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Abstract—This paper presents an EEG-based user authentica-

tion system using Event-Related Potentials (ERPs) to distinguish

legitimate users from impostors. Utilizing a publicly available

EEG dataset, we implemented a comprehensive data processing

pipeline, which included advanced preprocessing and feature

extraction techniques. Multiple state-of-the-art machine learning

classifiers, such as CatBoost and XGBoost, were evaluated to assess

their effectiveness in user authentication. The results showed a

very low average Equal Error Rate (EER) of 2.53%. Our study

emphasizes the strength of the P300 and N400 responses in bio-

metric authentication and demonstrates the potential of advanced

ensemble classifiers in improving system accuracy. This research

contributes to the development of EEG-based authentication and

lays the groundwork for future studies aiming to create secure

and practical biometric systems.

Index Terms—Brainwave Authentication, electroencephalogram

(EEG), Biometrics, User Authentication, Brain-Computer Inter-

face (BCI), Event-Related Potentials (ERPs)

I. INTRODUCTION

A user authentication system ensures authorized access to
various applications, from personal devices to secure facilities.
Traditional user authentication methods such as passwords and
PINs are at risk of being forgotten, stolen, or guessed [1]. Bio-
metric authentication identifies users using unique physiological
traits (fingerprints, face recognition, iris) or behavioral traits
(signature, keystrokes, voice). Compared to traditional methods
such as passwords or PINs, it provides higher accuracy and
convenience. However, due to the possibility of biometric data
imitation and spoofing, this raises privacy concerns [2]. On the
other hand, brainwave authentication using electroencephalog-
raphy (EEG) presents a promising alternative. In contrast to
other biometric traits, brainwaves are hidden and difficult
to observe or duplicate, so they hold great security against
spoofing and fraud [3].

This research explores the potential of ERPs captured
through an EEG-based system to effectively differentiate be-
tween genuine users and impostors. Researchers have identi-
fied several components in ERPs to explain how deviant and
unexpected events are processed. The N400 and P300 are
two examples of these components [4]. The P300 response,
associated with attention and decision-making, occurs approx-
imately 300 milliseconds after a stimulus presentation [5]. The
response associated with semantic processing, known as the

N400 response, occurs approximately 400 milliseconds after
the stimulus presentation [6].

The potential of EEG-based authentication is significant, but
there are still several challenges that need to be addressed.
These include the influence of artifacts such as eye blinks
and muscle movements, as well as the complexity of accu-
rately classifying brainwave data [7]. Previous studies have
investigated different preprocessing, feature extraction, and
classification techniques to tackle these challenges, with varying
levels of success.

In this study, our goal is to advance the field of EEG-
based authentication by using a comprehensive data processing
pipeline and assessing the performance of various state-of-the-
art machine learning classifiers. We utilize a publicly available
EEG dataset that is specifically created to evoke ERPs suitable
for authentication [8]. Our approach includes preprocessing
steps to enhance signal quality, robust feature extraction meth-
ods to capture relevant characteristics of the EEG signals,
and advanced feature selection techniques to identify the most
important attributes. Additionally, we utilize cutting-edge clas-
sifiers to achieve high accuracy in differentiating genuine users
from impostors.

Our model achieved an Equal Error Rate (EER) of 2.53%,
demonstrating a significant improvement of approximately
64.86% compared to previous research [9]. These results reveal
the robustness and effectiveness of our approach in the realm
of EEG-based user authentication.

The main contributions of this study are as follows:
1) Independent Component Analysis (ICA) [10] was em-

ployed to remove artifacts and improve signal quality,
and we demonstrated that this method is effective for
improving EEG-based authentication.

2) A comprehensive feature set was extracted that included
all EEG signals’ essential characteristics, and the most
relevant ones were selected based on their importance.

3) Evaluation of various classifiers, including ensemble
methods, to identify the most effective models for EEG-
based authentication [11].

The rest of this paper is structured as follows. Section II
reviews relevant literature. The dataset and stimuli utilized in
our work for EEG-based user authentication are described in
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Section III. Section IV presents the brainwave data cleaning and
processing pipeline details. The design of the authentication
system is outlined in Section V. Section VI presents perfor-
mance results and comparisons. In Section VII, we discuss
the implications and future directions. Finally, Section VIII
summarizes key insights and the importance of our findings.

II. RELATED WORK

EEG-based user authentication is an active area of study
that employs the unique and complex nature of brainwave
patterns to improve security systems. In this section, we will
examine notable investigations that have used EEG data for
authentication. We will concentrate on the methodologies and
results presented compared to our investigation.

Event-related potentials, specifically P300 and N400, have
been broadly utilized in EEG-based authentication studies due
to their specific and identifiable patterns [12].

The P300 wave, which happens approximately 300 millisec-
onds after stimulus presentation, is generally used in oddball
tasks where users recognize rare target stimuli among frequent
non-targets. For instance, Alzahrani [13] and Koike-Akino
et al. [14] utilized the P300 response elicited through an
oddball paradigm, and demonstrated the potential of using
P300 responses for biometric authentication, highlighting the
advantages of using consumer-grade EEG devices for such
applications.

The response known as N400, occurring approximately 400
milliseconds after the stimulus, has been extensively studied.
Hamm et al. [15] analyzed the N400 effect on pictures that
were semantically incongruous to a previously presented object
name. They found that the N400 reacted to all semantic mis-
matches. Moreover, Franklin et al. [16] investigated semantic
priming mechanisms and specified an N400 effect for semantic
matching, revealing the potential of N400 in indicating between
individuals based on their brainwave patterns.

Recent studies have demonstrated that cutting-edge machine-
learning algorithms can significantly enhance the performance
of EEG-based authentication systems. Safont et al. [17] intro-
duced a biometric authorization and identification method based
on EEG signals, utilizing multiple detectors and classifiers to
improve performance. The study utilized various classifiers,
including Discriminant Analyzers (DA, [18]), Classification
Trees (TREE, [19]), and a simple copula-based classifier (COP,
[20]). These classifiers were combined in different ways to
enrich the system’s robustness and accuracy.

Ensemble techniques like Random Forests, XGBoost, and
CatBoost are highly effective in handling high-dimensional and
complicated data structures. A comparative study by Sezer et
al. [21] assessed the performance of Random Forest, XGBoost,
and a newly introduced ensemble method called NGBoost
in landslide susceptibility mapping. This study illustrated the
outstanding performance of ensemble methods in complex
classification tasks.

While previous research has laid a solid foundation for EEG-
based authentication, many studies have not fully leveraged

advanced artifact removal techniques like ICA [22], which
can significantly enhance signal quality. In our study, we
implemented ICA to eliminate artifacts such as eye blinks and
muscle movements, resulting in cleaner EEG signals for feature
extraction and a lower signal-to-noise ratio. This improvement
makes the data more suitable for further processing and anal-
ysis. In addition, most studies do not explore extensive feature
extraction methods and the selection of the best features, which
is also covered in this study. Although ensemble methods have
shown promise, there is a lack of comparative analysis using
effective classifiers like CatBoost [23]. Our study includes a
detailed comparison of various classifiers, demonstrating that
CatBoost outperforms traditional methods. Therefore, ensemble
methods can improve the overall performance of the authenti-
cation system for high-dimensional data.

III. DATASET DESCRIPTION

In our study, we utilized a publicly available EEG dataset,
“Brainwave Authentication Dataset,” [8] consisting of 38 partic-
ipants. in this dataset EEG data was collected using the Emotiv
EPOC+ headset, which utilizes 14 channels [24].

The recording procedure started by taking baseline mea-
surements of brain activity, where participants were instructed
to open their eyes for 20 seconds and then close them for
25 seconds. Following this, participants engaged in several
authentication tasks designed to produce different ERPs. The
specific stimuli used are as follows [9]:

• P300/Selected: This task employed the oddball paradigm
to elicit the P300 response. Each participant was instructed
to choose an image from a set and then watch a series of
images with the chosen image appearing infrequently. In
order to strengthen the P300 response, they were asked to
keep track of the occurrences of the target image.

• P300/Assigned: This is similar to the previous task, but
the target image was assigned to the participants rather
than selected by them.

• N400/Words: The task involved showing participants
a video of cars driving on a highway. After watching
the video, participants were presented with words, some
related to the video and others random.

• N400/Sentences: This task involved reading sentences
that ended either congruently or incongruently. For in-
stance, participants might read “Steve sat down to eat his
car,” where the unanticipated final word “car” evoked a
strong N400 response due to its semantic incongruence.

• N400/Faces: Participants were presented with sequences
of well-known faces (celebrities) followed by unfamiliar
faces. The N400 response was triggered when an unfa-
miliar face appeared after a sequence of familiar faces, as
the brain needed to inhibit previously activated semantic
representations and activate new ones for the unfamiliar
face.
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IV. BRAINWAVE DATA PROCESSING

The brainwave data processing pipeline is required to extract
meaningful features from raw EEG signals, which are then
used for classification. The processing pipeline consists of two
primary steps: preprocessing and feature extraction [25].

A. Preprocessing

The EEG recordings, captured at a sampling rate of 256
Hz, depict brain activity data over a comprehensive period.
To improve the signal quality, we have taken several steps to
remove artifacts. First, a bandpass filter (1–50 Hz) was applied
to eliminate low-frequency drift and high-frequency noise,
ensuring that the signal retained only the relevant frequency
components and minimizing the effects of electrical noise and
physiological artifacts.

Next, we employed ICA to determine and remove compo-
nents related to eye blinks, muscle movements, and other non-
brain artifacts. ICA separates the mixed signals into statistically
independent components, enabling us to isolate and exclude
those corresponding to artifacts. The frontal channels, which
are most impacted by eye blinks and movements, received
particular attention during this technique. By focusing on
the channels AF3, AF4, F7, F3, F4, and F8, we sought to
identify and remove components associated with eye-related
artifacts. The remaining independent components, which were
presumed to be free from significant artifact influence, were
then recombined to reconstruct the cleaned EEG signals.

We also performed baseline removal to correct potential drifts
and offsets in the EEG data. To avoid transient effects, we
excluded the first and last three seconds of the open-eye and
close-eye periods. After this trimming, we calculated the mean
signal values across all EEG channels for each period. These
mean values were then averaged and subtracted from the related
channels in the EEG data. “Fig. 1” demonstrates the effect of
the preprocessing steps, showing a clear improvement in signal
quality and removing artifacts from the raw EEG data.

We divided the continuous EEG data into 1-second segments
to focus on the relevant parts of the signal. This segmentation
process captures the brain’s response to specific stimuli by
breaking the data into smaller, more manageable units. Each
segment starts 100 milliseconds before the stimulus presen-
tation and continues for 900 milliseconds after the presented
stimulus. The 1-second windows were non-overlapping, mean-
ing each segment represents a distinct, continuous portion of the
EEG recording. The segments were labeled based on the type of
stimulus presented during the time window they captured. This
labeling process allowed us to associate each data segment with
its representative stimulus, facilitating subsequent classification
and analysis tasks.

B. Feature Extraction

After preprocessing the EEG signals, the next crucial step
is feature extraction, which transforms the cleaned data into
measurable characteristics for classification.

(a) Raw EEG data.

(b) EEG data after artifact removal.

Fig. 1: EEG signals before and after preprocessing.

We used the Discrete Wavelet Transform (DWT) [26] to break
down the EEG signal into different frequency components at
various resolution levels. We specifically looked at the wavelet
coefficients at level four, which effectively capture detailed
variations in the signal. We calculated the mean and standard
deviation for each of the levels (including the approximation
at level four and the details at levels 1 to 4). This gave us ten
features per channel. With 14 channels, we ended up with a
total of 140 features.

We calculated the Power Spectral Density (PSD) [27] values
for different frequency bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz).
To get these features, we used the Welch method to assess the
PSD of each epoch. Since there are five frequency bands and
14 channels, this resulted in 70 features.

Combining these statistical and frequency domain features,
we produced a comprehensive feature set that encapsulates
the essential characteristics of the EEG signals. In total, we
extracted 210 features for each epoch (140 from the wavelet
transform and 70 from the power spectral density analysis).
“Table I” provides a summary of the EEG datasets used in this
study.
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TABLE I: The EEG dataset categorized by stimuli type.

Stimulus Number of Users Number of Samples

P300/Selected 38 717

P300/Assigned 38 720

N400/Words 38 1417

N400/Sentences 38 222

N400/Faces 38 360

V. AUTHENTICATION SYSTEM DESIGN

In our EEG-based authentication system, newly acquired
EEG signals are compared with stored templates to verify user
identities. A classifier is employed to determine whether the
presented sample belongs to a genuine user or an impostor.
If the matching score exceeds a certain threshold, access
is granted. Otherwise, the system classifies the user as an
impostor, and access is denied.
A. Classification Method

The authentication system uses a two-class classification
approach, in which classifiers are trained to distinguish genuine
users from impostors. In this context, a genuine user is someone
authorized to access the system, while an impostor is someone
who is not. We trained each user separately, considering them
as genuine user, and treated all other users as impostors. This
means that the data from each genuine user was labeled as class
1, and the data from all other users was labeled as class 0. As
a result, the classifier learns to distinguish between the EEG
patterns of the authentic user and those of the impostors.

To evaluate the performance of the classifiers, we divided
the dataset into training and testing sets, using an 80/20 ratio,
with 80% of the data for training and 20% for testing. Stratified
sampling was used to maintain the same proportion of genuine
and impostor samples in each set.

B. Feature Selection
Feature selection was used to enhance the performance of the

classifiers by selecting the most relevant features from the EEG

data. The Random Forest (RF) feature selection method was
used because it effectively manages high-dimensional data and
ranks features according to their importance. During training,
the Random Forest algorithm constructs multiple decision trees
and outputs the mean prediction from each tree. During feature
selection, the importance of each feature is calculated by
evaluating the decrease in model accuracy when it is excluded.
As a result, higher importance scores are selected for classifier
training since they contribute more significantly to the model’s
prediction [28].

C. Machine Learning Methods

To evaluate our method’s effectiveness, we employed differ-
ent classifiers. These classifiers were trained and tested on both
genuine and impostor data. The classifiers used include: Linear
Discriminant Analysis (LDA) [29], Neural Networks (NNs) [30],
AdaBoost [31], XGBoost (XGB) [32], CatBoost [23], Random
Forest (RF) [33], Logistic Regression (LR) [34], Support Vector
Machines (SVM) [35] with linear and RBF kernels, and Extra
Trees (ET) [36].

The classifiers were trained on a balanced dataset with
samples from genuine users and impostors. Before training, we
standardized the features. Afterward, classifiers were evaluated
regarding how well they detected genuine users and rejected
impostors. The process was repeated for each user in the
dataset, treating them as genuine while assuming others were
impostors. Equal Error Rate (EER) was used as a critical
performance metric, representing the point where the rates of
false acceptances and rejections are equal. As a final assessment
of the system’s overall performance, the average EER across
all users was reported.

VI. RESULTS

Our results are shown in “Fig. 2”, evaluating the performance
of various classifiers using the average EER and standard
deviation (SD) across different stimulus conditions.

The best EER acquired was 2.53% (SD: 4.58%) with the Cat-
Boost classifier for the N400/Words stimulus, indicating its

Fig. 2: Average Equal Error Rates (EER) for various classifiers across different EEG stimuli. This heatmap displays the mean
EER (in percentage) and the corresponding standard deviations for different classifiers when applied to EEG data recorded in
response to various stimuli. The EER values are color-coded, with darker shades indicating higher error rates.
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superior ability to handle this specific condition. XGBoost also
showed strong performance, achieving an EER of 2.92% (SD:
4.58%) for the same stimulus. Moreover, AdaBoost achieved
an EER of 3.76% (SD: 5.75%) for the N400/Words stimulus.
These results demonstrate the effectiveness of these classifiers
in capturing the complex patterns in EEG signals associated
with the semantic processing of words.

The other ensemble method, Random Forest, showed consis-
tent performance with an EER of 3.36% (SD: 5.88%) for the
N400/Sentences stimulus.

Extra Trees also showed strong performance, achieving an
EER of 3.10% (SD: 9.15%) for the Faces stimulus and 3.48%
(SD: 6.03%) for the N400/Words stimulus. These results
highlight the robustness of Extra Trees in managing diverse
and complex EEG data related to facial and word stimuli.

The results demonstrate that advanced ensemble methods
including XGBoost, AdaBoost, CatBoost, Random Forest, and
Extra Trees are highly effective for our EEG-based authenti-
cation, particularly with N400 stimuli. Selecting appropriate
tasks and machine learning models is essential to verifying
the reliability and robustness of user authentication. Classifiers
that can handle high-dimensional and complex data structures
perform better in distinguishing genuine users from impostors.

Neural Networks and SVM with RBF kernel have demon-
strated their adaptability, achieving an EER of 4.61%
(SD: 6.75%) and 4.58% (SD: 6.51%), respectively, for the
N400/Words stimulus. Their performance, while mixed, sug-
gests that these classifiers are robust and can adapt to different
stimuli. However, their performance heavily depends on the
specific characteristics of the data and the complexity of the
patterns they need to learn, indicating the need for a nuanced
approach in their application.

Comparing the stimuli performance, N400/Words and
N400/Faces tasks generally yielded lower EERs across
classifiers, suggesting these stimuli are robust and reliable
markers for distinguishing between genuine users and im-
postors. The distinct nature of these responses likely con-
tributes to better classifier performance. P300 stimuli, es-
pecially P300/Selected, also performed well for the Extra
Trees classifier but were more variable across classifiers. The
N400/Sentences stimulus had higher EERs for many clas-
sifiers, indicating that this task may introduce more variability
and complexity, making it more difficult for classifiers to gener-
alize effectively. Semantic incongruence in sentence completion
tasks may vary particularly among individuals, contributing to
increased EERs.

VII. DISCUSSION

Arias-Cabarcos et al. [6] explored ERP-based authentication
tasks with consumer-grade EEG equipment, reporting average
EERs from 14.5% to 34.14%. In another study, Arias-Cabarcos
et al. [9] reported average EERs of 7.2% to 12.3% when exam-
ining closed-set and open-set scenarios. A closed-set scenario
is described, where classifiers are trained using all user data,
including attackers, labeling samples either as authenticated

or rejected. In contrast, an open-set scenario involves training
only authenticated and known rejected users. The system must
identify and reject unseen attackers during testing, simulating a
more realistic authentication challenge. A comparison of open-
set and closed-set scenarios revealed that the EER increased by
5.1% to 18% in the open-set scenario due to unknown attackers,
highlighting the difficulty associated with generalizing to a new,
unknown user group.

In this work we used the dataset presented by Arias-Cabarcos
et al. [6], [9]. Our research showed significant advancements in
EEG-based authentication by achieving a lower EER compared
to existing studies. Our system achieved an average EER of
2.53% using the CatBoost classifier with the N400/Words
stimulus, which is a notable improvement compared to the other
studies.

We further analyze each factor that contributed to the im-
provement in our study:

• Preprocessing Methods: A robust preprocessing pipeline
was employed that included ICA for removing eye blinks
and muscle movements. As a result, higher-quality EEG
signals were obtained for feature extraction.

• Enhanced Feature Extraction: Our feature extrac-
tion methodology combines time-domain features with
frequency-domain features, including Power Spectrum
analysis and Discrete Wavelet Transform. As a result
of this comprehensive approach, we can extract a wide
range of features from EEG signals, which increases the
discriminative power of these features.

• Feature Selection: We used Random Forests for feature
selection, which reduced dimensionality and improved
classifier performance. We noted that the model performed
better, resulting in a lower EER when we trained it with
selected features.

• Effective Use of Ensemble Classifiers: In our research, we
used ensemble classifiers such as CatBoost, XGBoost, and
Extra Trees, which are known for being able to handle
high-dimensional and complex data structures. Using these
classifiers ensures that the model is robust against overfit-
ting and improves its generalization abilities.

VIII. CONCLUSION

This study demonstrated significant advancements in EEG-
based authentication by showcasing the effectiveness of mod-
ern ensemble classifiers, in achieving low EERs. Our sys-
tem achieved an impressive average EER of 2.53% on the
N400/Words stimulus. The results of this study are notable
improvements over previous studies, demonstrating the po-
tential of these methodologies to improve the accuracy and
reliability of EEG-based biometric systems.

The results highlighted the importance of using sophisticated
signal processing techniques to clean and preprocess EEG
data, assuring that the extracted features accurately reflect
the underlying neural activity. Combining time-domain and
frequency-domain features, along with ensemble classifiers’
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robustness, produced highly effective results for distinguishing
genuine users from imposters.

Although the results of the study are promising, it acknowl-
edges some limitations, including the need for comprehensive
and diverse datasets to further validate the system’s robustness.
In addition, future research could explore how these techniques
can be applied in real-time and how other advanced feature
extraction techniques can be incorporated to further enhance
performance.

Overall, this paper showed how modern ensemble classifiers
and advanced preprocessing techniques can be utilized to
achieve low EERs to implement robust EEG-based authenti-
cation. As a result of this work, future developments in secure
biometric authentication systems will be able to improve the
security measures of a variety of applications, contributing to
the broader field of biometrics.
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