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We give a new proof, along with some generalizations, of a folklore theorem (attributed to Laurent
Lafforgue) that a rigid matroid (i.e., a matroid with indecomposable basis polytope) has only finitely
many projective equivalence classes of representations over any given field.

1 Introduction

A matroid M is called rigid if its base polytope Py has no non-trivial regular matroid polytope subdivi-
sions. Such matroids are interesting for a number of reasons; for example, a theorem of Bollen-Draisma-
Pendavingh [8] asserts that for each prime number p, a rigid matroid is algebraically representable in
characteristic pif and only if itis linearly representable in characteristic p. A folklore theorem, attributed
to L. Lafforgue, asserts that a rigid matroid has at most finitely many representations over any field, up
to projective equivalence. This is mentioned without proof in a few places throughout the literature, for
example in Alex Fink’s PhD thesis [12, p. 10], where he writes:

Matroid subdivisions have made prominent appearances in algebraic geometry. [...] Lafforgue’s work
implies, for instance, that a matroid whose polytope has no subdivisions is representable in at most
finitely many ways, up to the actions of the obvious groups.

We have been unable to find a proof of this result in the papers of Lafforgue cited by Fink [15, 16],
though a proof sketch appears in [13, Theorem 7.8]. In this paper, we provide a rigorous and efficient
proof of Lafforgue’s theorem, along with some new generalizations.

What is arguably most interesting about our approach to Lafforgue’s theorem is that we deduce it
from a purely algebraic statement that has nothing to do with matroids. The only input from matroid
theory needed is the fact that the rescaling class functor Xy from pastures to sets is representable (see
Section 2 below for further details). We believe this to be a nice illustration of the power, and elegance,
of the algebraic theory developed by the authors in [3] and [4].

2 Reformulation and Generalizations of Lafforgue’s Theorem

It is well-known to experts that a matroid M is rigid if and only if every valuated matroid M whose
underlying matroid is M is rescaling equivalent to the trivially valuated matroid. Since we could not
find a reference for this result, we provide a proof in Appendix B.
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Recall from [3] (see also Appendix A) that there is a category of algebraic objects called pas-
tures, which generalize not only fields but also partial fields and hyperfields. According to [1], there
is a robust notion of (weak) matroids over a pasture [1][4] P such that (to mention just a few
examples):

e Matroids over the Krasner hyperfield K are the same thing as matroids in the usual sense.

e Matroids over the tropical hyperfield T are the same thing as valuated matroids.

* Matroids over a field K are the same thing as K-representable matroids, together with a choice of
a matrix representation (up to the equivalence relation where two matrices are equivalent if they
have the same row space).

For every matroid M there is a functor Xy from pastures to sets taking a pasture P to the set of
rescaling equivalence classes of (weak) P-representations of M. A matroid M is rigid if and only if Xy (T)
consists of a single point. For a field K, the set Xu(K) coincides with the set of projective equivalence
classes of representations of M over K. Thus Lafforgue’s theorem is equivalent to the assertion that if
Xm(T) is a singleton, then Xy (K) is finite for every field K.

Recall from [3] that for every matroid M, the functor Xy is representable by a pasture Fy canonically
associated to M, called the foundation of M. Concretely, this means that Hom(Fy, P) = Xy (P) for every
pasture P, functorially in P.

From this point of view, Lafforgue’s theorem is equivalent to the assertion that if Hom(Fy, T) = {0},
then Hom(Fy, K) is finite for every field K. This is the statement of Lafforgue’s theorem that we actually
prove in this paper. The advantage of this formulation is that it turns out to be a special case of a result
that can be formulated purely in the language of pastures, without any mention of matroids! In fact,
the algebraic incarnation of this result holds more generally with pastures (which generalize fields)
replaced by bands (which generalize rings).

See Appendix A for an overview of bands, including a definition, some examples, and the key facts
needed for the present paper.

2.1 An algebraic generalization of Lafforgue’s theorem

In order to state the algebraic result about bands that implies Lafforgue’s theorem, we mention
(see Proposition 4.4 below) that given a band B and a field K, there is a canonically associated K-
algebra px(B) with the universal property that Hompana(B,S) = Homg(pk(B),S) for every K-algebra S,
where Homg(B1, By) denotes the set of K-algebra homomorphisms between bands By, B, equipped with
distinguished morphisms from K. Moreover, if B is finitely generated (which is the case, e.g.,, when B = Fy
for some matroid M), then so is pk(B).

If B is finitely presented, the set Hom(B, T) has the structure of a finite polyhedral complex z; cf.
Remark 4.5. Moreover, if K is a field, the set Hom(B, K) is equal to Homg (px(B), K), which is in turn equal
to the set Xz x(K) of K-points of the finite type affine K-scheme Xk := Spec(px(B)). (When B = Fyy for a
matroid M, we call Xk the reduced realization space of M over K.)

Our first generalization of Lafforgue’s theorem is as follows:

Theorem 2.1. For every finitely presented band B and every field K, we have the inequality
dimXpx < dim Xp. In particular, if Hom(B,T) = {0}, then dim ¥z = 0 and thus Xzx(K) =
Hom(B, K) is finite for every field K.

Applying Theorem 2.1 to B = Fyy immediately gives:
Corollary 2.2 (Lafforgue). If M is a rigid matroid, then X (K) is finite for every field K.

In the terminology of Remark B.2, Theorem 2.1 in the case B = Fy says precisely that for any field K,
the dimension of the reduced realization space of M over K is bounded above by the dimension of the
reduced Dressian of M.

2.2 A relative version of Lafforgue’s theorem

Rudi Pendavingh (private communication) asked if there might be a relative version of Lafforgue’s
theorem with respect to minors of M. More precisely, Pendavingh asked the following question: Suppose
N is an (embedded) minor of M with the property that a valuated matroid structure on M is determined,



11084 | M. Baker and O. Lorscheid

up to rescaling equivalence, by its restriction to N. Is it then true that, for every field K, there are
(up to projective equivalence) at most finitely many extensions of each K-representation of N to a K-
representation of M?

We answer Pendavingh’s question in the affirmative, proving the following algebraic generalization
of Theorem 2.1 and Corollary 2.2:

Theorem 2.3. Let K be an algebraically closed valued field, and let v : K — T be a valuation.
If f : By — B, is a homomorphism of finitely generated bands, then the fiber dimension of
fx : Hom(B,,K) — Hom(B4,K) is bounded above by the fiber dimension of fr : Hom(B;, T) —
Hom(B,, T), that is, if x € Hom(B1,K) and x’ is the image of x in Hom(B4, T), then dimfgl(x) <
dim fr1(x).

In particular, setting B; = Fy and B, = F)y when N is an embedded minor of a matroid M, we find
that if the induced map Xu(T) — Xn(T) has finite fibers (i.e., a valuated matroid structure on
N has at most finitely many extensions to M, up to rescaling equivalence) then, for every field
k, the natural map Xu(k) — Xy(k) has finite fibers, that is, every k-representation of N has at
most finitely many extensions to M, up to projective equivalence.

Note that Lafforgue’s theorem (Corollary 2.2) follows from the special case of Theorem 2.3 where N
is the trivial (empty) matroid and fr : Hom(B,, T) — Hom(B4, T) has finite fibers.

3 Some Examples

In this section we present examples of both rigid and non-rigid matroids (see Appendix A for some
details on our notation).

Example 3.1 (Dress-Wenzel). In [11, Theorem 5.11], Dress and Wenzel showed that if the inner
Tutte group F}; of the matroid M is finite, then M is rigid. From our point of view, this is clear,
since the inner Tutte group is the multiplicative group of the foundation (cf. [4, Corollary 7.13])
and a non-trivial homomorphism Fy; — T of pastures would give, in particular, a nonzero group
homomorphism F}j — (R, +); however, the only torsion element of (R, +) is O.

For example:

1) The foundation of the Fano matroid F; is Fy, so F; is rigid. More generally, any binary matroid has
foundation equal to either F5 or F, [4, Corollary 7.32] and so it is rigid.

2) The foundation of the ternary spike Ts is F3 (see [5, Proposition 8.9]), so Tg is also rigid.

3) Dress and Wenzel prove in [11, Corollary 3.8] that the inner Tutte group of any finite projective
space of dimension at least 2 is finite, which provides a wealth of additional examples of rigid
matroids.

4) Since the automorphism group of the ternary affine plane M = AG(2,3) acts transitively, all
single-element deletions are isomorphic to each other. Let M’ be any of these deletions. By [5,
Proposition 6.2], the foundation of M’ is equal to the hexagonal (or sixth-root-of-unity) partial field
H = FE(T)/(T° + 1, T — T? — 1)), whose multiplicative group is the group of sixth roots of unity in C.
Therefore M’ is rigid.

It is not true that a matroid M is rigid if and only if its inner Tutte group (or, equivalently, its
foundation) is finite. For example:

Example 3.2 (suggested by Rudi Pendavingh). Let M be the Betsy Ross matroid (cf. [23, Figure 3.3],
where M is also called By1). Using the Macaulay? software described in [10], we have checked
that Fy is isomorphic to the (infinite) golden ratio partial field G = Ff(T)/(T? — T — 1). One
checks easily that Hom(G, T) is trivial, so M is rigid; in particular, the converse of the statement
“Fu finite implies M rigid” is not true. It is also easy to see directly that G admits only finitely
many homomorphisms to any field. In more detail, the software described in [10] is now
available through the standard distribution of Macaulay2 as the package “foundations.m?2”.
The command “foundation M” returns the foundation of a matroid M, the command
“specificPasture(G)” returns the pasture G, the command “specificMatroid(betsyRoss)” returns
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the Betsy Ross matroid, and the command “arelsomorphic(Fq, F»)” determines whether F; and
F, are isomorphic as pastures. So one simply needs to enter “load "Matroids/foundations.m2™
and then “arelsomorphic(foundation specificMatroid(betsyRoss),specificPasture(G))” into
Macaulay?; this returns the value “true”.

Example 3.3. The matroid U, is not rigid, since its foundation is the near-regular partial field
U = ]Fli(Tl,Tz)//((Tl + T, — 1)), which admits infinitely many different homomorphisms to T
(map T; to 1 and T, to any element less than or equal to 1, or vice-versa). And for any field K,
the reduced realization space Xy (K) is equal to K\ {0, 1}, so in particular it is infinite whenever
Kis. The base polytope of U, 4 is an octahedron, which admits a regular matroid decomposition
into two tetrahedra (see [18, p. 189] for a nice visualization).

Example 3.4. The non-Fano matroid M = F; is not rigid, and it provides an example for which
the dimension of the reduced realization spaces Xu(K) and X (T) jumps. The foundation of
M is the dyadic partial field D = IFT(T)//((T +T—1)) by [5, Prop. 8.4], and there is at most one
homomorphism Fy = D — K into any field K, sending T to the multiplicative inverse of 2
(if it exists, i.e., if charK # 2). In contrast, there are infinitely many homomorphisms D — T
(parametrized by the image of f(T) € T). So dim Xy (K) = 0 < 1 = dim X(T).

4 Proof of the Main Theorems

The key fact needed for the proof of Theorem 2.1 is the following theorem of Bieri and Groves [7, Theorem
A],which is a cornerstone of tropical geometry. For the statement, recall that a semi-valuation from a ring
RtoR = RU{+oo}isamapu : R — R such that u(0) = +oo, U(xy) = U(X)+U(y), and v(x+y) > min{u(x), v(y)}
for all x,y € R. (The map v is called a valuation if, in addition, v(x) = +oco implies that x = 0.) If Ris a

K-algebra, where K is a valued field (i.e,, a field endowed with a valuation v : K — R), a K-semi-valuation
is a semi-valuation that restricts to the given valuation on K.

Theorem 4.1 (Bieri-Groves). Let K be a field endowed with a real valuation v, and suppose R is a
finitely generated K-algebra with Krull dimension equal to n, having generators Ty, ..., T,. Let
X = Spec(R) be the corresponding affine K-scheme. Then the set

Trop(X) := {(U(T1),...,u(Tn)) | v : R — R is a K-semi-valuation}

is a polyhedral complex of dimension dim(Trop(X)) = dim X.

Remark 4.2. Bieri and Groves assume that X is irreducible and show, more precisely, that Trop(X)
has pure dimension n. Our formulation of the Bieri-Groves theorem (which does not include
the purity statement) follows immediately from theirs by decomposing X into irreducible
components.

Remark 4.3. More or less by definition, a semi-valuation on a ring R is precisely the same thing
as a homomorphism from R to T in the category of bands, and if K is a valued field then a
K-semi-valuation on R is the same thing as a homomorphism from R to T, which restricts to
the given homomorphism v : K — T on K.

Let K be a field, and let Alg, denote the category of K-algebras, that is, ring extensions R of K together
with K-linear ring homomorphisms. We write Homg(R,S) for the set of K-algebra homomorphisms
between two K-algebras R and S. Given a band B, we define the associated K-algebra as

pr(B) = K[B]/(Np),

where K[B] is the monoid algebra over K and the elements of the nullset N are interpreted as elements
of K[B] (cf. Definition A.1). It comes with a band homomorphism ap : B — px(B), which maps a to [a].



11086 | M. Baker and O. Lorscheid

The other main ingredient needed for the proof of Theorem 2.1 is the following technical but
important result:

Proposition 4.4. Let K a field, B be a band, and R = pk(B) the associated K-algebra.

1) The homomorphism ap : B — px(B) is initial for all homomorphisms from B to a K-algebra, that is,
for every K-algebra S the natural map

Homg (R, S) i Hom(B, S)

is a bijection.

2) Assume we are given a valuation vk : K — T, and that B is finitely generated by as,...,a,. Let
Ti =ap(a) fori=1,...,n,and let X = SpecR. Let exp”" : R" — T" be the coordinate-wise exponential
map. Then the T; generate R as a K-algebra, and

exp”(”[‘rop(X)) C Hom(B, T)

as subsets of T".

Proof. We begin with (1). The map «j is injective since R is generated by the subset ap(B), and therefore
every homomorphism f : R — S is determined by the composition f o @ : B — S. In order to show
that o} is surjective, consider a band homomorphism f : B — S, which is, in particular, a multiplicative
map. Therefore it extends (uniquely) to a K-linear homomorphismf : K[B] — S from the monoid algebra
K[B] to S. For every > a; € Ng, we have > f(a;) € Ns by the definition of a band homomorphism. By the
definition of Ng, this means that > f(a;) = 0in S. Thusf factorizes through f : R = K[B]/(Ng) — S, and,
by construction, we have f = f o ap = ag(f) This establishes (1).

We continue with (2). Since B is generated by as, ..., a, as a pointed monoid and «ap(B) generates R as
a K-algebra, Ris generated as a K-algebra by Ty, ..., Tn. In order to verify that exp"(Trop(X)) ¢ Hom(B, T),
consider a point (U(T1),...,u(Ty)) € Trop(X), where v : R — R is a K-semi-valuation. Post-composing v
with exp yields a seminorm v’ : R — T, which is, equivalently, a band homomorphism. Pre-composing
v’ with ag yields a band homomorphism v” : B — T, which is an element of Hom(B, T). By construction,
exp"(u(T1),...,u(Ty)) = v”, which establishes the last assertion. [ |

Remark 4.5.

1) Under the assumptions of Proposition 4.4.(2), Hom(B, T) embeds as a subspace of T", which has a
well-defined (Lebesgue) covering dimension in the sense of [21, Chapter 3]. As discussed in [17],
the subspace topology of Hom(B, T) C T" is equal to the compact-open topology for Hom(B, T) with
respect to the discrete topology for B and the natural order topology for T, which shows that the
dimension of Hom(B, T) does not depend on the embedding into T".

2) With the topologies just described, exp" defines a continuous injection from Trop(X) to Hom(B, T),
which identifies the former with a closed subspace of the latter. In particular, [21, Prop. 3.1.5] shows
that dim Trop(X) < dim Hom(B, T).

3) If in addition to the assumptions of (2), Nj is finitely generated as an ideal of B*, then Hom(B, T) is
a tropical pre-variety in T" and is therefore the underlying set of a finite polyhedral complex. The
dimension of Hom(B, T) as a polyhedral complex is equal to its covering dimension [21, Theorem
2.7 and Section 3.7].

Proof of Theorem 2.1. Let v : K — T be a valuation (which we can take to be the trivial valuation if
we like). Let a3 : B — R be the canonical homomorphism to the associated K-algebra R = pk(B), cf.
Proposition 4.4. Let ai,...,a, € B be a set of generators for B, and fori = 1,...,nlet T; = ap(a;). By
Proposition 4.4, the T; generate R as a K-algebra, that is, R = K[T4, ..., Ty]/I for some ideal I.
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Let X = SpecR, so that X(K) = Homg(R, K). Proposition 4.4 yields a commutative diagram

X(K) = Homg (R, K) —— Hom(B,K)

| |

Trop(X) —=%; Hom(B, T)

where the right-hand vertical map is obtained by composing with v : K — T and the left-hand vertical
map is induced by composing the embedding of X(K) = Homg(R,K) into K" via ¢ — (¢(T})L, with the
coordinate-wise absolute value v} : K" — T".

By the Bieri-Groves theorem (Theorem 4.1), the dimension of the affine variety X is equal to the
dimension of Trop(X), as defined in Remark 4.5. Using Proposition 4.4(2) and Remark 4.5(2), we conclude
that

dim (X) = dim (Trop(X)) < dim (Hom(B, T)),

as desired. ]

Proof of Theorem 2.3. Suppose f : By — B, is a band homomorphism. Choose generators xi,..., X for
Bq. Completing f(x1), ..., f(xm) to a set of generators for B, if necessary, we find a generating set ys, ..., yn
for B, with m < n such that f(x;) = y; fori = 1,...,m. Replacing K by a larger algebraically closed field
if necessary, we may assume without loss of generality that v : K — T is a nontrivial valuation. Setting
X = Spec(px(B1)) and Y = Spec(px(B>)), and letting Trop(X) (resp. Trop(Y)) be the tropicalization of X

with respect to ag, (X1), ..., op, (Xm) (resSp. ap, (Y1), - - -, @5, (Yn)), We obtain a commutative diagram
YK — s x®

Trop(Y) L Trop(X)

[ [

Hom(B,,T) —— Hom(B4, T)

Since Trop(Y) is a closed subspace of Hom(B,, T) (resp. Trop(X) is a closed subspace of Hom(B1, T)), it
suffices to prove that if x € X(K) and X' = Trop(x) € Trop(X), then dim f'(x) < dim f; ' (x').

To see this, write fK’l(x) = Z(K) with Z an affine subscheme of Y. If we pull back the functions
ag, (y1), ..., a,(yn) to a set of generators for the affine coordinate ring of Z, we obtain a commutative
diagram

Z(K) Y (K) X(K)

| | |

Trop(Z) —— Trop(Y) —— Trop(X)

In particular, every point of Trop(Z) maps to x’ € Trop(X), which means that Trop(Z) C f3(X).
Applying the Bieri-Groves theorem to Z, we find that the image of Z(K) under Trop has dimension
equal to dimf, L(x). In addition, the natural map Trop(Z) — Trop(Y) identifies Trop(Z) with a closed
subspace of Trop(Y), since Trop(Z) (resp. Trop(Y)) is the topological closure of Z(K) (resp. Y(K)) in T"
(cf. [20, Proposition 2.2]). Since Trop(Z) C fr'(x), we have dimf;'(x) = dimTrop(Z) < dimf;'(x)
as desired. |
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Appendix A: Pastures and Bands

More details pertaining to the following overview of bands and pastures can be found in [2].

In this text, a pointed monoid is a (multiplicatively written) commutative semigroup A with identity 1,
together with a distinguished element 0 that satisfies 0-a = 0 for all a € A. The ambient semiring of A is
the semiring A* = N[A]/(0), which consists of all finite formal sums Y a; of nonzero elements a; € A.
Note that A is embedded as a submonoid in A*, where 0 is identified with the empty sum. An ideal
of At is a subset I that contains 0 and is closed under both addition and multiplication by elements
of AT,

Definition A.1. A band is a pointed monoid B together with an ideal Ny of B* (called the nullset)
such that for every a € A, there is a unique b € A with a + b € Np. We call this b the additive
inverse of a, and we denote it by —a. A band homomorphism is a multiplicative map f : B - C
preserving O and 1 such that )" a; € Ng implies Y f(a;) € N¢. This defines the category Bands.

For a subset S of Bt, we denote by (S)) the smallest ideal of B* that contains S and is closed under
the fusion axiom (cf. [6])

(f)ifc+ > a; and —c+ > b; are in (S), then X" a; + > b; isin (S).
Definition A.2. A band B is finitely generated if it is finitely generated as a monoid. It is a finitely

presented fusion band, which we abbreviate by simply saying that B is finitely presented, if it is
finitely generated and Ny = ((S)) for a finite subset S of Ng.

The unit group of B is the submonoid B* = {a € B | ab = 1 for some b € B} of B, which is indeed a group.

Definition A.3. A pasture is a band P with P* = P — {0} and

Np = <<a+b+ceP+ a+b+CENP>>4

Remark A.4. Loosely speaking, a pasture is a field-like object in the category of bands, which is
determined by the 3-term relations in its nullset. This latter property is what distinguishes
pastures from idylls and tracts (cf. [1], [4]), which are also field-like objects in the category of
bands. The fusion axiom allows us to make precise what it means to be determined by 3-term
relations.

Example A.5. Every ring R is a band, with nullset Nr = {>"a; | >_a; = 0in R}. In fact, this defines
a fully faithful embedding Rings — Bands. Every field is a pasture.
The following examples of interest are bands that are not rings (we write a — b for a + (=b)):

o The regular partial field is the pasture Ff = {0, 1, —1} with nullset

Nes = {n.1+n,(—1)‘nzo} = (1-1).

e The Krasner hyperfield is the pasture K = {0, 1} with nullset

Ng = N—{1} = (1+1, 1+1+1).
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¢ The tropical hyperfield is the pasture T = R.( with nullset

Nt = {0} U {Zai ’ ai,...,a, assumes its maximum at least twice}.

Examples of band homomorphisms are the inclusion K < T and the surjection T — K that sends
every nonzero element to 1. A band homomorphism R — T from a ring R into T is the same
thing as a non-archimedean seminorm. In particular, the trivial absolute value on a field K is
the unique band homomorphism K — T that factors through K.

The pasture F¥ is an initial object in Bands, that is, every band B comes with a unique homomorphism
IFli — B.This leads to a description B = IFli [Ti |1 €I]/(S) of Bin terms of generators {T; | i € I} and relations
S ¢ BY, in the sense that {T;} U {0, —1} generates B as a monoid, S generates the ideal N, and S contains
a complete set of binary relations between the signed products x = £Tj, --- T;, of the Tj, that is, the pairs
(%,y) for which x —y € S generate

{<z, t) e FE[T)? ) [z] = [t] in B}

as a multiplicative set.

Similarly, we write P = ]Ff (Ti 1€ DJ(Sy for a pasture P if P~ is generated as a group by {T; | i € [} and
—1,1f Np = (S), and if S contains a complete set of binary relations between the signed products of the
T;. For example,

K =F/(1+1, 14+1+1), and Fs = FEM/(T?+1, T—1-1).

Appendix B: Valuated Matroids and Subdivisions of the Basis
Polytope

In this section, we show that a matroid is rigid if and only if it has a unique rescaling class over T. We
begin with some observations and recall some results from the literature.

For a pasture F, we can identify isomorphism classes of a (weak) Grassmann-Pliicker function A
with the corresponding Pliicker vector (A(I))Ie(g) e PO (F). We call this Pliicker vector a representation of
M, and by abuse of terminology we use the terms “Grassmann-Pliicker function” and “Pliicker vector”
interchangeably.

Every matroid M can be (uniquely) represented over K by the Grassmann-Pliicker function Ay : (£) —
K, which sends an r-subset I of E to 1 if it a basis of M and to 0 otherwise. Post-composing Ay with the
inclusion K < T defines the trivial representation of M, which shows that M has at least one rescaling
class over T.

Recall that the basis polytope Py of M is the convex hull of the points e; = >, e; € R" for which I is a
basis of M. Let A : (f) — T be a Plicker vector for M, that is, supp (A) = supp (Au).

Let 8o = {e1 | A(I) # 0} be the support of A, considered as a subset of R". Post-composing with log
yields a function A : 8, — R whose graph I' is a subset of R" x R. The convex closure of I' has a unique
coarsest structure as a polyhedral complex. The lower faces of this polyhedral complex are those faces
for which the last coordinate of the outward normal vector is negative. Omitting this last coordinate
projects these faces onto Py and defines a polyhedral subdivision of Py called the regular subdivision
associated to A (see e.g., [18, Definition 2.3.8]).

By a theorem of Speyer (cf. [22, Prop. 2.2]), this subdivision of Py, is a matroid subdivision, that is, all faces
of the subdivision are themselves matroid polytopes, and conversely every regular matroid subdivision
of Py comes from a T-representation of M (see also [18, Lemma 4.4.6] and [14, Thm. 10.35]).

Proposition B.1. A matroid M is rigid if and only if M has a unique rescaling class over T.

Proof. Letrbe therankand E = {1,...,n} the ground set of M. Let A : (f) — T be a tropical Plicker vector
for M, and let 8§, be as above.
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By definition, M is rigid if and only if Py admits only the trivial regular matroid subdivision. Since
none of the points of 8, lies in the convex closure of the other points, A : (f) — T induces the trivial
matroid subdivision if and only if the subset {(el, A |1 e SA} of R" x R is contained in an affine
hyperplane H.

In this case, let x;e; be the unique intersection point of H with the coordinate axis generated by e;
(in the case of a loop i of M there is no such intersection point, and we can formally put x; = +o0).
Then A() = >ioi e, forI € 8a. Rescaling A by t = (exp(—x) | i = 1,...,n) yields a Plicker vector
Ag =t.A: (E) — T for which

.
Aoy = A =D x,, =0
k=1

for every I € 8a. Thus Ay is the trivial representation of M. Conversely, rescaling Ao yields a Pliicker
vector A for which [(eI,A(I)) |1 € SA} is contained in an affine hyperplane, which concludes
the proof. |

Remark B.2. The (local) Dressian of a matroid M (cf. [19]) is a polyhedral complex Ay whose
underlying set consists of all T-representations of M; the polyhedral structure is defined by
the 3-term tropical Pliicker relations. One can show using [19, Cor. 18] that the lineality space
of Ay is precisely the set of valuations on M, which are projectively equivalent to the trivial
valuation. The topological space Hom(Fy, T) considered in the body of this paper can then be
naturally identified with Ay modulo its lineality space, which we call the reduced Dressian Ay.
(We omit the details, as it would take us too far afield into a somewhat lengthy discussion of
various topologies and polyhedral structures.) See [9, Section 3] for an algorithm for computing
the Dressian and/or reduced Dressian of a matroid M, and also (in Section 5) some interesting
counterexamples to plausible-sounding assertions.
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