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We give a new proof, along with some generalizations, of a folklore theorem (attributed to Laurent
Lafforgue) that a rigid matroid (i.e., a matroid with indecomposable basis polytope) has only finitely
many projective equivalence classes of representations over any given field.

1 Introduction

A matroid M is called rigid if its base polytope PM has no non-trivial regular matroid polytope subdivi-

sions. Suchmatroids are interesting for a number of reasons; for example, a theoremof Bollen–Draisma–

Pendavingh [8] asserts that for each prime number p, a rigid matroid is algebraically representable in

characteristic p if and only if it is linearly representable in characteristic p. A folklore theorem,attributed

to L. Lafforgue, asserts that a rigid matroid has at most finitely many representations over any field, up

to projective equivalence. This is mentioned without proof in a few places throughout the literature, for

example in Alex Fink’s PhD thesis [12, p. 10], where he writes:

Matroid subdivisions have made prominent appearances in algebraic geometry. [ . . . ] Lafforgue’s work

implies, for instance, that a matroid whose polytope has no subdivisions is representable in at most

finitely many ways, up to the actions of the obvious groups.

We have been unable to find a proof of this result in the papers of Lafforgue cited by Fink [15, 16],

though a proof sketch appears in [13, Theorem 7.8]. In this paper, we provide a rigorous and efficient

proof of Lafforgue’s theorem, along with some new generalizations.

What is arguably most interesting about our approach to Lafforgue’s theorem is that we deduce it

from a purely algebraic statement that has nothing to do with matroids. The only input from matroid

theory needed is the fact that the rescaling class functor XM from pastures to sets is representable (see

Section 2 below for further details). We believe this to be a nice illustration of the power, and elegance,

of the algebraic theory developed by the authors in [3] and [4].

2 Reformulation and Generalizations of Lafforgue’s Theorem

It is well-known to experts that a matroid M is rigid if and only if every valuated matroid M whose

underlying matroid is M is rescaling equivalent to the trivially valuated matroid. Since we could not

find a reference for this result, we provide a proof in Appendix B.
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Recall from [3] (see also Appendix A) that there is a category of algebraic objects called pas-

tures, which generalize not only fields but also partial fields and hyperfields. According to [1], there

is a robust notion of (weak) matroids over a pasture [1][4] P such that (to mention just a few

examples):

• Matroids over the Krasner hyperfield K are the same thing as matroids in the usual sense.

• Matroids over the tropical hyperfield T are the same thing as valuated matroids.

• Matroids over a field K are the same thing as K-representable matroids, together with a choice of

a matrix representation (up to the equivalence relation where two matrices are equivalent if they

have the same row space).

For every matroid M there is a functor XM from pastures to sets taking a pasture P to the set of

rescaling equivalence classes of (weak) P-representations of M. A matroid M is rigid if and only if XM(T)

consists of a single point. For a field K, the set XM(K) coincides with the set of projective equivalence

classes of representations of M over K. Thus Lafforgue’s theorem is equivalent to the assertion that if

XM(T) is a singleton, then XM(K) is finite for every field K.

Recall from [3] that for every matroidM, the functor XM is representable by a pasture FM canonically

associated to M, called the foundation of M. Concretely, this means that Hom(FM, P) = XM(P) for every

pasture P, functorially in P.

From this point of view, Lafforgue’s theorem is equivalent to the assertion that if Hom(FM,T) = {0},

then Hom(FM,K) is finite for every field K. This is the statement of Lafforgue’s theorem that we actually

prove in this paper. The advantage of this formulation is that it turns out to be a special case of a result

that can be formulated purely in the language of pastures, without any mention of matroids! In fact,

the algebraic incarnation of this result holds more generally with pastures (which generalize fields)

replaced by bands (which generalize rings).

See Appendix A for an overview of bands, including a definition, some examples, and the key facts

needed for the present paper.

2.1 An algebraic generalization of Lafforgue’s theorem
In order to state the algebraic result about bands that implies Lafforgue’s theorem, we mention

(see Proposition 4.4 below) that given a band B and a field K, there is a canonically associated K-

algebra ρK(B) with the universal property that HomBand(B, S) = HomK(ρK(B), S) for every K-algebra S,

where HomK(B1,B2) denotes the set of K-algebra homomorphisms between bands B1,B2 equipped with

distinguishedmorphisms from K. Moreover, if B is finitely generated (which is the case, e.g., when B = FM
for some matroid M), then so is ρK(B).

If B is finitely presented, the set Hom(B,T) has the structure of a finite polyhedral complex �B; cf.

Remark 4.5. Moreover, if K is a field, the set Hom(B,K) is equal to HomK(ρK(B),K), which is in turn equal

to the set XB,K(K) of K-points of the finite type affine K-scheme XB,K := Spec(ρK(B)). (When B = FM for a

matroid M, we call XB,K the reduced realization space of M over K.)

Our first generalization of Lafforgue’s theorem is as follows:

Theorem 2.1. For every finitely presented band B and every field K, we have the inequality

dimXB,K ≤ dim�B. In particular, if Hom(B,T) = {0}, then dim�B = 0 and thus XB,K(K) =

Hom(B,K) is finite for every field K.

Applying Theorem 2.1 to B = FM immediately gives:

Corollary 2.2 (Lafforgue). If M is a rigid matroid, then XM(K) is finite for every field K.

In the terminology of Remark B.2, Theorem 2.1 in the case B = FM says precisely that for any field K,

the dimension of the reduced realization space of M over K is bounded above by the dimension of the

reduced Dressian of M.

2.2 A relative version of Lafforgue’s theorem
Rudi Pendavingh (private communication) asked if there might be a relative version of Lafforgue’s

theoremwith respect to minors ofM. More precisely, Pendavingh asked the following question: Suppose

N is an (embedded) minor ofMwith the property that a valuated matroid structure onM is determined,
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up to rescaling equivalence, by its restriction to N. Is it then true that, for every field K, there are

(up to projective equivalence) at most finitely many extensions of each K-representation of N to a K-

representation of M?

We answer Pendavingh’s question in the affirmative, proving the following algebraic generalization

of Theorem 2.1 and Corollary 2.2:

Theorem 2.3. Let K be an algebraically closed valued field, and let v : K → T be a valuation.

If f : B1 → B2 is a homomorphism of finitely generated bands, then the fiber dimension of

fK : Hom(B2,K) → Hom(B1,K) is bounded above by the fiber dimension of fT : Hom(B2,T) →

Hom(B1,T), that is, if x ∈ Hom(B1,K) and x′ is the image of x in Hom(B1,T), then dim f−1
K (x) ≤

dim f−1
T

(x′).

In particular, setting B1 = FN and B2 = FM when N is an embedded minor of a matroid M, we find

that if the induced map XM(T) → XN(T) has finite fibers (i.e., a valuated matroid structure on

N has at most finitely many extensions to M, up to rescaling equivalence) then, for every field

k, the natural map XM(k) → XN(k) has finite fibers, that is, every k-representation of N has at

most finitely many extensions to M, up to projective equivalence.

Note that Lafforgue’s theorem (Corollary 2.2) follows from the special case of Theorem 2.3 where N

is the trivial (empty) matroid and fT : Hom(B2,T) → Hom(B1,T) has finite fibers.

3 Some Examples

In this section we present examples of both rigid and non-rigid matroids (see Appendix A for some

details on our notation).

Example 3.1 (Dress–Wenzel). In [11, Theorem 5.11], Dress and Wenzel showed that if the inner

Tutte group F×
M of the matroid M is finite, then M is rigid. From our point of view, this is clear,

since the inner Tutte group is the multiplicative group of the foundation (cf. [4, Corollary 7.13])

and a non-trivial homomorphism FM → T of pastures would give, in particular, a nonzero group

homomorphism F×
M → (R,+); however, the only torsion element of (R,+) is 0.

For example:

1) The foundation of the Fano matroid F7 is F2, so F7 is rigid. More generally, any binary matroid has

foundation equal to either F±
1 or F2 [4, Corollary 7.32] and so it is rigid.

2) The foundation of the ternary spike T8 is F3 (see [5, Proposition 8.9]), so T8 is also rigid.

3) Dress and Wenzel prove in [11, Corollary 3.8] that the inner Tutte group of any finite projective

space of dimension at least 2 is finite, which provides a wealth of additional examples of rigid

matroids.

4) Since the automorphism group of the ternary affine plane M = AG(2, 3) acts transitively, all

single-element deletions are isomorphic to each other. Let M′ be any of these deletions. By [5,

Proposition 6.2], the foundation ofM′ is equal to the hexagonal (or sixth-root-of-unity) partial field

H = F
±
1 (T)//〈〈T3 + 1,T − T2 − 1〉〉, whosemultiplicative group is the group of sixth roots of unity inC.

Therefore M′ is rigid.

It is not true that a matroid M is rigid if and only if its inner Tutte group (or, equivalently, its

foundation) is finite. For example:

Example 3.2 (suggested by Rudi Pendavingh). LetM be the Betsy Ross matroid (cf. [23, Figure 3.3],

where M is also called B11). Using the Macaulay2 software described in [10], we have checked

that FM is isomorphic to the (infinite) golden ratio partial field G = F
±
1 (T)//〈〈T2 − T − 1〉〉. One

checks easily that Hom(G,T) is trivial, soM is rigid; in particular, the converse of the statement

“FM finite implies M rigid” is not true. It is also easy to see directly that G admits only finitely

many homomorphisms to any field. In more detail, the software described in [10] is now

available through the standard distribution of Macaulay2 as the package “foundations.m2”.

The command “foundation M” returns the foundation of a matroid M, the command

“specificPasture(G)” returns the pasture G, the command “specificMatroid(betsyRoss)” returns
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the Betsy Ross matroid, and the command “areIsomorphic(F1, F2)” determines whether F1 and

F2 are isomorphic as pastures. So one simply needs to enter “load ”Matroids/foundations.m2””

and then “areIsomorphic(foundation specificMatroid(betsyRoss),specificPasture(G))” into

Macaulay2; this returns the value “true”.

Example 3.3. The matroid U2,4 is not rigid, since its foundation is the near-regular partial field

U = F
±
1 (T1,T2)//〈〈T1 + T2 − 1〉〉, which admits infinitely many different homomorphisms to T

(map T1 to 1 and T2 to any element less than or equal to 1, or vice-versa). And for any field K,

the reduced realization space XM(K) is equal to K \ {0, 1}, so in particular it is infinite whenever

K is. The base polytope of U2,4 is an octahedron, which admits a regular matroid decomposition

into two tetrahedra (see [18, p. 189] for a nice visualization).

Example 3.4. The non-Fano matroid M = F−
7 is not rigid, and it provides an example for which

the dimension of the reduced realization spaces XM(K) and XM(T) jumps. The foundation of

M is the dyadic partial field D = F
±
1 (T)//〈〈T + T − 1〉〉 by [5, Prop. 8.4], and there is at most one

homomorphism FM = D → K into any field K, sending T to the multiplicative inverse of 2

(if it exists, i.e., if charK �= 2). In contrast, there are infinitely many homomorphisms D → T

(parametrized by the image of f (T) ∈ T). So dimXM(K) = 0 < 1 = dimX(T).

4 Proof of the Main Theorems

The key fact needed for the proof of Theorem2.1 is the following theoremof Bieri andGroves [7,Theorem

A],which is a cornerstone of tropical geometry. For the statement, recall that a semi-valuation from a ring

R toR = R∪{+∞} is amap v : R → R such that v(0) = +∞,v(xy) = v(x)+v(y), and v(x+y) ≥ min{v(x),v(y)}

for all x, y ∈ R. (The map v is called a valuation if, in addition, v(x) = +∞ implies that x = 0.) If R is a

K-algebra, where K is a valued field (i.e., a field endowed with a valuation v : K → R), a K-semi-valuation

is a semi-valuation that restricts to the given valuation on K.

Theorem 4.1 (Bieri–Groves). Let K be a field endowed with a real valuation v, and suppose R is a

finitely generated K-algebra with Krull dimension equal to n, having generators T1, . . . ,Tn. Let

X = Spec(R) be the corresponding affine K-scheme. Then the set

Trop(X) := {(v(T1), . . . ,v(Tn)) | v : R → R is a K-semi-valuation}

is a polyhedral complex of dimension dim(Trop(X)) = dimX.

Remark 4.2. Bieri and Groves assume that X is irreducible and show,more precisely, that Trop(X)

has pure dimension n. Our formulation of the Bieri–Groves theorem (which does not include

the purity statement) follows immediately from theirs by decomposing X into irreducible

components.

Remark 4.3. More or less by definition, a semi-valuation on a ring R is precisely the same thing

as a homomorphism from R to T in the category of bands, and if K is a valued field then a

K-semi-valuation on R is the same thing as a homomorphism from R to T, which restricts to

the given homomorphism v : K → T on K.

Let K be a field, and let AlgK denote the category of K-algebras, that is, ring extensions R of K together

with K-linear ring homomorphisms. We write HomK(R, S) for the set of K-algebra homomorphisms

between two K-algebras R and S. Given a band B, we define the associated K-algebra as

ρK(B) = K[B] / 〈NB〉,

where K[B] is the monoid algebra over K and the elements of the nullset NB are interpreted as elements

of K[B] (cf. Definition A.1). It comes with a band homomorphism αB : B → ρK(B), which maps a to [a].
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The other main ingredient needed for the proof of Theorem 2.1 is the following technical but

important result:

Proposition 4.4. Let K a field, B be a band, and R = ρK(B) the associated K-algebra.

1) The homomorphism αB : B → ρK(B) is initial for all homomorphisms from B to a K-algebra, that is,

for every K-algebra S the natural map

HomK(R, S)
α∗
B

−→ Hom(B, S)

is a bijection.

2) Assume we are given a valuation vK : K → T, and that B is finitely generated by a1, . . . , an. Let

Ti = αB(ai) for i = 1, . . . ,n, and letX = SpecR. Let expn : R
n

→ T
n be the coordinate-wise exponential

map. Then the Ti generate R as a K-algebra, and

expn
(

Trop(X)

)

⊂ Hom(B,T)

as subsets of Tn.

Proof. We begin with (1). The map α∗
B is injective since R is generated by the subset αB(B), and therefore

every homomorphism f : R → S is determined by the composition f ◦ αB : B → S. In order to show

that α∗
B is surjective, consider a band homomorphism f : B → S, which is, in particular, a multiplicative

map. Therefore it extends (uniquely) to a K-linear homomorphism f̂ : K[B] → S from the monoid algebra

K[B] to S. For every
∑

ai ∈ NB, we have
∑

f (ai) ∈ NS by the definition of a band homomorphism. By the

definition of NS, this means that
∑

f (ai) = 0 in S. Thus f̂ factorizes through f̄ : R = K[B]/〈NB〉 → S, and,

by construction, we have f = f̄ ◦ αB = α∗
B(f̄ ). This establishes (1).

We continue with (2). Since B is generated by a1, . . . , an as a pointed monoid and αB(B) generates R as

a K-algebra, R is generated as a K-algebra by T1, . . . ,Tn. In order to verify that expn(Trop(X)) ⊂ Hom(B,T),

consider a point (v(T1), . . . ,v(Tn)) ∈ Trop(X), where v : R → R is a K-semi-valuation. Post-composing v

with exp yields a seminorm v′ : R → T, which is, equivalently, a band homomorphism. Pre-composing

v′ with αB yields a band homomorphism v′′ : B → T, which is an element of Hom(B,T). By construction,

expn(v(T1), . . . ,v(Tn)) = v′′, which establishes the last assertion. �

Remark 4.5.

1) Under the assumptions of Proposition 4.4.(2), Hom(B,T) embeds as a subspace of Tn, which has a

well-defined (Lebesgue) covering dimension in the sense of [21, Chapter 3]. As discussed in [17],

the subspace topology ofHom(B,T) ⊂ T
n is equal to the compact-open topology forHom(B,T) with

respect to the discrete topology for B and the natural order topology for T, which shows that the

dimension of Hom(B,T) does not depend on the embedding into T
n.

2) With the topologies just described, expn defines a continuous injection from Trop(X) to Hom(B,T),

which identifies the formerwith a closed subspace of the latter. In particular, [21, Prop. 3.1.5] shows

that dimTrop(X) ≤ dimHom(B,T).

3) If in addition to the assumptions of (2),NB is finitely generated as an ideal of B+, then Hom(B,T) is

a tropical pre-variety in T
n and is therefore the underlying set of a finite polyhedral complex. The

dimension of Hom(B,T) as a polyhedral complex is equal to its covering dimension [21, Theorem

2.7 and Section 3.7].

Proof of Theorem 2.1. Let v : K → T be a valuation (which we can take to be the trivial valuation if

we like). Let αB : B → R be the canonical homomorphism to the associated K-algebra R = ρK(B), cf.

Proposition 4.4. Let a1, . . . , an ∈ B be a set of generators for B, and for i = 1, . . . ,n let Ti = αB(ai). By

Proposition 4.4, the Ti generate R as a K-algebra, that is, R = K[T1, . . . ,Tn]/I for some ideal I.



On a Theorem of Lafforgue | 11087

Let X = SpecR, so that X(K) = HomK(R,K). Proposition 4.4 yields a commutative diagram

where the right-hand vertical map is obtained by composing with v : K → T and the left-hand vertical

map is induced by composing the embedding of X(K) = HomK(R,K) into Kn via φ �→ (φ(Ti))
n
i=1 with the

coordinate-wise absolute value vnK : Kn → T
n.

By the Bieri–Groves theorem (Theorem 4.1), the dimension of the affine variety X is equal to the

dimension of Trop(X), as defined in Remark 4.5. Using Proposition 4.4(2) and Remark 4.5(2), we conclude

that

dim
(

X
)

= dim
(

Trop(X)
)

≤ dim
(

Hom(B,T)
)

,

as desired. �

Proof of Theorem 2.3. Suppose f : B1 → B2 is a band homomorphism. Choose generators x1, . . . , xm for

B1. Completing f (x1), . . . , f (xm) to a set of generators for B2 if necessary, we find a generating set y1, . . . , yn
for B2 with m ≤ n such that f (xi) = yi for i = 1, . . . ,m. Replacing K by a larger algebraically closed field

if necessary, we may assume without loss of generality that v : K → T is a nontrivial valuation. Setting

X = Spec(ρK(B1)) and Y = Spec(ρK(B2)), and letting Trop(X) (resp. Trop(Y)) be the tropicalization of X

with respect to αB1 (x1), . . . ,αB1 (xm) (resp. αB2 (y1), . . . ,αB2 (yn)), we obtain a commutative diagram

Since Trop(Y) is a closed subspace of Hom(B2,T) (resp. Trop(X) is a closed subspace of Hom(B1,T)), it

suffices to prove that if x ∈ X(K) and x′ = Trop(x) ∈ Trop(X), then dim f−1
K (x) ≤ dim f−1

T
(x′).

To see this, write f−1
K (x) = Z(K) with Z an affine subscheme of Y. If we pull back the functions

αB2 (y1), . . . ,αB2 (yn) to a set of generators for the affine coordinate ring of Z, we obtain a commutative

diagram

In particular, every point of Trop(Z) maps to x′ ∈ Trop(X), which means that Trop(Z) ⊂ f−1
T

(x′).

Applying the Bieri–Groves theorem to Z, we find that the image of Z(K) under Trop has dimension

equal to dim f−1
K (x). In addition, the natural map Trop(Z) → Trop(Y) identifies Trop(Z) with a closed

subspace of Trop(Y), since Trop(Z) (resp. Trop(Y)) is the topological closure of Z(K) (resp. Y(K)) in T
n

(cf. [20, Proposition 2.2]). Since Trop(Z) ⊂ f−1
T

(x′), we have dim f−1
K (x) = dimTrop(Z) ≤ dim f−1

T
(x′)

as desired. �
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Appendix A: Pastures and Bands

More details pertaining to the following overview of bands and pastures can be found in [2].

In this text, a pointed monoid is a (multiplicatively written) commutative semigroup A with identity 1,

together with a distinguished element 0 that satisfies 0 · a = 0 for all a ∈ A. The ambient semiring of A is

the semiring A+ = N[A]/〈0〉, which consists of all finite formal sums
∑

ai of nonzero elements ai ∈ A.

Note that A is embedded as a submonoid in A+, where 0 is identified with the empty sum. An ideal

of A+ is a subset I that contains 0 and is closed under both addition and multiplication by elements

of A+.

Definition A.1. A band is a pointed monoid B together with an ideal NB of B+ (called the nullset)

such that for every a ∈ A, there is a unique b ∈ A with a + b ∈ NB. We call this b the additive

inverse of a, and we denote it by −a. A band homomorphism is a multiplicative map f : B → C

preserving 0 and 1 such that
∑

ai ∈ NB implies
∑

f (ai) ∈ NC. This defines the category Bands.

For a subset S of B+, we denote by 〈〈S〉〉 the smallest ideal of B+ that contains S and is closed under

the fusion axiom (cf. [6])

(f) if c +
∑

ai and −c +
∑

bj are in 〈〈S〉〉, then
∑

ai +
∑

bj is in 〈〈S〉〉.

Definition A.2. A band B is finitely generated if it is finitely generated as a monoid. It is a finitely

presented fusion band, which we abbreviate by simply saying that B is finitely presented, if it is

finitely generated and NB = 〈〈S〉〉 for a finite subset S of NB.

The unit group of B is the submonoid B× = {a ∈ B | ab = 1 for some b ∈ B} of B, which is indeed a group.

Definition A.3. A pasture is a band P with P× = P − {0} and

NP =
〈〈

a + b + c ∈ P+
∣

∣

∣
a + b + c ∈ NP

〉〉

.

Remark A.4. Loosely speaking, a pasture is a field-like object in the category of bands, which is

determined by the 3-term relations in its nullset. This latter property is what distinguishes

pastures from idylls and tracts (cf. [1], [4]), which are also field-like objects in the category of

bands. The fusion axiom allows us to make precise what it means to be determined by 3-term

relations.

Example A.5. Every ring R is a band, with nullset NR = {
∑

ai |
∑

ai = 0 in R}. In fact, this defines

a fully faithful embedding Rings → Bands. Every field is a pasture.

The following examples of interest are bands that are not rings (we write a − b for a + (−b)):

• The regular partial field is the pasture F
±
1 = {0, 1,−1} with nullset

NF
±
1

=
{

n.1 + n.(−1)

∣

∣

∣
n ≥ 0

}

= 〈〈1 − 1〉〉.

• The Krasner hyperfield is the pasture K = {0, 1} with nullset

NK = N − {1} = 〈〈1 + 1, 1 + 1 + 1〉〉.
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• The tropical hyperfield is the pasture T = R≥0 with nullset

NT = {0} ∪
{

∑

ai

∣

∣

∣
a1, . . . , an assumes its maximum at least twice

}

.

Examples of band homomorphisms are the inclusion K ↪→ T and the surjection T → K that sends

every nonzero element to 1. A band homomorphism R → T from a ring R into T is the same

thing as a non-archimedean seminorm. In particular, the trivial absolute value on a field K is

the unique band homomorphism K → T that factors through K.

The pasture F±
1 is an initial object in Bands, that is, every band B comeswith a unique homomorphism

F
±
1 → B. This leads to a description B = F

±
1 [Ti | i ∈ I]//〈S〉 of B in terms of generators {Ti | i ∈ I} and relations

S ⊂ B+, in the sense that {Ti} ∪ {0,−1} generates B as a monoid, S generates the ideal NB, and S contains

a complete set of binary relations between the signed products x = ±Ti1 · · ·Tir of the Ti, that is, the pairs

(x, y) for which x − y ∈ S generate

{

(z, t) ∈ F
±
1 [Ti]

2
∣

∣

∣
[z] = [t] in B

}

as a multiplicative set.

Similarly, we write P = F
±
1 (Ti | i ∈ I)//〈〈S〉〉 for a pasture P if P× is generated as a group by {Ti | i ∈ I} and

−1, if NP = 〈〈S〉〉, and if S contains a complete set of binary relations between the signed products of the

Ti. For example,

K = F
±
1 �〈〈1 + 1, 1 + 1 + 1〉〉, and F5 = F

±
1 (T)//〈〈T2 + 1, T − 1 − 1〉〉.

Appendix B: Valuated Matroids and Subdivisions of the Basis
Polytope
In this section, we show that a matroid is rigid if and only if it has a unique rescaling class over T. We

begin with some observations and recall some results from the literature.

For a pasture F, we can identify isomorphism classes of a (weak) Grassmann–Plücker function �

with the corresponding Plücker vector (�(I))I∈(Er)
∈ P(Er)(F). We call this Plücker vector a representation of

M, and by abuse of terminology we use the terms “Grassmann–Plücker function” and “Plücker vector”

interchangeably.

EverymatroidM can be (uniquely) represented overK by the Grassmann–Plücker function �M :
(E
r

)

→

K, which sends an r-subset I of E to 1 if it a basis of M and to 0 otherwise. Post-composing �M with the

inclusion K ↪→ T defines the trivial representation of M, which shows that M has at least one rescaling

class over T.

Recall that the basis polytope PM of M is the convex hull of the points eI =
∑

i∈I ei ∈ R
n for which I is a

basis of M. Let � :
(E
r

)

→ T be a Plücker vector for M, that is, supp (�) = supp (�M).

Let S� = {eI | �(I) �= 0} be the support of �, considered as a subset of Rn. Post-composing with log

yields a function �̃ : S� → R whose graph � is a subset of Rn ×R. The convex closure of � has a unique

coarsest structure as a polyhedral complex. The lower faces of this polyhedral complex are those faces

for which the last coordinate of the outward normal vector is negative. Omitting this last coordinate

projects these faces onto PM and defines a polyhedral subdivision of PM called the regular subdivision

associated to Δ (see e.g., [18, Definition 2.3.8]).

By a theoremof Speyer (cf. [22, Prop. 2.2]), this subdivision of PM is amatroid subdivision, that is, all faces

of the subdivision are themselves matroid polytopes, and conversely every regular matroid subdivision

of PM comes from a T-representation of M (see also [18, Lemma 4.4.6] and [14, Thm. 10.35]).

Proposition B.1. A matroid M is rigid if and only if M has a unique rescaling class over T.

Proof. Let r be the rank and E = {1, . . . ,n} the ground set ofM. Let � :
(E
r

)

→ T be a tropical Plücker vector

for M, and let S� be as above.
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By definition, M is rigid if and only if PM admits only the trivial regular matroid subdivision. Since

none of the points of S� lies in the convex closure of the other points, � :
(E
r

)

→ T induces the trivial

matroid subdivision if and only if the subset
{

(eI, �̃(I)) | I ∈ S�

}

of Rn × R is contained in an affine

hyperplane H.

In this case, let xiei be the unique intersection point of H with the coordinate axis generated by ei
(in the case of a loop i of M there is no such intersection point, and we can formally put xi = +∞).

Then �̃(I) =
∑r

k=1 xikeik for I ∈ S�. Rescaling � by t = (exp(−xi) | i = 1, . . . ,n) yields a Plücker vector

�0 = t.� :
(E
r

)

→ T for which

�̃0(I) = �̃(I) −

r
∑

k=1

xikeik = 0

for every I ∈ S�. Thus �̃0 is the trivial representation of M. Conversely, rescaling �0 yields a Plücker

vector � for which
{

(eI, �̃(I)) | I ∈ S�

}

is contained in an affine hyperplane, which concludes

the proof. �

Remark B.2. The (local) Dressian of a matroid M (cf. [19]) is a polyhedral complex �M whose

underlying set consists of all T-representations of M; the polyhedral structure is defined by

the 3-term tropical Plücker relations. One can show using [19, Cor. 18] that the lineality space

of �M is precisely the set of valuations on M, which are projectively equivalent to the trivial

valuation. The topological space Hom(FM,T) considered in the body of this paper can then be

naturally identified with �M modulo its lineality space, which we call the reduced Dressian �M.

(We omit the details, as it would take us too far afield into a somewhat lengthy discussion of

various topologies and polyhedral structures.) See [9, Section 3] for an algorithm for computing

the Dressian and/or reduced Dressian of a matroid M, and also (in Section 5) some interesting

counterexamples to plausible-sounding assertions.
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