaternary if it is representable over F4;
• near-regular if it is representable over U;
• dyadic if it is representable over D;
• hexagonal if it is representable over H;
• D⊗H-representable1 if it is representable over D⊗H;
• representable if it representable over some field;
• orientable if it is representable over S;
• weakly orientable if it is representable over W.

Note that hexagonal matroids are also called 6
√
1-matroids or sixth-root-of-

unity-matroids in the literature, cf. [25] and [28].

2.3. Matroid representations via hyperplane functions

There are various “cryptomorphic” descriptions of weak P -matroids, for exam-
ple in terms of “weak P -circuits”, cf. [3]. For the purposes of the present paper, it
will be more convenient to reformulate things in terms of hyperplanes rather than
circuits.

Definition 2.15. Let P be a pasture and let M be a matroid on the finite set
E. Let H be the set of hyperplanes of M .

(1) Given H ∈ H, we say that fH : E → P is a P -hyperplane function for H
if fH(e) = 0 if and only if e ∈ H.

(2) Two P -hyperplane functions fH , f ′
H for H are projectively equivalent if

there exists c ∈ P× such that f ′
H(e) = cfH(e) for all e ∈ E.

(3) A triple of hyperplanes (H1, H2, H3) ∈ H
3 is modular if F = H1∩H2∩H3

is a flat of corank 2 such that F = Hi ∩Hj for all distinct i, j ∈ {1, 2, 3}.
(4) A modular system of P -hyperplane functions for M is a collection of P -

hyperplane functions fH : E → P , one for each H ∈ H, such that when-
ever H1, H2, H3 is a modular triple of hyperplanes in H, the corresponding
functions Hi are linearly dependent, i.e., there exist constants c1, c2, c3 in
P , not all zero, such that

c1fH1
(e) + c2fH2

(e) + c3fH3
(e) = 0

for all e ∈ E.
(5) Two modular systems of P -hyperplane functions {fH} and {f ′

H} are equiv-
alent if fH and f ′

H are projectively equivalent for all H ∈ H.

The following result can be viewed as a generalization of “Tutte’s representation
theorem” [33, Theorem 5.1] (compare with [16, Theorem 3.5]). One can also view
it as adding to the collection of cryptomorphisms for weak matroids established
in [3].

Theorem 2.16. Let P be a pasture and let M be a matroid of rank r on E.
Let H be the set of hyperplanes of M . There is a canonical bijection

Ξ :
{
P -representations of M

}
−→

{
modular systems of

P -hyperplane functions for M

}
.

1In [25, p. 55], the partial field D⊗ H is denoted Y.
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If ∆ : Er → P is a P -representation of M and H = Ξ(∆), then

fH(e)

fH(e′)
=

∆(Ie)

∆(Ie′)

for every fH ∈ H, elements e, e′ ∈ E − H and I ∈ Er−1 such that |I| is an
independent set which spans H.

Proof. Let M be a weak P -matroid with underlying matroid M . Let H be
a hyperplane of M . The complement of H in E is a cocircuit D of M ; choose a
P -cocircuit D of M whose support is D. Now define fH : E → P by fH(e) = D(e).
Then fH(e) = 0 iff D(e) = 0 iff e 	∈ D iff e ∈ H, so fH is a P -hyperplane function
for H.

Suppose H1, H2, H3 is a modular triple of hyperplanes of M with intersection
F , a flat of corank 2. Let e be an element of H3 − F . Then e ∈ H3 − (H1 ∪ H2)
by the covering axiom for flats [22, Exercise 1.4.11, Axiom (F3)]. Let D1 and D2

be the P -cocircuits of M corresponding to H1 and H2, respectively, and let ³1 =
D2(e), ³2 = −D1(e) ∈ P . Then ³1D1(e) = −³2D2(e), so by [3, Axiom (C3)

′
], there

is a P -cocircuit D3 of M such that D3(e) = 0 and ³1D1(f)+³2D2(f)−D3(f) = 0
for all f ∈ E. By [3, Lemma 3.7], the support of D3 is E−H3. By [3, Axiom (C2)],
D3 is a scalar multiple of fH3

, say D3 = −³3fH3
. Then ³1fH1

+³2fH2
+³3fH3

= 0,
so {fH} is a modular system of P -hyperplane functions for M .

Conversely, a similar argument shows that given a modular system of P -hyper-
plane functions {fH} for M , there is a corresponding family of P -cocircuits D

defining a weak P -matroid M . These operations are inverse to one another by
construction, and this establishes the desired bijection.

We turn to the second claim, which is obvious for e = e′, so we may assume
that e 	= e′. Let n = #E and choose I

′ ∈ En−r−1 such that E = |I| ∪ |I′| ∪ {e, e′}.
Note that since |Ie′| is a basis of M , the complement |I′e| is a basis for M∗. If
I = (i1, . . . , ir−1) and I

′ = (i′1, . . . , i
′
n−r−1), we define a total order on E by

i′1 < · · · < i′n−r−1 < e < i1 < · · · < ir−1 < e′.

By [3, Lemma 4.1], there is a dual Grassmann-Plücker function ∆∗ : En−r → P to
∆ that satisfies

∆∗(I′e) = sign(idE) ·∆(Ie′) = ∆(Ie′)

and

∆∗(I′e′) = sign(τe,e′) ·∆(Ie) = −∆(Ie),

where idE : E → E is the identity and τe,e′ : E → E is the transposition that
exchanges e with e′. This implies that

fH(e)

fH(e′)
= −∆∗(I′e′)

∆∗(I′e)
=

∆(Ie)

∆(Ie′)

as desired, where we use [3, Def. 4.6 and Lemma 4.7] for the first equality. �

2.4. The universal pasture

The universal pasture of a matroid was introduced in [5] as a tool to control
the representations of a matroid M over other pastures. We review this in the
following.
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The symmetric group Sr on r elements acts by permutation of coefficients on
Er. In the following, we understand the sign sign(σ) of a permutation σ ∈ Sr as
an element of (F±

1 )
× = {±1}.

Definition 2.17. Let M be a matroid with Grassmann-Plücker function ∆ :
Er → K. The extended universal pasture of M is the pasture P+

M = F±
1 〈TI|∆(I) 	=

0〉�{S}, where S is the set of the relations Tσ(I) = sign(σ)TI for all I ∈ Er and
σ ∈ Sr, together with the 3-term Plücker relations

TJe1e2TJe3e4 − TJe1e3TJe2e4 + TJe1e4TJe2e3 = 0

for all J ∈ Er−2 and e1, . . . , e4 ∈ E.
The pasture P+

M is naturally graded by the rule that TI has degree 1 for every
I ∈ supp(∆). The universal pasture of M is the subpasture PM of degree 0-elements
of P+

M .

The relevance of the universal pasture is that it represents the set of isomor-
phism classes of P -representations of M . This is derived in [5] by means of the
algebraic geometry of the moduli space of matroids. We include an independent,
and more elementary, proof in the following.

Theorem 2.18 ([5, Prop. 6.22]). Let M be a matroid of rank r on E and P a
pasture. Then there is a functorial bijection between the set of isomorphism classes
of P -representations of M and Hom(PM , P ). In particular, M is representable over
P if and only if there is a morphism χM : PM → P .

Proof. Let ∆ : Er → P be a P -representation of M and P+
M the extended

universal pasture of M . Define the map χ+
∆,0 : TI �→ ∆(I) from the set {TI | I ∈

supp(∆)} of generators of P+
M to P . Let S be the set of 3-term Plücker relations

TJe1e2TJe3e4 − TJe1e3TJe2e4 + TJe1e4TJe2e3 ,

where J ∈ Er−2 and e1, . . . , e4 ∈ E such that |Je1 . . . e4| has r + 2 elements. Ap-
plying χ+

∆,0 to this relation, with the convention that χ+
∆,0(TI) = 0 if ∆(I) = 0,

yields

χ+
∆,0(TJe1e2)χ

+
∆,0(TJe3e4)− χ+

∆,0(TJe1e3)χ
+
∆,0(TJe2e4) + χ+

∆,0(TJe1e4)χ
+
∆,0(TJe2e3)

= ∆(Je1e2)∆(Je3e4)−∆(Je1e3)∆(Je2e4) + ∆(Je1e4)∆(Je2e3),

which is an element of NP since ∆ is a Grassmann-Plücker function. Thus, by
Proposition 2.6, the map χ+

∆,0 together with the unique morphism F±
1 → P define

a morphism

χ+
∆ : P+

M = F±
1 〈TI | I ∈ supp(∆)〉�S −→ P

with χ+
∆(TI) = ∆(I) for I ∈ supp(∆). We define χ∆ : PM → P as the composition

of the inclusion PM → P+
M with χ+

∆. Since every element of PM has degree 0,
we have χ∆ = χa∆ for every a ∈ P×, which shows that χ∆ depends only on the
isomorphism class of ∆.

This yields a canonical map
{

isomorphism classes of P -representations of M
}

−→ Hom(PM , P ),

[∆] �−→ χ∆
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which turns out to be a bijection whose inverse can be described as follows. Let
χ : PM → P be a morphism. Choose an I0 ∈ Er such that |I0| is a basis of M and
define the map

∆Ç : Er −→ P,

I �−→
{

χ(TI/TI0
) if |I| is a basis of M ;

0 otherwise.

This is a Grassmann-Plücker function, since

∆Ç(Je1e2)∆Ç(Je3e4)−∆Ç(Je1e3)∆Ç(Je2e4) + ∆Ç(Je1e4)∆Ç(Je2e3)

= χ

(
TJe1e2

TI0

)
χ

(
TJe3e4

TI0

)
− χ

(
TJe1e3

TI0

)
χ

(
TJe2e4

TI0

)
+ χ

(
TJe1e4

TI0

)
χ

(
TJe2e3

TI0

)

is in the nullset of PM . Note that the isomorphism class of ∆Ç is independent of
the choice of I0, since any two such choices yield Grassmann-Plücker functions that
are constant multiples of each other.

It is straightforward to verify that the associations χ �→ [∆Ç] and [∆] �→ χ∆ are
mutually inverse, and that both maps are functorial in P ; we omit the details. �

Definition 2.19. The morphism χ∆ : PM → P in Theorem 2.18 that is
associated with the (isomorphism class of the) P -representation ∆ is called the
characteristic morphism of ∆.

Remark 2.20. The proof of Theorem 2.18 also shows that the set of P -represen-
tations of M are in functorial bijection with Hom(P+

M , P ). Under this identification,

the identity morphism P+
M → P+

M defines a P+
M -representation ∆̂ : Er → P+

M of
M , which we call the universal Grassmann-Plücker function of M . It satisfies

∆̂(I) = TI if |I| is a basis of M and ∆̂(I) = 0 otherwise, and tP+
M
◦ ∆̂ : Er → K is a

Grassmann-Plücker function for M where tP+
M

: P+
M →K is the terminal morphism,

cf. Section 2.1.3.

2.5. The Tutte group and the universal pasture

The connection between the Tutte group and the universal pasture is explained
in Theorem 6.26 of [5], which is as follows:

Theorem 2.21. Let M be a matroid with Grassmann-Plücker function ∆ :
Er → K. The association −1 �→ −1 and TI �→ XI for I ∈ supp(∆) defines an
isomorphism of groups (P+

M )× → TB

M that restricts to an isomorphism P×
M → TM .

Remark 2.22. Dress and Wenzel show in [16, Thm. 3.7] that a matroid M
is representable over a fuzzy ring R if and only if there is a group homomorphism
TM → R× that preserves the Plücker relations. This can be seen as an analogue of
Theorem 2.18 in the formalism of Dress and Wenzel, but it also lets us explain the
advantage of our formulation.

Namely, the foundation of a matroid is an object in the same category Pastures
as the coefficient domains for matroid representations. We can thus use standard
arguments from category theory to deduce results about the representability of a
matroid. For example, if the foundation of a matroid M is the tensor product
F1 ⊗F2 of two pastures F1 and F2, then M is representable over a third pasture P
if and only if there exist morphisms F1 → P and F2 → P . We will make a frequent
use of this observation in Chapter 6.
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CHAPTER 3

Cross ratios

In this chapter, we review the theory of cross ratios for matroids from different
angles, and explain the connection between these viewpoints, which are derived from
cryptomorphic descriptions of a matroid in terms of bases and hyperplanes. There
are two principally different types of cross ratios: cross ratios for P -matroids, which
are elements of P , and universal cross ratios of a matroid M , which are elements of
the universal pasture PM of M . It turns out that there is a close relation between
these two types of cross ratios and their different incarnations in terms of bases
and hyperplanes. In particular, we identify in a concluding subsection the set of
universal cross ratios with the set of fundamental elements in PM .

3.1. Cross ratios of P -matroids

Let E = {1, . . . , n} and 0 � r � n. Let P be a pasture and M a P -matroid
with Grassmann-Plücker function ∆ : Er → P .

Define ΩM to be the set of tuples (J ; e1, . . . , e4) for which there exists a J ∈
Er−2 with underlying set |J| = J such that

∆(Je1e4) ∆(Je2e3) ∆(Je1e3) ∆(Je2e4) 	= 0,

where Jekel = (j1, . . . , jr−2, ek, el).

Definition 3.1. Let M be a P -matroid with Grassmann-Plücker function ∆ :
Er → P and (J ; e1, . . . , e4) ∈ ΩM . The cross ratio of (J ; e1, . . . , e4) in M is the
element [ e1 e2

e3 e4

]
M,J

=
[ e1 e2
e3 e4

]
∆,J

=
∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)

of P for any J ∈ Er−2 with |J| = J .

Note that the value of the cross ratio
[
e1 e2
e3 e4

]
M,J

does not depend on the ordering

of J, nor on the choice of Grassmann-Plücker function ∆ for M , which justifies our
notation.

We find the following relations between cross ratios with permuted arguments.
Let (J ; e1, . . . , e4) ∈ ΩM and J ∈ Er−2 be such that J = |J|. We say that
(J ; e1, . . . , e4) is non-degenerate if

∆(Je1e2)∆(Je3e4) 	= 0,

or equivalently, if
[ eσ(1) eσ(2)
eσ(3) eσ(4)

]
M,J

is defined and nonzero for every permutation σ of

{1, . . . , 4}. We define Ω♦
M to be the subset of ΩM consisting of all non-degenerate

(J ; e1, . . . , e4). We call a cross ratio
[
e1 e2
e3 e4

]
M,J

non-degenerate if (J ; e1, . . . , e4) is

non-degenerate. We call (J ; e1, . . . , e4) ∈ ΩM degenerate if it is not in Ω♦
M .

27
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One finds some relations that follow immediately from the definition, such as
the fact that permuting rows and columns has no effect on the value of the cross
ratio, i.e.

[ e1 e2
e3 e4

]
M,J

=
[ e2 e1
e4 e3

]
M,J

=
[ e3 e4
e1 e2

]
M,J

=
[ e4 e3
e2 e1

]
M,J

;

that permuting the last two entries inverts the cross ratio, i.e.

[ e1 e2
e4 e3

]
M,J

=
[ e1 e2
e3 e4

]−1

M,J
;

and that a cyclic rotation of the last three entries yields the relation

[ e1 e2
e3 e4

]
M,J

·
[ e1 e3
e4 e2

]
M,J

·
[ e1 e4
e2 e3

]
M,J

= −1

if (J ; e1, . . . , e4) ∈ Ω♦
M is non-degenerate. We will discuss these relations and others

in detail in Theorem 4.21.
The cross ratios keep track of the Plücker relations

(3) ∆(Je1e2)∆(Je3e4)−∆(Je1e3)∆(Je2e4) + ∆(Je1e4)∆(Je2e3) = 0

satisfied by the Grassmann-Plücker function ∆:Er→P . Namely, if (J ; e1, . . . , e4) ∈
Ω♦

M and J ∈ Er−2 are such that J = |J|, then dividing both sides of the Plücker
relation (3) by −∆(Je1e4)∆(Je2e3) yields the Plücker relation for cross ratios

[ e1 e2
e3 e4

]
M,J

+
[ e1 e3
e2 e4

]
M,J

= 1,

where the notation a+ b = c in a pasture P is short-hand for a+ b− c ∈ NP .
If (J ; e1, . . . , e4) ∈ ΩM is degenerate, then ∆(Je1e2)∆(Je3e4) = 0 and dividing

the Plücker relation by −∆(Je1e4)∆(Je2e3) yields
[
e1 e2
e3 e4

]
M,J

− 1 = 0, and thus

[ e1 e2
e3 e4

]
M,J

= 1

by the uniqueness of additive inverses in P .

Lemma 3.2. Let P be a pasture and M a P -matroid of rank r on E with dual
M∗. Let (J ; e1, . . . , e4) ∈ ΩM and I = E − Je1 . . . e4. Then

[ e1 e2
e3 e4

]
M∗,I

=
[ e1 e2
e3 e4

]
M,J

as elements of P .

Proof. Let n = #E. Choose J = (j1, . . . , jr−2) with |J| = J and I =
(i1, . . . , in−r−2) with |I| = I. Choose a total order on E. Let ∆ : Er → P
be a Grassmann-Plücker function for M . Then by [3, Lemma 4.2], there is a
Grassmann-Plücker function ∆∗ : En−r → P for M∗ such that for all identifica-
tions {i, j, k, l} = {1, 2, 3, 4}, we have

∆∗(Ieiek) = sign(πi,j,k,l) ·∆(Jejel),

where π = πi,j,k,l is the permutation of E such that

π(i1) < . . . < π(in−r−2) < π(ei) < π(ek) < π(j1) < . . . < π(jr−2) < π(ej) < π(el)
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in the chosen total order of E. Since πi,j,l,k = πi,j,k,l ◦ τk,l for the transposition τk,l
that exchanges ek and el, we have sign(πi,j,k,l)/ sign(πi,j,l,k) = −1. Thus we obtain

[ e1 e2
e3 e4

]
M∗,I

=
∆∗(Ie1e3)∆

∗(Ie2e4)

∆∗(Ie1e4)∆∗(Ie2e3)

=
sign(π1,2,3,4)

sign(π1,2,4,3)
· sign(π2,1,4,3)

sign(π2,1,3,4)
· ∆(Je2e4)∆(Je1e3)

∆(Je2e3)∆(Je1e4)
=

[ e1 e2
e3 e4

]
M,J

as claimed. �

3.2. Cross ratios for hyperplanes

There is a different, but closely related, notion of cross ratios associated to
certain quadruples of hyperplanes.

Definition 3.3. Let M be a matroid of rank r on E and H be its set of
hyperplanes. A quadruple of hyperplanes (H1, . . . , H4) ∈ H4 is modular if F =
H1 ∩H2 ∩H3 ∩H4 is a flat of corank 2 such that F = Hi ∩Hj for all i ∈ {1, 2} and
j ∈ {3, 4}. A modular quadruple (H1, . . . , H4) is non-degenerate if F = Hi∩Hj for
all distinct i, j ∈ {1, . . . , 4}. Otherwise it is called degenerate.1 We denote the set of
all modular quadruples of hyperplanes by ΘM and the subset of all non-degenerate
modular quadruples by Θ♦

M .

Definition 3.4. Let P be a pasture and M a P -matroid with underlying
matroid M . Let (H1, . . . , H4) ∈ ΘM . The cross ratio of (H1, . . . , H4) in M is the
element [H1 H2

H3 H4

]
M

=
f1(e3)f2(e4)

f1(e4)f2(e3)

of P , where fi : E → P is a P -hyperplane function for Hi for i = 1, 2 (cf. Definition
2.15), and where ek ∈ Hk − F for k = 3, 4 with F = H1 ∩ · · · ∩H4.

Since f1 and f2 are determined by H1 and H2 up to a factor in P×, the definition
of

[
H1 H2

H3 H4

]
M

is independent of the choices of f1 and f2. It follows from [3, Theorem

3.21, Lemma 4.5, and Definition 4.6] that it is also independent of the choices of e3
and e4.

We continue with a comparison of the two notions of cross ratios.

Lemma 3.5. Let M be a matroid of rank r on E. The association (J ; e1, . . . ,
e4) �→ (H1, . . . , H4) with Hi = 〈Jei〉 for i = 1, . . . , 4 defines a surjective map

Ψ : ΩM → ΘM , which restricts to a surjective map Ψ♦ : Ω♦
M → Θ♦

M .

Proof. The flat F = H1 ∩ · · · ∩ H4 = 〈J〉 is of rank r − 2 since J is an
independent set of rank r − 2. We have Hi ∩Hj = F for all i = 1, 2 and j = 3, 4
since ∆(Jeiej) 	= 0 and thus 〈Hi ∪ Hj〉 = E. This shows that (H1, . . . , H4) is
indeed a modular quadruple. By the same reasoning applied to arbitrary distinct
i, j ∈ {1, . . . , 4}, we conclude that Ψ restricts to a map Ψ♦ : Ω♦

M → Θ♦
M .

Given (H1, . . . , H4) ∈ ΘM and F = H1∩· · ·∩H4, choose an independent subset
J ⊂ F with r − 2 elements and ei ∈ Hi − F for i = 1, . . . , 4. Since Hi ∩ Hk = F
for i ∈ {1, 2} and k ∈ {3, 4}, the closure of Jeiek is E, i.e. Jeiek is a basis of M .
Thus (J ; e1, . . . , e4) ∈ ΩM and Ψ(J ; e1, . . . , e4) = (H1, . . . , H4), which establishes

1Note that in some papers the term “modular quadruple” is used for what we call a non-
degenerate quadruple; e.g. see [3], [7, Def. 5.1] and [26, Def. 3.18].
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the surjectivity of Ψ. If (H1, . . . , H4) ∈ Θ♦
M , then Hi ∩ Hk = F and thus Jeiek

is a basis of M for all distinct i, k ∈ {1, . . . , 4}. Thus (J ; e1, . . . , e4) ∈ Ω♦
M and

Ψ♦(J ; e1, . . . , e4) = (H1, . . . , H4), which establishes the surjectivity of Ψ♦. �

Proposition 3.6. Let P be a pasture and M a P -matroid with underlying
matroid M . Let (J ; e1, . . . , e4) ∈ ΩM and (H1, . . . , H4) = Ψ(J ; e1, . . . , e4). Then
we have [H1 H2

H3 H4

]
M

=
[ e1 e2
e3 e4

]
M,J

as elements of P .

Proof. Since |Jei| is an (r−1)-set that generates Hi and ej /∈ Hi for i ∈ {1, 2}
and j ∈ {3, 4}, we can apply Theorem 2.16 to conclude that

[H1 H2

H3 H4

]
M

=
f1(e3)f2(e4)

f1(e4)f2(e3)
=

∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)
=

[ e1 e2
e3 e4

]
M,J

as claimed. �

Our comparison of different notions of cross ratios has the following immediate
consequence.

Corollary 3.7. Let M be a matroid and (J ; e1, . . . , e4), (J
′; f1, . . . , f4) ∈ ΩM .

If 〈Jei〉 = 〈J ′fi〉 for i = 1, . . . , 4, then
[
e1 e2
e3 e4

]
J
=

[ f1 f2
f3 f4

]
J′ .

Proof. By Proposition 3.6, we have
[
e1 e2
e3 e4

]
J
=

[
H1 H2

H3 H4

]
=

[ f1 f2
f3 f4

]
J′ if Hi =

〈Jei〉 = 〈J ′fi〉 for i = 1, . . . , 4. �

3.3. Universal cross ratios

Let M be a matroid of rank r on E = {1, . . . , n} with Grassmann-Plücker
function ∆ : Er → K.

Recall from Section 2.4 the definition of the extended universal pasture

P+
M = F±

1 〈TI | ∆(I) 	= 0〉�{S}
of M , where S contains the relations Tσ(I) = sign(σ)TI and the 3-term Plücker
relations

TJe1e2TJe3e4 − TJe1e3TJe2e4 + TJe1e4TJe2e3 = 0

for all J ∈ Er−2 and e1, . . . , e4 ∈ E, where we use the convention TI = 0 if ∆(I) = 0.

The universal Grassmann-Plücker function ∆̂ : Er → P+
M for M sends I ∈ Er to

TI if |I| is a basis of M , and to 0 otherwise. The universal PM -matroid M̂ for M

is defined by the Grassmann-Plücker function T−1
I

∆̂ : Er → PM , where I ∈ Er is
any r-tuple with ∆(I) 	= 0.

Definition 3.8. Let M be a matroid with universal PM -matroid M̂ . Let
(J ; e1, . . . , e4)∈ ΩM and (H1, . . . , H4)∈ ΘM . The universal cross ratio of (J ; e1, . . . ,
e4) is the element [ e1 e2

e3 e4

]
J

:=
[ e1 e2
e3 e4

]
M̂,J

of PM , and the universal cross ratio of (H1, . . . , H4) is the element
[H1 H2

H3 H4

]
:=

[H1 H2

H3 H4

]
M̂

of PM .
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The relation between cross ratios of a P -matroid and the universal cross ratio
of the underlying matroid M is explained in the following statement.

Proposition 3.9. Let P be a pasture and M a P -matroid with Grassmann
Plücker function ∆ : Er → P . Let M be the underlying matroid and PM its
universal pasture. Let χM : PM → P be the universal morphism associated with M ,
which maps TI/TI′ to ∆(I)/∆(I′). Then

χM

([ e1 e2
e3 e4

]
J

)
=

[ e1 e2
e3 e4

]
M,J

as elements of P for every (J ; e1, . . . , e4) ∈ ΩM .

Proof. This follows directly from the definitions of χM , ∆̂ and the (universal)
cross ratios. �

3.4. Fundamental elements

Universal cross ratios can be characterized intrinsically as the fundamental
elements of the universal pasture of a matroid. To the best of our knowledge, the
importance of fundamental elements in the study of matroid representations goes
back to Semple’s paper [27], where this concept was introduced in the context
of partial fields. We extend the notion of fundamental elements to pastures and
explain its relation to universal cross ratios in the following.

The property of cross ratios that lead to the definition of fundamental elements
are the 3-term Plücker relations

∆(Je1e2)∆(Je3e4)−∆(Je1e3)∆(Je2e4) + ∆(Je1e4)∆(Je2e3) = 0

for a Grassmann-Plücker function ∆ : Er → P , where J ∈ Er−2 and e1, . . . , e4 ∈ E.
If ∆(Jeiej) 	= 0 for all distinct i, j ∈ {1, . . . , 4}, then division by −∆(Je1e4)∆(Je2e3)
yields

[ e1 e2
e3 e4

]
∆,J

+
[ e1 e3
e2 e4

]
∆,J

=
∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)
+

∆(Je1e2)∆(Je3e4)

∆(Je1e4)∆(Je3e2)
= 1

for the non-degenerate cross ratios
[
e1 e2
e3 e4

]
∆,J

and
[
e1 e3
e2 e4

]
∆,J

in P×.

Definition 3.10. Let P be a pasture. A fundamental element of P is an
element z ∈ P× such that z + z′ = 1 for some z′ ∈ P×.

Proposition 3.11. Let M be a matroid. For an element z ∈ PM , the following
are equivalent:

(1) z is a fundamental element of PM ;

(2) z =
[
e1 e2
e3 e4

]
J

for some (J ; e1, . . . , e4) ∈ Ω♦
M ;

(3) z =
[
H1 H2

H3 H4

]
for some (H1, . . . , H4) ∈ Θ♦

M .

Proof. Our preceding discussion shows that
[
e1 e2
e3 e4

]
J
+
[
e1 e3
e2 e4

]
J
= 1 for (J ; e1,

. . . , e4) ∈ Ω♦
M . Thus (2)⇒(1). The equivalence of (2) and (3) follows from Propo-

sition 3.6.
We are left with (1)⇒(2). Assume that z ∈ P×

M is a fundamental element,

i.e. z + z′ − 1 = 0 for some z′ ∈ P×
M . Since the nullset of the extended universal

pasture P+
M is generated by the 3-term Plücker relations, there must be an element

a ∈ (P+
M )× such that az + az′ − a = 0 is of the form

TJe1e2TJe3e4 − TJe1e3TJe2e4 + TJe1e4TJe2e3 = 0
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for some J ∈ Er−2 and e1, . . . , e4 ∈ E such that |Jeiej | is a basis of M for all distinct

i, j ∈ {1, . . . , 4}, i.e. (J ; e1, . . . , e4) ∈ Ω♦
M where J = |J|. After a suitable permuta-

tion of e1, . . . , e4, we can assume that −a = TJe1e4TJe2e3 and az = −TJe1e3TJe2e4 .
Thus

z =
−az

−a
=

TJe1e3TJe2e4

TJe1e4TJe2e3

=
[ e1 e2
e3 e4

]
J

is a cross ratio, as claimed. �

3.5. Compatibility with the Tutte group formulation

of Dress and Wenzel

We provide a comparison of the different types of universal cross ratios, as
introduced above, with the cross ratios introduced by Dress and Wenzel in [15,
Def. 2.3].

The image of a universal cross ratio
[
e1 e2
e3 e4

]
J

under the isomorphism P×
M → TM

from Theorem 2.21 appears implicitly already in [14, Prop. 2.2], and is as follows.

Lemma 3.12. Let M be a matroid with Grassmann-Plücker function ∆ : Er →
K, Tutte group TM and universal pasture PM . Let ϕ : P×

M → TM be the isomor-
phism of groups that sends TI/TI′ to XI/XI′ for I, I′ ∈ supp(∆). Then

ϕ

([ e1 e2
e3 e4

]
J

)
=

XJe1e3XJe2e4

XJe1e4XJe2e3

for all (J ; e1, . . . , e4) ∈ ΩM and J ∈ Er−2 with |J| = J .

Proof. Note that the ratio
(
XJe1e3XJe2e4

)(
XJe1e4XJe2e3

)−1
does not depend

on the ordering of J. The rest follows immediately from the definitions. �

Let (H1, . . . , H4) be a modular quadruple of hyperplanes of M and F the corank
2 flat contained in all Hi. Let e3 ∈ H3 − F and e4 ∈ H4 − F . The Dress–Wenzel
universal cross ratio of (H1, . . . , H4) is the element

[H1 H2

H3 H4

]
T

:=
XH1,e3XH2,e4

XH2,e3XH1,e4

of the group TH

M .
As shown in [15, Lemma 2.1], this definition is independent of the choices of e3

and e4. Since degH
([

H1 H2

H3 H4

]
H

)
= 0, it follows from Theorem 1.3 that

[
H1 H2

H3 H4

]
H

is contained in the image of the injection ι : TM → TH

M .

Lemma 3.13. Let Ë : P×
M → TH

M be the group homomorphism that maps TIeT
−1
Ie′

to XH,eX
−1
H,e′ where I ∈ Er−1, e, e′ ∈ E, I = |I|, H = 〈I〉, and Ie, Ie′ are bases of

M . Let (H1, . . . , H4) ∈ ΘM be a modular quadruple of hyperplanes of M . Then

Ë

([H1 H2

H3 H4

])
=

[H1 H2

H3 H4

]
T
.

Proof. It is clear from the definitions that Ë = ι◦ϕ. By Lemma 3.5, there is an
element (J ; e1, . . . , e4) ∈ ΩM with Ψ(J ; e1, . . . , e4) = (H1, . . . , H4), i.e. Hi = 〈Jei〉
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for i = 1, . . . , 4. Using Proposition 3.6, we obtain

Ë

([H1 H2

H3 H4

])
= ι ◦ ϕ

([ e1 e2
e3 e4

]
J

)

= ι

(
XJe1e3XJe2e4

XJe1e4XJe2e3

)

=
XH1,e3XH2,e4

XH1,e4XH2,e3

=
[H1 H2

H3 H4

]
T

as claimed. �
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CHAPTER 4

Foundations

The foundation FM of a matroid M is the subpasture of multidegree 0-elements
of the universal pasture PM , and it represents the functor taking a pasture P to the
set of P -rescaling classes of M . In particular, just as with PM , the foundation can
detect whether or not a matroid is representable over a given pasture P in terms
of the existence of a morphism from FM to P .

One advantage of the foundation over the universal pasture is that, because
of some deep theorems due to Tutte, Dress–Wenzel, and Gelfand–Rybnikov–Stone,
there is an explicit presentation of FM in terms of generators and relations in which
the relations are all inherited from “small” embedded minors. More precisely, the
foundation of M is generated by the universal cross ratios of M , and all relations
between these cross ratios are generated by a small list of relations stemming from
embedded minors of M having at most 7 elements.

We begin our discussion of foundations by reviewing some facts which were
proved in the authors’ previous paper [5]. Next we explain the role of embedded
minors in the study of foundations. We then exhibit, through very explicit com-
putations, the relations between universal cross ratios inherited from small minors
which enter into the presentation by generators and relations alluded to above. Fi-
nally, we use the aforementioned result of Gelfand, Rybnikov and Stone to prove
that these relations generate all relations in FM between universal cross ratios.

Remark 4.1. The term “foundation” is derived from the fact that FM is the
subpasture of the universal pasture PM that is generated by the fundamental ele-
ments of PM .

4.1. Definition and basic facts

Let M be a matroid of rank r on E with extended universal pasture P+
M . For

a subset I of E, let δI : E → Z be the characteristic function of I, which is an
element of ZE . The multidegree is the group homomorphism

degE : (P+
M )× −→ ZE

TI �−→ δI ,

where I = |I|. It is easily verified that this map is well-defined, cf. [5, section 7.3].
The degree in i is the function degi : (P

+
M )× → Z that is the composition of degE :

(P+
M )× → ZE with the canonical projection to the i-th component, i.e. degi(TI) = 1

if i ∈ I and degi(TI) = 0 if i /∈ I. The total degree is the function deg : (P+
M )× → Z

that is the sum over degi for all i ∈ E, i.e. deg(TI) =
∑

i∈E degi(TI) = #I = r.

Definition 4.2. Let M be a matroid with extended universal pasture P+
M . The

foundation of M is the subpasture FM of P+
M that consists of 0 and all elements of

multidegree 0.

35
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Note that the universal pasture PM of M is the subpasture of P+
M that is

generated by all units of total degree 0. Since deg(x) = 0 if degE(x) = 0, the
foundation FM of M is a subpasture of PM .

The relevance of the foundation of M is the fact that it represents the rescaling
class space

X
R
M (P ) :=

{
rescaling classes of M over P

}

considered as a functor in P .

Theorem 4.3 ([5, Cor. 7.26]). Let M be a matroid and P a pasture. Then there
is a functorial bijection XR

M (P ) = Hom(FM , P ). In particular, M is representable
over P if and only if there is a morphism FM → P .

Recall from [14] that the inner Tutte group T
(0)
M of a matroid M is defined as the

subgroup of the Tutte group TM of M that consists of all elements of multidegree 0,
where the multidegree deg : TM → ZE is defined in the same way as the multidegree
deg : PM → ZE. This yields at once the following consequence of Theorem 2.21 (cf.
[5, Cor. 7.11]).

Corollary 4.4. The canonical isomorphism P×
M → TM restricts to an iso-

morphism F×
M → T

(0)
M .

Remark 4.5. Wenzel observes in [34, Thm. 6.3] that a matroid representation

over a fuzzy ring K induces a group homomorphism T
(0)
M → K×, and that this

homomorphism detects the rescaling class of a representation. This can be seen as
a partial analogue of Theorem 4.3 for fuzzy rings (cf. Remark 2.22).

4.2. Universal cross ratios as generators of the foundation

Let M be a matroid of rank r on E and P+
M its extended universal pasture.

The simplest type of elements of P+
M with multidegree 0 are universal cross ratios

[ e1 e2
e3 e4

]
J

=
TJe1e3TJe2e4

TJe1e4TJe2e3

where (J ; e1, . . . , e4) ∈ ΩM and J ∈ Er−2 such that |J| = J . This formula shows
that the universal cross ratios are elements of the foundation FM of M . It is proven
in [5, Cor. 7.11] that the foundation is generated by the universal cross ratios. To
summarize, we have:

Theorem 4.6. Let M be a matroid. Then
[
e1 e2
e3 e4

]
J
∈ F×

M for every (J ; e1, . . . ,

e4) ∈ ΩM , and F×
M is generated by the collection of all such universal cross ratios.

Using Proposition 3.6, we obtain:

Corollary 4.7. Let M be a matroid. Then
[
H1 H2

H3 H4

]
∈ F×

M for every (H1, . . . ,

H4) ∈ ΘM , and F×
M is generated by the collection of all such hyperplane universal

cross ratios.

4.3. The foundation of the dual matroid

Let M be a matroid of rank r on E and PM its universal pasture. By definition
the identity morphism id : PM → PM is the characteristic morphism of the universal

PM -matroid M̂ ; cf. Theorem 2.18. The underlying matroid of M̂ is M̂ = M . The
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underlying matroid of the dual PM -matroid M̂∗ of M̂ is the dual M̂∗ = M∗ of M ,

cf. [3, Thm. 3.24]. Let ÌM : PM∗ → PM be the characteristic morphism of M̂∗.

Proposition 4.8. Let M be a matroid of rank r on E. Then ÌM : PM∗ → PM

is an isomorphism of pastures that restricts to an isomorphism FM∗ → FM between
the respective foundations of M∗ and M . Let n = #E. For every I ∈ En−r−1,
J ∈ Er−1 and e, f ∈ E such that E = |I| ∪ |J| ∪ {e, f}, we have

ÌM

(
TIe

TIf

)
= −TJf

TJe
,

and for every (J ; e1, . . . , e4) ∈ ΩM and I = E − Je1 . . . e4, we have (I; e1, . . . , e4) ∈
ΩM∗ and

ÌM

([ e1 e2
e3 e4

]
M̂∗,I

)
=

[ e1 e2
e3 e4

]
M̂,J

,

where M̂ is the universal PM -matroid of M and M̂∗ is the universal PM∗-matroid
of M∗.

Proof. The construction of ÌM , applied to M∗ in place of M , yields a mor-
phism ÌM∗ : PM∗∗ → PM∗ . Since M∗∗ = M , we have PM∗∗ = PM . The composi-
tion ÌM ◦ ÌM∗ : PM = PM∗∗ → PM∗ → PM is the characteristic morphism of the

double dual M̂∗∗ of M̂ , which is equal to M̂ by [3, Thm. 3.24], and thus ÌM ◦ÌM∗

is the identity of PM . Similarly, the composition ÌM∗ ◦ ÌM is the identity of PM∗ .
This shows that ÌM and ÌM∗ are mutually inverse isomorphisms.

Let ∆ : Er → PM be a Grassmann-Plücker function for M̂ . Endow E with a
total order and define sign(i1, . . . , in) = sign(π) as the sign of the permutation π
of E such that π(i1) < · · · < π(in) if i1, . . . , in ∈ E are pairwise distinct. Then by

[3, Lemma 4.1], there is a Grassmann-Plücker function ∆∗ : En−r → PM for M̂∗

that satisfies

∆∗(i1, . . . , in−r) = sign(i1, . . . , in)∆(in−r+1, . . . , in)

for all pairwise distinct i1, . . . , in∈E. Thus if I=(i1, . . . , in−r−1), J=(j1, . . . , jr−1)
and e, f ∈ E are as in the hypothesis of the theorem, then

ÌM

(
TIe

TIf

)
=

∆∗(Ie)

∆∗(If)
=

sign(i1, . . . , in−r−1, e, j1, . . . , jr−1, f)∆(Jf)

sign(i1, . . . , in−r−1, f, j1, . . . , jr−1, e)∆(Je)
= −TJf

TJe
,

as claimed. If (J ; e1, . . . , e4) ∈ ΩM and I = E − Je1 . . . e4, then Jeiek is a basis
for M , and thus Iejel is a basis for M∗ for all i, j ∈ {1, 2} and k, l ∈ {3, 4}. Thus
(I; e1, . . . , e4) ∈ ΩM∗ . The image of the corresponding cross ratio under ÌM is

ÌM

([ e1 e2
e3 e4

]
I

)
=

∆∗(Ie1e3)∆
∗(Ie2e4)

∆∗(Ie1e4)∆∗(Ie2e3)
=

[ e1 e2
e3 e4

]
M̂∗,I

=
[ e1 e2
e3 e4

]
M̂,J

where I ∈ En−r−2 such that |I| = I and where we use Lemma 3.2 for the last
equality. Since the foundations of M and M∗ are generated by cross ratios, it
follows at once that ÌM restricts to an isomorphism FM∗ → FM . �

4.4. Foundations of embedded minors

Let M be a matroid of rank r on E, and let M̂ be the universal PM -matroid
associated with M , whose characteristic function is the identity map on PM ; cf.

Theorem 2.18. Let ∆ : Er → PM be a Grassmann-Plücker function for M̂ ; e.g. we
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can choose some I0 ∈ Er such that |I0| is a basis of M and define ∆(I) = TI/TI0
if

|I| is a basis of M and ∆(I) = 0 if not.
Let N = M\I/J be an embedded minor of M . Let s be its rank and EN =

E − (I ∪ J) its ground set. Choose an ordering J = {js+1, . . . , jr} of the elements
of J . By [3, Lemma 4.4], the function

∆\I/J : Es
N −→ PM

I �−→ ∆(Ijs+1 . . . jr)

is a Grassmann-Plücker function that represents N = M\I/J and its isomorphism

class N̂ = M̂\I/J is independent of the choice of ordering of J . The characteristic

function of the PM -matroid N̂ is a morphism ËM\I/J : PN → PM ; once again cf.
Theorem 2.18.

Proposition 4.9. Let M be a matroid of rank r on E and N = M\I/J an
embedded minor of rank s on EN = E − (I ∪ J). Let J = {js+1, . . . , jr}. Then the
morphism ËM\I/J : PN → PM satisfies the following properties.

(1) For all I,J ∈ Es
N such that |I| and |J| are bases of N , we have

ËM\I/J

(
TI

TJ

)
=

TIjs+1...jr

TJjs+1...jr

.

(2) The identification N∗ = M∗\J/I yields a commutative diagram

PN∗ PM∗

PN PM

ÈM∗\J/I

ÉN ÉM

ÈM\I/J

of pastures, where ÌN and ÌM are the isomorphisms from Proposition 4.8.
(3) The morphism ËM\I/J : PN → PM restricts to a morphism ϕM\I/J :

FN → FM between the foundations of N and M . For (J ′; e1, . . . , e4) ∈ ΩN ,
we have (J ′ ∪ J ; e1, . . . , e4) ∈ ΩM and

ϕM\I/J

([ e1 e2
e3 e4

]
J′

)
=

[ e1 e2
e3 e4

]
J∪J′

.

(4) If every element in I is a loop or parallel to an element in EN and if every
element in J is a coloop or coparallel to an element in EN , then ϕM\I/J

is an isomorphism.

Proof. Property (1) follows from the direct computation

ËM\I/J

(
TI

TJ

)
=

∆\I/J(I)
∆\I/J(J) =

TIjs+1...jr

TJjs+1...jr

.

We continue with (2). Let r∗ be the corank of M and s∗ the corank of N .

Choose an ordering I = {is∗+1, . . . , ir∗}. Let I ∈ Es∗−1
N , J ∈ Es−1

N and e, f ∈ EN

be such that EN = |I| ∪ |J| ∪ {e, f}, which are the assumptions needed to apply
Proposition 4.8 to ÌN . Since PN∗ is generated by elements of the form TIe/TIf , the
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commutativity of the diagram in question follows from

ËM\I/J ◦ ÌN

(
TIe

TIf

)
= ËM\I/J

(
− TJf

TJe

)

= −TJfjs+1...jr

TJejs+1...jr

= ÌM

(
TIeis∗+1...ir∗

TIfis∗+1...ir∗

)

= ÌM ◦ ËM∗\J/I

(
TIe

TIf

)
.

Note that we can apply Proposition 4.8 to ÌM since E = |I| ∪ |J| ∪ {e, f} ∪ I ∪ J .
We continue with (3). If (J ′; e1, . . . , e4) ∈ ΩN , then for all i ∈ {1, 2} and

k ∈ {3, 4}, the set J ′eiek is a basis of N and thus J ′ ∪ J ∪ {ei, ek} is a basis of M .
Thus (J ′ ∪ J ; e1, . . . , e4) ∈ ΩM . Let J

′ ∈ Es
N such that |J′| = J ′. Then

ËM\I/J

([ e1 e2
e3 e4

]
J′

)
=

∆\I/J(J′e1e3) ·∆\I/J(J′e2e4)

∆\I/J(J′e1e4) ·∆\I/J(J′e2e3)

=
TJ′e1e3js+1...jrTJ′e2e4js+1...jr

TJ′e1e4js+1...jrTJ′e2e3js+1...jr

=
[ e1 e2
e3 e4

]
J∪J′

.

By Theorem 4.6, the foundation of a matroid is generated by its cross ratios. Thus
the previous calculation shows that ËM\I/J restricts to a morphism ϕM\I/J : FN →
FM which maps

[
e1 e2
e3 e4

]
J′ to

[
e1 e2
e3 e4

]
J′∪J

.
We continue with (4). By successively deleting or contracting one element at

a time, it suffices to prove the claim for #(I ∪ J) = 1. Using (2), we can assume
that I = {e} and J = ∅. If e is a loop, then I ′ �→ I ′ defines a bijection between
the set of bases I ′ ⊂ EN = E − {e} of N and the set of bases of M . Moreover, for
every (J ′; e1, . . . , e4) ∈ ΩM , we have e /∈ J ′e1 . . . e4, which provides an identification
ΩN = ΩM . Thus PN and PM have the same generators and the same 3-term Plücker
relations, so ËM\I/J : PN → PM is an isomorphism. This argument also shows that
ϕM\I/J : FN → FM is an isomorphism.

If e is parallel to an element f ∈ EN , then 〈J ′e〉 = 〈J ′f〉 for every subset J ′ of
EN . Thus for e1, . . . , e4 ∈ E and f1, . . . , f4 ∈ EN with either ei = fi or (ei, fi) =
(e, f) for i = 1, . . . , 4, we have (J ′; e1, . . . , e4) ∈ ΩM if and only if (J ′; f1, . . . , f4) ∈
ΩN , and ϕM\I/J

([ f1 f2
f3 f4

]
J′

)
=

[
e1 e2
e3 e4

]
J′ . This shows that ϕM\I/J : FN → FM is

an isomorphism, which completes the proof. �

An immediate consequence of Proposition 4.9 is the following.

Corollary 4.10. The foundation of a matroid is isomorphic to the foundation
of its simplification and isomorphic to the foundation of its cosimplification.

Proof. This follows at once from Proposition 4.9, since the simplification of
a matroid M is an embedded minor of M of the form M\I, where I consists of all
loops of M and a choice of all but one element in each class of parallel elements.
Similarly, the cosimplification of M is an embedded minor of M of the form M/J ,
where J consists of all coloops of M and a choice of all but one element in each
class of coparallel elements. �
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Another consequence of Proposition 4.9, which we will utilize constantly in
the upcoming sections, is the following observation. Since a universal cross ratio[
e1 e2
e3 e4

]
J

involves only bases Jeiek that contain J and have a trivial intersection
with I = E − Je1e2e3e4, we have

[ e1 e2
e3 e4

]
J

=
TJe1e3TJe2e4

TJe1e4TJe2e3

=
ϕ(T(e1,e3)) ϕ(T(e2,e4))

ϕ(T(e1,e4)) ϕ(T(e2,e3))
= ϕ

([ e1 e2
e3 e4

]
∅

)

for the morphism ϕ = ϕM\I/J : FM\I/J → FM from Proposition 4.9. Thus every
universal cross ratio in FM is the image of a universal cross ratio of an embedded
minor N = M\I/J of rank 2 on a 4-element set {e1, e2, e3, e4} = E − (I ∪ J).

4.5. The foundation of U2
4

Let M = U2
4 be the uniform minor of rank 2 on the set E = {1, . . . , 4}, which is

represented by the Grassmann-Plücker function ∆ : E2 → K with ∆(i, j) = 1− δi,j .
The cross ratios of M are of the form

[ e1 e2
e3 e4

]
:=

[ e1 e2
e3 e4

]
∅

for some permutation e : i �→ ei of E. Since permuting columns and rows in
[
e1 e2
e3 e4

]

does not change the cross ratio, as pointed out in section 3.1, we have

[ 1 2
3 4

]
=

[ 2 1
4 3

]
=

[ 3 4
1 2

]
=

[ 4 3
2 1

]
.(Rσ∗)

Thus we can assume that e1 = 1, and with this convention, we find that each of
the 24 possible cross ratios is equal to one of the following six:

[ 1 2
3 4

]
,

[ 1 2
4 3

]
,

[ 1 3
2 4

]
,

[ 1 3
4 2

]
,

[ 1 4
2 3

]
,

[ 1 4
3 2

]
.

They satisfy the following two types of multiplicative relations

[ 1 2
4 3

]
=

[ 1 2
3 4

]
−1,

[ 1 3
2 4

]
=

[ 1 3
4 2

]
−1,

[ 1 4
2 3

]
=

[ 1 4
3 2

]
−1;(R1∗)

[ 1 2
3 4

]
·
[ 1 3
4 2

]
·
[ 1 4
2 3

]
= −1,

[ 1 2
4 3

]
·
[ 1 3
2 4

]
·
[ 1 4
3 2

]
= −1;(R2∗)

and the Plücker relations
[ 1 2
3 4

]
+
[ 1 3
2 4

]
= 1,

[ 1 3
4 2

]
+
[ 1 4
3 2

]
= 1,

[ 1 4
2 3

]
+
[ 1 2
4 3

]
= 1.(R+∗)

These relations can be illustrated in the form of a hexagon, see Figure 4.1. The
three edges with label ∗ refer to relations of type (R1∗), the three edges with label
+ refer to the Plücker relations (R+∗), and the two inner triangles refer to the
relations of type (R2∗).

Note that we can rewrite the relations of type (R1∗) as
[
1 2
3 4

]
·
[
1 2
4 3

]
= 1, and

so forth, which highlights an analogy with the Plücker relations
[
1 2
3 4

]
+

[
1 3
2 4

]
= 1.

This makes the meaning of the edge labels ∗ and + easy to remember.

Proposition 4.11. Let x =
[
1 2
3 4

]
and y =

[
1 3
2 4

]
. Then the foundation of

M = U2
4 is

FM = U = F±
1 〈x, y〉�{x+ y − 1}.
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−1

[
1 2
3 4

] [
1 3
2 4

]

[
1 3
4 2

]

[
1 4
3 2

][
1 4
2 3

]

[
1 2
4 3

]

+

∗

+

∗

+

∗

Figure 4.1. The hexagon of cross ratios of U2
4

In particular, we have

[ 1 2
4 3

]
= x−1,

[ 1 3
4 2

]
= y−1,

[ 1 4
3 2

]
= −xy−1,

[ 1 4
2 3

]
= −x−1y.

Proof. By relation (Rσ∗), FM is generated by the 6 cross ratios

x =
[ 1 2
3 4

]
, y =

[ 1 3
2 4

]
,

[ 1 2
4 3

]
,

[ 1 3
4 2

]
,

[ 1 4
3 2

]
,

[ 1 4
2 3

]
.

By relation (R1∗), we have

[ 1 2
4 3

]
=

[ 1 2
3 4

]−1
= x−1 and

[ 1 3
4 2

]
=

[ 1 3
2 4

]−1
= y−1.

Relation (R2∗), paired with (R1∗), yields

[ 1 4
3 2

]
=

[ 1 4
2 3

]−1
= −

[ 1 2
3 4

]
·
[ 1 3
4 2

]
= −xy−1.

Applying (R1∗) once again yields

[ 1 4
2 3

]
=

[ 1 4
3 2

]−1
= −x−1y.

By (R+∗), we have x+ y − 1 = 0. This shows that the foundation FM of M = U2
4

is a quotient of U = F±
1 〈x, y〉�{x+ y − 1}.

There are several different ways to show that there are no further relations in
FM aside from those already present in U, for example:

(1) One can work this out “by hand”.
(2) One can utilize the fact that U2

4 is near-regular, which implies that there
is a morphism FM → U.

(3) One can apply Theorem 4.21, whose proof does not rely on Proposi-
tion 4.11.

We explain a fourth route, which uses a theorem of Dress and Wenzel determin-
ing the inner Tutte group of a uniform matroid. In the case of M = U2

4 , [14, Thm.
8.1], paired with Corollary 4.4, shows that F×

M 
 T(0) 
 (Z/2Z) × Z2 
 U×. We
conclude that the quotient map U → FM is an isomorphism between the underlying
monoids. We are left with showing that every relation in the nullset of FM comes
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from U, which is the intersection of the nullset NP+
M

of P+
M with Sym3(FM ). Since

NP+
M

is generated by the single term

T1,2T3,4 − T1,3T2,4 + T1,4T2,3 = −T1,4T2,3 · (x+ y − 1),

where we use the short-hand notation Ti,j = T(i,j), every term in NFM
is a multiple

of x+ y − 1. This shows that U → FM is an isomorphism. �

Morphisms from U into another pasture can be studied in terms of pairs of
fundamental elements:

Definition 4.12. A pair of fundamental elements in P is an ordered pair (z, z′)
of elements z, z′ ∈ P× such that z + z′ = 1.

Lemma 4.13. Let P be a pasture. Then there is a bijection between Hom(U, P )
and the set of pairs of fundamental elements.

Proof. Every morphism f : U = F±
1 〈x, y〉�{x + y = 1} → P maps x and y

to invertible elements in P . Since x+y = 1, we have f(x)+f(y) = 1 in P , which
shows that

(
f(x), f(y)

)
is a pair of fundamental elements. This defines a map

Φ : Hom(U, P ) → FP , where FP is the set of pairs of fundamental elements in P .
Since f is determined by the images of x and y, we see that Φ is injective. On

the other hand, for every pair (u, v) of fundamental elements in P , the map x �→ u
and y �→ v extends to a morphism f : U → P . Thus Φ is surjective as well. �

Recall that a reorientation class is a rescaling class over the sign hyperfield S.
The following corollary is well known:

Corollary 4.14. The rescaling classes of U2
4 over a field k are in bijection

with k − {0, 1}, and U2
4 has 3 reorientation classes.

Proof. If P = k is a field, then y = 1 − x is uniquely determined by x, and
x, y both belong to k× precisely when x ∈ k − {0, 1}, which establishes the first
claim. The second claim follows from the observation that a + b = 1 in S if and
only if (a, b) is one of the 3 pairs (1, 1), (1,−1) and (−1, 1). �

4.6. The tip and cotip relations

In this section, we exhibit two types of relations that occur for matroids of
ranks 2 and 3, respectively, on the five element set E = {1, . . . , 5}.

As in the case of the uniform matroid U2
4 , we write

[
i j
k l

]
for

[
i j
k l

]
∅

in the

case of a rank 2-matroid M . We also use the shorthand notation Ti,j = T(i,j) and
Ti,j,k = T(i,j,k).

Lemma 4.15. Let M be a matroid of rank 2 on E = {1, . . . , 5}. Assume that
{i, j} is a basis of M for all i ∈ {1, 2} and all j ∈ {3, 4, 5}. Then

[ 1 2
3 4

]
·
[ 1 2
4 5

]
·
[ 1 2
5 3

]
= 1.(R3*)

Proof. Equation (R3*) follows from the direct computation

[ 1 2
3 4

]
·
[ 1 2
4 5

]
·
[ 1 2
5 3

]
=

T1,3T2,4

T1,4T2,3
· T1,4T2,5

T1,5T2,4
· T1,5T2,3

T1,3T2,5
= 1. �
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We call equation (R3*) the tip relation with tip {1, 2} and cyclic orientation
(3, 4, 5). The reason for this terminology is that in the case of the uniform matroid
M = U2

5 , the three cross ratios in equation (R3*) stem from three octahedrons in
the basis exchange graph of M , which share exactly one common vertex, or tip,
which is {1, 2}.

Note that if M is not uniform, i.e. some 2-subsets {i, j} of E are not bases,
then some of the cross ratios in equation (R3*) are trivial. We will examine this
situation in more detail in Section 5.1.

In the case of a matroid of rank 3, we write
[
i j
k l

]
m

for
[
i j
k l

]
{m}

.

Lemma 4.16. Let M be a matroid of rank 3 on E = {1, . . . , 5}. Assume that
{i, j, k} is a basis of M for all i ∈ {1, 2} and all j, k ∈ {3, 4, 5} with j 	= k. Then

[ 1 2
3 4

]
5
·
[ 1 2
4 5

]
3
·
[ 1 2
5 3

]
4

= 1.(R4*)

Proof. Equation (R4*) follows from the direct computation
[ 1 2
3 4

]
5
·
[ 1 2
4 5

]
3
·
[ 1 2
5 3

]
4

=
T5,1,3 · T5,2,4

T5,1,4 · T5,2,3
· T3,1,4 · T3,2,5

T3,1,5 · T3,2,4
· T4,1,5 · T4,2,3

T4,1,3 · T4,2,5

=
T4,1,5

−T4,1,5
· T3,2,5

−T3,2,5
· T5,1,3

−T5,1,3
· T4,2,3

−T4,2,3
· T3,1,4

−T3,1,4
· T5,2,4

−T5,2,4

= (−1)6 = 1. �

We call equation (R4*) the cotip relation with cotip {1, 2} and cyclic orientation
(3, 4, 5). Similar to the rank 2-case, we use this terminology since in the case of the
uniform matroid M = U3

5 , the three cross ratios in equation (R4*) stem from three
octahedrons in the basis exchange graph of M , which share exactly one common
vertex, which is {3, 4, 5}. Therefore we call the complement {1, 2} of this common
vertex the cotip.

Note that the tip and cotip relations are both invariant under even permutations
of {1, . . . , 5} that leave {1, 2} and {3, 4, 5} invariant. An odd permutation that
leaves {1, 2} and {3, 4, 5} invariant leads to an inversion of all cross ratios in the
tip or cotip relation. Any other permutation of E leads to a significantly different
tip or cotip relation, provided that all involved values of ∆ are nonzero.

4.7. Relations for parallel elements

In this section, we exhibit a type of relation between universal cross ratios
that stems from parallel elements. As in the previous section, we write

[
1 2
3 4

]
5

for[
1 2
3 4

]
{5}

.

Lemma 4.17. Let M be a matroid of rank 3 on E = {1, . . . , 6} and assume that
5 and 6 are parallel elements, i.e. {5, 6} is a circuit of M . If ({k}; 1, . . . , 4) ∈ ΩM

for k = 5, 6, then
[ 1 2
3 4

]
5

=
[ 1 2
3 4

]
6
.(R5*)

Proof. By our assumptions, every subset of the form {i, j, k} with i ∈ {1, 2},
j ∈ {3, 4} and k ∈ {5, 6} is a basis of M , but no basis contains both 5 and 6. Thus
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({1}; 3, 4, 6, 5) and ({2}; 3, 4, 5, 6) are degenerate tuples in ΩM , and thus
[
3 4
6 5

]
1
=[

3 4
5 6

]
2
= 1. With this, equation (R5*) follows from the computation

[ 1 2
3 4

]
5

=
[ 1 2
3 4

]
5
·
[ 3 4
6 5

]
1
·
[ 3 4
5 6

]
2

=
T5,1,3 · T5,2,4

T5,1,4 · T5,2,3
· T1,3,6 · T1,4,5

T1,3,5 · T1,4,6
· T2,3,5 · T2,4,6

T2,3,6 · T2,4,5

=
T1,4,5

T1,4,5
· T2,3,5

T2,3,5
· T5,1,3

T5,1,3
· T6,1,3 · T6,2,4

T6,1,4 · T6,2,3
· T5,2,4

T5,2,4

=
[ 1 2
3 4

]
6
. �

4.8. The foundation of the Fano matroid and its dual

In this section, we show that the Fano matroid F7 and its dual F ∗
7 impose

the relation −1 = 1 on their foundation, which is F2. This already follows from
[5, Thms. 7.30 and 7.33], using the fact that F7 and F ∗

7 are not regular. Here we
offer a proof in terms of a direct calculation that does not rely on knowledge of the
representability of F7.

The Fano matroid F7 is the rank 3 matroid on E = {1, . . . , 7} represented by
the Grassmann-Plücker function ∆ : E3 → K with ∆(i, i + 1, i + 3) = 0 for i ∈ E,
where we read i + 1 and i + 3 modulo 7, and ∆(i, j, k) = 1 otherwise. Thus the

family of circuits is
{
{i, i + 1, i + 3}

∣∣∣ i ∈ E
}
, together with all 4-element subsets

that do not contain one of these, which can be illustrated as follows:

1

2

3 4

5

6

7

Lemma 4.18. The foundation of both the Fano matroid F7 and its dual F ∗
7

is F2.

Proof. Since the foundation of F ∗
7 is isomorphic to the foundation of F7, it is

enough to prove the lemma for the Fano matroid. Throughout the proof, we read
expressions like i+ k and i− k modulo 7 for all i, k ∈ E.

Since the rank of F7 is 3, the set J of a tuple (J ; e1, . . . , e4) ∈ ΩM is a singleton,
i.e. J = {j} for some j ∈ E. The element j is contained in the three circuits
C1 = {j, j + 1, j + 3}, C2 = {j − 1, j, j + 2} and C3 = {j − 3, j − 2, j} whose union
is equal to E. By the pigeonhole principle, we must have ek, el ∈ Ci for some i and
k 	= l. Since j, ek, el are pairwise distinct, Ci = {j, ek, el} is not a basis. This shows
that every (J ; e1, . . . , e4) ∈ ΩM is degenerate, and thus

[
e1 e2
e3 e4

]
J
= 1. We conclude

that FM is a quotient of F±
1 .

We use the shorthand notations
[
i j
k l

]
m

=
[
i j
k l

]
{m}

and T i
j,k,l = T(i+j,i+k,i+l)

in the following. Note that T i−m
j+m,k+m,l+m = T i

j,k,l and T i
σ(j),σ(k),σ(l) = sign(σ)T i

j,k,l
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for every permutation σ of {j, k, l}. We calculate that

1 =

7∏

i=1

[ i+ 1 i+ 3
i+ 2 i+ 4

]
i
·
[ i+ 2 i+ 6
i+ 5 i+ 4

]
i

=

7∏

i=1

T i
0,1,2 · T i

0,3,4

T i
0,1,4 · T i

0,3,2

·
T i
0,2,5 · T i

0,6,4

T i
0,2,4 · T i

0,6,5

=

7∏

i=1

T i
0,1,2 · T i

0,3,4 · T i
0,2,5 · T i

0,6,4

T i−3
3,4,0 · T i−4

4,0,6 · T i−5
5,0,2 · T i−2

2,1,0

=

7∏

i=1

T i
0,3,4

T i−3
0,3,4

·
T i
0,6,4

T i−4
0,6,4

·
T i
0,2,5

T i−5
0,2,5

·
T i
0,1,2

−T i−2
0,1,2

= (−1)7 = −1.

This shows that the foundation FM of F7 is a quotient of F2 = F±
1 �{−1 = 1}.

Since F7 does not contain any U2
4 -minors, all cross ratios are degenerate and thus the

nullset of FM does not contain any 3-term relations. We conclude that FM =F2. �

4.9. A presentation of the foundation by hyperplanes

Gelfand, Rybnikov and Stone exhibit in [17, Thm. 4] a complete set of multi-

plicative relations in the inner Tutte group of M between the cross ratios
[
C1 C2

C3 C4

]
of

modular quadruples (C1, . . . , C4) of circuits, which results in essence from Tutte’s
homotopy theorem. Since hyperplanes are just complements of circuits of the dual
matroid, this set of relations yields at once a complete set of relations for cross
ratios

[
H1 H2

H3 H4

]
of modular quadruples (H1, . . . , H4) of hyperplanes.

Theorem 4.19. Let M be a matroid with foundation FM . Then

FM = F±
1

〈 [
H1 H2

H3 H4

] ∣∣ (H1, . . . , H4) ∈ ΘM

〉
� S,

where S is defined by the multiplicative relations

−1 = 1(H–)

if the Fano matroid F7 or its dual F ∗
7 is a minor of M ;

[H1 H2

H3 H4

]
=

[H2 H1

H4 H3

]
=

[H3 H4

H1 H2

]
=

[H4 H3

H2 H1

]
(Hσ)

for all (H1, . . . , H4) ∈ Θ♦
M ;

[H1 H2

H3 H4

]
= 1(H0)

for all degenerate (H1, . . . , H4) ∈ ΘM ;

[H1 H2

H4 H3

]
=

[H1 H2

H3 H4

]−1
(H1)

for all (H1, . . . , H4) ∈ Θ♦
M ;

[H1 H2

H3 H4

]
·
[H1 H3

H4 H2

]
·
[H1 H4

H2 H3

]
= −1(H2)
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for all (H1, . . . , H4) ∈ Θ♦
M ;

[H1 H2

H3 H4

]
·
[H1 H2

H4 H5

]
·
[H1 H2

H5 H3

]
= 1(H3)

for all (H1, H2, H3, H4), (H1, H2, H4, H5), (H1, H2, H5, H3) ∈ Θ♦
M ; and

[H15 H25

H35 H45

]
·
[H13 H23

H43 H53

]
·
[H14 H24

H54 H34

]
= 1,(H4)

where Hij = 〈Fi∪Fj〉 for five pairwise distinct corank 2-flats F1, . . . , F5 that contain
a common flat of corank 3 such that (H15, H25, H35, H45), (H14, H24, H54, H34) ∈
Θ♦

M and (H13, H23, H43, H53) ∈ ΘM , as well as the additive Plücker relations

[H1 H2

H3 H4

]
+
[H1 H3

H2 H4

]
= 1(H+)

for all (J ; e1, . . . , e4) ∈ Θ♦
M .

Proof. The theorem follows from a translation of [17, Thm. 4] to our context,
by replacing a cocycle C by the hyperplane H = E − C. To pass from the inner
Tutte group to the foundation, we employ Lemma 3.13, which identifies

[
H1 H2

H3 H4

]
T

with
[
H1 H2

H3 H4

]
under the canonical isomorphism P×

M → T
(0)
M .

Using this translation, relation (H–) is equivalent to (TG0) and (CR5) in [17].
Relation (Hσ) is equivalent to (CR3). Relation (H0) is equivalent to (CR1). Re-
lation (CR4) is equivalent to (H1) (in the case that one cross ratio is degenerate)
and (H3) (in the case that all cross ratios are non-degenerate). Relation (H2) is
equivalent to (CR4). Relation (H4) is equivalent to (CR6), where we observe that
the degenerate case L = L′ in [17] reduces (CR6) to (CR1). Finally note that the
3-term Plücker relations of FM are captured in (H+). �

Remark 4.20. We include a discussion of relation (H4), which has the most
complicated formulation among the relations of Theorem 4.19. Since all flats con-
tain a common flat of corank 3, this constellation comes from a minor of rank 3,
which has 5 corank 2-flats corresponding to F1, . . . , F5. In the non-degenerate situ-
ation where all hyperplanes Hij are pairwise distinct, this minor is of type U3

5 , and
the containment relation of the Fi and Hij can be illustrated as on the right-hand
side of Figure 4.2.

The original formulation of Gelfand, Rybnikov and Stone concerns points, which
are circuits, and lines, which are unions of circuits having projective dimension
1. To pass from our formulation to that of Gelfand-Rybnikov-Stone, we take the
complement of a hyperplane Hij , which is a circuit Cij of the dual matroid. Thus,
in the non-degenerate case, axiom (CR6) expresses the point-line configuration
of U2

5 , which we illustrate on the left-hand side of Figure 4.2. The lines Li are
the complements of the flats Fi, and therefore the union of the circuits Cij (with
varying j).

Note that there are two degenerate situations that (CR6) allows for: (a) three
lines, say L1, L2 and L3, intersect in one point C12 = C13 = C23; this case corre-
sponds to the point-line arrangement of a parallel extension of U2

4 , which we denote
by C∗

5 in Section 5.1.3 and in this case, (H13, H23, H43, H53) ∈ ΘM is degenerate;
and (b) two lines agree; this case corresponds to the point-line arrangement of U2

4 .
Note that this latter relation corresponds to (H3), but with one of the quadruples
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of hyperplanes being degenerate. Since in this case, (H3) is equivalent to (H1), we
can assume in (H3) that all quadruples of hyperplanes are non-degenerate.

C25

C13

C24 C35

C14

C12

C23

C34

C45

C15

L1

L2

L3 L4

L5

H34

H45

H15 H12

H23

F4

F5

F1

F2

F3

H35

H14

H25

H13

H24

Figure 4.2. Point-line configuration for U2
5 and flat configuration for U3

5

4.10. A presentation of the foundation by bases

Using the relation between cross ratios
[
H1 H2

H3 H4

]
for modular quadruples (H1,

. . . , H4) of hyperplanes and universal cross ratios
[
e1 e2
e3 e4

]
J

for (J ; e1, . . . , e4) ∈ ΩM ,
as exhibited in Proposition 3.6, we derive from Theorem 4.19 the following descrip-
tion of a complete set of relations between universal cross ratios. The possibility of
such a deduction was observed and communicated to us by Rudi Pendavingh, who
proves a similar result in the joint work [10] with Brettell.

Theorem 4.21. Let M be a matroid with foundation FM . Then

FM = F±
1

〈 [
e1 e2
e3 e4

]
J

∣∣ (J ; e1, . . . , e4) ∈ ΩM

〉
� S,

where S is defined by the multiplicative relations

−1 = 1(R–)
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if the Fano matroid F7 or its dual F ∗
7 is a minor of M ;

[ e1 e2
e3 e4

]
J

=
[ e2 e1
e4 e3

]
J

=
[ e3 e4
e1 e2

]
J

=
[ e4 e3
e2 e1

]
J

(Rσ)

for all (J ; e1, . . . , e4) ∈ Ω♦
M ;

[ e1 e2
e3 e4

]
J

= 1(R0)

for all degenerate (J ; e1, . . . , e4) ∈ ΩM ;
[ e1 e2
e4 e3

]
J

=
[ e1 e2
e3 e4

]−1

J
(R1)

for all (J ; e1, . . . , e4) ∈ Ω♦
M ;

[ e1 e2
e3 e4

]
J
·
[ e1 e3
e4 e2

]
J
·
[ e1 e4
e2 e3

]
J

= −1(R2)

for all (J ; e1, . . . , e4) ∈ Ω♦
M ;

[ e1 e2
e3 e4

]
J
·
[ e1 e2
e4 e5

]
J
·
[ e1 e2
e5 e3

]
J

= 1(R3)

for all e1, . . . , e5 ∈ E and J ⊂ E such that each of (J ; e1, e2, e3, e4), (J ; e1, e2, e4, e5)
and (J ; e1, e2, e5, e3) is in ΩM ;

[ e1 e2
e3 e4

]
Je5

·
[ e1 e2
e4 e5

]
Je3

·
[ e1 e2
e5 e3

]
Je4

= 1(R4)

for all e1, . . . , e5 ∈ E and J ⊂ E such that (Je5; e1, e2, e3, e4), (Je3; e1, e2, e4, e5)
and (Je4; e1, e2, e5, e3) are in ΩM ;

[ e1 e2
e3 e4

]
Je5

=
[ e1 e2
e3 e4

]
Je6

(R5)

for all e1, . . . , e6 ∈ E and J ⊂ E such that 〈Je5〉 = 〈Je6〉 and such that (Je5; e1, e2,

e3, e4) and (Je6; e1, e2, e3, e4) are in Ω♦
M ; as well as the additive Plücker relations

[ e1 e2
e3 e4

]
J
+
[ e1 e3
e2 e4

]
J

= 1(R+)

for all (J ; e1, . . . , e4) ∈ Ω♦
M .

Proof. By Proposition 3.6, we have
[
e1 e2
e3 e4

]
J
=

[
H1 H2

H3 H4

]
for every (J ; e1, . . . ,

e4) ∈ ΩM and Hi = 〈Jei〉 for i = 1, . . . , 4. Thus (R–)–(R3) follow from (H–)–
(H3), and (R+) follows from (H+). To see that (R4) implies (H4), define for given
j1, . . . , jr−3, e1, . . . , e5 ∈ E and J = {j1, . . . , jr−3} as in (R4) the corank 2 flats
Fi = 〈Jei〉 for i = 1, . . . , 5, which are pairwise distinct and contain the common flat
〈J〉 of corank 3, as required. For i 	= j, we define hyperplanes Hij = 〈Fi ∪ Fj〉 =
〈Jeiej〉. Then we have for all identifications {i, j, k} = {3, 4, 5} that

[ e1 e2
ei ej

]
Jek

=
[H1k H2k

Hik Hjk

]
,

which shows that (H4) implies (R4). The relation (R5) follows from
[ e1 e2
e3 e4

]
Je5

=
[H1 H2

H3 H4

]
=

[ e1 e2
e3 e4

]
Je6

,

where Hi=〈Je5ei〉=〈Je6ei〉 is the i-th coefficient of the common image (H1, . . . , H4)
of (Je5; e1, . . . , e4) and (Je6; e1, . . . , e4) under Ψ : ΩM → ΘM .
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We are left to show that (R–)–(R5) imply that
[
e1 e2
e3 e4

]
J
=

[ e′1 e′2
e′3 e′4

]
J′ if Ψ(J ; e1,

. . . , e4) = Ψ(J ′; e′1, . . . , e
′
4), i.e. if 〈Jei〉 = 〈J ′e′i〉 for i = 1, . . . , 4. We will prove this

by replacing one element of Je1 . . . e4 by an element of J ′e′1 . . . e
′
4 at a time. Note

that both J and J ′ are bases of the restriction M |F = M\(E − F ), where F =
〈J〉 = 〈J ′〉 is the flat of rank r− 2 generated by J and J ′. Since the basis exchange
graph of M |F is connected, we find a sequence J = J0, J1, . . . , Js−1, Js = J ′ of
bases for M |F such that Jk = Ikjk and Jk+1 = Ikj

′
k for Ik = Jk ∩ Jk+1 and some

jk ∈ Jk and j′k ∈ Jk+1. Considered as subsets of M , we have 〈Jk〉 = F and thus

(Jk; e
′
1, . . . , e

′
4) ∈ Ω♦

M for all k = 0, . . . , s. Thus we can apply (R5), which yields

[ e1 e2
e3 e4

]
Jk

=
[ e1 e2
e3 e4

]
Ikjk

=
[ e1 e2
e3 e4

]
Ikj′k

=
[ e1 e2
e3 e4

]
Jk+1

.

We conclude that
[
e1 e2
e3 e4

]
J
=

[
e1 e2
e3 e4

]
J′ .

Next we replace the ei by the e′i, one at a time. After permuting rows and
columns appropriately, which does not change the value of the cross ratio by (Rσ),

we are reduced to studying cross ratios of the forms
[ f1 f2
f3 f4

]
J′ and

[ f1 f2
f3 f ′

4

]
J′ such

that 〈J ′f4〉 = 〈J ′f ′
4〉 is a hyperplane. By (R3), we have

[ f1 f2
f3 f4

]
J′

·
[ f1 f2
f4 f ′

4

]
J′

·
[ f1 f2
f ′
4 f3

]
J′

= 1.

Since 〈J ′f4〉 = 〈J ′f ′
4〉 is a hyperplane, the subset J ′f4f

′
4 of M has rank r − 1 and

is not a basis of M . Thus
[ f1 f2
f4 f ′

4

]
J′ = 1 by (R0), which shows that

[ f1 f2
f3 f4

]
J′

=
[ f1 f2
f ′
4 f3

]−1

J′
=

[ f1 f2
f3 f ′

4

]
J′
,

where we use (R1) for the last equality. We conclude that
[ e1 e2
e3 e4

]
J

=
[ e1 e2
e3 e4

]
J′

=
[ e′1 e′2
e′3 e′4

]
J′
,

as desired. This completes the proof of the theorem. �

Corollary 4.22. The foundation FM of a matroid M is naturally isomorphic
to a quotient

FM 

( ⊗

N→M
of type U2

4

FN

)
�S

of a tensor product of foundations FN 
 U, where the set S is generated by the
relations of type (R–) in the presence of an F7 or F ∗

7 -minor and of types (R3)–
(R5) that are induced by embedded minors M\I/J → M on at most 6 elements
{e1, . . . , e6} = E − (I ∪ J).

Proof. By Theorem 4.21, the foundation is generated by the universal cross

ratios
[
e1 e2
e3 e4

]
J

of M , which are the images
[
e1 e2
e3 e4

]
J

= ϕM\I/J

([
e1 e2
e3 e4

])
of the

universal cross ratios
[
e1 e2
e3 e4

]
of minors N = M\I/J on 4 elements e1, . . . , e4; cf.

Proposition 4.9. The morphisms ϕM\I/J : FN → FM testify that all relations of
FN also hold in FM , and therefore we conclude that FM is of the form

FM 

( ⊗

N→M
with #EN = 4

FN

)
�S
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for some set of 3-term relations S, where EN denotes the ground set of N . A priori,
this holds if we include all relations (R–)–(R+) of Theorem 4.21 in S. To reduce
this to the assertion of the corollary, we observe the following.

If N = M\I/J is a minor on 4 elements that is not of type U2
4 , then N is

regular and FN = F±
1 . Thus we can omit these factors from the tensor product.

Note that (R0) assures that the cross ratios coming from such a minor are trivial
in FM . Therefore we can omit (R0) from S.

Each of (Rσ), (R1), (R2) and (R+) involve only cross ratios that come from
the same U2

4 -minor N = M\I/J . Therefore the analogous relations hold already
in FN , and we can omit them from the set S.

By Theorem 4.21, the relation (R–) holds if M has a minor of type F7 or F ∗
7 .

Each of the relations (R3)–(R5) involve cross ratios that come from the same minor
on 5 or 6 elements. This shows all assertions of the corollary. �

4.11. A presentation of the foundation by embedded minors

Let N = M\I/J and N ′ = M\I ′/J ′ be two embedded minors of a matroid M .
If I ′ ⊂ I and J ′ ⊂ J , then N = N ′\(I − I ′)/(J − J ′) is an embedded minor of N ′.
We write ι : N → N ′ for the inclusion as embedded minors and ι∗ : FN → FN ′ for
the induced morphism between the respective foundations.

Theorem 4.23. Let M be a matroid with foundation FM . Let E be the collection
of all embedded minors N = M\I/J of M on at most 7 elements with the following
properties:

• if N has at most 6 elements, then it contains a minor of type U2
4 ;

• if N has exactly 6 elements, then it contains two parallel elements;
• if N has 7 elements, then it is isomorphic to F7 or F ∗

7 .

Then

FM 

( ⊗

N∈E

FN

)
�S,

where the set S is generated by the relations a = ι∗(a) for every inclusion ι : N → N ′

of embedded minors N and N ′ in E.

Proof. It is clear that the morphisms ϕM\I/J : FM\I/J → FM from Proposi-

tion 4.9 induce a canonical morphism
(⊗

N∈E
FN

)
�S → FM , and since E contains

all embedded U2
4 -minors of M , this morphism is surjective. Thus we are left with

showing that S contains all defining relations of M .
Let us define Ei = {N ∈ E | #EN = i} for i = 4, . . . , 7 where EN denotes the

ground set of the embedded minor N . Then E = E4 ∪ . . .∪ E7. The set E4 consists
of the embedded U2

4 -minors of M , and thus

FM 

( ⊗

N∈E4

FN

)
�S′

by Corollary 4.22, where S′ contains all relations of types (R–) (in the presence of
an F7 or F ∗

7 -minor) and (R3)–(R5).
The relations (R3) and (R4) stem from embedded minors N = M\I/J on 5

elements, and these relations involve a nondegenerate cross ratio only if N contains
a U2

4 -minor, i.e. N ∈ E5. Thus (R3) and (R4) can be replaced by tensoring with
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FN and including the relations a = ι∗(a) for every minor embedding ι : N ′ =
N\I ′/J ′ → N with N ′ ∈ E4.

Similarly, (R5) stems from embedded minors N = M\I/J on 6 elements with
two parallel elements, and involves a nondegenerate cross ratio only if N contains
a U2

4 -minor, i.e. N ∈ E6. Thus (R5) can be replaced by tensoring with FN and
including the relations a = ι∗(a) for every minor embedding ι : N ′ = N\I ′/J ′ → N
with N ′ ∈ E4.

The set E7 consists of all embedded minors of types F7 and F ∗
7 . Since FF7

=
FF∗

7
= F2 and P � 〈1 = −1〉 
 P ⊗ F2 for every pasture P , we can replace the

relation (R–) by −⊗ FN if N ∈ E7. This recovers all relations in S′ and completes
the proof. �
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CHAPTER 5

The structure theorem

In this section, we prove the central result of this paper, Theorem 5.9, which
asserts that the foundation of a matroid M without large uniform minors is iso-
morphic to a tensor product of finitely many copies of the pastures U, D, H, F3

and F2.
This is done by first showing that in the absence of large uniform minors, the

tip and cotip relations are of a particularly simple form, which eventually leads to
the conclusion that the foundation of M is the tensor product of quotients of U by
automorphism groups, and possibly F2. The quotients of U by automorphisms are
precisely U, D, H and F3.

5.1. Foundations of matroids on 5 elements

By Theorem 4.23, the foundation of a matroid is determined completely by its
minors on at most 5 elements and the embedded minors on 6 elements with two
parallel elements.

In this section, we will determine the foundations of all matroids on at most 5
elements. Most of these matroids are regular and have foundation F±

1 by [5, Thm.
7.33]. There is only a small number of non-regular matroids on at most 5 elements,
which we will inspect in detail.

Let 0 � r � n � 5 and M be a matroid of rank r on E = {1, . . . , n}.
5.1.1. Regular matroids. A matroid M is regular if and only if there is

no nontrivial cross ratio, which is the case if and only if the matroid M does not
contain any minor of type U2

4 .
This is the case in exactly one of the following situations: (a) r ∈ {0, 1, n−1, n};

(b) n = 4, r = 2 and M is not uniform; (c) n = 5, r = 2 and M\i is not uniform
for every i ∈ E; (d) n = 5, r = 3 and M/i is not uniform for every i ∈ E.

5.1.2. Matroids with exactly one embedded U2
4 -minor. There are sev-

eral isomorphism classes of matroids with exactly one U2
4 -minor, which we list in

the following.
Since the tip and cotip relations involve cross ratios from different embedded

U2
4 -minors, they do not appear for matroids with only one embedded U2

4 -minor.
If n = 4, then there is exactly one such matroid, namely M = U2

4 itself, which
has foundation U by Proposition 4.11.

Proposition 5.1. Let M be a matroid on 5 elements with exactly one embedded
U2
4 -minor. Then M is isomorphic to U2

4 ⊕N where N is a matroid on 1 element.
The foundation of M is isomorphic to U.

Proof. In order to have an U2
4 -minor, M must have rank 2 or 3. Since the

embedded minors N → M of M correspond bijectively to the embedded minors

53
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N∗ → M∗ and since U2
4 is self-dual, the matroids M and M∗ have the same

number of U2
4 -minors. Once we have shown that every rank 2-matroid with exactly

one embedded U2
4 -minor is isomorphic to U2

4 ⊕N for a matroid N on one element,
which has to be of rank 0, then we can conclude that M∗ is isomorphic to U2

4 ⊕N∗.
To complete this reduction to the rank 2-case, we note that the foundation of M∗

is canonically isomorphic to the foundation of M , cf. Proposition 4.8.
Assume that the rank 2-matroid M on E = {1, . . . , 5} has an embedded U2

4 -
minor. After a permutation of E, we can assume that this embedded U2

4 -minor is
M\5 = M\{5}, i.e. that all of the following 2-subsets

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}
of E are bases. If these are all bases of M , then 5 is a loop and M is isomorphic to
U2
4 ⊕N , as claimed.

We indicate why M cannot have more bases of the form {i, 5}. If M has exactly
one additional basis element, say {1, 5}, then the basis exchange property is violated
by exchanging 1 by an element of the basis {3, 4}. The same reason excludes the
possibility that M has exactly two additional basis elements, say {1, 5} and {2, 5}.
If M has 9 or more basis elements, say all 2-subsets of E but possibly {4, 5}, then
both minors M\4 and M\5 are isomorphic to U2

4 . Thus in this case, M has at least
two embedded U2

4 -minors.
This shows that M has to be isomorphic to U2

4 ⊕ N . Since 5 is a loop, the
conditions for the tip relations are not satisfied, which means that all relations
stem from the unique embedded U2

4 -minor M\5. This shows that the foundation
of M is isomorphic to FM\5 
 U, as claimed. �

5.1.3. Matroids with exactly two embedded U2
4 -minors. If M has two

embedded U2
4 -minors, then the ground set must be E = {1, . . . , 5}. As explained

in Section 5.1.2, M must have rank 2 or 3 if M has an U2
4 -minor. We will show

that if M has exactly two embedded U2
4 -minors, then it must be isomorphic to the

following matroid, or its dual.

Definition 5.2. We denote by C5 the rank 3-matroid on E = {1, . . . , 5} whose

set of bases is
(
E
3

)
− {3, 4, 5}.

Proposition 5.3. A matroid M on 5 elements has exactly two embedded U2
4 -

minors if and only if M is isomorphic to either C5 or its dual. The cross ratios of
C5 satisfy [ i j

k 4

]
5

=
[ i j
k 5

]
4
,

and the cross ratios of C∗
5 satisfy

[ i j
k 4

]
=

[ i j
k 5

]

for all identifications {i, j, k} = {1, 2, 3}. The foundations of both C5 and C∗
5 are

isomorphic to U.

We illustrate all non-degenerate cross ratios of C∗
5 and their relations in Fig-

ure 5.1.

Proof. The claims for C5 and C∗
5 follow from each other by the duality result

Proposition 4.8. Thus we can restrict ourselves to the proof of all claims for C∗
5 .
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−1

[
1 2
3 4

] [
1 3
2 4

]

[
3 1
2 4

]

[
3 2
1 4

][
2 3
1 4

]

[
2 1
3 4

]

[
1 2
3 5

] [
1 3
2 5

]

[
3 1
2 5

]

[
3 2
1 5

][
2 3
1 5

]

[
2 1
3 5

]

+

∗

+

∗

+

∗

+

∗

+

∗

+

∗
= =

=

==

=

Figure 5.1. The cross ratios of C∗
5 and their relations

In the proof of Proposition 5.1, we saw that C∗
5 has at least two embedded

U2
4 -minors, which correspond to the U2

4 -minors C∗
5\4 and C∗

5\5. All other minors
of rank 2 on 4 elements of C∗

5 are of the form C∗
5\i for i ∈ {1, 2, 3}. But since {4, 5}

is not a basis of C∗
5 , none of these minors is isomorphic to U2

4 . This shows that C∗
5

has exactly two embedded U2
4 -minors, as has every matroid M that is isomorphic

to C∗
5 .
Conversely, assume that M is a rank 2 matroid on 5 elements with exactly

two embedded U2
4 -minors. Since duality preserves U2

4 -minors, can assume that M
is of rank 2. After a permutation of E, we can assume that these two embedded
U2
4 -minors are M\4 and M\5. Thus all of the 2-subsets

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4} and {3, 5}

are bases. If {4, 5} was also a basis of M , then M would be the uniform matroid
U2
5 , which has five U2

4 minors U2
5 \i for i = 1, . . . , 5. Thus M is isomorphic to C∗

5 .
This proves our first claim.

Let us choose an identification {i, j, k} = {1, 2, 3}. The tip relation (R3) in
Theorem 4.21 with tip {i, j} and cyclic orientation (k, 4, 5) for C∗

5 is

[ i j
k 4

]
·
[ i j
4 5

]
·
[ i j
5 k

]
= 1.

Since
[
i j
4 5

]
= 1 is degenerate, we obtain the claimed relation

[ i j
k 4

]
=

[ i j
5 k

]−1
=

[ i j
k 5

]
,

where the second equality is relation (R1). Since C∗
5 is a parallel extension of U2

4 ,
the foundation of C∗

5 is U by Corollary 4.10, which concludes the proof. �
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5.1.4. Matroids with five embedded U2
4 -minors. The only matroids on

at most five elements that do not appear among the previous cases with at most
two embedded U2

4 -minors are the uniform matroids U2
5 and U3

5 , which have five
embedded U2

4 -minors.
For completeness, we describe their foundations. However, we postpone the

proof to a sequel to this paper where we develop more sophisticated methods to
calculate the foundations of matroids. Note that the results of this first part are
independent from the following result since we consider matroids without large
uniform minors.

Proposition 5.4. The foundations of U2
5 and U3

5 are isomorphic to

F±
1 〈x1, . . . , x5〉�{xi + xi−1xi+1 − 1 | i = 1, . . . , 5}

where x0 = x5 and x6 = x1.

5.2. Symmetry quotients

The classification of foundations of matroids on up to five elements in Section
5.1 shows that in a matroid without large uniform minors, all relations between
cross ratios of different embedded U2

4 -minors arise from minors of type C5 or C∗
5 .

Proposition 5.3 shows that these types of minors identify the two hexagons of cross
ratios, which implies an identification of two copies of the near-regular partial field
U; cf. Figure 5.1. The same happens for relations of type R5: they identify two
copies of U.

It can, and it will, happen that a matroid contains a chain of such minors, which
creates a self-identification of the cross ratios belonging to an embedded U2

4 -minor
of M . By Proposition 5.3, this self-identification must respect the relations between
the cross ratios in each hexagon, and induces an automorphism of U. Therefore we
are led to study the quotients of U by such automorphisms.

5.2.1. Automorphisms of the near-regular partial field. In the follow-
ing, we determine all automorphisms of the near-regular partial field U = F±

1 〈x, y〉�
{x + y = 1}. By Lemma 4.13, it suffices to determine the images of x and y to
describe an automorphism of U. A result equivalent to the following is also proved
in [25, Lemma 4.4].

Lemma 5.5. The elements of the form z + z′ − 1 in the nullset NU of U with
z, z′ ∈ U× are

x+ y − 1, x−1 − x−1y − 1 and y−1 − xy−1 − 1.

Thus the fundamental elements of U are x, y, x−1, −x−1y, y−1, −xy−1.

Proof. Note that the only element z with z+1− 1 = 0 is z = 0. Thus to find
all fundamental elements, it suffices to search for relations of the form z+z′−1 ∈ NU

with z, z′ ∈ U×. Since NU is generated by 1−1+0 and x+y−1, and since all terms
have to be nonzero and at least one term has to be equal to −1 to find a relation
for fundamental elements, we find exactly three relations of the form z+ z′− 1 = 0,
which are

x+ y − 1, x−1 − x−1y − 1 and y−1 − xy−1 − 1.

Thus the claim of the lemma. �
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Proposition 5.6. The associations

ρ : U −→ U
x �−→ y−1

y �−→ −xy−1

and σ : U −→ U,
x �−→ y
y �−→ x

define automorphisms of U that generate the automorphism group of U and satisfy
the relations ρ3 = σ2 = (ρσ)2 = id. In particular, Aut(U) 
 S3.

Proof. By Lemma 5.5, both (y−1,−xy−1) and (y, x) are pairs of fundamental
elements in U. Thus, by Lemma 4.13, ρ and σ define morphisms from U to U.
Since ρ3(x) = x and ρ3(y) = y, we conclude that ρ defines a group automorphism
of U× of order 3. Similarly, σ defines a group automorphism of U× of order 2. The
relation (ρσ)2 = id can be easily verified by evaluation on x and y.

We conclude that the automorphism group of U contains 〈ρ, σ〉 
 S3 as a
subgroup. By Lemma 5.5, U contains precisely 6 fundamental elements, which
implies easily that Aut(U) is generated by ρ and σ. �

Remark 5.7. It follows from Lemma 5.5 that the isomorphism FU2
4
→ U from

Proposition 4.11 maps the cross ratios of U2
4 bijectively to the fundamental elements

of U. We can arrange these fundamental elements in a hexagon

−1

x y

y−1

−xy−1−x−1y

x−1

+

∗

+

∗

+

∗

in the same way as we arrange the cross ratios in Figure 4.1. It follows from Propo-
sition 5.6 that the automorphisms of U correspond bijectively to the symmetries of
this hexagon that preserve the edge labels and the inner triangles.

5.2.2. Classification of the symmetry quotients of U. A symmetry quo-
tient of U is the quotient of U by a group of automorphisms. More precisely, if H
is a subgroup of Aut(U), then the quotient of U by H is

U/H = U�{x = τ (x), y = τ (y) | τ ∈ H }.

In fact, we have U/H=U�{x=τ (x), y=τ (y)|τ ∈S} if S is a set of generators of H.
Recall from section 2.1.2 that F3 = F±

1 �{1 + 1 + 1},

D = F±
1 〈z〉�{z + z − 1} and H = F±

1 〈z〉�{z3 + 1, z − z2 − 1}.

Note that this implies that z3 = −1 and z6 = 1 in H.

Proposition 5.8. The symmetry quotients of U are, up to isomorphism,

U/〈id〉 
 U, U/〈σ〉 
 D, U/〈ρ〉 
 H, U/〈ρ, σ〉 
 F3.
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Proof. In the following, we show that the quotients of U by different sub-
groups H of Aut(U) 
 S3 are exactly the pastures U, D, H and F3, up to isomor-
phism. Clearly U = U/〈id〉 is the quotient of U by the trivial subgroup.

Note that if H ′ is a subgroup conjugate to H, i.e. H ′ = τHτ−1 for some
τ ∈ Aut(U), then the quotient of U by H ′ equals the quotient of τ (U) = U by H.
This means that it suffices to determine the isomorphism classes of the quotients of
U by the groups 〈σ〉, 〈ρ〉 and Aut(U) = 〈ρ, σ〉, which represent all conjugacy classes
of nontrivial subgroups of Aut(U).

Let H = 〈σ〉. We denote the residue classes of x and y in U/〈σ〉 by x̄ and ȳ,
respectively. We claim that the association

f : U/〈σ〉 −→ D
x̄ �−→ z
ȳ �−→ z

defines an isomorphism of pastures. We begin with the verification that f defines

a morphism. The map f̂ : U → D with f̂(x) = f̂(y) = z is a morphism, since the
generator x + y − 1 of the nullset of U is mapped to z + z − 1, which is in the

nullset of D. Since f̂
(
σ(x)

)
= z = f̂(x) and f̂

(
σ(y)

)
= z = f̂(y), the morphism

f̂ induces a morphism f : U/〈σ〉 → D by the universal property of the quotient
U/〈σ〉 = U�{σ(x) = y, σ(y) = x}, cf. Proposition 2.6.

We define the inverse to f as the association g : z �→ x̄. This defines a multi-
plicative map since D× is freely generated by z. Since

g(z) + g(z)− 1 = x̄+ x̄− 1 = x̄+ ȳ − 1

is null in U/〈σ〉, this defines a morphism g : D → U/〈σ〉. It is obvious that g is an
inverse to f , which shows that f is an isomorphism.

We continue with the automorphism group H = 〈ρ〉. We claim that the associ-
ation

f : U/〈ρ〉 −→ H
x̄ �−→ z
ȳ �−→ −z2

defines an isomorphism of pastures. We begin with the verification that f defines a

morphism. The map f̂ : U → H with f̂(x) = z and f̂(y) = −z2 is a morphism, since
the generator x+y−1 of the nullset of U is mapped to z−z2−1, which is in the nullset

of H. Since f̂
(
ρ(x)

)
= f̂(y−1) = z = f̂(x) and f̂

(
ρ(y)

)
= f̂(−xy−1) = −z2 = f̂(y),

the morphism f̂ induces a morphism f : U/〈ρ〉 → D by the universal property of
the quotient U/〈ρ〉 = U�{ρ(x) = y, ρ(y) = x}.

We define the inverse of f as follows. Let ĝ : F±
1 〈z〉 → U/〈ρ〉 be the morphism

that maps z to x̄. The defining relations of U/〈ρ〉 are x̄ = ȳ−1 and ȳ = −x̄ȳ−1.
Thus

ĝ(z3) + ĝ(1) = x̄3 + 1 = ȳ−2x̄+ 1 = −x̄−1ȳȳ−1x̄+ 1 = −1 + 1,

which is in the nullset of U/ρ. Since z3 = −1 in H, we have −z2 = z−1 and thus

ĝ(z) + ĝ(−z2)− 1 = x̄+ x̄−1 − 1 = x̄+ ȳ − 1,

which is also in the nullset of U/〈ρ〉. This shows that the morphism ĝ defines a
morphism g : H → U/〈ρ〉, which is obviously inverse to f .
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Finally we show that U/〈ρ, σ〉 is isomorphic to F3. Since U/〈ρ, σ〉

(
U/〈ρ〉

)
/〈σ〉,

it suffices to show that the association

f : H/〈σ〉 −→ F3

z̄ �−→ −1

is an isomorphism. Since σ(z) = σ(x̄) = ȳ = z−1 and f(z̄) = f(z̄−1), and since
f(z6) = (−1)6 = 1 = f(1), the assignment f(z̄) = −1 extends to a multiplicative
map. Since f(z3) + f(1) = (−1)3 +1 = −1+ 1 and f(z) + f(−z2)− 1 = −1− 1− 1
are null in F3, the map f is a morphism. Note that in H/〈σ〉, we have z̄3 = −1
and z̄ = z̄−1, and thus z̄ = −1. We conclude that the assignment g : 1 �→ 1 = −z̄
defines a morphism g : F3 → H/〈σ〉, since

g(1) + g(1) + g(1) = 1 + 1 + 1 = −
(
z̄ − z̄2 − 1

)

is null in H/〈σ〉. It is clear that g is an inverse of f , which shows that f is an
isomorphism. This concludes the proof of the proposition. �

5.3. The structure theorem for matroids without large uniform minors

We are prepared to prove the central result of this paper. In the following, the
empty tensor product stands for the initial object in Pastures, which is F±

1 .

Theorem 5.9. Let M be a matroid without large uniform minors and FM its
foundation. Then

FM 
 F1 ⊗ · · · ⊗ Fr

for some r � 0 and pastures F1, . . . , Fr ∈ {U,D,H,F3,F2}.

Proof. Let E be the collection of embedded minors N of M from Theorem
4.23. Then

FM 

( ⊗

N∈E

FN

)
�S,

where the set S is generated by the relations a = ι∗(a) for every inclusion ι : N → N ′

of embedded minors N and N ′ in E.
From the analysis in section 5.1, it follows that the foundation FN of every

embedded minor N of M with at most 5 elements is either F±
1 or U, where we use

the assumption that M is without minors of types U2
5 and U3

5 . A matroid with
foundation F±

1 is regular and has thus no minor of type U2
4 . We conclude that every

embedded minor in E on at most 5 elements has foundation U.
If an embedded minor N in E has 6 elements, and thus two of them are parallel,

then deleting one of these parallel elements yields an embedded minor N ′ = N\e
of N , and the induced morphism FN ′ → FN is an isomorphism. Thus also every
embedded minor in E with 6 elements has foundation U.

Since neither F7 nor F ∗
7 contains a minor of type U, an embedded minor N in

E with 7 elements cannot contain another embedded minor N ′ in E. Consequently
the isomorphism of Theorem 4.23 implies that

FM 

⊗

N∈E7

FN ⊗
( ⊗

N∈E′

FN

)
�S′,

where E7 is the subset of E that contains all embedded minors with 7 elements, E′

is the subset of E that contains all embedded minors with at most 6 elements and
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S is the set generated by the relations a = ι∗(a) for every inclusion ι : N → N ′ of
embedded minors N and N ′ in E′.

By what we have seen, an inclusion N → N ′ of embedded minors in E
′ is an

isomorphism, and either foundation is isomorphic to U. Thus all identifications in S′

stem from isomorphisms between some factors FN of the tensor product. What can,
and does, happen is that a chain of such isomorphisms imposes a self-identification
of a factor FN 
 U with itself by a non-trivial automorphism. This leads to a
symmetry quotient of U, which is one of U, D, H and F3. Thus

( ⊗

N∈E′

FN

)
�S′

is a tensor product of copies of U, D, H and F3.
This leaves us with the factors FN for N ∈ E7. By Theorem 4.21, we have

−1 = 1, and all cross ratios are trivial since there are no U2
4 -minors. Thus FN 


F±
1 �{1 = −1} = F2. This concludes the proof of the theorem. �

Theorem 5.9 can be reformulated as follows, which expresses the dependencies
of the factors Fi on M .

Corollary 5.10. Let M be a matroid without large uniform minors, FM its
foundation. Then

FM 
 F0 ⊗ F1 ⊗ · · · ⊗ Fr

for a uniquely determined r � 0 and uniquely determined pastures F0 ∈ {F±
1 ,F2,F3,

K} and F1, . . . , Fr ∈ {U,D,H}, up to a permutation of the indices 1, . . . , r. We have
F0 = F2 or F0 = K if and only if M contains a minor of type F7 or F ∗

7 .

Proof. By Theorem 5.9, the foundation FM of a matroid M without large
uniform minors is isomorphic to a tensor product of copies of U, D, H, F3 and F2.

Since morphisms from F2 and F3 into other pastures are uniquely determined,
if they exist, we conclude that F2 ⊗ · · · ⊗F2 = F2 and F3 ⊗ · · · ⊗F3 = F3. Thus the
pasture

F2 ⊗ · · · ⊗ F2︸ ︷︷ ︸
r times

⊗F3 ⊗ · · · ⊗ F3︸ ︷︷ ︸
s times

is isomorphic to

F±
1 if r = s = 0; F2 if r > s = 0; F3 if s > r = 0; F2 ⊗ F3 = K if r, s > 0;

cf. Example 2.8 for the equality F2 ⊗ F3 = K. This explains the list of possible
isomorphism types for F0. Since F2 appears as a factor of FM if and only if M has
a minor of type F7 or F ∗

7 , this verifies the last claim of the corollary.
It follows that FM is isomorphic to a tensor product of F0 with pastures

F1, . . . , Fr ∈ {U,D,H}.
We are left with establishing the uniqueness claims. To begin with, F0 is

uniquely determined by the presence or absence of the relations 1 + 1 = 0 and
1 + 1 + 1 = 0, which correspond to the relations r > 0 and s > 0, respectively, in
our previous case consideration. Thus F0 is uniquely determined.

The factors F1, . . . , Fr are determined by the fundamental elements of FM , as
we explain in the following. Let ιi : Fi →

⊗
Fj 
 FM be the canonical inclusion.

By the construction of the tensor product, the nullset of FM consists of all terms
of the form dιi(a)+dιi(b)+dιi(c) for some i ∈ {0, . . . , r}, d ∈

⊗
Fj and a, b, c ∈ Fi

such that a + b + c is in the nullset of Fi. The fundamental elements of FM stem
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from such equations for which dιi(a) and dιi(b) are nonzero and dιi(c) = −1. Thus
d = −ιi(c)

−1 = ιi(−c−1) is in the image of ιi, and therefore dιi(a) = ιi(−c−1a)
and dιi(b) = ιi(−c−1b). Since −c−1a− c−1b− 1 is in the nullset of Fi, we conclude
that all fundamental elements in FM are of the form ιi(z) for some i and some
fundamental element z of Fi.

To make a distinction between the different isomorphism types of the factors,
we note that every fundamental element x with relation x + y − 1 = 0 gives rise

to a set
{
x, x−1, y, y−1, −x−1y, −xy−1

}
of fundamental elements. If these six

fundamental elements come from a factor Fi 
 U, then they are pairwise different.
If they come from a factor Fi 
 D, then{

x, x−1, y, y−1, −x−1y, −xy−1
}

=
{
x, y−1, −x−1y

}

is a set with three distinct elements. If they come from a factor Fi 
 D, then{
x, x−1, y, y−1, −x−1y, −xy−1

}
=

{
x, y

}

is a set with two distinct elements. Note that if F0 = F3 or F0 = K, then x = −1 is
also a fundamental element, and in this case x−1 = y = y−1 = −x−1y = −xy−1 =
−1 are all equal. This shows that the number of factors of types U, D and H are
determined by the fundamental elements of FM , which completes the proof of our
uniqueness claims. �

Remark 5.11. In a sequel to this paper, we will show that for all r � 0 and
F1, . . . , Fr ∈ {U,D,H,F3,F2}, there is a matroid M without large uniform minors
whose foundation is isomorphic to the tensor product F1 ⊗ · · · ⊗ Fr.
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CHAPTER 6

Applications

In this concluding part of the paper, we explain various applications of our
central result Theorem 5.9. Along with some new results and strengthenings of
known facts, we also present short conceptual proofs for a number of established
theorems which illustrate the versatility of our structure theory for foundations.

The main technique in most of the upcoming proofs is the following. A matroid
M is representable over a pasture P if and only there is a morphism from the
foundation FM of M to P . If M is without large uniform minors, then we know by
Theorem 5.9 that FM is isomorphic to the tensor product of copies Fi of U, D, H,
F3 and F2. Thus a morphism from FM to P exists if and only there is a morphism
from each Fi to P , which in practice is quite easy to determine.

For reference in the later sections, we will provide some general criteria for such
morphisms in the following result, and list the outcome for a series of prominent
pastures in Table 6.1.

Lemma 6.1. Let P be a pasture.

(1) There is a morphism U → P if and only if P contains a fundamental
element. For a field k, this is the case if and only if #k � 3.

(2) There is a morphism D → P if and only if there is an element u ∈ P×

such that u+u = 1. For a field k, this is the case if and only if char k 	= 2.
(3) There is a morphism H → P if and only if there is an element u ∈ P×

such that u3 = −1 and u − u2 = 1. For a field k, this is the case if and
only if char k = 3 or if k contains a primitive third root of unity.

(4) There is a morphism F3 → P if and only if 1 + 1 + 1 = 0 in P . For a
field k, this is the case if and only if char k = 3.

(5) There is a morphism F2 → P if and only if −1 = 1 in P . For a field k,
this is the case if and only if char k = 2.

There exist morphisms from U, D, H, F3 and F2 into the pastures U, D, H, Fq for
q = 2, . . . , 8, Q, C, S, P and W where Table 6.1 contains a check mark—a dash
indicates that there is no morphism.

Proof. We briefly indicate the reasons for claims (1)–(5). We begin with
claim (1). The universal property from Proposition 2.6 implies that there is a
morphism from U = F±

1 〈x, y〉�{x + y − 1} to P if and only if there are u, v ∈ P
such that u + v = 1. By definition, such elements are fundamental elements of P .
If P = k is a field, then a pair (u, v) of fundamental elements is a point of the line
L = {(w, 1 − w))|w ∈ k} in k2. Since L contains precisely two points (0, 1) and
(0, 1) with vanishing coordinates, the elements of L ∩ (k×)2 are in bijection with
k − {0, 1}. Thus k has a fundamental element if and only if #k � 3.

63
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Table 6.1. Existence of morphisms from U, D, H, F3 and F2 into
other pastures

U D H F2 F3 F4 F5 F7 F8 Q C S P W

U � � � − � � � � � � � � � �

D − � − − � − � � − � � � � �

H − − � − � � − � − − � − � �

F3 − − − − � − − − − − − − − �

F2 − − − � − � − − � − − − − −

We continue with claim (2). The first assertion follows at once from the uni-
versal property for D = F±

1 〈z〉�{z + z − 1}. A field P = k contains an element u
with u+ u = 1 if and only if 1 + 1 is invertible in k, which is the case if and only if
k is of characteristic different from 2.

We continue with claim (3). The first assertion follows at once from the univer-
sal property for H = F±

1 〈z〉�{z3−1, z− z2−1}. In a field P = k of characteristic 3,
the element u = −1 satisfies u3 = −1 and u− u2 = 1. If k has characteristic differ-
ent from 3, then v = −u satisfies the equation v2 + v + 1 = 0, which characterizes
a primitive third root of unity. Note that we have automatically u3 = −v3 = −1 in
a field if v is a third root of unity.

Claims (4) and (5) are obvious. The existence or non-existence of morphisms
as displayed in Table 6.1 can be easily verified using (1)–(5). �

6.1. Forbidden minors for regular, binary and ternary matroids

The techniques of this paper allow for short arguments to re-establish the known
characterizations of regular, binary and ternary matroids in terms of forbidden
minors, as they have been proven by Tutte in [32] for regular and binary matroids,
and independently by Bixby in [6] and by Seymour in [30] for ternary matroids.

We spell out the following basic fact for its importance for many of the upcom-
ing theorems.

Lemma 6.2. Binary matroids and ternary matroids are without large uniform
minors.

Proof. All minors of a binary or ternary matroid are binary or ternary, re-
spectively. Since U2

5 and U3
5 are neither binary nor ternary, the result follows. �

Next we turn to the proofs of the excluded minor characterizations of regular,
binary and ternary matroids.

Theorem 6.3 (Tutte ’58). A matroid is regular if and only if it contains no
minor of types U2

4 , F7 or F ∗
7 . A matroid is binary if and only if it contains no

minor of type U2
4 .

Proof. By Corollary 4.14, U2
4 is not binary and therefore also not regular. It

follows from Theorem 4.21 that the foundations of F7 and F ∗
7 contain the relation

−1 = 1, which means that they do not admit a morphism to F±
1 . Thus F7 and F ∗

7

are not regular.
We are left with showing that the respective lists of forbidden minors are com-

plete. If a matroid M does not contain a minor of type U2
4 , then Corollary 4.22
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implies that the foundation FM of M is equal to F±
1 or F±

1 �{−1 = 1} = F2. In
either case, there is a morphism from FM to F2, which shows that M is binary if it
has no minor of type U2

4 .
If, in addition, M has no minor of types F7 or F ∗

7 , then Corollary 4.22 implies
that FM = F±

1 , and thus M is regular. �

Theorem 6.4 (Bixby ’79, Seymour ’79). A matroid is ternary if and only if it
does not contain a minor of type U2

5 , U3
5 , F7 or F ∗

7 .

Proof. If M is ternary, then it does not have a minor of type U2
5 or U3

5 by
Lemma 6.2. Thus Theorem 4.21 applies, and since −1 	= 1 in F3, M does not have
a minor of type F7 or F ∗

7 . This establishes all forbidden minors as listed in the
theorem.

To show that the list of forbidden minors is complete, we assume that M
contains no minors of these types. Then Corollary 5.10 implies that the foundation
of M is isomorphic to F1 ⊗ · · · ⊗Fr with Fi ∈ {U,D,H,F3}. Since each of U, D, H,
F3 admits a morphism to F3, there is a morphism FM → F3, which shows that M
is ternary. �

6.2. Uniqueness of the rescaling class over F3

Brylawski and Lucas show in [11] that a representation of a matroid over F3

is uniquely determined up to rescaling. Our method yields a short proof of the
following generalization.

Theorem 6.5. Let P be a pasture with at most one fundamental element. Then
every matroid has at most one rescaling class over P .

Proof. Let M be a matroid with foundation FM . Since the rescaling classes of
M over P are in bijective correspondence with the morphisms FM → P , it suffices
to show that there is at most one such morphism.

By Proposition 3.11, every cross ratio of FM is a fundamental element of FM ,
and thus must be mapped to a fundamental element z of P . By the uniqueness of
z (if it exists), the image of every cross ratio is uniquely determined. Since FM is
generated over F±

1 by cross ratios, the result follows. �

Remark 6.6. Examples of pastures with at most one fundamental element are
F±
1 , F2, F3 and K. In fact it is not hard to prove that every pasture with at most one

fundamental element contains one of these pastures as a subpasture, and that the
fundamental element is −1 (if it exists). Note that Brylawski and Lucas’s theorem
concerns the case P = F3.

6.3. Criteria for representability over certain fields

Our theory allows us to deduce at once that matroids without large minors
that are representable over certain pastures are automatically representable over
certain (partial) fields. For instance, we find such criteria in the cases of the sign
hyperfield S, the phase hyperfield P and the weak sign hyperfield W.

Note that the proof of Criterion (1) in the following theorem strengthens Lee
and Scobee’s result that every ternary and orientable matroid is dyadic; see [18, Cor.
1]. In fact, we further improve on this result in Theorem 6.9 where we show that
every orientation is uniquely liftable to D up to rescaling.
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In the statement of the following theorem, recall that a matroid is said to be
weakly orientable if it is representable over W.

Theorem 6.7. Let M be a matroid without large uniform minors.

(1) If M is orientable, then it is representable over every field of characteristic
different from 2.

(2) If M is representable over P, then it is representable over fields of every
characteristic except possibly 2.

(3) If M is weakly orientable, then it is ternary.

Proof. Let FM be the foundation of M and FM 
 F1⊗· · ·⊗Fr the decompo-
sition from Theorem 5.9 into factors Fi ∈ {U,D,H,F3,F2}. If M is representable
over a pasture P , then there is a morphism FM → P , and thus there is a morphism
Fi → P for every i = 1, . . . , r. Conversely, if one of the building blocks U, D, H,
F3 and F2 does not map to P , we conclude that this building block does not occur
among the Fi.

Claim (1) follows since there are no morphisms from H, F3 or F2 to S, and both
U and D map to every field of characteristic different from 2. Claim (2) follows since
there are no morphisms from F3 or F2 to P, and since each of U, D and H maps
to a field k if its characteristic is 3 or if it is different from 2 and if k contains a
primitive third root of unity. Claim (3) follows since there is no morphism from F2

to W, and each of U, D, H and F3 maps to F3. �

Remark 6.8. The proof of Theorem 6.7 shows that similar conclusions can be
formulated for other pastures P that do not receive morphisms from some of the
building blocks of the foundation FM of a matroid M without large uniform minors.
If M is representable over P , then we can conclude the following, for instance:

• if there is no morphism from D to P , then M is quaternary;
• if there is no morphism from either F2 or D to P , then M is hexagonal.

6.4. Oriented matroids without large minors are uniquely dyadic

Our techniques allow us to strengthen the result of Lee and Scobee ([18, Thm.
1]) that an oriented matroid is dyadic if its underlying matroid is ternary. At the
end of this section, we deduce Lee and Scobee’s result from ours.

An oriented matroid is an S-matroid, i.e. the class M = [∆] of a Grassmann-
Plücker function ∆ : Er → S, where r is the rank of M and E its ground set. The
underlying matroid of M is the matroid M = tS,∗(M), where tS : S → K is the
terminal morphism, cf. section 2.1.3. Recall that a reorientation class is a rescaling
class over S.

Let sign : D → S be the morphism from the dyadic partial field D = F±
1 〈z〉�{z+

z − 1} to S that maps z to 1. An oriented matroid M = [∆] is dyadic if there is a

D-matroid M̂ such that M = sign∗(M̂). We call M̂ a lift of M along sign : D → S.

Theorem 6.9. Let M be an oriented matroid whose underlying matroid M is

without large uniform minors. Then there is a unique rescaling class [M̂ ] of dyadic

matroids such that sign∗(M̂) = M .

Proof. Let FM be the foundation of M . The oriented matroid M determines
a reorientation class [M ] and thus a morphism f : FM → S. Since rescaling classes
of M over D correspond bijectively to morphisms FM → D, we need to show that
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the morphism f : FM → S lifts uniquely to D, i.e. that there is a unique morphism

f̂ : FM → D such that the diagram

FM D

S

f̂

f
sign

commutes.
Note that this implies only that there is a unique rescaling class [M̂ ] such that

the reorientation classes [sign∗(M̂)] and [M ] are equal. In order to conclude that we

can choose M̂ such that sign∗(M̂) = M , we note that the morphism sign : D → S

is surjective, and thus any reorientation M ′ = sign∗(M̂) of M can be inverted by a

rescaling of M̂ over D. This shows that we have proven everything, once we show
that f lifts uniquely to D.

Since M is without large uniform minors, Theorem 5.9 implies that FM is
isomorphic to F1 ⊗ · · · ⊗ Fr for some F1, . . . , Fr ∈ {U,D,H,F3,F2}. Composing
f : FM → S with the canonical inclusions ιi : Fi → FM yields morphisms fi =
f ◦ ιi : Fi → S for i = 1, . . . , r. As visible in Table 6.1, there are no morphisms from
H, F3 or F2 to S. This means that F1, . . . , Fr ∈ {U,D}.

By the universal property of the tensor product, the morphisms FM → D
correspond bijectively to the tuples of morphisms fi : Fi → D. Thus there is a
unique lift of f to D if and only if for every i, there is a unique lift of fi to D. This
reduces our task to an inspection of the two cases Fi = D and Fi = U.

Consider the case fi : Fi = D → S. Since z + z = 1 in D, we must have
f(z) + f(z) = 1 in S, which is only possible if f(z) = 1. Thus fi = sign, which

means that the identity morphism f̂i = id : D → D lifts fi, i.e.

D D

S

f̂i=id

fi
sign

commutes. This lift is unique since u + u = 1 is only satisfied by u = z ∈ D, and

thus f̂i(z) = z is determined.
We are left with the case fi : Fi = U → S, for which we inspect the possible

images of the fundamental elements x and y of U in S and D. The relations of the
form u+ v− 1 = 0 in S are 1+ 1− 1 = 0 and 1− 1− 1 = 0. Thus fi maps (x, y) to
one of (1, 1), (1,−1) and (−1, 1). This means that there are precisely 3 morphisms
U → S, and fi has to be one of them.

The relations of the form u+v−1 = 0 in D are z+z−1 = 0 and z−1−1−1 = 0.
Thus the morphisms U → U correspond to a choice of mapping (x, y) to one of (z, z),
(z−1,−1) and (−1, z−1). Considering the respective images sign(z) = sign(z−1) = 1
and sign(−1) = −1 in S, we conclude that every morphism fi : U → S lifts uniquely

to a morphism f̂i : U → D, i.e.

U D

S

f̂i

fi
sign

commutes. This completes the proof of the theorem. �
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As an application, we show how Theorem 6.9 implies the result [18, Thm. 1]
of Lee and Scobee.

Theorem 6.10 (Lee–Scobee ’99). An oriented matroid is dyadic if and only if
its underlying matroid is ternary.

Proof. Let M be an oriented matroid and let M be its underlying matroid.
If M is ternary, then it is without large uniform minors. Thus M is dyadic by
Theorem 6.9.

Conversely, assume that M is dyadic, i.e. it has a lift M̂ along sign : D → S.
Since there is a morphism f : D → F3, and since tF3

◦ f = tS ◦ sign, the F3-matroid

f∗(M̂) is a representation of M = tS,∗(M) over F3. Thus M is ternary. �

6.5. Positively oriented matroids without large uniform minors

are near-regular

In their 2017 paper [2], Ardila, Rincón and Williams prove that every posi-
tively oriented matroid can be represented over R (and a posteriori, by a theorem
of Postnikov, over Q), which solves a conjecture from da Silva’s thesis [13] from
1987. A second proof has recently been obtained by Speyer and Williams in [31].
Neither of these proofs yields information about the structure of the lifts of positive
orientations to Q or R.

With our techniques, we can recover and strengthen the result for positively
oriented matroids whose underlying matroid is without large uniform minors. To
begin with, let us recall the definition of positively oriented matroids.

Definition 6.11. Let M be a matroid of rank r on the ground set E =
{1, . . . , n}. A positive orientation of M (with respect to E) is a Grassmann-Plücker
function ∆ : Er → S such that t∗,S([∆]) = M and such that ∆(j1, . . . , jr) ∈ {0, 1}
for every (j1, . . . , jr) ∈ Er with j1 < . . . < jr.

An oriented matroid M of rank r on E is positively oriented if its underlying
matroid has a positive orientation ∆ : Er → S with respect to some identification
E 
 {1, . . . , n} such that M = [∆].

A key tool for proof of Theorem 6.15 is the following notion.

Definition 6.12. Let M be a matroid of rank r on the ground set E =
{1, . . . , n}. Let V be the Klein 4-group, considered as a subgroup of S4. The
Ω-signature of M (with respect to E) is the map

Σ : Ω♦
M −→ S4/V

that sends (J ; e1, . . . , e4) ∈ Ω♦
M to the class [ε] ∈ S4/V of the uniquely determined

permutation ε ∈ S4 that

{e1, . . . , e4} −→ {1, . . . , 4}
ei �−→ ε(i)

is an order-preserving bijection.

Example 6.13. The key example to understand the relevance of the Ω-signature
is the uniform matroid M = U2

4 , whose foundation is FM = U. In this case, Ω♦
M con-

sists of the tuples (∅; e1, . . . , e4) for which (e1, . . . , e4) is a permutation of (1, . . . , 4).
Since the cross ratio

[
e1 e2
e3 e4

]
∈ FM determines (e1, e2, e3, e4) up to a permutation
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in V , which corresponds to a permutation of the rows and the columns of the cross
ratio, the Ω-signature induces a well-defined bijection

{
cross ratios in FM

}
−→ S4/V[

e1 e2
e3 e4

]
�−→ Σ(∅; e1, . . . , e4).

Lemma 6.14. Let M be a matroid of rank r on the ground set E = {1, . . . , n}
and let ∆ : Er → S be a positive orientation of M . Let (J ; e1, . . . , e4) ∈ Ω♦

M and
ε ∈ S4 be such that [ε] = Σ(J ; e1, . . . , e4). Then

[ e1 e2
e3 e4

]
∆,J

= (−1)ε(1)+ε(2)+1.

Proof. Choose J = (j1, . . . , jr−2) ∈ Er−2 so that |J| = J . Since ∆ is a
positive orientation, we have for all i ∈ {1, 2} and j ∈ {3, 4} that ∆(Jeiej) =
signπi,j , where πi,j : Jeiej → Jeiej is the unique permutation such that

πi,j(j1) < . . . < πi,j(jr−2) < πi,j(ei) < πi,j(ej).

Since the cross ratio
[
e1 e2
e3 e4

]
∆,J

is invariant under permutations of J , we can assume

that j1 < . . . < jr−2. Thus we can write πi,j = σi,j ◦ εi,j as the composition of

σi,j = πi,j◦ε−1
i,j with the permutation εi,j of Jeiej that fixes j1, . . . , jr−2 and satisfies

εi,j(ei) < εi,j(ej). A minimal decomposition of σi,j into transpositions is

σi,j = (jkj
ej) · · · (jr−2 ej) (jki

ei) · · · (jr−2 ei),

where ki is such that jki−1 < ei < jki
. Thus

sign(σi,j) = (−1)

(
r−1−ki

)
+
(
r−1−kj

)
= (−1)ki+kj ,

and [ e1 e2
e3 e4

]
∆,J

=
∆(Je1e3)∆(Je2e4)

∆(Je1e4)∆(Je2e3)

=
sign(π1,3) sign(π2,4)

sign(π1,4) sign(π2,3)

=
(−1)k1+k3(−1)k2+k4

(−1)k1+k4(−1)k2+k3
· sign(ε1,3) sign(ε2,4)

sign(ε1,4) sign(ε2,3)

= sign(ε1,3) sign(ε2,4)sign(ε1,4) sign(ε2,3).

Since the parity of ε′(1)+ ε′(2)+1 is even for every ε′ ∈ V , we can assume that
ε is the representative that occurs in the definition of Σ, i.e. we can assume that
ei �→ ε(i) defines an order preserving bijection {e1, . . . , e4} → {1, . . . , 4}. Then εi,j
is the identity if ε(i) < ε(j) and εi,j = (ei ej) if ε(i) > ε(j). Thus sign(εi,j) = 1 if
ε(i) < ε(j) and sign(εi,j) = −1 if ε(i) > ε(j).

Since
[
e1 e2
e3 e4

]
∆,J

is invariant under exchanging rows and columns, we can as-

sume that e1 is the minimal element in {e1, . . . , e4}, i.e. ε(1) = 1 and sign(ε1,j) = 1
for j ∈ {3, 4}. We verify the claim of the lemma by a case consideration for the
value of ε(2).

If ε(2) = 2, then e2 is minimal in {e2, e3, e4} and sign(ε2,j) = 1 for all j ∈ {3, 4}.
Thus [ e1 e2

e3 e4

]
∆,J

= 1 = (−1)1+2+1 = (−1)ε(1)+ε(2)+1.
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If ε(2) = 3, then e3 < e2 < e4 or e4 < e2 < e3. Thus sign(ε2,3) sign(ε2,4) = −1 and
[ e1 e2
e3 e4

]
∆,J

= −1 = (−1)1+3+1 = (−1)ε(1)+ε(2)+1.

If ε(2) = 4, then e2 is maximal in {e2, e3, e4} and sign(ε2,j) = −1 for all j ∈ {3, 4}.
Thus [ e1 e2

e3 e4

]
∆,J

= (−1)2 = (−1)1+4+1 = (−1)ε(1)+ε(2)+1,

which completes the proof. �

Let f : P → S be a morphism of pastures. A lift of M to P (along f) is a

P -matroid M̂ such that f∗(M̂) = M . In the following result, we will implicitly
understand that a subfield k of R comes with the sign map sign : k → S.

As explained in Corollary 4.14, the near-regular partial field U = F±
1 〈x, y〉�{x+

y − 1} admits three morphisms to S. Since the automorphism group Aut(U) acts
transitively on these three morphisms, we can fix one of them without restricting
the generality of our results. Thus we will implicitly understand that U comes with
the morphism sign : U → S given by sign(x) = sign(y) = 1.

Theorem 6.15. Let M be a positively oriented matroid whose underlying ma-
troid M is without large uniform minors. Then M is near-regular and FM 
 U⊗r

for some r � 0. Up to rescaling equivalence, there are precisely 2r lifts of M to
U, and for every subfield k of R, the lifts of M to k modulo rescaling equivalence

correspond bijectively to
(
(0, 1) ∩ k

)r

.

Proof. By Theorem 5.9, the foundation FM is isomorphic to a tensor product
F1 ⊗ · · · ⊗ Fr of copies Fi of F2 and symmetry quotients of U. The rescaling class
of M induces a morphism FM → S. Since there is no morphism from F2 to S, each
of the factors Fi has to be a symmetry quotient of U.

From the proof of Theorem 5.9, it follows that each symmetry quotient Fi =
U/Hi of U is the image of the induced morphism U 
 FN → FM of foundations for
an embedded U2

4 -minor N = M\I/J of M . This means that for every σ ∈ Hi and
every (J ; e1, . . . , e4) ∈ ΩM , we have an identity of universal cross ratios

[ e1 e2
e3 e4

]
J

=
[ σ(e1) σ(e2)
σ(e3) σ(e4)

]
J
.

We claim that if
[
e1 e2
e3 e4

]
J
=

[ e′1 e′2
e′3 e′4

]
J

then Σ(e1, . . . , e4) = Σ(e′1, . . . , e
′
4), where

Σ : Ω♦
M → S4/V is the Ω-signature. We verify this in the following for all the

defining relations of FM that involve non-degenerate cross ratios, as they appear in
Theorem 4.21.

The relations (R–) and (R0) do not involve non-degenerate cross ratios (and
(R–) does not occur in our case since neither the Fano matroid not its dual are
orientable). The relations (Rσ), (R1), (R2) and (R+) are already incorporated in
U and can thus be ignored. For relation (R5), it is obvious that both involved cross
ratios have the same Ω-signature.

Thus we are left withthe relations (R3) and (R4). Since M is without large
uniform minors, each of these relations reduces to an identity of two universal cross
ratios. We begin with the tip relation (R3), which is of the form

[ e1 e2
e3 e4

]
J

=
[ e1 e2
e3 e5

]
J
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in our case, where we use (R1) to express
[
e1 e2
e5 e3

]−1

J
as

[
e1 e2
e3 e5

]
J
. After a permutation

of {e1, . . . , e4}, we can assume that e1 < e4 < e2 < e3, and thus

[ e1 e2
e3 e4

]
∆,J

= (−1)1+3+1 = −1

by Lemma 6.14. Therefore also
[
e1 e2
e3 e5

]
∆,J

= −1, which means that the unique

order preserving bijection π : {e1, e2, e3, e5} → {1, . . . , 4} must satisfy π(e1) = π(e2)
according to Lemma 6.14. Since e1 < e2 < e3 by our assumptions, this implies that
e1 < e5 < e2. Thus Σ(e1, e2, e3, e4) = Σ(e1, e2, e3, e5).

The cotip relations (R4) are in our case of the form

[ e1 e2
e3 e4

]
Je5

=
[ e1 e2
e3 e5

]
Je4

.

As before, we can assume that e1 < e4 < e2 < e3 and thus
[
e1 e2
e3 e4

]
∆,Je5

= −1. By

the same reasoning, this implies that e1 < e5 < e2 < e3 and thus Σ(e1, e2, e3, e4) =
Σ(e1, e2, e3, e5). This establishes our claim that Σ(e1, . . . , e4) = Σ(e′1, . . . , e

′
4) when-

ever
[
e1 e2
e3 e4

]
J
=

[ e′1 e′2
e′3 e′4

]
J
.

In particular, if
[
e1 e2
e3 e4

]
J

=
[ σ(e1) σ(e2)
σ(e3) σ(e4)

]
J

then Σ(e1, . . . , e4) = Σ
(
σ(e1), . . . ,

σ(e4)
)
, which means that σ is in V . These are precisely the relations in (Rσ),

which are already satisfied in U. We conclude that σ is the identity on U.
This shows that every factor Fi of FM is a trivial quotient of U and thus

FM 
 U⊗r, as claimed in the theorem. It also implies at once that M is near-
regular.

Let χM : FM → S be the morphism of pastures induced by the rescaling class
of M . The lifts of M to U and k, up to rescaling, correspond to the lifts of χM to
U and k, respectively. We can study this question for each factor Fi = U of FM

individually.

A lift of f : U → S to U is a morphism f̂ : U → U such that sign
(
f̂(x)

)
=

sign
(
f̂(y)

)
= 1. This determines f̂ up to a permutation of x and y, which shows

that there are precisely two lifts of f : U → S to U. Thus there are precisely 2r lifts
of M to U up to rescaling equivalence.

A lift of f : U → S to k is a morphism f̂ : U → k such that sign
(
f̂(x)

)
=

sign
(
f̂(y)

)
= 1. Since f̂(y) = 1 − f̂(x), this means that f̂(x) ∈

(
(0, 1) ∩ k

)
and,

conversely, every choice of image f̂(x) ∈
(
(0, 1) ∩ k

)
determines a lift f̂ of f to

k. Thus the lifts of M to k up to rescaling equivalence correspond bijectively to(
(0, 1) ∩ k

)r

. This completes the proof of the theorem. �

6.6. Representation classes of matroids without large uniform minors

Given a matroid M , we can ask over which pastures M is representable. This
defines a class of pastures that we call the representation class of M .

For cardinality reasons, it is clear that not every class of pastures can be the
representation class of a matroid. The theorems in Section 6.7 make clear that this
fails in an even more drastic way—for example, a matroid that is representable over
F2 and F3 is representable over all pastures; cf. Theorem 6.26.
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In this section, we determine the representation classes that are defined by
matroids without large uniform minors. It turns out that there are only twelve of
them; see Table 6.2 for a characterization.

Definition 6.16. Let M be a matroid. The representation class of M is the
class PM of all pastures P over which M is representable. Two matroids M and
M ′ are representation equivalent if PM = PM ′ .

Note that the representation class PM of a matroid M consists of precisely those
pastures for which there is a morphism from the foundation FM of M to P . This
means that the representation class of a matroid is determined by its foundation.
Evidently, PM = PM ′ if M and M ′ are representation equivalent, which justifies
the notation PC = PM where C is the representation class of M .

Often there are simpler pastures than the foundation that characterize repre-
sentation classes in the same way, which leads to the following notion.

Definition 6.17. Let M be a matroid with representation class PM . A char-
acteristic pasture for M is a pasture Π for which a pasture P is in PM if and only if
there is a morphism Π → P . A matroid M is strictly representable over a pasture
P if P is a characteristic pasture for M .

By the existence of the identity morphism id : Π → Π, strictly representable
implies representable. And the foundation of a matroid M is clearly a characteristic
pasture for M . The following result characterizes all characteristic pastures:

Lemma 6.18. Let M be a matroid with foundation FM . A pasture Π is a
characteristic pasture of M if and only if there exist morphisms FM → Π and
Π → FM .

Proof. Assume that Π is a characteristic pasture for M . Since also FM is
a characteristic pasture, we have FM ,Π ∈ PM , and by the defining property of
characteristic pastures, there are morphisms FM → Π and Π → FM .

Conversely, assume that there are morphisms FM → Π and Π → FM . If P ∈
PM , then there is a morphism FM → P , which yields a morphism Π → FM → P .
If there is a morphism Π → P , then there is a morphism FM → Π → P , and thus
P ∈ PM . This shows that Π is a characteristic pasture for M . �

The next result describes an explicit condition for representation equivalent
matroids.

Lemma 6.19. Let M and M be two matroids with respective representation
classes PM and PM ′ and respective characteristic pastures Π and Π′. Then PM ′ is
contained in PM if and only if there is a morphism Π → Π′. In particular, M and
N are representation equivalent if and only if there exist morphisms Π → Π′ and
Π′ → Π.

Proof. If there is a morphism f : Π → Π′, then we can compose every mor-
phism Π′ → P with f , which implies that PM ′ ⊂ PM . Assume conversely that
PM ′ ⊂ PM . Then Π′ ∈ PM , which means that there is a morphism Π → Π′. The
additional claim of the lemma is obvious. �

In the following, we say that a matroid M is

• strictly binary if F2 is a characteristic pasture for M ;
• strictly ternary if F3 is a characteristic pasture for M ;
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Table 6.2. The equivalence classes of matroids without large uni-
form minors

C Name minimal ΠC add. Fi P ∈ PC iff. ∃u, v ∈ P× s.t. field?

C1 regular F±

1
yes

C2 str. near-regular U U u+ v = 1 yes

C3 strictly dyadic D U, D u+ u = 1 yes

C4 str. hexagonal H U, H v − v2 = −v3 = 1 yes

C5 str. D⊗H-repr. D⊗H U, D, H u+ u = v − v2 = −v3 = 1 yes

C6 strictly ternary F3 U, D, H 1 + 1 = −1 yes

C7 strictly binary F2 −1 = 1 yes

C8 F2 ⊗ U U −1 = u+ v = 1 yes

C9 F2 ⊗ D U, D −1 = u+ u = 1 no

C10 F2 ⊗H U, H −1 = v − v2 = v3 = 1 yes

C11 F2 ⊗ D⊗H U, D, H −1=u+u = v−v2 = v3 = 1 no

C12 idempotent F2 ⊗ F3 U, D, H −1 = 1 + 1 = 1 no

• strictly near-regular if U is a characteristic pasture for M ;
• strictly dyadic if D is a characteristic pasture for M ;
• strictly hexagonal if H is a characteristic pasture for M ;
• strictly D⊗H-representable if D⊗H is a characteristic pasture for M ;
• idempotent if K is a characteristic pasture for M .

Note that an idempotent matroid M is representable over a pasture P if and only
if P is idempotent, by which we mean that both −1 = 1 and 1 + 1 = 1 hold in P .

Theorem 6.20. Let M be a matroid without large uniform minors. Then M
belongs to precisely one of the 12 classes that are described in Table 6.2. The six
columns of Table 6.2 describe the following information:

(1) a label for each class C;
(2) a name (as far as we have introduced one);
(3) a characteristic pasture ΠC that is minimal in the sense that the foun-

dation of every matroid M in the class C is of isomorphism type FM 

ΠC ⊗ F1 ⊗ · · · ⊗ Fr for some r � 0 and F1, . . . , Fr ∈ {U,D,H};

(4) the type of factors Fi that can occur in the expression FM 
 ΠC ⊗ F1 ⊗
· · · ⊗ Fr for M in C;

(5) a characterization of the pastures P in the representation class PC ;
(6) whether the matroids in this class are representable over some field.

The left diagram in Figure 6.1 illustrates the existence of morphisms between the
different characteristic pastures ΠC in Table 6.2. The right diagram illustrates the
inclusion relation between the representation classes Pi = PCi

(for i = 1, . . . , 12)—
an edge indicates that the class on the bottom end of the edge is contained in the
class at the top end of the edge.
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F±
1

U

D H

D⊗H

F3

F2

F2 ⊗ U

F2 ⊗ D F2 ⊗H

F2 ⊗ D⊗H

F2 ⊗ F3

P1

P2

P3 P4

P5

P6

P7

P8

P9 P10

P11

P12

Figure 6.1. Morphisms between characteristic pastures and con-
tainment of the representation classes for matroids without large
uniform minors

Proof. For the sake of this proof, we say that two pastures P and P ′ are
equivalent, and write P ∼ P ′, if there are morphisms P → P ′ and P ′ → P .

If there is a morphism P ′ → P , then there are morphisms P → P ⊗ P ′ and
P ⊗ P ′ → P , which means that P ⊗ P ′ ∼ P . This applies in particular to P ′ = P .
This shows that P1 ⊗ · · · ⊗ Pr ∼ P1 ⊗ · · · ⊗ Ps for s � r and pastures P1, . . . , Pr if,
for every i ∈ {s+ 1, . . . , r}, there is a j ∈ {1, . . . , r} and a morphism Pi → Pj .

Let M be a matroid without large uniform minors and FM its foundation. By
Theorem 5.9, FM 
 F1⊗· · ·⊗Fr for some F1, . . . , Fr ∈ {U,D,H,F3,F2}, where we
can assume that F2 appears at most once as a factor. By the previous considerations,
FM ∼ F1 ⊗ · · · ⊗Fs for pairwise distinct F1, . . . , Fs ∈ {U,D,H,F3,F2}. Since there
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are morphisms

D

U F3,

H

we have D⊗ U ∼ D, H⊗ U ∼ H and F3 ⊗ F ∼ F3 for F ∈ {U,D,H}. Thus we can
assume that in the expression F1⊗ · · ·⊗Fs at most one of U, D, H and F3 appears,
with the exception of D⊗H.

Thus we are limited to the twelve different expressions for F1 ⊗ · · · ⊗ Fs that
appear in Figure 6.1. We conclude that FM is equivalent to one of those and that
Π = F1 ⊗ · · · ⊗ Fs is a characteristic pasture for M .

An easy case-by-case verification based on Table 6.1, which we shall not carry
out, shows that there is a morphism between two pastures if and only if there is a
directed path between these pastures in the diagram on the left hand side of Figure
6.1. By Lemma 6.19, this diagram determines at once the inclusion behaviour of
the associated representation classes P1–P12 as illustrated on the right hand side
of Figure 6.1.

Note that the way we found the twelve characteristic pastures Π shows that
they are minimal in the sense of part (3) of the theorem, and it shows that the
types of additional factors displayed in the forth column of Table 6.2 are correct.
The conditions in the fifth column of Table 6.2 follows at once from Lemma 6.1.

For the verification of the last column, note that there is a morphism ΠC → F3

for the classes C ∈ {C1, . . . , C6} and that there is a morphism Π → F4 for C ∈
{C7, C8, C10}. Thus the matroids in the classes C1–C8 and C10 are representable
over a field. There is no morphism from F2 ⊗ D to any field since in a field only
one of 1 + 1 = 0 and 1 + 1 = u−1 for some u 	= 0 can hold. Thus matroids in the
classes C9, C11 and C12 are not representable over any field, which concludes the
proof of the theorem. �

As a sample application, we formulate the following strengthening of the result
[37, Thm. 3.3] by Whittle. Recall that a matroid is called representable if it is
representable over some field.

Theorem 6.21. Let P�8 =
{
Fq

∣∣ q � 8 a prime power
}
. Then two repre-

sentable matroids M and M ′ without large uniform minors are representation equiv-
alent if and only if PM ∩ P�8 = PM ′ ∩ P�8. More precisely, for i ∈ {1, . . . , 8, 10}
and pi and qi as in Table 6.3, the class PCi

is the intersection of the representation
classes PM of all matroids M without large uniform minors that are representable
over Fpi

and Fqi .

Table 6.3. Prime powers such that PCi
=⋂{

PM

∣∣M is representable over Fpi
and Fqi

}

i 1 2 3 4 5 6 7 8 10

pi 2 3 3 3 3 3 2 8 4
qi 3 8 5 4 7 3 2 8 4
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Proof. For i ∈ {1, . . . , 8, 10} and M in Ci, let Ui be the subset of {U,D,H,
F3,F2} such that Πi =

⊗
P∈Ui

P is a characteristic pasture for M , cf. Table 6.2.
Then we can read off from Table 6.1 that there are morphisms P → Fpi

and P → Fqi

for all P ∈ Ui, and that for all P ∈ {U,D,H,F3,F2} that are not in Ui, there is
either no morphism from P to Fpi

or no morphism from P to Fqi . This shows
that the existence of morphisms into Fpi

and Fqi characterize the factors of the
characteristic pasture Πi and establishes the claims of the theorem. �

Remark 6.22. Note that the representation class P1 of regular matroids con-
tains all pastures and is therefore the largest possible representation class. The
representation class P12 of idempotent pastures is the smallest representation class,
since every matroid is by definition representable over K and thus over every idem-
potent pasture. (Recall that a pasture P is called idempotent if there is a morphism
from K to P .) Every other representation class thus lies between P12 and P1.

Remark 6.23. We will show in a sequel to this paper that every tensor product
of copies of the pastures U, D, H, F3 and F2 occurs as the foundation of a matroid.
Consequently each of the classes C1–C12 is nonempty.

Alternatively, we can use known results to deduce this. Since there are matroids
that are regular, strictly near-regular (e.g. U2

4 ), strictly dyadic (e.g. the non-Fano
matroid F−

7 ), strictly hexagonal (e.g. the ternary affine plane AG(2, 3)), strictly
ternary (e.g. the matroid T8 from Oxley’s book [22]) and strictly binary (e.g. the
Fano matroid F7), the classes C1, C2, C3, C4, C6 and C7 are nonempty.

Since the characteristic pastures of the remaining classes in Table 6.2 are tensor
products of characteristic pastures of one of the aforementioned matroids, we can
deduce that the other classes are also nonempty by observing that
{
P

∣∣FM⊗FM ′
∃→ P

}
=

{
P

∣∣FM
∃→ P

}
∩
{
P

∣∣FM ′
∃→ P

}
= PM∩PM ′ = PM⊕M ′

for two matroids M and M ′.

Remark 6.24. Since all binary and ternary matroids are without large uniform
minors, all matroids in the classes C1–C7 are without large uniform minors. This
is not true for all classes though. For instance the direct sum of an idempotent
matroid with U2

5 is also idempotent and thus in C12, but has a minor of type U2
5 ;

cf. Remark 6.23 for the existence of idempotent matroids.
In fact, a similar construction yield matroids with U2

5 -minors in the classes C10

and C11. By contrast, all matroids in C8 and C9 are without large uniform minors.
This latter fact can be proven as follows: a class Ci contains a matroid M with a
U2
5 - or a U3

5 -minor if and only if there is morphism from the foundation of U2
5 (cf.

Proposition 5.4) to the minimal characteristic pasture for M . There is no morphism
from the foundation of U2

5 to F2⊗U or to F2⊗D, but there are morphisms to F2⊗H
and F2 ⊗ D⊗H.

6.7. Characterization of classes of matroids

In this section, we use our results to provide different characterizations of some
prominent classes of matroids, such as regular, near-regular, binary, ternary, quater-
nary, dyadic, and hexagonal matroids. In particular, we find new proofs for results
by Tutte, Bland and Las Vergnas, and Whittle, which we refer to in detail at the
beginnings of the appropriate sections. Moreover, we obtain new characterizations,
which often involve the pastures S, P and W.
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All these characterizations are immediate applications of Theorem 5.9 in com-
bination with Table 6.1. It is possible to work out additional descriptions for the
classes of matroids under consideration, or to study other classes with the same
techniques. For example, our technique allows for an easy proof of the following
results found in Theorems 5.1 and 5.2 of Semple and Whittle’s paper [28].

Theorem 6.25 (Semple–Whittle ’96). Let CP denote the class of matroids
without large uniform minors that are representable over a pasture P . Then the
following hold true.

(1) CF2r
∩ CF3

= CU for odd r � 2.
(2) CF2r

∩ CF3
= CH for even r � 2.

(3) Ck ⊂ CF3
for every field k of characteristic different from 2, and Ck = CD

if, in addition, k does not contain a primitive sixth root of unity.

6.7.1. Regular matroids. The following theorem extends a number of clas-
sical results that characterize regular matroids, namely as binary matroids that are
representable over a field k with char k 	= 2 by Tutte in [32] (use P = k in (5)) and
as binary and orientable matroids by Bland and Las Vergnas in [8] (use P = S in
(5)). Up to the characterization (3), the authors of this paper have proven Theorem
6.26 in its full generality in [5, Thm. 7.33] with a slightly different proof.

Theorem 6.26. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is regular.
(2) FM = F±

1 .
(3) M belongs to C1.
(4) M is representable over all pastures.
(5) M is representable over F2 and a pasture with −1 	= 1.

Proof. The logical structure of this proof is (1)⇒(3)⇒(4)⇒(5)⇒(2)⇒(1).
The implications (2)⇒(1)⇒(3)⇒(4) follow from Theorem 6.20 and (4)⇒(5) is
trivial.

We close the circle by showing (5)⇒(2). If M is binary, then it is without large
uniform minors by Lemma 6.2. Thus, by Theorem 5.9, FM is a tensor product of
copies of U, D, H, F3 and F2. But none of U, D, H or F3 admits a morphism to
F2, and F2 admits no morphism into a pasture P with −1 	= 1. Thus FM = F±

1 , as
claimed. �

6.7.2. Binary matroids. We find the following equivalent characterizations
of binary matroids.

Theorem 6.27. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is binary.
(2) FM 
 F±

1 or FM 
 F2.
(3) M belongs to C1 or C7.
(4) M is representable over every pasture for which −1 = 1.
(5) All fundamental elements of FM are trivial.

Proof. We prove (1)⇒(3)⇒(2)⇒(5)⇒(2)⇒(4)⇒(1). Steps (1)⇒(3)⇒(2) fol-
low from Theorem 6.20, step (5)⇒(2) follows from part (1) of Lemma 6.1 and
Corollary 5.10, and steps (2)⇒(5) and (2)⇒(4)⇒(1) are trivial. �
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6.7.3. Ternary matroids. We find the following equivalent characterizations
of ternary matroids.

Theorem 6.28. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is ternary.
(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and F1, . . . , Fr ∈ {U,D,H,F3}.
(3) M belongs to one of C1–C6.
(4) M is representable over every pasture for which 1 + 1 + 1 = 0.
(5) M is without large uniform minors and representable over a field of char-

acteristic 3.
(6) M is without large uniform minors and weakly orientable.
(7) M is without large uniform minors and there is no morphism from F2 to

FM .

Proof. We show (2)⇔(3), (1)⇔(4) and (2)⇒(1)⇒(5) / (6) / (7)⇒(2). The
implications (2)⇒(1)⇔(4) are trivial. The equivalence (2)⇔(3) follows from Theo-
rem 6.20.

Assuming (1), then M is without large uniform minors by Lemma 6.2. Since
there are morphisms F3 → k for every field k of characteristic 3 and F3 → W, this
implies (5) and (6).

If M is without large uniform minors, then Theorem 5.9 implies that FM is the
tensor product of copies of U, D, H, F3 and F2. Thus (1) and the fact that F2 does
not map to F3 implies (7). Conversely, each condition of (5), (6) and (7) implies
that F2 cannot occur as a building block of FM , and thus (2). �

6.7.4. Quaternary matroids without large uniform minors. We find the
following equivalent characterizations of quaternary matroids without large uniform
minors.

Theorem 6.29. Let M be a matroid without large uniform minors and FM its
foundation. Then the following assertions are equivalent:

(1) M is quaternary.
(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and F1, . . . , Fr ∈ {U,H,F2}.
(3) M belongs to C1, C2, C4, C7, C8 or C10.
(4) M is representable over every pasture for which 1+1 = 0 and that contains

an element u for which u2 + u+ 1 = 0.
(5) M is representable over all field extensions of F4.
(6) There is no morphism from D to FM .

Proof. We show (2)⇔(3) and (2)⇒(4)⇒(1)⇒(5)⇒(6)⇒(2). The equivalence
(2)⇔(3) follows from Theorem 6.20. The implications (2)⇒(4)⇒(1)⇒(5) are trivial.
The implication (5)⇒(6) follows since there is no morphism from D to F4 by Lemma
6.1. The implication (6)⇒(2) follows by Theorem 5.9, together with the fact that
there is a morphism D → F3 but there are no morphisms from D to U, H and F2,
and thus only the latter three pastures can occur as factors of FM . �

6.7.5. Near-regular matroids. In this section, we provide several character-
izations of near-regular matroids. The descriptions (5) and (6) appear in Whittle’s
paper [36, Thm. 1.4].
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Theorem 6.30. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is near-regular.
(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and F1 = · · · = Fr = U.
(3) M belongs to C1 or C2.
(4) M is representable over all pastures with a fundamental element.
(5) M is representable over fields with at least 3 elements.
(6) M is representable over F3 and F8.
(7) M is without large uniform minors and representable over F4 and F5.
(8) M is without large uniform minors and representable over F4 and S.
(9) M is without large uniform minors and representable over F8 and W.

(10) M is dyadic and hexagonal.
(11) M is without large uniform minors and there are no morphisms F2 → FM ,

D → FM , or H → FM .

Proof. We show (2)⇔(3), (2)⇒(1)⇒(4)⇒(5)⇒(2) and the equivalence of (2)
with each of (6)–(11). The equivalence (2)⇔(3) follows from Theorem 6.20, (2)⇒(1)
and (4)⇒(5) are trivial and (1)⇒(4) follows from Lemma 6.1. That (2) implies (6)–
(11) can be read off from Table 6.1. Conversely, each of (5)–(11) implies that M is
without large uniform minors and thus Theorem 5.9 applies. In turn, each of (5)–
(11) excludes that any of D, H, F3 and F2 occur as a factor FM , and thus (2). �

6.7.6. Dyadic matroids. In this section, we provide several characterizations
of dyadic matroids. Description (6) has been given by Whittle in [35, Thm. 7.1].
Descriptions (4) and (5) have been given by Whittle in [36, Thm. 1.1].

Theorem 6.31. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is dyadic.
(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and F1, . . . , Fr ∈ {U,D}.
(3) M belongs to C1, C2 or C3.
(4) M is representable over every pasture P such that 1 + 1 = u for some

u ∈ P×.
(5) M is representable over every field of characteristic different from 2.
(6) M is representable over F3 and Fq, where q is an odd prime power such

that q − 1 is not divisible by 3.
(7) M is representable over F3 and Q.
(8) M is representable over F3 and S.
(9) M is without large uniform minors and there are no morphisms F2 → FM

or H → FM .

Proof. We show (2)⇔(3), (2)⇒(1)⇒(4)⇒(5)⇒(2) and the equivalence of (2)
with each of (6)–(9). The equivalence (2)⇔(3) follows from Theorem 6.20, (2)⇒(1)
and (4)⇒(5) are trivial and (1)⇒(4) follows from Lemma 6.1. That (2) implies (6)–
(9) follows from Lemma 6.1 and Table 6.1. Conversely, each of (5)–(9) implies that
M is without large uniform minors and thus Theorem 5.9 applies. In turn, each of
(5)–(9) excludes that any of H, F3 and F2 occur as a factor FM , and thus (2). �

6.7.7. Hexagonal matroids. In this section, we provide several character-
izations of hexagonal matroids. Description (5) has been given by Whittle in
[36, Thm. 1.2].
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Theorem 6.32. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is hexagonal.
(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and F1, . . . , Fr ∈ {U,H}.
(3) M belongs to C1, C2 or C4.
(4) M is representable over every pasture that contains an element u with

u3 = −1 and u2 − u+ 1 = 0.
(5) M is representable over every field that is of characteristic 3 or contains

a primitive sixth root of unity.
(6) M is representable over F3 and F4.
(7) M is without large uniform minors, weakly orientable, and representable

over F4.
(8) M is without large uniform minors and there are no morphisms F2 → FM

or D → FM .

Proof. We show (2)⇔(3), (2)⇒(1)⇒(4)⇒(5)⇒(2) and the equivalence of (2)
with each of (6)–(8). The equivalence (2)⇔(3) follows from Theorem 6.20, (2)⇒(1)
and (4)⇒(5) are trivial and (1)⇒(4) follows from Lemma 6.1. That (2) implies (6)–
(8) follows from Lemma 6.1 and Table 6.1. Conversely, each of (5)–(8) implies that
M is without large uniform minors and thus Theorem 5.9 applies. In turn, each of
(5)–(8) excludes that any of D, F3 and F2 occur as a factor FM , and thus (2). �

6.7.8. D⊗H-representable matroids. Whittle describes in [36, Thm. 1.3]
equivalent conditions that are satisfied by D ⊗ H-representable matroids, which
are conditions (4) and (5) below. We augment Whittle’s result with the following
theorem.

Theorem 6.33. Let M be a matroid with foundation FM . Then the following
assertions are equivalent:

(1) M is D⊗H-representable.
(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and F1, . . . , Fr ∈ {U,D,H}.
(3) M belongs to one of C1–C5.
(4) M is representable over F3 and C.
(5) M is representable over F3 and Fq, where q is an odd prime power con-

gruent to 1 modulo 3.
(6) M is representable over F3 and P.

Proof. We show (1)⇒(2)⇒(3)⇒(1) and the equivalence of (2) with each of
(4)–(6). The implications (1)⇒(2)⇒(3)⇒(1) follow from Theorem 6.20. That (2)
implies (4)–(6) follows from Lemma 6.1 and Table 6.1. Conversely, each of (4)–(6)
implies that M is without large uniform minors by Lemma 6.2, and thus Theorem
5.9 applies. In turn, each of (4)–(6) excludes the possibility that either F3 or F2

occurs as a factor FM , and thus (2). �

6.7.9. Representable matroids without large uniform minors. As a fi-
nal application, we find the following equivalent characterization of matroids with-
out large uniform minors which are representable over some field.

Theorem 6.34. Let M be a matroid without large uniform minors and FM its
foundation. Then the following assertions are equivalent:

(1) M is representable over some field.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6.7. CHARACTERIZATION OF CLASSES OF MATROIDS 81

(2) FM 
 F1 ⊗ · · · ⊗ Fr for r � 0 and either F1, . . . , Fr ∈ {U,D,H,F3} or
F1, . . . , Fr ∈ {U,H,F2}.

(3) M belongs to one of C1–C8 or C10.
(4) M is ternary or quaternary.
(5) There is no morphism from F2 ⊗ D to FM .

Proof. The equivalences (1)⇔(2)⇔(3) follow from Theorem 6.20. The impli-
cations (2)⇒(4)⇒(5)⇒(2) can be derived by combining the implications (2)⇒(1)⇒
(7)⇒(2) from Theorem 6.28 and (2)⇒(1)⇒(6)⇒(2) from Theorem 6.29. �
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